文档库 最新最全的文档下载
当前位置:文档库 › 相似三角形的综合应用(提高)

相似三角形的综合应用(提高)

相似三角形的综合应用(提高)
相似三角形的综合应用(提高)

相似三角形的应用

【学习目标】

1、探索相似三角形的性质,能运用性质进行有关计算.

2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题).

【知识回顾】

一、相似三角形的性质

(1)对应边的比相等,对应角相等.

(2)相似三角形的周长比等于相似比. (3)相似三角形的面积比等于相似比的平方......

. (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比.

二、相似三角形的应用:

1、利用三角形相似,可证明角相等;线段成比例(或等积式);

2、利用三角形相似,求线段的长等

3、利用三角形相似,可以解决一些不能直接测量的物体的长度.如求河的宽度、求建筑物的高度等.

【典型例题】

例1:如图,△ABC 是一块锐角三角形余料,边BC=120mm , 高AD=80mm , 要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上, (1)若这个矩形是正方形,那么边长是多少? (2)若这个矩形的长是宽的2倍,则边长是多少?

【同步练习】如图,△ABC 是一块三角形余料,AB=AC=13cm ,BC=10cm ,现在要把它加工成正方形零件,使正方形的一边在△ABC 的边上,其余两个顶点分别在三角形另外两条边上.试求正方形的边长是多少?

例2:阅读以下文字并解答问题:

在“测量物体的高度” 活动中,某数学兴趣小组的4名同学选择了测量学校里的四棵树的高

A B

C Q

M D N

P

E

度.在同一时刻的阳光下,他们分别做了以下工作:

小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图1). 小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米.

小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.2米,一级台阶高为0.3米,落在地面上的影长为4.4米.

小明:测得丁树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如图4).身高是1.6m 的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2m .

(1)在横线上直接填写甲树的高度为 米. (2)求出乙树的高度(画出示意图).

(3)请选择丙树的高度为( )

A 、6.5米

B 、5.75米

C 、6.05米

D 、7.25米

(4)你能计算出丁树的高度吗?试试看.

【同步练习】如图,有一路灯杆AB(底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己得影长FG =4m ,如果小明得身高为1.6m ,求路灯杆AB 的高度.

图1 图2

图3

4

例3:如图,已知AD 是△ABC 的中线,M 是边AC 上的一动点,=CM nAM ,BM 交AD 于N 点。

⑴ 如图①,若1n =,则

=AN ND 。如图②,若2n =,则=AN

ND 。 如图③,若3n =,则=AN

ND

。 ⑵ 猜想,AN

ND

与n 存在怎样的关系?并证明你的结论。

⑶ 当n = 时,恰有AN CM

ND AM

=

【同步练习】如图,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则S △DMN ∶S 四边形ANME =

例4:如图,在ABC △中,9010A BC ABC ∠==°

,,△的面积为25,点D 为AB 边上的任意一点(D 不与A 、B 重合),过点D 作DE BC ∥,交AC 于点E .设DE x =,以DE 为折线将ADE △翻折(使ADE △落在四边形DBCE 所在的平面内),所得的A DE '△与梯形DBCE 重叠部分的面积记为y .

(1)用x 表示ADE △的面积;

(2)求出05x <≤时y 与x 的函数关系式; (3)求出510x <<时y 与x 的函数关系式; (4)当x 取何值时,y 的值最大?最大值是多少?

【同步练习】如图,已知矩形ABCD 的边长AB =2,BC =3,点P 是AD 边上的一动点(P 异于A 、D ),Q 是BC 边上的任意一点. 连AQ 、DQ ,过P 作PE ∥DQ 交AQ 于E ,作PF ∥AQ 交DQ 于

B

C A

E

A '

D

B

C A

F.

(1)求证:△APE∽△ADQ;

(2)设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF 取得最大值?最大值为多少?

例5:等腰△ABC,AB=AC=8,∠BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P,三角板绕P点旋转.

(1)如图a,当三角板的两边分别交AB、AC于点E、F时.求证:△BPE~△CFP;

(2)操作:将三角板绕点P旋转到图b情形时,三角板的两边分别交BA的延长线、边AC于点E、F.

①探究1:△BPE与△CFP还相似吗?(只需写出结论)

②探究2:连结EF,△BPE与△PFE是否相似?请说明理由;

③设EF=m,△EPF的面积为S,试用m的代数式表示S.

【同步练习】如图,M 为线段AB 的中点,AE 与BD 交于点C ,∠DME =∠A =∠B =α,且DM 交AC 于F ,ME 交BC 于G .

