文档库 最新最全的文档下载
当前位置:文档库 › 药物的体内动力学过程

药物的体内动力学过程

药物的体内动力学过程
药物的体内动力学过程

药物的体内动力学过程

第一节药动学基本概念、参数及其临床意义

一、房室模型

房室是一个假设的结构,在临床上它并不代表特定的解剖部位。

如体内某些部位中药物与血液建立动态平衡的速率相近,则这些部位可以划为一个房室。

给药后,同一房室中各个部位的药物浓度变化速率相近,但药物浓度可以不等。

单室模型:当药物进入体循环后,能迅速向体内各组织器官分布,并很快在血液与各组织脏器之间达到动态平衡的都属于这种模型。

单室模型并不意味着身体各组织药物浓度都一样,但机体各组织药物水平能随血浆药物浓度的变化平行地发生变化。

双室模型假设身体由两部分组成,即药物分布速率比较大的中央室与分布较慢的周边室。

二、药动学参数

1.速率常数

药物在体内的吸收、分布、代谢和排泄过程大多属于一级速率过程,即过程的速度与浓度成正比。速率常数的单位是时间的倒数,如min-1或h-1。

药物从体内消除的途径有肝脏代谢、经肾脏排泄和胆汁排泄等。药物消除速率常数是代谢速率常数k b、排泄速率常数k e及胆汁排泄速率常数k bi之和:

k=k b+k e+k bi+…(9-1)

但在临床上,一些药物存在主动转运或载体转运,当药物浓度大到一定程度后,载体被饱和,药物的转运速度与浓度无关,速度保持恒定,此时为零级速度过程。

2.生物半衰期

生物半衰期指药物在体内的量或血药浓度降低一半所需要的时间,常以t1/2表示,单位取“时间”。t1/2是药物的特征参数,不因药物剂型、给药途径或剂量而改变。

但消除过程具零级动力学的药物,其生物半衰期随剂量的增加而增加。

3.表观分布容积

表观分布容积是体内药量与血药浓度间相互关系的一个比例常数,用“V”表示。它可以设想为体内的药物按血浆浓度分布时,所需要体液的理论容积。

V=X/C (9-2)

式中,X为体内药物量,V是表观分布容积,C是血药浓度。

V是药物的特征参数,对于具体药物来说,V是个确定的值,其值的大小能够表示出该药物的分布特性。从临床角度考虑,分布容积大提示分布广或者组织摄取量多。一般水溶性或极性大的药物,不易进入细胞内或脂肪组织中,血药浓度较高,表观分布容积较小;亲脂性药物在血液中浓度较低,表观分布容积通常较大,往往超过体液总体积。在多数情况下表观分布容积不涉及真正的容积。

4.清除率

临床上主要体现药物消除的快慢,计算公式为

Cl=kV (9-3)

Cl具有加和性,多数药物以肝的生物转化和肾的排泄两种途径从体内消除,因而药物的Cl等于肝清除率Clh与肾清除率Clr之和:

Cl=Clh+Clr (9-4)

第二节单室模型静脉注射给药

一、血药浓度分析

1.血药浓度与时间的关系

单室模型药物静脉注射给药后,能很快随血液分布到机体各组织、器官中,药物的消除速度与该时刻体内的药物量成正比。其体内过程的动力学模型如图9-1所示。

图9-1中,X0为静脉注射的给药剂量,X为时间t时体内药物量。单室模型静脉注射给药后,药物的消除按下列一级速度进行。

式中,dX/dt为药物的消除速度,k常数,负号表示体内药量X随时间t的减少。

从(9-5)式可推出下面的公式:

X=X0e-kt (9-6)

C=C0e-kt (9-7)

其中C0为时间是零时的初始血药浓度。

(9-7)式表示单室模型静脉注射给药,血药浓度随时间变化的指数函数表达式,血药

浓度—时间曲线如图9-2所示。

2.基本参数的求算

当静脉注射给药以后,测得不同时间t i的血药浓度C i,根据(9-8)式,以lgC对t作图,可得一条直线,如图(9-3)所示。采用最小二乘法作直线回归,可求得斜率b和截距a,根据直线斜率(-k/2.303)和截距(lgC0)求出k和C0。

k=-2.303b (9-9)

C0=lg-1a (9-10)

浓度对时间的半对数图

3.其他参数的求算

(1)半衰期(t1/2)

从上式可见,药物的半衰期与消除速度常数成反比。除药物本身的特性外,生理及病理

状况能够影响药物的半衰期,肾功能不全或肝功能受损者,均可使半衰期延长。

(2)表观分布容积(V):

式中,X0为静注剂量,C0为初始浓度,可由(9-8)式回归直线方程的截距求得,代入上式即可求出V。

(3)血药浓度-时间曲线下面积:

以给药后测得的血药浓度为纵坐标,时间为横坐标,绘出的曲线为血药浓度-时间曲线(简称药-时曲线),血药浓度-时间曲线与横坐标轴之间所围成的面积称血药浓度-时间曲线下面积(AUC)。

AUC可由一些参数计算得到:

当给药剂量X0,表观分布容积V和消除速度常数k已知时,利用上式即可求出AUC。

(4)清除率(Cl):

药物体内总清除率是消除速度常数与表观分布容积的乘积。也可换算后根据下式求得:

二、尿药排泄数据分析

采用尿排泄数据求算动力学参数须符合以下条件,大部分药物以原形从尿中排泄,并且药物经肾排泄过程符合一级速度过程,即尿中原形药物出现的速度与体内的药量成正比。

第三节单室模型静脉滴注给药

一、血药浓度与时间关系

在滴注时间T之内,以恒定速度k0增加药量,同时又以一级速度过程从体内消除。当滴注完成后,体内才只有消除过程。体内过程的模型如下图所示。

在0≤t≤T时间内,体内药物量一方面以k0恒速增加,另一方面从体内消除,药物从体内的消除速度与当时体内药物量成正比,体内药物的变化速度是这两部分的代数和,用微分方程表示为:

式中,dX/dt为体内药物量的瞬时变化率,k0为零级静脉滴注速度,k为以及消除速度常数。式(9-22)、(9-23)即为单室模型静脉滴注给药。体内药量X或血药浓度C与时间t的关系式。

二、稳态血药浓度

静脉滴注开始的一段时间内,血药浓度逐渐上升,然后趋近于恒定水平,此时的血药浓度值称为稳态血药浓度或坪浓度,用C ss表示。达到稳态血药浓度时,药物的消除速度等于药物的输入速度。

从式中可以看出,稳态血药浓度与静滴速度k0成正比。达坪分数f ss则为:

从式(9-25)可见,k越大,趋近于1越快,达到坪浓度越快,即药物的t1/2越短,到达坪浓度越快。以t1/2的个数n来表示时间,则:

式中,n表示静脉滴注给药达到坪浓度某一分数所需t1/2的个数。由此式即可求出任何药物达C ss某一分数f ss所需的时间(即半衰期的个数),见表9-1。如达到C ss的90%需3.32个t1/2,达到C ss的99%需6.64个t1/2。

表9-1 静脉滴注半衰期个数与达坪浓度分数的关系

半衰期个数(n)达坪浓度(C SS%)半衰期个数(n)达坪浓度(C SS%)

1 50.00 5 96.88

2 75.00 6 98.44

3 87.50 6.6

4 99.00

3.32 90.00 7 99.22

4 93.7

5 8 99.61

三、负荷剂量

在静脉滴注之初,血药浓度距稳态浓度的差距很大,药物的半衰期如大于0.5小时,则达稳态的95%,就需要2.16小时以上。为此,在滴注开始时,需要静注一个负荷剂量,使血药浓度迅速达到或接近C ss,继之以静脉滴注来维持该浓度。负荷剂量亦称为首剂量,可由式(9-27)求得。

X0=C ss V (9-27)

第四节单室模型血管外给药

一、血药浓度与时间的关系

血管外给药存在吸收过程,药物逐渐进入血液循环。药物的吸收和消除用一级过程描述,如图9-6所示。

图中,X0是给药剂量,F为吸收系数,X a为吸收部位可吸收的药量,k a为吸收速度常数,X为体内药量,k为消除速度常数。

在血管外给药的模型中,体内药物的变化速度dX/dt应等于吸收速度与消除速度之差,即:

由上式导出的其他相关公式包括:

其中F为吸收系数(0≤F≤1),表示吸收占剂量的分数值,或称其为“生物利用度”。

二、药动学参数的计算

假设ka>k,若t充分大时,e-kat首先趋于零,则式(9-31)简化为:

此式描述血药浓度-时间曲线的吸收后相(即此时吸收已不再存在),两端取对数,得:

血药浓度曲线由多项指数式表示时,可采用残数法求出各指数项中的参数,上式中吸收速率常数ka的计算即可用残数法。

残数浓度的方程:

三、峰浓度、达峰时间与曲线下面积的计算

单室模型血管外途径给药,药物按一级速度吸收进入体内时,血药浓度-时间关系为单峰曲线,如图9-8所示。

在该曲线中,峰左边称为吸收相,此时吸收速度大于消除速度,曲线呈上升状态,主要体现药物的吸收过程。峰的右边称为消除相,反映了药物的消除情况,此时的吸收速度小于消除速度;在到达峰顶的瞬间,吸收速度等于消除速度,其峰值就是峰浓度(C max),这个时间称为达峰时间(t max)。

由(9-37)式可知,药物的t max由k a、k决定,与剂量大小无关。而C max与X0成正比。药物制剂的达峰时间和峰浓度能够反映制剂中药物吸收的速度。

血药浓度-时间曲线下面积求算方法与静脉注射给药时相同,对式(9-32)从时间为零至无穷大间作定积分可得:

第五节双室模型给药

一、静脉注射血药浓度与时间的关系

双室模型药物经中央室进入系统,并从中央室消除,在中央室与周边室之间药物进行着可逆性的转运,其体内过程模型如图9-9所示。

图中,X0为静脉注射给药剂量,X C为中央室的药量,X P为周边室的药量,V C为中央室分布容积,V P为周边室分布容积,k12为药物从中央室向周边室转运的速度常数,k21为药物从周边室向中央室转运的速度常数,k10为药物从中央室消除的速度常数。

双室模型药物血药浓度与时间的关系为:

简化后为:

二、静脉滴注血药浓度与时间的关系

在双室模型中,当静脉滴注给药时,药物以恒定速度k0逐渐进入中央室,药物同时也在中央室与周边室转运及从中央室消除。滴注时间内血药浓度与时间的关系为:

当时间趋向于无穷大时,血药浓度趋近于一个恒定水平即稳态血药浓度Css:

三、血管外给药血药浓度与时间的关系

第六节多剂量给药

一、多剂量给药血药浓度与时间关系

多剂量给药又称重复给药,在重复给药时,由于前一次给药的药物尚未完全消除,体内药物量在重复给药后逐渐蓄积。随着不断给药,体内药物量不断增加,同时消除也相应加快,经过一定时间能达到稳态。达稳态时,一个给药间隔范围内消除一个剂量药物。对于符合单室模型按一级过程处置的药物,连续多次静脉注射给药后,血药浓度呈现出有规律的波动,

如图9-12所示。

多剂量给药时每次剂量相同,给药间隔时间也不变,则多剂量函数r为:

n为给药次数,k i为一级速度常数,τ为给药间隔时间。重复给药后的血药浓度-时间关系,可在单剂量给药后的血药浓度-时间方程式中,将每一个指数项乘以多剂量函数即可。多剂量函数的速率常数与指数项的速率常数相同。如单室模型静脉注射重复给药血药浓度与时间的关系为:

式中,C n为n次给药后的血药浓度。

单室模型血管外重复给药血药浓度与时间的关系为:

二、多剂量给药稳态血药浓度

多次重复给药,随着给药次数n的增加,血药浓度不断增加,但增加的速度逐渐减慢,当n充分大时,血药浓度不再升高,达到稳态水平。此时若继续给药则血药浓度在稳态水平上下波动,随每次给药作周期性变化。此时的血药浓度称为稳态血药浓度,或称坪浓度,记为C ss。

单室模型静脉注射给药稳态时血药浓度的经时变化过程为:

三、平均稳态血药浓度

重复给药达稳态后,在一个给药间隔时间内血药浓度-时间曲线下的面积除以给药间隔时间的商值,它用符号“”表示。

式中,是达稳态时,在一个给药间隔范围内(即0→τ)血药浓度曲线下的面积。

具单室模型特征药物静脉注射给药达稳态时,其平均稳态血药浓度为:

从上式可以看出,可以通过调整给药剂量及给药间隔时间来获得需要的平均稳态血药浓度。

口服给药时的平均稳态血药浓度为:

四、多剂量给药体内药量的蓄积

当达到稳态时,则体内蓄积量保持一个定值。不同药物,在体内蓄积程度不同,蓄积程度用蓄积系数表示。蓄积系数又称蓄积因子或积累系数,以R表示,为稳态最小血药浓度与第一次给药后的最小血药浓度(C1)min比值:

对于单室模型重复静脉注射给药:

对于单室模型重复血管外给药:

若k a>>k,且τ值较大,则e-kaτ→0:

蓄积系数与消除速率常数(生物半衰期)和给药间隔时间有关。如给药间隔时间与生物半衰期相等,则R=2,即稳态时体内药量为单剂量给药的二倍,如τ=1/2t1/2,则R=3.4,如τ=2t1/2,则R=1.33。若已知药物的半衰期,则可计算出任一给药间隔时间时该药在体内的蓄积系数。τ越小,蓄积程度越大,半衰期较大的药物容易产生蓄积。

五、多剂量给药血药浓度的波动程度

波动程度是评价缓控释制剂质量的重要指标之一。

第七节非线性药动学

一、非线性药动学意义

1.药物体内过程的非线性现象

当有些过程有酶或载体参与,在高浓度时酶或载体可能被饱和,这些药物在体内的动力学过程不能用一级速度过程或线性过程表示,这种药动学特征称为非线性动力学。

具非线性药动学特征的药物,在较大剂量时的表观消除速率常数比小剂量时的要小,因此不能根据小剂量时的动力学参数预测高剂量下的血药浓度。

一旦消除过程在高浓度下达到饱和,则血药浓度会急剧增大;当血药浓度下降到一定值时,药物消除速度与血药浓度成正比,表现为线性动力学特征。

非线性药动学对于临床用药的安全性和有效性有着较大的影响。当体内某一过程被饱和,产生非线性药动学,会导致临床效应和毒副作用的显著变化。如消除过程被饱和,药物向体外的消除速度明显减慢,血药浓度增加,可导致毒副作用产生,这在临床使用上应引起注意。

2.非线性药动学的特点

具非线性动力学特征药物的体内过程有以下特点:

(1)药物的消除不呈现一级动力学特征,即消除动力学是非线性的。

(2)当剂量增加时,消除半衰期延长。

(3)AUC和平均稳态血药浓度与剂量不成正比。

(4)其他可能竞争酶或载体系统的药物,影响其动力学过程。

3.非线性药动学的识别

常用的识别非线性药动学方法是静脉注射高、中、低三个剂量,得到各剂量的一系列血药浓度-时间数据,可按如下方法识别:

(1)不同剂量的血药浓度-时间曲线相互平行,表明在该剂量范围内为线性动力学过程,反之则为非线性动力学过程。

(2)以剂量对相应的血药浓度进行归一化,以单位剂量下血药浓度对时间作图,所得的曲线如明显不重叠,则可能存在非线性过程。

(3)AUC分别除以相应的剂量,如果所得比值明显不同,则可能存在非线性过程。

(4)将每个剂量的血药浓度-时间数据按线性动力学模型处理,若所求得的动力学参数(t1/2、k、Cl等)明显地随剂量大小而改变,则可能存在非线性过程。

二、非线性药动学方程——Michaelis-Menten方程

非线性药动学过程通常用米氏方程来表征。其方程式如下:

式中,-dC/dt为药物浓度在t时间的下降速度,V m为药物消除过程的理论最大速度,K m为Michaelis常数,简称米氏常数,是指药物消除速度为V m一半时的血药浓度。

三、血药浓度与时间关系及参数的计算

1.血药浓度与时间关系

血药浓度的经时过程可表示如下:

2.Km与Vm值估算

利用体内试验得到的血药浓度时间数据,可用不同方法来估算非线性药动学参数Km及Vm。可根据下式求Km与Vm。

以1/-(△C/△t)对1/C m作图得一条直线,其斜率为K m/V m,截距为1/ V m。故从各点的回归直线求得其斜率及截距,即可求得K m及V m。

3.生物半衰期

在线性动力学中,生物半衰期为定值,仅与消除速率常数有关,与体内药物量无关。非线性消除的药物静脉注射后,其生物半衰期为:

当血药浓度下降到很低时,即C<

t1/2与血药浓度无关,表现为线性动力学特征;

当血药浓度较高时,即C>>Km,,表明生物半衰期随血药浓度的增加而延长。

由上式可见,非线性动力学药物由初浓度消除一半所需时间与初浓度成正比,随着血药浓度增大,其生物半衰期延长。

4.血药浓度-时间曲线下面积

若药物静脉注射后,体内消除按非线性过程进行,则其血药浓度-时间曲线下面积可按

下式计算

上式表明,血药浓度-时间曲线下面积与剂量不呈正比关系。

当剂量低到X0/(2V)<

即曲线下面积直接与剂量成正比,相当于一级消除过程。

当X0/(2V)>>Km,即剂量较大,浓度较高时,则(9-60)式简化为:

表明曲线下面积与剂量平方成正比,此时剂量少量增加,会引起血药浓度-时间曲线下面积比较大的增加。

5.稳态血药浓度

具有非线性药动学性质的药物,当多次给药达到稳态浓度时,其药物消除速度和给药速度相等,则:

式(9-63)表明,当增加剂量时,将使稳态血药浓度的升高幅度高于正比例的增加。

第八节统计矩分析在药动学中的应用

一、统计矩的基本概念

用统计矩分析药物体内过程,主要依据血药浓度-时间曲线下面积。

药物体内过程是一个随机过程,血药浓度-时间曲线可以看成是一种统计分布曲线,不论哪种给药途径,从统计矩理论可定义三个矩量。

1.零阶矩血药浓度-时间曲线下面积

2.一阶矩药物在体内的平均滞留时间(MRT)

3.二阶矩平均滞留时间的方差(VRT)为二阶矩,表示药物在体内滞留时间的变异程度

零阶矩代表药物的血药浓度随时间的变化过程,一阶矩是在药物临床应用中非常重要的一个参数,代表了药物在体内的滞留情况,与其作用时间等许多性质有关,二阶矩则代表了药物在体内滞留的变异程度。通常零阶矩与一阶矩用于药动学研究,而二阶矩因误差较大,应用不多。

二、用矩量估算药动学参数

1.半衰期通常用统计矩法计算平均滞留时间,MRT代表给药剂量或药物浓度消除掉63.2%所需的时间,即:

对于静脉注射后具单室模型特征的药物,其半衰期t1/2=0.693/k,则从式(9-69)推得:

即半衰期为平均滞留时间的69.3%。

平均滞留时间与给药方法有关,非瞬时给药的MRT值总是大于静脉注射时的MRT iv。如静脉滴注时:

其中T为输液时间。

2.清除率与稳态表观分布容积清除率定义为静脉注射给药后剂量标准化的血药浓度-时间曲线的零阶矩量的倒数。

药物静脉注射后,稳态表观分布容积(Vss)为清除率与平均滞留时间的乘积。

三、矩量法硏究吸收动力学

口服固体制剂时,在吸收进入体循环前需要先崩解成颗粒,后经溶出,成为溶解在液体中的药物,再被吸收进入体循环。因此,固体制剂药物在体内的平均滞留时间(MRT)应包括固体制剂的平均崩解时间(MDIT),药物的平均溶出时间(MDT),溶出药物的平均吸收时间(MAT)和药物在体内的平均处置(分布、代谢、排泄)时间(MRTiv)。

如果同一药物制成不同固体制剂,如片剂、散剂、溶液剂与注射剂同时进行体内试验,求出它们的MRT,则可获得这个药物不同剂型的MDIT、MDT、MAT。如片剂的平均崩解时间为:

第九节给药方案设计与个体化给药

一、给药方案设计

1.给药方案设计的一般原则

给药方案设计的目的是使药物在靶部位达到最佳治疗浓度,产生最佳的治疗作用和最小的副作用。

安全范围广的药物不需要严格的给药方案。

对于治疗指数小的药物,要求血药浓度的波动范围在最低中毒浓度与最小有效浓度之间,因为患者的吸收、分布、消除的个体差异常常影响血药浓度水平,因而需要制定个体化给药方案。

对于在治疗剂量即表现出非线性动力学特征的药物,剂量的微小改变,可能会导致治疗效果的显著差异,甚至会产生严重毒副作用,此类药物也需要制定个体化给药方案。

2.根据半衰期确定给药方案

当给药间隔τ=t1/2时,按一定剂量多次给药后,体内药物浓度大约经5~7个半衰期达

到稳态水平。根据式,即,药物在体内不会造成很大积累。当τ>t1/2时,血药浓度波动大;当τ

临床上常采用首次剂量加大,即采用负荷剂量使血药浓度迅速达到有效治疗浓度。维持剂量(X0)与首剂量()的关系为:

若维持量X0为有效剂量,且τ=t1/2时,将k=0.693/t1/2代入上式,求得负荷剂量:

这也是为何一些药品说明书中注明首剂加倍的原因,即当首剂量等于维持剂量的2倍时,血药浓度迅速能够达到稳态血药浓度。根据半衰期制定给药方案较简单,但该法不适合半衰期过短或过长的药物。

3.根据平均稳态血药浓度制定给药方案

平均稳态血药浓度与给药剂量X0和给药间隔τ的关系为:

例1 已知普鲁卡因酰胺胶囊剂的F为0.85,t1/2为3.5h,V为2.0L/kg。

(1)若患者每4h口服一次,剂量为7.45mg/kg时,求。

(2)若保持为6μg/ml,每4h口服一次,求给药剂量X0。

(3)若体重为70kg的患者,口服剂量为500mg,要维持为4μg/ml,求给药间隔

τ和负荷剂量。

解:(1)根据(9-77)式,则:

(2)11.18(dmg/kg)

(3)根据(9-78)式,则:

因为τ=4≈t1/2,所以 X0* =2X0=2×500=1000(mg)。

从式(9-76)可见,只要保持给药速度X0/τ的比值不变,则平均稳态血药浓度不会改变,但给药后的稳态最大血药浓度和最小血药浓度会随着X0和τ的变化而改变。给药间隔越长,稳态血药浓度的峰谷波动性越大,对于治疗窗较窄的药物应用不利。

因此根据平均稳态血药浓度制定给药方案必须选择最佳给药间隔,一般药物给药间隔为

1~2个半衰期。

对于治疗窗非常窄的药物,必须以小剂量多次给药,或采用静脉滴注方式给药。临床上对治疗指数很小的药物,常常采用使其稳态最大血药浓度和稳态最小血药浓度控制在一定范围内的给药方案设计。

4.使稳态血药浓度控制在一定范围内的给药方案

单室模型药物重复静脉注射时,与之间的关系为:

则:

因此将血药浓度的上下限分别代入和,即可求出最佳给药间隔时间。

例2 某抗生素药物半衰期为3小时,表观分布容积为体重的20%,有效治疗浓度为5~15μg/ml。当血药浓度超过20μg/ml时,临床上可出现毒性反应。试计算使血药浓度保持在5~15μg/ml的静脉注射给药方案。

解:(1)确定给药间隔τ。

(2)确定给药剂量X0,因为k=0.693/3=0.231/h,V=200ml/kg(20%体重),C0=X0/V。

(3)检查给药方案的治疗效果,计算和。

5.静脉滴注给药方案设计

对于具有单室模型特征的药物,静脉滴注给药后稳态血药浓度(C ss)为:

上式整理后得为达到稳态血药浓度C ss所需要的滴注速率:

例 4 体重为75kg的患者用利多卡因治疗心律失常,利多卡因的表观分布容积V=1.7L/kg,消除速率常数k=0.46h-1,希望治疗一开始便达到2μg/ml的治疗浓度,请确

定静滴速率及静注的负荷剂量。

解:

静注的负荷剂量X0=C0V=2×1.7×75=255(mg)

静滴速率k0=C ss kV=2×0.46×1.7×75=117.3(mg/h)

二、个体化给药

1.血药浓度与给药方案个体化

2.给药方案个体化方法

(1)比例法

(2)一点法

(3)重复一点法

3.肾功能减退患者的给药方案设计

肌酐清除率是判断肾小球滤过功能的指标

三、治疗药物监测

治疗药物监测(TDM)主要任务是通过灵敏可靠的方法,检测患者血液或其他体液中的药物浓度,获取有关药动学参数,应用药动学理论,指导临床合理用药方案的制定和调整,以及药物中毒的诊断和治疗,以保证药物治疗的有效性和安全性。

并不是所有药物都需要进行血药浓度监测,在血药浓度-效应关系已经确立的前提下,有下列情况需进行血药浓度监测:

(1)个体差异很大的药物,即患者间有较大的药动学差异,如三环类抗抑郁药。

(2)具非线性动力学特征的药物,尤其是非线性特征发生在治疗剂量范围内,如苯妥英钠。

(3)治疗指数小、毒性反应强的药物,如强心苷类药、茶碱、锂盐、普鲁卡因胺等。

(4)毒性反应不易识别,用量不当或用量不足的临床反应难以识别的药物,如用地高辛控制心律失常时,药物过量也可引起心律失常。

(5)特殊人群用药,患有心、肝、肾、胃肠道疾病者,婴幼儿及老年人的动力学参数与正常人会有较大的差别,如肾功能不全的患者应用氨基糖苷类抗生素。

(6)常规剂量下没有疗效或出现毒性反应,测定血药浓度有助于分析原因。

(7)合并用药而出现的异常反应,药物之间的相互作用使药物在体内的吸收或消除发生改变,因此需要通过监测血药浓度对剂量进行调整。

(8)长期用药,血药浓度可受各种因素的影响而发生变化,有的可在体内逐渐蓄积而发生毒性反应;也有的血药浓度反而降低,导致无效;需测定血药浓度,调整剂量。

(9)诊断和处理药物过量或中毒。

治疗药物监测其临床意义简单归纳如下:

(1)指导临床合理用药、提高治疗水平。

(2)确定合并用药的原则。

(3)药物过量中毒的诊断。

(4)作为医疗差错或事故的鉴定依据及评价患者用药依从性的手段。

第十节生物利用度与生物等效性

一、生物利用度的概念

生物利用度(BA)是指药物被吸收进入血液循环的速度与程度,是衡量制剂疗效差异的重要指标。

生物利用度包括两方面的内容:生物利用速度与生物利用程度。

生物利用速度即药物进入血液循环的快慢。常用血药浓度-时间曲线的达峰时间比较制剂间的吸收快慢,达峰时间短,药物吸收快。

生物利用程度,即药物进入血液循环的多少,可用血药浓度-时间曲线下的面积表示,因为它与药物吸收总量成正比。

药物的疗效不但与吸收量有关,而且也与吸收速度有关。

如果一种药物的吸收速度太慢,在体内不能产生足够高的治疗浓度,即使药物全部被吸收,也达不到治疗效果。

制剂的生物利用度应该用峰浓度C max、达峰时间t max和血药浓度-时间曲线下面积AUC三个指标全面地评价,它们是制剂生物等效性评价的三个主要参数。

二、生物利用度的研究方法

生物利用度的研究方法有血药浓度法、尿药数据法和药理效应法等。血药浓度法是生物利用度研究最常用的方法。

试验制剂(T)与参比制剂(R)的血药浓度-时间曲线下的面积的比率称相对生物利用度。当参比制剂是静脉注射剂时,则得到的比率称绝对生物利用度,因静脉注射给药药物全部进入血液循环。

三、生物等效性研究

生物等效性(BE)是指一种药物的不同制剂在相同试验条件下,给以相同剂量,反映其吸收程度和速度的主要药动学参数无统计学差异。

通常制剂生物等效的标准为:供试制剂与参比制剂的AUC的几何均值比的90%置信区间在80%~125%范围内,且C max几何均值比的90%置信区间在75%~133%范围内,则判定供试制剂与参比制剂生物等效。t max可用非参数法检验。

1、表观分布容积

V=X/C

2、清除率

Cl=kV

3、单室模型静脉注射给药

4、半衰期(t1/2)

5、血药浓度-时间曲线下面积

6、单室模型静脉滴注给药

7、单室模型静脉滴注给药稳态血药浓度

8、单室模型静脉滴注给药负荷剂量

X0=C ss V (9-27)