(1)写出图中三对相似三角形,并证明其中的一对;

(2)连结FG ,如果α=45°,AB =42,AF =3,求FG 的长.

例6:如图,已知抛物线y =4

3x 2

+bx +c 与坐标轴交于A 、B 、C 三点,A 点的坐标为(-1,0),过点C 的直线y =

t

43

x -3与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且0<t <1.

(1)填空:点C 的坐标是___________,b =_______,c =_______; (2)求线段QH 的长(用含t 的式子表示);

(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似?若存在,求出所有t 的值;若不存在,说明理由.

A C

B

Q P

O

H x

y

巩固练习

1.

ABC △中,CD AB ⊥于D ,一定能确定ABC △为直角三角形的条件的个数是( )

①1A ∠=∠,②CD DB

AD CD

=,③290B ∠+∠=°,④345BC AC AB =∶∶∶∶,⑤CD AC BD AC ?=? A .1 B .2 C .3 D .4 2. 如图,在正方形ABCD 的外侧,作等边三角形△ADE ,EB ,CE 分别交AD 于点G ,H .设△CDH ,

△GHE 的面积分别为S 1,S 2,则( ) A .212S 3S =. B .213S 2S = C .21S 32S =. D .21S 2S 3=

3. 如图,在Rt ΔABC 内有边长分别为a ,b ,c 的三个正方形,则a ,b ,c 满足的关系式( ) A .b=a+c B .b=ac C .b 2=a 2+c 2 D .b=2a=2c

4. 某班在布置新年联欢会会场时,需要将直角三角形彩纸裁成长度不等的矩形彩条,如图,在

Rt △ABC 中,∠C=90°,AC=30cm ,AB=50cm ,依次裁下宽为1cm 的矩形纸条a 1、a 2、a 3…,若

使裁得的矩形纸条的长都不小于5cm ,则每张彩纸能裁成的矩形纸条的总数是( ) A .24 B .25 C .26 D .27

5. 如图,点1234A A A A ,,,在射线OA 上,点123B B B ,,在射线OB 上,且112233A B A B A B ∥∥,

213243A B A B A B ∥∥.若212A B B △,323A B B △的面积分别为1,4,则图中三个阴影三角形面积之和

为 .

6. 在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在

坡面上.已知铁塔底座宽CD=12m ,塔影长DE=18m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,那么塔高AB 为( )

A .24m

B .22m

C .20m

D .18m

7. 正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,

保持AM 和MN 垂直,

(1)证明:Rt Rt ABM MCN △∽△;

(2)设BM x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积;

(3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求x 的值.

《相似三角形的应用举例》中考真题

相似三角形的应用举例 1. (2011浙江金华,9,3分)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( ) A.600m B.500m C.400m D.300m 【答案】B 2. (2011浙江丽水,9,3分)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直. 如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( ) A.600m B.500m C.400m D.300m 【答案】B 3. (2011湖南怀化,21,10分)如图8,△ABC,是一张锐角三角形的硬纸片,AD 是边BC 上的高, B C=40cm,AD=30cm,从这张硬纸片上剪下一个长HG 是宽HE 的2倍的矩形EFGH ,使它的一边EF 在B C 上,顶点G 、H 分别在AC ,AB 上,A D 与HG 的交点为M. (1) 求证:;AM HG AD BC (2) 求这个矩形EFGH 的周长.

【答案】 (1) 解:∵四边形EFGH 为矩形 ∴EF∥GH ∴∠AHG=∠ABC 又∵∠HAG=∠BAC ∴ △AHG∽△ABC ∴ ;AM HG AD BC = (2)由(1)得 ;AM HG AD BC =设HE=x ,则HG=2x ,AM=AD-DM=AD-HE=30-x 可得40 23030x x =-,解得,x=12 , 2x=24 所以矩形EFGH 的周长为2×(12+24)=72cm. 4. (2011上海,25,14分)在Rt △ABC 中,∠ACB =90°,BC =30,AB =50.点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 或BC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM =EN ,sin ∠EMP = 1213 . (1)如图1,当点E 与点C 重合时,求CM 的长; (2)如图2,当点E 在边AC 上时,点E 不与点A 、C 重合,设AP =x ,BN =y ,求y 关于x 的函数关系式,并写出函数的定义域; (3)若△AME ∽△ENB (△AME 的顶点A 、M 、E 分别与△ENB 的顶点E 、N 、B 对应),求AP 的长. 图1 图2 备用图 【答案】(1)∵∠ACB =90°,∴AC . ∵S =12 AB CP ??=1 2 AC BC ??, ∴CP =AC BC AB ?=403050 ?=24. 在Rt△CPM 中,∵sin∠EMP =1213 , ∴1213CP CM =.

最新相似三角形测试题及答案

第27章 相似三角形测试题 一、选择题:(每小题3分共30分) 1、下列命题中正确的是 ( ) ①三边对应成比例的两个三角形相似 ②二边对应成比例且一个角对应相等的两个三角形相似 ③一个锐角对应相等的两个直角三角形相似 ④一个角对应相等的两个等腰三角形相似 A 、①③ B 、①④ C 、①②④ D 、①③④ 2、如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( ) A AC AE AB AD = B FB EA CF CE = C BD AD BC DE = D CB CF AB EF = 3、如图,D 、E 分别是AB 、AC 上两点,CD 与BE 相交于点O ,下列条件中 不能使ΔABE 和ΔACD 相似的是 ( ) A. ∠B=∠C B. ∠ADC=∠AEB C. BE=CD ,AB=AC D. AD ∶AC=AE ∶AB 4、如图,E 是平行四边形ABCD 的边BC 的延长线上的一点, 连结AE 交CD 于F ,则图中共有相似三角形 ( ) A 1对 B 2对 C 3对 D 4对 5、在矩形ABCD 中,E 、F 分别是CD 、BC 上的点, 若∠AEF=90°,则一定有 ( ) A ΔADE ∽ΔAEF B ΔECF ∽ΔAEF C ΔADE ∽ΔECF D ΔAEF ∽ΔABF 6、如图1,ADE ?∽ABC ?,若4,2==BD AD , 则ADE ?与ABC ?的相似比是( ) A .1:2 B .1:3 C .2:3 D .3:2 7、一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则其它两边的和是( ) A .19 B .17 C .24 D .21 8、在比例尺为1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( ) A.1250km B.125km C. 12.5km D.1.25km 9、在相同时刻,物高与影长成正比。如果高为1.5米的标杆影长为2.5米,那么影长为30

相似三角形综合题练习

相似三角形综合题练习 类型一相似三角形中动点问题 例1:如图正方形ABCD的边长为2,AE=EB,线段MN的两端点分别在CB、CD上滑动,且MN=1,当CM为何值时△AED与以M、N、C为顶点的三角形相似? 变式:如图,在△ABC中,AB=8,BC=7,AC=6,有一动点P从A沿AB移动到B,移动速度为2单位/秒,有一动点Q从C沿CA移动到A,移动速度为1单位/秒,问两动点同时移动多少时间时,△PQA与△BCA相似. 例2:如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题: (1)当t=2时,判断△BPQ的形状,并说明理由; (2)设△BPQ的面积为S(cm2),求S与t的函数关系式; (3)作QR//BA交AC于点R,连结PR,当t为何值时,△APR∽△PRQ? A B D C E N

N C M B 变式:如图,在矩形ABC D中,AB=12cm,BC=8cm.点E 、F、G 分别从点A 、B 、C 三点同时出发,沿矩形的边按逆时针方向移动.点E 、G 的速度均为2c m/s ,点F 的速度为4cm/s,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t 秒时,△EFG 的面积为S(c m2) (1)当t =1秒时,S 的值是多少? (2)写出S 和t 之间的函数解析式,并指出自变量t 的取值范围. (3)若点F 在矩形的边B C上移动,当t 为何值时,以点E 、B 、F 为顶 点的三角形与以点F 、C 、G为顶点的三角形相似?请说明理由. 例3:如图,在梯形ABC D中,AD ∥BC,AD =3,DC=5,BC=10,梯形的高为4.动点M 从B点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动N 同时从C 点出发沿线段C D以每秒1个单位长度的速度向终点D 运动.设运动的时间为t(秒). (1)当MN//AB 时,求t 的值; (2)试探究:t 为何值时,△MN C为直角三角形.