9、单室模型血管外给药

10、单室模型血管外给药峰浓度(C max)、达峰时间(t max)、血药浓度-时间曲线下面积AUC

11、单室模型血管外重复给药

12、单室模型静脉注射重复给药稳态血药浓度

13、单室模型静脉注射重复给药平均稳态血药浓度

14、单室模型口服给药时的平均稳态血药浓度

15、单室模型血管外重复给药血药浓度:

16、根据半衰期确定给药方案,维持剂量(X0)与首剂量的关系

例:某药静脉滴注3个半衰期后,其血药浓度达到稳态血药浓度的

A.50%

B.75%

C.88%

D.94%

E.97%

『正确答案』C

『答案解析』n=-2.303log(1-f SS)

当t为3个半衰期时,即n=3,代入上式得f ss=88%。

或如此记忆:静脉滴注一个半衰期,血药浓度达稳态血药浓度的1-(1/2)1;2个半衰期,血药浓度达稳态血药浓度的1-(1/2)2;3个半衰期,血药浓度达稳态血药浓度的1-(1/2)3……;8个半衰期,血药浓度达稳态血药浓度的1-(1/2)8。

药物代谢动力学完整版

药物代谢动力学完整版 第二章药物体内转运 肾脏排泄药物及其代谢物涉及三个过程:肾小球的滤过、肾小管主动分泌、肾小管重吸收。 一、药物跨膜转运的方式及特点 1. 被动扩散 特点:①顺浓度梯度转运②无选择性,与药物的油/水分配系数有关③无饱和现象④无竞争性抑制作用⑤不需要能量 2. 孔道转运 特点:①主要为水和电解质的转运②转运速率与所处组织及膜的性质有关 3. 特殊转运 包括:主动转运、载体转运、受体介导的转运 特点:①逆浓度梯度转运②常需要能量③有饱和现象④有竞争性抑制作用⑤有选择性 4. 其他转运方式 包括:①易化扩散类似于主动转运,但不需要能量②胞饮主要转运大分子化合物 二、影响药物吸收的因素有哪些 ①药物和剂型的影响②胃排空时间的影响③首过效应④肠上皮的外排⑤疾病⑥药物相互作用 三、研究药物吸收的方法有哪些,各有何特点? 1. 整体动物实验法 能够很好地反映给药后药物的吸收过程,是目前最常用的研究药物吸收的实验方法。缺点: ①不能从细胞或分子水平上研究药物的吸收机制; ②生物样本中的药物分析方法干扰较多,较难建立; ③由于试验个体间的差异,导致试验结果差异较大; ④整体动物或人体研究所需药量较大,周期较长。 2. 在体肠灌流法:本法能避免胃内容物和消化道固有生理活动对结果的影响。 3. 离体肠外翻法:该法可根据需要研究不同肠段的药物吸收或分泌特性及其影响因素。 4. Caco-2细胞模型法 Caco-2细胞的结构和生化作用都类似于人小肠上皮细胞,并且含有与刷状缘上皮细胞相关的酶系。优点: ①Caco-2细胞易于培养且生命力强,细胞培养条件相对容易控制,能够简便、快速地获得大量有价值的信息; ②Caco-2细胞来源是人结肠癌细胞,同源性好,可测定药物的细胞摄取及跨细胞膜转运; ③存在于正常小肠上皮中的各种转运体、代谢酶等在Caco-2细胞中大都也有相同的表达,因此更接近药物在人体内吸收的实际环境,可用于测定药物在细胞内的代谢和转运机制; ④可同时研究药物对粘膜的毒性; ⑤试验结果的重现性比在体法好。 缺点: ①酶和转运蛋白的表达不完整,此外来源,培养代数,培养时间对结果有影响; ②缺乏粘液层,需要时可与HT-29细胞共同培养。

药物的体内过程完整版

药物的体内过程集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

第三章药物代谢动力学(药动学) 药动学(pharmacokinetics)是研究机体对药物的处置过程的科学,即研究药物在体内的吸收、分布、代谢及排泄的过程和血药浓度随时间变化的规律的科学。 第一节药物体内过程 体内过程即吸收(absorption)、分布(distribution)、代谢(metabolism)和排泄(excretion)的过程,又称ADME系统。 吸收、分布、排泄通称药物转运(tranportationofdrug)。 代谢变化也称生物转化(biotransformation)。 代谢和排泄合称为消除(elimination) 图3-1药物体内过程示意图

一、药物的跨膜转运 1.被动转运(passivetransport) 类型: 1)脂溶扩散(lipiddiffusion;简单扩散) 2)水溶扩散(aqueousdiffusion;滤过) 3)易化扩散(facilitateddiffusion) (需载体,有饱和、竞争抑制) 特点:顺差(浓度、电位),不耗能; 不需载体,无饱和、竞争抑制。 2.主动转运(activetransport) 特点:逆差(浓度、电位),耗能; 需载体,有饱和、竞争抑制。 3.膜动转运(cytopsistransport) 胞饮(pinocytosis) 胞吐(exocytosis) 整个体内过程都涉及药物体内跨膜转运。 大多数药物体内转运过程属于被动转运(脂溶扩散)。 分子量小,非解离型,脂溶性大,极性小的药物易被动转运。 二、吸收 药物从给药部位进入血液循环的过程称为吸收。 吸收速度主要影响药物起效的快慢; 吸收程度主要影响药物作用的强弱。 影响吸收速度和程度的因素: 药物理化性质、剂型、剂量 给药途径:起效:吸入>肌内注射>皮下注射>口服>直肠>皮肤 吸收环境等。 1.消化道吸收 1)口服(oraladministration,peros,p.o.) 大多数药物常采用口服给药,以肠道(小肠)吸收为主。

中国药科大学药物代谢动力学实验考查知识点整理

中国药科大学药物代谢动力学实验考查知 识点整理 药物代谢动力学实验考查知识点整理 第一部分:HPLC使用注意事项 1、HPLC组成:泵、进样器、色谱柱、检测器、数据系统/积分仪 2、反相色谱: 分离机理:“反相色谱”固定相极性小于流动相极性常用流动相:乙腈、甲醇,水 3、色谱柱的分类: 按填料:球形、无定形按含碳量:C18、C8 按应用:分析柱、制备柱、预处理柱按粒径:150mm*,5μm等按填料类型:正相柱、反相柱、手性柱 4、键合相色谱柱的优缺点: 优点:稳定不易流失; 应用广泛,可使用多种溶剂;消除硅羟基的不良影响; 缺点:pH得在3~8范围内 5、C18柱的活化:90% 10% 90%的甲醇溶液1ml/min依次冲洗30min 6、流动相: 使用之前需超声脱气目的:色谱泵输液准确提高检测性能 保护色谱柱

流动相脱气的方法:加热,抽真空,超声,通惰性气体流动相组成:流动相配置: 缓冲溶液现用现配,不要储存时间过长,避免pH值发生变 化和成分分解,影响色谱分离的效果; 有机溶液和缓冲液使用前均需经μm微孔滤膜过滤;流动相使用前脱气。 7、常用定量方法:外标法内标法内标物的要求: 化学结构与待测品相似;样品中不存在; 不与样品组分发生化学反应;保留值与待测值接近;浓度相当;与其他色谱峰分离好 8、样品的预处理: 目的:除杂质;浓缩微量成分;改善分离;保护色谱柱;提 高检测灵敏度 方法:高速离心,过滤,选择性沉淀,衍生反应;液固萃取、 液液萃取 沉淀蛋白的溶剂: 有机溶剂:乙腈、甲醇强酸:三氯乙酸、过氯酸盐:50%硫酸铵、10%TCA 分析测定用试剂为色谱纯及以上,水为超纯水第二部分:实验设计

药物的体内动力学过程分析

药物的体内动力学过程 第一节药动学基本概念、参数及其临床意义 一、房室模型 房室是一个假设的结构,在临床上它并不代表特定的解剖部位。 如体内某些部位中药物与血液建立动态平衡的速率相近,则这些部位可以划为一个房室。 给药后,同一房室中各个部位的药物浓度变化速率相近,但药物浓度可以不等。 单室模型:当药物进入体循环后,能迅速向体内各组织器官分布,并很快在血液与各组织脏器之间达到动态平衡的都属于这种模型。 单室模型并不意味着身体各组织药物浓度都一样,但机体各组织药物水平能随血浆药物浓度的变化平行地发生变化。 双室模型假设身体由两部分组成,即药物分布速率比较大的中央室与分布较慢的周边室。 二、药动学参数 1.速率常数 药物在体内的吸收、分布、代谢和排泄过程大多属于一级速率过程,即过程的速度与浓度成正比。速率常数的单位是时间的倒数,如min-1或h-1。 药物从体内消除的途径有肝脏代谢、经肾脏排泄和胆汁排泄等。药物消除速率常数是代谢速率常数k b、排泄速率常数k e及胆汁排泄速率常数k bi之和: k=k b+k e+k bi+…(9-1) 但在临床上,一些药物存在主动转运或载体转运,当药物浓度大到一定程度后,载体被饱和,药物的转运速度与浓度无关,速度保持恒定,此时为零级速度过程。 2.生物半衰期 生物半衰期指药物在体内的量或血药浓度降低一半所需要的时间,常以t1/2表示,单位取“时间”。t1/2是药物的特征参数,不因药物剂型、给药途径或剂量而改变。 但消除过程具零级动力学的药物,其生物半衰期随剂量的增加而增加。 3.表观分布容积 表观分布容积是体内药量与血药浓度间相互关系的一个比例常数,用“V”表示。它可以设想为体内的药物按血浆浓度分布时,所需要体液的理论容积。 V=X/C (9-2) 式中,X为体内药物量,V是表观分布容积,C是血药浓度。 V是药物的特征参数,对于具体药物来说,V是个确定的值,其值的大小能够表示出该药物的分布特性。从临床角度考虑,分布容积大提示分布广或者组织摄取量多。一般水溶性或极性大的药物,不易进入细胞内或脂肪组织中,血药浓度较高,表观分布容积较小;亲脂性药物在血液中浓度较低,表观分布容积通常较大,往往超过体液总体积。在多数情况下表观分布容积不涉及真正的容积。 4.清除率 临床上主要体现药物消除的快慢,计算公式为 Cl=kV (9-3) Cl具有加和性,多数药物以肝的生物转化和肾的排泄两种途径从体内消除,因而药物的Cl等于肝清除率Clh与肾清除率Clr之和: Cl=Clh+Clr (9-4)