《相似三角形的应用》教案

27.2.3 相似三角形的应用(王军) 一、教学目标 1.核心素养 通过学习相似三角形的应用举例,初步形成基本的推理能力和应用意识.2.学习目标 进一步巩固相似三角形的知识,学会用相似三角形知识解决不能直接测量的物体的长度或高度等一些实际问题. 3.学习重点 运用相似的判定和性质定理解决实际问题. 4.学习难点 灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题).二、教学设计 (一)课前设计 1.预习任务 任务1 阅读教材P39-40,思考:如何测量不能到达顶部的物体的高度? 任务2 阅读教材P39-40,思考:如何测量不能直接到达的两点间的距离? 任务3 阅读教材P40-41,思考:什么是视点、视线、仰角、俯角?什么是盲区?2.预习自测 1.测量不能到达顶部的物体的高度,通常借助太阳光照射物体形成影子,根据同一时刻物高与影长______或利用相似三角形来解决. 2.求不能直接到达的两点间的距离,关键是构造___________,然后根据相似三角形的性质求出两点间的距离. 3.如图,小明测量某广场旗杆的高度,他从A走1.8m到C 处时,他头顶的影子正好与点A重合.已知小明身高1.58m, 并测得BC=7.2m,则旗杆的高度是( ) A.8m B.7.9m C.7.5m D.7.2m (二)课堂设计 1.知识回顾 1.三角形相似的判定方法:

(1)定义法:三个对应角相等,三条对应边成比例的两个三角形相似. (2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (3)判定定理1(边边边):三边对应成比例,两三角形相似; (4)判定定理2(边角边):两边对应成比例且夹角相等,两三角形相似; (5)判定定理3(角角):两角对应相等,两三角形相似; (6)直角三角形相似的判定定理(HL):斜边和一条直角边成比例的两个直角三角形相似. 2.相似三角形的性质: (1)相似三角形对应角相等、对应边成比例. (2)相似三角形对应边上的高线之比、对应边上中线之比、对应角平分线之比等于相似比. 相似三角形对应线段之比等于相似比. (3)相似三角形的周长之比等于相似比. (4)相似三角形的面积之比等于相似比的平方. 2.问题探究 问题探究一如何测量不能到达顶部的物体的高度?重点、难点知识★▲ ●活动1 探究利用三角形相似测量物高 据史料记载,古希腊数学家、天文学家泰勒斯 曾经利用相似三角形的原理,在金字塔影子的 顶部立一根木杆,借助太阳光线构成的两个相 似三角形来测量金字塔的高度. 小组合作:自学课本第39页,例题4----测量金字塔高度问题。 例:如图,如果木杆EF长2 m,它的影长FD为3m,测得OA为 201m,求金字塔的高度BO. 怎样测出OA的长?

经典相似三角形练习题(附参考答案)

相似三角形 一.解答题(共30小题) 1.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC . 2.如图,梯形ABCD 中,AB ∥CD ,点F 在BC 上,连DF 与AB 的延长线交于点G . (1)求证:△CDF ∽△BGF ; (2)当点F 是BC 的中点时,过F 作EF ∥CD 交AD 于点E ,若AB=6cm ,EF=4cm ,求CD 的长. 3.如图,点D ,E 在BC 上,且FD ∥AB ,FE ∥AC . 求证:△ABC ∽△FDE . 4.如图,已知E 是矩形ABCD 的边CD 上一点,BF ⊥AE 于F ,试说明:△ABF ∽△EAD . 5.已知:如图①所示,在△ABC 和△ADE 中,AB=AC ,AD=AE ,∠BAC=∠DAE ,且点B ,A ,D 在一条直线上,连接BE ,CD ,M ,N 分别为BE ,CD 的中点. (1)求证:①BE=CD ;②△AMN 是等腰三角形; (2)在图①的基础上,将△ADE 绕点A 按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED 交线段BC 于点P .求证:△PBD ∽△AMN . 6.如图,E 是?ABCD 的边BA 延长线上一点,连接EC ,交AD 于点F .在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明. 7.如图,在4×3的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC= _________ °,BC= _________ ; (2)判断△ABC 与△DEC 是否相似,并证明你的结论. 8.如图,已知矩形ABCD 的边长AB=3cm ,BC=6cm . 某一时刻,动点M 从A 点出发沿AB 方向以1cm/s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方向以2cm/s 的速度向A 点匀速运动,问: (1)经过多少时间,△AMN 的面积等于矩形ABCD 面积的? (2)是否存在时刻t ,使以A ,M ,N 为顶点的三角形与△ACD 相似?若存在,求t 的值;若不存在,请说明理由. 9.如图,在梯形ABCD 中,若AB ∥DC ,AD=BC ,对角线BD 、AC 把梯形分成了四个小三角形. (1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例) (2)请你任选一组相似三角形,并给出证明. 10.如图△ABC 中,D 为AC 上一点,CD=2DA ,∠BAC=45°,∠BDC=60°,CE ⊥BD 于E ,连接AE . (1)写出图中所有相等的线段,并加以证明; (2)图中有无相似三角形?若有,请写出一对; 若没有,请说明理由; (3)求△BEC 与△BEA 的面积之比.

相似三角形的应用举例

27.2.2相似三角形应用举例 教学目标: 1.进一步巩固相似三角形的知识. 2.能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题)等的一些实际问题. 3.通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力. 重点、难点 1.重点:运用三角形相似的知识计算不能直接测量物体的长度和高度. 2.难点:灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题). 一、知识链接 1、判断两三角形相似有哪些方法? 2、相似三角形有什么性质? 二、.探索新知 1、问题1:学校操场上的国旗旗杆的高度是多少?你有什么办法测量? 2、在平行光线的照射下,不同物体的物高与影长成比例 练习:(1.)一根1.5米长的标杆直立在水平地面上,它在阳光下的影长为2.1米;此时一棵水杉树的影长为10.5米,这棵水杉树高为( ) A.7.5米 B.8米 C.14.7米 D.15.75米

(2.)在某一刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的高为60 米,那么高楼的影长是多少米? 3. 世界现存规模最大的金字塔位于哪个国家,叫什么金字塔? 胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一”.塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米.据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀,所以高度有所降低.在古希腊,有一位伟大的科学家叫泰勒斯.一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!”,这在当时条件下是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是怎样测量大金字塔的高度的吗? 3、例题讲解 例3: 据史料记载,古希腊数学家、天文学家泰勒斯曾经利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成的两个相似三角形来测量金字塔的高度. 如图,如果木杆EF长2 m,它的影长FD为3 m,测得OA为201 m,求金字塔的高度BO.(思考如何测出OA的长?) 分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度. 解: 4、课堂练习 在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为90米,那么高楼的高度是多少米? (在同一时刻物体的高度与它的影长成正比例.)

(完整版)九年级数学相似三角形综合练习题及答案

九年级数学相似三角形综合练习题及答案 1.填空(本题14分) (1)若a=8cm ,b=6cm ,c=4cm ,则a 、b 、c 的第四比例项d=___;a 、c 的比例中项x=__。 (2))x 1(:x x :)x 2(-=-。则x=__________。 (3)在比例尺为1:10000的地图上,距离为3cm 的两地实际距离为______公里。 (4)圆的周长与其直径的比为________。 (5)若 35b a =,则b b a -=________。 (6)若a :b :c=1:2:3,且6 c b a =+-,则a=________,b=_______,c=________。 (7)如图1,23DE BC AE AC AD AB ===,则(1)=AE CE ________(2)若BD=10cm ,则AD=______cm 。(3)若△ADE 的周长为16cm ,则△ABC 的周长为________。 (8)若点c 是线段AB 的黄金分割点,且CB AC >,=AC AB ________,= AB BC ________。 2.选择题(本题9分) (1)根据ab=cd ,共可写出以a 为第四比例项的比例式的个数是( ) A .0 B .1 C .2 D .3 (2)若线段a 、b 、c 、d 成比例,则下列各式中一定能成立的是( ) A . c b d a = B .b d a c = C .b a c d = D .a b d c = (3)如图:DE//BC ,在下列比例式中,不能成立的是( ) A . EC AE DB AD = B .EC AE BC DE = C .AE AC AD AB = D .AC AB EC DB =

【试卷】相似三角形练习题及答案

相似三角形练习题及答案 一、填空题: 1、若b m m a 2,3==,则_____:=b a 。 2、已知6 53 z y x == ,且623+=z y ,则__________,==y x 。 3、在等腰Rt △ABC 中,斜边长为c ,斜边上的中线长为m ,则______:=c m 。 4、反向延长线段AB 至C ,使AC =2 1 AB ,那么BC :AB = 。 5、如果△ABC ∽△A ′B ′C ′,相似比为3:2,若它们的周长的差为40厘米,则△A ′B ′C ′的周长为 厘米。 6、如图,△AED ∽△ABC ,其中∠1=∠B ,则 ()()()AB BC AD _________== 。 第6题图 第7题图 7、如图,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,若∠A =30°,则BD :BC = 。 若BC =6,AB =10,则BD = ,CD = 。 E A D B C 1 C B D A

8、如图,梯形ABCD 中,DC ∥AB ,DC =2cm ,AB =3.5cm ,且MN ∥PQ ∥AB , DM =MP =PA ,则MN = ,PQ = 。 第8题图 第9题图 9、如图,四边形ADEF 为菱形,且AB =14厘米,BC =12厘米,AC =10厘米,那BE = 厘米。 10、梯形的上底长1.2厘米,下底长1.8厘米,高1厘米,延长两腰后与下底所成的三角形的高为 厘米。 二、选择题: 11、下面四组线段中,不能成比例的是( ) A 、4,2,6,3====d c b a B 、3,6,2,1====d c b a D C M P N Q A B A D B F E C