药物消除动力学之——连续恒速给药

药物消除动力学之——连续恒速给药 临床治疗常需连续给药以维持有效血药浓度。在一级动力学药物中,开始恒速给药时药物吸收快于药物消除,体内药物蓄积。按计算约需5个t1/2达到血药稳态浓度(Css),此时给药速度(RA)与消除速度(RE)相等。(τ为给药间隔时间)可见Css随给药速度(RA=Dm/τ)快慢而升降,到达Css时间不因给药速度加快而提前,它取决于药物的ke 或t1/2.据此,可以用药物的keVd或Cl计算给药速度以达到所需的有效药物浓度。静脉恒速滴注时血药浓度可以平稳地到达Css.分次给药虽然平均血药浓度上升与静脉滴注相同,但实际上血药浓度上下波动。分药间隔时间越长波动越大,其峰值浓度,谷值浓度Css-min=Css-max.如果实际Css 过高或过低,可以按已达到的Css与需要达到的Css比值调整给药速度,即Css(已达到的)/Css(需要的)=RA(现用的)/RA(将调整的),但从调整剂量时开始需再经过5个t1/2方能达到需要的Css.医学教育网搜集整理 在病情危重需要立即达到有效血药浓度时,可于开始给药时采用负荷剂量(D1),因为Ass就是负荷剂量。可将第一个t1/2内静脉滴注量的1.44倍在静脉滴注开始时推注

入静脉即可立即达到并维持Css.在分次恒速给药达到Css 时,体内Ass是维持剂量(Dm)与体内上一剂量残留药物的和,即当给药间隔时间τ=t1/2时,即每隔一个t1/2给药一次时采用首剂加倍剂量的D1可使血药浓度迅速达到Css. 理想的给药方案应该是使CSS-max略小于最小中毒血浆浓度(MTC)而CSS-min略大于最小有效血浆浓度(MEC),即血药浓度波动于MTC与MEC之间治疗窗,这一Dm可按下列公式计算:Dm=(MTC-MEC)Vd 负荷剂量计算法与上同,即D1=ASS=1.44t1/2RA=1.44t1/2 Dm/τ,τ为给药间隔时间。τ可按一级消除动力学公式推算得。因此可以根据药物的MTC及MEC利用这些公式计算出D1,Dm及τ。注意此时τ≠t1/2,D1≠2Dm.医学教育网搜集整理 在零级动力学药物中,体内药量超过机体消除能力。如果连续恒速给药,RA>RE,体内药量蓄积,血药浓度将无限增高。停药后消除时间也较长,超过5个t1/2.因为 t1/2=0.5C0/K,达到C0越高t1/2越长。 临床用药可根据药动学参数如Vd、Cl、ke、t1/2及AUC等按以上各公式计算剂量及设计给药方案以达到并维持有效血药浓度。除了少数t1/2特长或特短的药物,或零级动力学药物外,一般可采用每一个半衰期给于半个有效量并将首次剂量加倍是有效、安全、快速的给药方法。 有些药在体内转化为活性产物则需注意此活性产物

药物的体内过程

药物的体内过程(ADME) 药物在体内的吸收、分布、代谢与排泄过程首先都要通过细胞膜。跨膜转运的速度直接影响药物的体内过程,跨膜转运的方式主要有被动转运(passive transport)与主动转运(active transport)两种。 (一)细胞膜的化学成分及结构 细胞膜主要就是由按照一定规律排列的脂质、蛋白质及少量的糖类等化学成分构成。 1.膜脂主要有磷脂、糖脂与胆固醇。 2.膜蛋白分为嵌入蛋白(70%—80%)与表在蛋白(20%—30%)两类。膜蛋白往往充当受体、载体、通道及酶 的作用,在细胞间的识别、物质的跨膜转运及跨膜信号 转导等方面起着重要的作用。 3、膜糖类多为寡糖与多糖链,大都与膜蛋白或膜脂结合形

成糖蛋白或糖脂,分布在质膜外表面,首先与外来刺激相接触,具有受体及抗原的功能。 (二)细胞膜的物质转运功能 1、被动转运就是指物质分子或离子顺着浓度梯度或电化学梯度进行的跨膜转运,不需要消耗能量。 (1)简单扩散药物利用生物膜的脂溶性,进行顺浓度差的跨膜转运。 (2)易化扩散借助于膜内特殊载体逆浓度转运。 2、主动运输药物借助细胞膜上的特异性载体,由低浓度侧向高浓度侧的转运过程,需要能量。 一、吸收 概念:药物由给药部位进入血液循环的过程。

口服给药方便,且多数药物能在消化道充分吸收,就是常用的给药途径。根据药物种类不同,可在消化道不同部位吸收,如硝酸甘油可经口腔黏膜吸收,阿司匹林可经胃黏膜吸收,但药物吸收主要在小肠。小肠的吸 收面积大且肠道内适宜的酸碱度 对药物解离影响小,均有利于药 物在小肠的吸收。 大多数药物在胃肠道内以单 纯扩散方式被吸收。从胃肠道吸 收入门静脉系统的药物在到达全 身血液循环前先通过肝脏,在肝 脏代谢转化后经血液到达相应的 组织器官发挥作用,最终经肾脏 从尿中排出或经胆汁从粪便排 出。如果肝脏对药物的代谢能力 强或胆汁排泄量大,会使进入全 身血液循环的有效药量明显减少,因此,凡就是在肝脏易凡就 是在肝脏易于代谢转化而 被破坏的药物,口服效果 差,以注射为好。而经舌下 及直肠途径给药,由于药 物不经过门静脉即进入全

药物代谢动力学

药物代谢动力学(pharmacokinetics)简称药代动学或药动学,主要是定量研究药物在生物体内的过程(吸收、分布、代谢和排泄),并运用数学原理和方法阐述药物在机体内的动态规律的一门学科。确定药物的给药剂量和间隔时间的依据,是该药在它的作用部位能否达到安全有效的浓度。药物在作用部位的浓度受药物体内过程的影响而动态变化。在创新药物研制过程中,药物代谢动力学研究与药效学研究、毒理学研究处于同等重要的地位,已成为药物临床前研究和临床研究的重要组成部分。包括药物消除动力学:一级消除动力学(单位时间内消除的药量与血浆药物浓度成正比,又叫恒比消除)和零级消除动力学(单位时间内体内药物按照恒定的量消除,又叫恒量消除) 药物代谢动力学的重要参数: 1、药物清除半衰期(half life,t1/2),是血浆药物浓度下降一半所需要的时间。其长短可反映体内药物消除速度。 2、清除率(clearance,CL),是机体清除器官在单位时间内清除药物的血浆容积,即单位时间内有多少体积的血浆中所含药物被机体清除。使体内肝脏、肾脏和其他所有消除器官清除药物的总和。 3、表观分布容积(apparent volume of distribution,V d),是指当血浆和组织内药物分布达到平衡后,体内药物按此时的血浆药物浓度在体内分布时所需的体液容积。 4、生物利用度(bioavailability,F),即药物经血管外途径给药后吸收进入全身血液循环药物的相对量。可分为绝对生物利用度和相对生物利用度。 体内过程 即药物被吸收进入机体到最后被机体排出的全部历程,包括吸收、分布、代谢和排泄等过程。其中吸收、分布和排泄属物理变化称为转运。代谢属于化学变化亦称转化。机体对药物作用的过程,表现为体内药物浓度随时间变化的规律。药物动力学是研究药物体内过程规律,特别是研究血药浓度随时间而变化的规律。 1.吸收(absorption) 药物从给药部位进入血液循环的过程称为吸收。影响吸收的因素主要有: 1、给药途径:吸收速度:吸入>舌下>肌注>皮下>直肠>口服>皮肤。 2、药物性质: (1)脂溶性:脂溶性越大,吸收越快; (2)水溶性:易溶于水的药物易吸收; (3)离解度:不解离部分脂溶性较大,易吸收;而解离部分,由于带有极性,脂溶性低,难以吸收。。 口服药物被吸收进入体循环的比率,即给药量与吸收量的比率称为生物利用度(或生物可用度)。 2.分布(distribution) 药物吸收后从血液循环到达机体各个器官和组织的过程称为分布。 影响药物分布的主要因素有: 1、药物的性质:脂溶性大分布到组织器官的速度快。 2、药物与组织的亲和力:有些药物对某些组织器官有特殊的亲和力。药物对组织器官的亲和力与疗效及不良反应有关。