九年级数学相似三角形的应用举例

19.7相似三角形的应用 目的:利用相似三角形的性质解决实际问题. 中考基础知识 通过证明三角形相似 线段成比例()() ????方程含有未知数的等式函数求最值等问题 备考例题指导 例1.如图,P 是△ABC 的BC 边上的一个动点,且四边形ADPE 是平行四边形. (1)求证:△DBP ∽△EPC ; (2)当P 点在什么位置时,S ADPE = 1 2 S △ABC ,说明理由. 分析: (1) 证明两个三角形相似,常用方法是证明两个角对应相等,题目中有 ADPE ? 平行线?角相等,命题得证. (2)设 BP BC =x ,则CP BC =1-x , ADPE ?DP ∥AC , EP ∥AB , △BDP ∽△BAC △CPE ∽△CBA ∴ FPC ABC S S ??=(CP CB )2=(1-x )2,BDP BAC S S ??=(BP BC )2=x 2 ∴ BDP CPE ABC S S S ???+=x 2+(1-x )2 . ∵S ADPE = 12 S △ABC ,即ADPE ABC S S ?=1 2.

∴x2+(1-x)2=1 2 (转化为含x的方程) x=1 2 , ∴BP BC = 1 2 . 即P应为BC之中点. 例2.已知△ABC中,∠ACB=90°,过点C作CD⊥AB于D,且AD=m,BD=n,AC2:BC2=2: 1,又关于x的方程1 4 x2-2(n-1)x+m2-12=0的两个实数根的差的平方小于192,求m,n 为整数时,?一次函数y=mx+n的解析式. 分析:这是一个几何、代数综合题,由条件发现,建立关于m,n的方程或不等式,?求出m,n再写出一次函数. 抓条件:AC2:BC2=2:1做文章(转化到m,n上). 双直角图形?有相似形?比例式(方程) ∠ACB=90°,CD⊥AB Rt△BCD∽Rt△BAC BC2=BD·BA,同理有AC2=AD·AB, ∴ 2 2 BC AC = BD BA AD AB ?=m=2n ① 抓条件:x1+x2=8(n-1),x1x2=4(m2-12). 由(x1-x2)2<192 配方(x1+x2)2-4x1x2<192. 64(n-1)2-16(m2-12)<192, 4n2-m2-8n+4<0.② ①代入②?n>1 2 . 又由△≥0得4(n-1)2-4×1 4 (m2-12)≥0, ①代入上式得n≤2.③

相似三角形练习题精选

# 相似三角形练习题精选 相似三角形 例题: 1、(2007杭州)如图,用放大镜将图形放大,应该属于( ) A.相似 B.平移 C.对称 D.旋转 # 2、(2008天津)如图,已知△ABC 中,EF ∥GH ∥IJ ∥BC ,则图中相似三角形共有 对. 跟踪练习: 1、(2007韶关)如图1,CD 是Rt △ABC 斜边上的高,则图中相似三角形的对数有( ) 对 对 C. 2对 对 2、(2007上海)如图2,E 为平行四边形ABCD 的边BC 延长线上一点,连结AE ,交边CD 于点F .在不添加辅助线的情况下,请写出图中一对相似三角形: . 相似三角形的判定 例题: 1.下列各组图形有可能不相似的是( ). A .各有一个角是50°的两个等腰三角形 B .各有一个角是100°的两个等腰三角形 C .各有一个角是50°的两个直角三角形 D .两个等腰直角三角形 ~ 2、(2007永州)如图,添上条件:_______,则△ABC ∽△ADE 。 3. (2009新疆)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC △相似的是( ) 4.(2010临沂) 如图,12∠=∠,添加一个条件使 得ADE ?∽ACB ? . 跟踪练习: 1.(2010陕西西安)如图,在ABC ?中,D 是AB 边上一点,连接CD ,要使ADC ?与 ~ ABC ?相似,应添加的条件是 。 (只需写出一个条件即可) 2、(2008 江西南昌)下列四个三角形,与左图中的三角形相似的是( ) 2 1E D C B A A. 图1 D C B A A B D \ F

相似三角形与圆综合题

相似三角形与圆综合 第一部分:例题分析 例1、已知:如图,BC为半圆O的直径,AD⊥BC,垂足为D,过点B作弦BF交AD于点E,交半圆O于点F,弦AC与BF交于点H,且AE=BE. 求证:(1)错误!=错误!;(2)AH·BC=2AB·BE. 例2、如图,PA为圆的切线,A为切点,PBC为割线,∠APC的平分线交AB于点D,交AC于点E,求证:(1)AD=AE;(2)AB·AE=AC·DB. 例3、AB是⊙O的直径,点C在⊙O上,∠BAC=60°,P是OB上一点,过P作AB的垂线与AC的延长线交于点Q,连结OC,过点C作CD⊥OC交PQ于点D. (1)求证:△CDQ是等腰三角形; (2)如果△CDQ≌△COB,求BP∶PO的值. 例4、△ABC内接于圆O,∠BAC的平分线交⊙O于D点,交⊙O的切线BE于F,连结BD,CD. 求证:(1)BD平分∠CBE;(2)AB·BF=AF·DC. 例3、⊙O内两弦AB,CD的延长线相交于圆外一点E,由E引AD的平行线与直线BC交于F,作切线FG,G为切点,求证:EF=FG. 第二部分:当堂练习

1.如图,AB 是⊙O 直径,E D⊥A B于D ,交⊙O于G ,EA 交⊙O 于C ,CB 交E D于F,求证:DG 2=DE ?DF 2.如图,弦EF ⊥直径M N于H,弦M C延长线交EF 的反向延长线于A ,求证:MA ?MC =MB ?M D D C B A O M N E H 3.如图,AB 、AC 分别是⊙O 的直径和弦,点D 为劣弧A C上一点,弦ED 分别交⊙O 于点E ,交A B于点H ,交AC 于点F ,过点C 的切线交ED的延长线于点P. (1)若PC =PF ,求证:AB ⊥ED ; (2)点D 在劣弧AC 的什么位置时,才能使AD 2=D E·DF ,为什么? 4.如图(1),AD是△ABC 的高,A E是△ABC 的外接圆直径,则有结论:AB · AC =AE · A D成立,请证明.如果把图(1)中的∠A BC 变为钝角,其它条件不变,如图(2),则上述结论是否仍然成立? 5.如图,A D是△ABC 的角平分线,延长A D交△ABC 的外接圆O 于点E,过点C 、D 、E 三点的⊙O1与AC 的延长线交于点F ,连结E F、DF . (1)求证:△AEF ∽△FE D; (2)若AD =8,DE =4,求E F的长. 6.如图,PC与⊙O 交于B ,点A 在⊙O 上,且∠PCA =∠BA P. (1)求证:PA是⊙O 的切线. (2)△AB P和△C AP相似吗?为什么? (3)若P B:BC =2:3,且PC =20,求P A 的长. D C B A O E 7.已知:如图, AD 是⊙O 的弦,O B⊥AD于点E,交⊙O于点C,OE =1,BE=8,AE :AB =1:3. (1)求证:AB 是⊙O的切线; (2)点F 是ACD 上的一点,当∠AOF =2∠B 时,求AF 的长. A C P E D H F O

相似三角形与实际应用

1 / 2 初中数学优秀生特长生培训方案 相似三角形与实际应用 一, 思想、方法解读 利用相似三角形解决实际问题的方法与步骤 1、 分析题意 2、 画出图形 3、 找出两个能解决问题的两个相似三角形 4、 证明这两个三角形相似 5、 写出比例式(要包含已知条件和题中要求的未知量或相关量) 6、 由比例式解决问题或由比例式列方程解决问题 二,思想方法分类例析 (一)利用相似三角形进行测量 例1.在一次数学活动课上,李老师带领学生去测教学楼的高度,在阳光下,测得身高为1.65m 的黄丽同学BC 的影长BA 为1.1m ,与此同时,测得教学楼DE 的影长DF 为12.1m ,如图所示,请你根据已测得的数据,测出教学楼DE 的高度.(精确到0.1m) 例2.我侦察员在距敌方200米的地方发现敌人的一座建筑物,但 不知其高度又不能靠近建筑物测量,机灵的侦察员食指竖直举在右眼 前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住。若 此时眼睛到食指的距离约为40cm ,食指的长约为8cm,你能根据上述 条件计算出敌方建筑物的高度吗?请说出你的思路。 例3.小明想利用树影测量树高,他在某一时刻测得长为1m 的竹竿影长0.9m ,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图,他先测得留在墙上的影高1.2m ,又测得地面部分的影长2.7m ,他求得的树高是多少? 例4.如图:学校旗杆附近有一斜坡.小明准备测量学校旗杆AB 的高度,他发现当斜坡正对着太阳时,旗杆AB 的影子恰好落在水 平地面和斜坡的坡面上,此时小明测得水平地面上的影长BC =20 米,斜坡坡面上的影长CD =8米,太阳光线AD 与水平地面成30° 角,斜坡CD 与水平地面BC 成30°的角,求旗杆AB 的高度(精确到1米). (二)利用相似三角形进行方案设计 例5、如图, ABC 是一块锐角三角形余料,边BC=120毫米,高 AH=80毫米,要把它加工成正方形零件,使正方形的一边在BC 上, 其余两个顶点分别在AB 、AC 上.这个正方形零件的边长是多少? 例6、一块直角三角形木板的一条直角边AB 长为1.5m ,面 积为1.22m ,工人师傅要把它加工成一个面积最大的正方形桌 面,请甲、乙两位同学进行设计加工方案,甲的方案如图(1),乙的 A B C D