非那西丁药代动力学研究实验报告分析

非那西丁的药代动力学研究实验报告 一.概述: 非那西丁(Phenacetin)为一种解热镇痛药,因为潜在副作用在临床已基本不使用。但由于其是CYP1A2酶的特异性底物,被广泛选择作为底物用于酶活性测定实验以及影响酶活性作用药物的研究。本学期临床药代动学实验课以非那西丁在大鼠体内的代谢实验、大鼠肝微粒体温孵实验两部分为例,通过实验设计,实验操作,结果评价等一系列过程,系统地学习了药代动力学中药物体内外的简单研究方法、实验数据的处理、以及相关药动学参数的计算与评价。 二.正文 1.非那西丁在大鼠体内的药代动力学研究 1.1实验目的 研究非那西丁在大鼠体内代谢的药代动力学,学习大鼠眼底静脉丛取血等操作。 1.2实验材料与方法 仪器:HPLC-UV色谱仪,高速冷冻离心机,涡旋振荡器; HPLC色谱条件:检测波长:254nm 色谱柱:inertsil-ODS-SP,5um,4.6*150mm 流速:1.0ml/min 柱温:40℃ 流动相:40(乙腈):60(50mM磷酸盐缓冲液)(注:50mM磷酸盐缓冲液配制:6.8g磷酸二氢钾,加入150ml氢 氧化钠溶液(0.1M),配制成1L的磷酸盐缓冲液) 试剂:非那西丁注射剂,对乙酰氨基酚标准品,肝素钠,10%高氯酸; 实验动物:雄性大鼠,180g—220g 1.3实验步骤 1.3.1标准曲线的制备:取空白血浆,加入对乙酰氨基酚标准品,使其 浓度分别为0.156,0.313,0.625,1.25,2.50,5.00,10.00ug/ml。在给定的色谱条件下进行HPLC分析,以样品的峰面积对样品浓度进行线性回归。 1.3.2给药及血浆采集处理:取大鼠一只,尾静脉注射非那西丁 (10mg/kg)后,分别于0,5,10,15,30,45,60,90,120min于尾静脉取血

西药药一习题第九章药物的体内动力学过程

第九章药物的体内动力学过程 一、最佳选择题 1、最简单的药动学模型是 A、单室模型 B、双室模型 C、三室模型 D、多室模型 E、以上都不是 2、药物的半衰期主要用于衡量药物的 A、吸收的速度 B、消除的速度 C、分布的速度 D、给药的途径 E、药物的溶解度 3、药物的表观分布容积越大则该药 A、起效越快 B、组织摄取越少 C、起效越慢 D、组织摄取越多 E、代谢越快 4、尿排泄速度与时间的关系为 A、 B、 C、 D、 E、

5、某药物单室模型静脉注射经4个半衰期后,其体内药量为原来的 A、1/2 B、1/4 C、1/8 D、1/16 E、1/32 6、某一单室模型药物的消除速度常数为0.3465h-1,分布容积为5L,静脉注射给药200mg,经过2小时后,(已知e-0.693=0.5)体内血药浓度是多少 A、40μg/ml B、30μg/ml C、20μg/ml D、15μg/ml E、10μg/ml 7、单室模型静脉滴注和静脉注射联合用药,首剂量(负荷剂量)的计算公式 A、 B、 C、 D、 E、 8、经过6.64个半衰期药物的衰减量 A、50% B、75% C、90% D、99% E、100% 9、单室模型药物恒速静脉滴注给药,达稳态浓度75%所需要的滴注给药时间为 A、1个半衰期 B、2个半衰期 C、3个半衰期 D、4个半衰期 E、5个半衰期 10、单室模型血管外给药中与X0成正比的是 A、t max B、C max

C、k a D、k E、F 11、单室模型血管外给药中的吸收速率常数的计算可采用 A、残数法 B、对数法 C、速度法 D、统计矩法 E、以上都不是 12、下列哪项符合多剂量静脉注射的药物动力学规律 A、平均稳态血药浓度是(C ss)max与(C ss)min的算术平均值 B、平均稳态血药浓度是(C ss)max与(C ss)min的几何平均值 C、达稳态时的AUC0-T大于单剂量给药的AUC0-∞ D、多剂量函数与给药剂量有关 E、理想的平均稳态血药浓度一般是通过调整给药剂量X0及给药时间τ来获得的 13、静脉注射某药,X0=60mg,若初始血药浓度为15μg/ml,其表观分布容积V为 A、20L B、4ml C、30L D、4L E、15L 14、同一药物分别制成以下各剂型,MRT最大的是 A、片剂 B、颗粒剂 C、散剂 D、溶液剂 E、注射剂 15、代表了药物在体内滞留的变异程度的是 A、零阶矩 B、一阶矩 C、二阶矩 D、三阶矩 E、四阶矩 16、治疗药物监测的临床意义不包括 A、指导临床合理用药 B、改变药物疗效 C、确定合并用药的原则 D、药物过量中毒的诊断 E、作为医疗差错或事故的鉴定依据

药物代谢动力学实验讲义

实验一药酶诱导剂及抑制剂对 戊巴比妥钠催眠作用得影响 【目得】 以戊巴比妥钠催眠时间作为肝药酶体内活性指标,观察苯巴比妥及氯霉素对戊巴比妥钠催眠作用得影响,从而了解它们对肝药酶得诱导及抑制作用。 【原理】 苯巴比妥为肝药酶诱导剂,可诱导肝药酶活性,使戊巴比妥钠在肝微粒体得氧化代谢加速,药物浓度降低,表现为戊巴比妥钠药理作用减弱,即催眠潜伏期延长,睡眠持续时间缩短。而氯霉素则为肝药酶抑制剂,能抑制肝药酶活性,导致戊巴比妥钠药理作用增强,即催眠潜伏期缩短,睡眠持续时间延长。 【动物】 小白鼠8只,18~22g 【药品】 生理盐水、0、75%苯巴比妥钠溶液、0、5%氯霉素溶液、0、5%戊巴比妥钠溶液【器材】 天平、鼠笼、秒表、注射器1 ml×4、5号针头×4 【方法与步骤】 一、药酶诱导剂对药物作用得影响 1、取小鼠4只,随机分为甲、乙两组。甲组小鼠腹腔注射0、75%苯巴比妥钠溶液0、1 ml/10g,乙组小鼠腹腔注射生理盐水0、1 ml/10g,每天1次,共2天。 2、于第三天,给各小鼠腹腔注射0、5%戊巴比妥钠溶液0、1 ml/10g,观察给药后小鼠得反应。记录给药时间、翻正反射消失与恢复得时间,计算戊巴比妥钠催眠潜伏期及睡眠持续时间。 二、药酶抑制剂对药物作用得影响 1、取小鼠4只,随机分为甲、乙两组。甲组小鼠腹腔注射0、5%氯霉素溶液0、1 ml/10g;乙组小鼠腹腔注射生理盐水0、1 ml/10g。 2、30分钟后,给各小鼠腹腔注射0、5%戊巴比妥钠溶液0、1 ml/10g,观察给药后小鼠得反应。记录给药时间、翻正反射消失与恢复得时间,计算戊巴比妥钠催眠潜伏期及睡眠持续时间。 【统计与处理】 以全班结果(睡眠持续时间,分)作分组t检验,检验用药组与对照组有无显著性差异。(参见“数理统计在药理学实验中得应用”) 【注意事项】 1、催眠潜伏期为开始给药到动物翻正反射消失得间隔时间,睡眠持续时间为翻正反射消失至恢复得间隔时间。 2、本实验过程中,室温不宜低于20 C,否则戊巴比妥钠代谢减慢,使动物不易苏醒。 3、氯霉素溶液有结晶析出时可在水浴中加热溶解。 4、吸取氯霉素溶液得注射器应预先干燥,否则易结晶堵塞针头。

第三章 药物代谢动力学

药动学 一、名词解释: 1.药酶2.微粒体酶3.药酶诱导剂4.药酶抑制剂5.吸收6.分布7.代谢(生物转化) 8.排泄9.肝肠循环10.首过效应〔第一关卡效应) 11.血浆半衰期(T1/2) 12.坪值13.一室开放模型14.二室开放模型15.一级动力学16.零级动力学17.一级动力学消除18.零级动力学消除19.血脑屏障20.胎盘屏障21.生物利用度22.被动转运23.生物半衰期 二、填空题 1.药物必须穿透血脑屏障,才能对________________起作用。 2.药物的生物转化要靠________________的促进,主要是 3.有的药物经_______随_______排入_______后,被肠腔再吸收,形成肝肠循环。4.药物的消除包括_______、_______。 5. 大多数药物为弱酸性或弱碱性药物,它们以_______转运方式通过胃肠道粘膜吸收,其吸收速度和量与药物的_______和_______及胃肠道的_______有关。 6.碱化尿液可以使苯巴比妥钠从肾排泄_______,使水杨酸钠从肾脏排泄_______。7.多数药物在肝脏受_______的催化而发生化学变化。 8.生物利用度是_______与_______ 的比例。 9.影响药物体内分布的因素有_______、_______、_______、_______。 10.药物作用的强度和持续时间取决于药物在体内_______、_______。 11.药物药理作用基本上取决于药物在_______的浓度,而药物的_______对此有 决定性的影响。 12.欲加快药物的排泄速度可采取_______和_______的方法。

药物的体内过程

药物的体内过程 药物在体内的过程:即机体对药物的处置过程 一、药物的跨膜转运 被动转运(简单扩散、滤过) 载体转运(主动转运、异化扩散、膜泡运输) (一)被动转运指药物从高浓度一侧向低浓度一侧扩散转运的过程。 1.主要动力:膜两侧的浓度差。 2.特点: (1)不需要载体 (2)不耗能 (3)无饱和性 (4)药物间无竞争抑制现象 (5)膜两侧药物浓度达到平衡时转运停止 3.简单扩散的影响因素 药物的理化性质;膜的性质、面积和膜两侧浓度差 (1)脂溶性,脂溶性越大,药物越易透过膜 (2)解离度:解离度越小,药物越易透过膜(一般认为非解离型药物才能跨膜转运)(3)浓度差,膜两侧药物的浓度差越大转运越多 (4)药物的分子大小,分子越小,药物越易透过膜 4.药物解离度对被动转运的影响 常用药物多为弱酸性或弱碱性的化合物,它们在水溶液中仅部分解离,其解离程度的大小取决于药物自身的解离常数pKa和溶液的pH值。 pKa:即药物在50%解离时溶液的pH值, pKa值是各药物所固有的特性 弱酸性药物( HA ) 弱碱性药物(B) 弱酸性药物 在酸性环境中解离少、非解离型多,易跨膜转运。 因此:在胃中易吸收;在碱性环境中吸收少。 弱碱性药物 在碱性环境中解离度少、非解离型多,易跨膜转运。 因此:在碱性肠液中易吸收;在酸性环境中吸收少。 (二)主动转运药物以载体及需要能量的形式所进行的跨膜运动,与膜两侧的药物浓度无关,可从低浓度的一侧向高浓度的一侧转运。 药物的转运 被动转运

简单扩散———胃肠道吸收、肾小管再吸收 滤过———肾小球的滤过 载体转运 主动转运———肾小管的分泌 易化扩散———葡萄糖和氨基酸的转运维生素B12经胃吸收甲氨蝶呤进入白细胞 二、药物的吸收 1.吸收药物经血管外给药,自给药部位进入血液循环的转运过程。常以药物离开给药部位的速率和程度描述。大多数药物吸收过程为被动转运。 2.影响吸收因素: (1)药物理化性质 (2)给药途径 (3)药物剂型 (4)机体因素 3.药物的理化性质 4.给药途径 胃肠道:口服,舌下,直肠, 注射给药:静脉、肌肉、皮下、动脉内、鞘内, 其他给药:吸入,鼻腔、局部、经皮, 胃肠道给药:最常用(安全、方 便、经济) 5.首过消除(首关效应、第一关卡效应) 药物经胃肠道吸收后,经门静脉进入肝脏,然后进入全身血液循环。有些药物在进入体循环之前,首先被胃肠道或肝脏代谢灭活,使进入体循环的实际药量减少的现象。

山东大学期末考试药物代谢动力学模拟卷答案

药物代谢动力学模拟卷 1 、名词解释 1. 生物等效性:生物等效性评价是指同一种药物的不同制剂在相同实验条件下,给予相同的剂量,判断其吸收 速度和程度有无显着差异的过程。 2. 生物半衰期:简称血浆半衰期,系指药物自体内消除半量所需的时间,以符号以符号 T1/2表示。 3. 达坪分数:是指n 次给药后的血药浓度 Cn 于坪浓度Css 相比,相当于坪浓度 Css 的分数,以fss 表示fss=Cn/Css? 4. 单室模型:各种药动学公式都是将机体视为一个整体空间,假设药物在其中转运迅速,瞬时达到分布平衡的 条件下推导而得的。 5?临床最佳给药方案:掌握影响抗生素疗效的各种因素。如果剂量太小,给药时间间隔过长,疗程太短,给药 途径不当,均可造成抗生素治疗的失败。为了确保抗生素的疗效,不仅应该给予足够的药物总量, 而且要掌握适? 当地给药时间间隔和选用适当的给药途径。 二、解释下列公式的药物动力学意义 1. C -^^(1 V c k io 二室模型静脉滴注给药,滴注开始后血药浓度与时间 t 的关系。 k 2. lg (X u X u ) ——t IgX u 2.303 单室模型静脉注射给药,以尚待排泄的原形药物量(即亏量)的对数与时间 药物以非线性过程消除,且在体内呈单室模型特征时,静脉注射后,其血药浓度曲线下面积与剂量 X0的关系。 单室模型血管外给药负荷剂量与给药周期的关系。 三、回答下列问题 1. 缓控释制剂释放度测定至少需几个时间点?各时间点测定有何基本要求?有何意义? C ss X 。 kt V(1 e k ) t 的关系。? 多剂量给药时,按一定剂量、一定给药时间间隔、多剂量重复给药,当 n 充分大时,稳态血药浓度(或坪浓度) 与时间t 的关系。 4. AUC X o V m V (k m X o 2V k 10 e X 。 k k X 0 (1 e k )(1 e a )

第九章药物的体内动力学过程

第九章药物的体内动力学过程 1.药动学参数及其临床意义:房室模型、药动学参数 2.房室模型:单室模型、双室模型、多剂量给药、非线性动力学 3.非房室模型:统计矩及矩量法 4.给药方案设计与个体化给药:给药方案设计、个体化给药、治疗药物监测 5.生物利用度:生物利用度的临床应用、生物利用度的研究方法及生物等效性 药动学基本参数 >>速率常数(h-1、min-1)——速度与浓度的关系,体内过程快慢 吸收:k a尿排泄:k e 消除(代谢+排泄)k=k b+k bi+k e + …… >>生物半衰期(t1/2)——消除快慢t1/2 =0.693/k >>表观分布容积(V)——亲脂性药物分布广、组织摄取量多 >>清除率(Cl,体积/时间)——消除快慢 Cl=kV 某药物按一级速率过程消除,消除速率常数k=0.095h-1,则该药物消除半衰期t1/2约为 A.8.0h B.7.3h C.5.5h D.4.0h E.3.7h 静脉注射某药,X0=60mg,若初始血药浓度为15μg/ml,其表观分布容积V是 A.0.25L B.2.5L C.4L D.15L E.40L 房室模型 1

药物转运(吸收、分布、排泄)的速度过程 药学动力学首要问题——浓度对反应速度的影响>>一级 速度与药量或血药浓度成正比>>零级 速度恒定,与血药浓度无关(恒速静滴、控释) >>受酶活力限制(Michaelis-Menten型、米氏方程) 药物浓度高出现酶活力饱和 稳态血药浓度(坪浓度、C SS) 静滴时,血药浓度趋近于一个恒定水平,体内药物的消除速度等于药物的输入速度。 达稳态血药浓度的分数(达坪分数、f ss) f ss:t时间体内血药浓度与达稳态血药浓度之比值 n=-3.32lg(1-f ss) n为半衰期的个数n=1 →50% n=3.32 →90% n=6.64 →99% n=10 →99.9% 静滴负荷剂量: X0=C SS V 2

药物的体内过程

第三章药物代谢动力学(药动学) 药动学(pharmacokinetics)是研究机体对药物的处置过程的科学,即研究药物在体内的吸收、分布、代谢及排泄的过程和血药浓度随时间变化的规律的科学。 第一节药物体内过程 体内过程即吸收(absorption)、分布(distribution)、代谢(metabolism)和排泄(excretion)的过程,又称ADME系统。 吸收、分布、排泄通称药物转运(tranportationofdrug)。 代谢变化也称生物转化(biotransformation)。 代谢和排泄合称为消除(elimination) 图3-1药物体内过程示意图

一、药物的跨膜转运 1.被动转运(passivetransport) 类型: 1)脂溶扩散(lipiddiffusion;简单扩散) 2)水溶扩散(aqueousdiffusion;滤过) 3)易化扩散(facilitateddiffusion) (需载体,有饱和、竞争抑制) 特点:顺差(浓度、电位),不耗能; 不需载体,无饱和、竞争抑制。 2.主动转运(activetransport) 特点:逆差(浓度、电位),耗能; 需载体,有饱和、竞争抑制。 3.膜动转运(cytopsistransport) 胞饮(pinocytosis) 胞吐(exocytosis) 整个体内过程都涉及药物体内跨膜转运。 大多数药物体内转运过程属于被动转运(脂溶扩散)。 分子量小,非解离型,脂溶性大,极性小的药物易被动转运。 二、吸收 药物从给药部位进入血液循环的过程称为吸收。 吸收速度主要影响药物起效的快慢; 吸收程度主要影响药物作用的强弱。 影响吸收速度和程度的因素: 药物理化性质、剂型、剂量 给药途径:起效:吸入>肌内注射>皮下注射>口服>直肠>皮肤 吸收环境等。 1.消化道吸收 1)口服(oraladministration,peros,p.o.)

第三章 第三节 药物消除动力学

从生理学看,体液被分为血浆、细胞间液及细胞内液几个部分。为了说明药动学基本概念及规律现假定机体为一个整体,体液存在于单一空间,药物分布瞬时达到平衡(一室模型)。问题虽然被简单化,但所得理论公式不失为临床应用提供了基本规律。按此假设条件,药物在体内随时间变化可用下列基本通式表达:dC/dt=kCn.C为血药浓度,常用血浆药物浓度。k为常数,t为时间。由于C为单位血浆容积中的药量(A),故C也可用A代替:dA/dt=kCn,式中n=0时为零级动力学(zero-order kinetics),n=1时为一级动力学(first-order kinetics),药物吸收时C(或A)为正值,消除时C(或A)为负值。在临床应用中药物消除动力学公式比较常用,故以此为例如以推导和说明。一、零级消除动力学当n=0时,-dC/dt=KC0=K(为了和一级动力学中消除速率常数区别,用K代k),将上式积分得:Ct=C0- Kt,C0为初始血药浓度,Ct为t时的血药浓度,以C为纵座标、t为横座标作图呈直线(图3-6),斜率为K,当Ct/C0=1/2时,即体内血浆浓度下降一半(或体内药量减少一半)时,t 为药物消除半衰期(half-life time, t1/2)。按公式1/2C0=C0-Kt1/2 可见按零级动力学消除的药物血浆半衰期随C0下降而缩短,不是固定数值。零级动力学公式与酶学中的Michaelis-Menten公式相似:,式中S为酶的底物,Vmax为最大催化速度,Km为米氏常数。当[S]>>Km时,Km可略去不计,ds/dt=Vmax,即酶以其最大速度催化。零级动力学公式与此一致,说明当体内药物过多时,机体只能以最大能力将体内药物消除。消除速度与C0高低无关,因此是恒速消除。例如饮酒过量时,一般常人只能以每小时10ml乙醇恒速消除。当血药浓度下降至最大消除能力以下时,则按一级动力学消除。二、一级消除动力学当n=1时,-dC/dt=keC1=keC,式中k用ke表示消除速率常数(elimination rate constant)。将上式积分得可见按一级动力学消除的药物半衰期与C高低无关,是恒定值。体内药物按瞬时血药浓度(或体内药量)以恒定的百分比消除,单位时间内实际消除的药量随时间递减。消除速率常数(ke)的单位是h-1,它不表示单位时间内消除的实际药量,而是体内药物瞬时消除的百分率。例如ke=0.5h-1不是说每小时消除50%(如果t1/2=1小时则表示每小时消除50%)。按t1/2=0.693/ke计算t1/2=1.39h,即需1.39h后才消除50%.再按计算,1小时后体内尚存60.7%.绝大多数药物都按一级动力学消除。这些药物在体内经过t时后尚存当n=5时,At≈3%A0,即经过5个t1/2后体内药物已基本消除干净。与此相似,如果每隔一个t1/2给药一次(A0),则体内药量(或血药浓度)逐渐累积,经过5个t1/2后,消除速度与给药速度相等,达到稳态(steady state):当n=5时,At≈97%A0.这一时间,即5个t1/2不因给药剂量多少而改变。药物自体内消除的一个重要指标是血浆清除率(plasma clearance,Cl),是肝肾等的药物消除率的总和,即单位时间内多少容积血浆中的药物被消除干净,单位用L.h-1(也有人用ml.min-1,和肌酐消除率一致)或按体重计算 L.kg-1.h-1.按定义,CL=RE/Cp,RE是消除速率(rate of elimination),即单位时间内被机体消除的药量,Cp为当时的血浆药物浓度。由于RE非固定值也不易检测,故常用表观分布容积(apparent volume of distribution, Vd)计算。 Vd是指静脉注射一定量(A)药物待分布平衡后,按测得的血浆浓度计算该药应占有的血浆容积。事实上静注药物后未待分布平衡已有部分药物自尿排泄及(或)在肝转化而消除,故必需多次检测Cp,作时量曲线图,将稳定下降的消除段向O时延升至和Y轴交点以求得理论上静注药量A在体内分布平衡时的血浆浓度C0,以此算出Vd=A/C0(图3-7)。按RE=keA,Cp=A/Vd,故Cl=keVd.在一级动力学的药物中,Vd及Cl是两个独立的药动学指标,各有其固定的数值,互不影响,也不因剂量大小而改变其数值。Vd是表观数值,不是实际的体液间隔大小。除少数不能透出血管的大分子药物外,多数药物的Vd值均大于血浆容积。与组织亲和力大的脂溶性药物其Vd可能

药学专业知识--第09章 药物的体内动力学过程

第九章药物的体内动力学过程专题四药动学考点专题 药动学重要考点 1.药动学常用参数 2.房室模型 3.房室模型的9个公式 4.达坪分数 5.非线性药动学特征 6.统计矩 7.给药方案设计 8.治疗药物监测 9.生物利用度 10.生物等效性 11.计算问题 ①t1/2 ②k ③V ④f SS ⑤X0 ⑥k0 ⑦BA 考点1——药动学常用参数 药动学参数计算含义 速率常数k(h-1、min-1)吸收:k a尿排泄: k e 消除k=k b+k bi+k e +… 速度与浓度的关系,体内过程快慢 生物半衰期(t1/2)t1/2 =0.693/k 消除快慢——线性不因剂型、途径、剂量而改变,半衰期短需频繁给药 表观分布容积(V)V=X/C 表示分布特性——亲脂性药物,血液中浓度低,组织摄取多,分布广 清除率Cl=kV 消除快慢,具有加和性考点2——房室模型

考点3——房室模型的9个公式QIAN: 单剂静注是基础,e变对数找lg 静滴速度找k0,稳态浓度双S 血管外需吸收,参数F是关键 双室模型AB杂,中央消除下标10 多剂量需重复,间隔给药找τ值 #公式1、2: 单剂量静注 QIAN:单剂静注是基础,e变对数找lg #公式3、4: 单剂量-静滴 k0-滴注速度 稳态血药浓度(坪浓度、C SS)

QIAN:静滴速度找k0,稳态浓度双S #公式5: 单剂量-血管外 F:吸收系数 吸收量占给药剂量的分数 QIAN:血管外需吸收,参数F是关键 #公式6、7:双室模型 QIAN:双室模型AB杂,中央消除下标10 #公式8、9:多剂量给药(重复给药) 单室-静注 单室-血管外

药物代谢动力学完整版

药物代动力学完整版 第二章药物体转运 肾脏排泄药物及其代物涉及三个过程:肾小球的滤过、肾小管主动分泌、肾小管重吸收。 一、药物跨膜转运的方式及特点 1. 被动扩散 特点:①顺浓度梯度转运②无选择性,与药物的油/水分配系数有关③无饱和现象④无竞争性抑制作用⑤不需要能量 2. 孔道转运 特点:①主要为水和电解质的转运②转运速率与所处组织及膜的性质有关 3. 特殊转运 包括:主动转运、载体转运、受体介导的转运 特点:①逆浓度梯度转运②常需要能量③有饱和现象④有竞争性抑制作用⑤有选择性 4. 其他转运方式 包括:①易化扩散类似于主动转运,但不需要能量②胞饮主要转运大分子化合物 二、影响药物吸收的因素有哪些 ①药物和剂型的影响②胃排空时间的影响③首过效应④肠上皮的外排⑤疾病⑥药物相互作用 三、研究药物吸收的方法有哪些,各有何特点? 1. 整体动物实验法 能够很好地反映给药后药物的吸收过程,是目前最常用的研究药物吸收的实验方法。缺点: ①不能从细胞或分子水平上研究药物的吸收机制; ②生物样本中的药物分析方法干扰较多,较难建立; ③由于试验个体间的差异,导致试验结果差异较大; ④整体动物或人体研究所需药量较大,周期较长。 2. 在体肠灌流法:本法能避免胃容物和消化道固有生理活动对结果的影响。 3. 离体肠外翻法:该法可根据需要研究不同肠段的药物吸收或分泌特性及其影响因素。 4. Caco-2细胞模型法 Caco-2细胞的结构和生化作用都类似于人小肠上皮细胞,并且含有与刷状缘上皮细胞相关的酶系。优点: ①Caco-2细胞易于培养且生命力强,细胞培养条件相对容易控制,能够简便、快速地获得大量有价值的信息; ②Caco-2细胞来源是人结肠癌细胞,同源性好,可测定药物的细胞摄取及跨细胞膜转运; ③存在于正常小肠上皮中的各种转运体、代酶等在Caco-2细胞都也有相同的表达,因此更接近药物在人体吸收的实际环境,可用于测定药物在细胞的代和转运机制; ④可同时研究药物对粘膜的毒性; ⑤试验结果的重现性比在体法好。 缺点: ①酶和转运蛋白的表达不完整,此外来源,培养代数,培养时间对结果有影响; ②缺乏粘液层,需要时可与HT-29细胞共同培养。

药物的体内动力学过程

药物的体内动力学过程 药物动力学 A:制剂生物利用度常用的评价指标是 A.C max、t max和lgC B.C max、t max和C ss C.C max、t max和V d D.C max、t max和K E.C max、t max和AUC 『正确答案』E A:同一种药物制成ABC三种制剂,同等制剂下三种制剂的血药浓度如图,鉴于A、B、C三种制剂药动学特征分析,正确的是 A.制剂A吸收快、消除快、不易蓄积,临床使用安全 B.制剂B血药峰浓度低于A,临床疗效差 C.制剂B具有持续有效血药浓度,效果好 D.制剂C具有较大AUC,临床疗效好 E.制剂C消除半衰期长,临床使用安全有效

『正确答案』C A:已知某药物口服给药存在显著的肝脏首过代谢作用,改用肌肉注射,药物的药动学特征变化是 A.t1/2增加,生物利用度减少 B.t1/2不变,生物利用度减少 C.t1/2不变,生物利用度增加 D.t1/2减少,生物利用度减少 E.t1/2和生物利用度均不变 『正确答案』C A:地高辛的表观分布容积为500L,远大于人体体液容积,原因可能是 A.药物全部分布在血液 B.药物全部与血浆蛋白结合 C.大部分与血浆蛋白结合,与组织蛋白结合少 D.大部分与组织蛋白结合,药物主要分布在组织 E.药物在组织和血浆分布 『正确答案』D X:用于评价药物等效性的药物动力学参数有 A.生物半衰期(t1/2 ) B.清除率(Cl) C.血药峰浓度(C max) D.表观分布容积(V) E.血药浓度-时间曲线下的面积(AUC) 『正确答案』CE X:关于药动力学参数说法,正确的是 A.消除速率常数越大,药物体内的消除越快 B.生物半衰期短的药物,从体内消除较快 C.符合线性动力学特征的药物,静脉注射时,不同剂量下生物半衰期相同 D.水溶性或者极性大的药物,溶解度好,因此血药浓度高,表现分布容积大 E.消除率是指单位时间内从体内消除的含药血浆体积 『正确答案』ABCE A.Cl B.k a C.k D.AUC E.t max 1.表示药物血药浓度-时间曲线下面积的符号是 2.清除率 3.吸收速度常数 4.达峰时间

相关文档