相似三角形综合题精选

相似三角形综合题精选 1、在Rt ABC ?中, ∠ACB =90°, CD AB ⊥,垂足为D . E 、F 分别是AC 、BC 边上一点, 且CE = 13AC ,BF =1 3BC . (1 )求证∶AC BC =CD BD . (2 )求EDF ∠的度数. 2、在矩形ABCD 中,AB =4,AD =5,P 是射线BC 上的一个动点,作PE ⊥AP ,PE 交射线DC 于点E ,射线AE 交射线BC 于点F ,设BP =x ,CE =y . (1)如图,当点P 在边BC 上时(点P 与点B 、C 都不重合),求y 关于x 的函数解析式,并 写出它的定义域; (2)当x =3时,求CF 的长; (3)当EP/AP=2 1 时,求BP 的长. F F E D C B A

3、(1)在ABC ?中,5==AC AB ,8=BC ,点P 、Q 分别在射线CB 、AC 上(点P 不与点C 、点B 重合),且保持ABC APQ ∠=∠. ①若点P 在线段CB 上(如图),且6=BP ,求线段CQ 的长; ②若x BP =,y CQ =,求y 与x 之间的函数关系式,并写出函数的定义域; (2)正方形ABCD 的边长为5(如图2),点P 、Q 分别在直线..CB 、DC 上(点P 不与 点C 、点B 重合),且保持?=∠90APQ .当1=CQ 时,写出线段BP 的长 (不需要计算过程,请直接写出结果). 图1 A B C 备用图 A B C P Q A B C D 图2

※ 课堂练习: 1、在ABC ?和AED ?中, AB ·AD =AC ·AE ,CAE ∠=BAD ∠,ADE S ?=4ABC S ?. 求证∶DE =2BC . 2、如图1,在平行四边形ABCD 中,CD AC =. (1)求证:ACB D ∠=∠; (2)若点E 、F 分别为边BC 、CD 上的两点,且CAD EAF ∠=∠.(如图2) ① 求证:ADF ?∽ACE ?; ② 求证:EF AE =. (图1) (图 2) E D C B A

中考试题相似三角形的应用

学科:数学 专题:相似三角形的应用 主讲教师:黄炜北京四中数学教师 重难点易错点解析 在构造相似模型时,务必找准对应边. 题一 题面:如图所示,AB是斜靠在墙壁上的长梯,梯脚B距离墙角1.6m,梯上点D距离墙1.4m,BD长0.55m,则梯子长为( ) A.3.85m B.4.00m C.4.40m D.4.50m 金题精讲 题一 题面:在已知半圆内,求作内接正方形.

位似变换 满分冲刺 题一 题面:如图,小明准备测量学校旗杆AB的高度,当他发现斜坡正对着太阳时,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,测得水平地面上的影长BC=20m,斜坡坡面上的影长CD=8m,太阳光线AD与水平地面成30°角,斜坡CD与水平地面所成的锐角为30°,求旗杆AB的高度. 相似三角形的应用 题二 题面:如图,正方形ABCD和正方形OEFG中,点A和点F的坐标分别为(3,2),(-1,-1),则两个正方形的位似中心的坐标是_________. 位似中心、平面直角坐标系

题三 题面:在已知三角形内,求作内接正方形. 相似三角形的应用 讲义参考答案 重难点易错点解析 题一 答案:C . 金题精讲 题一 答案:正方形EFGH 即为所求. 满分冲刺 题一 答案:20324 3 m .

题二 答案:位似中心的坐标是(1,0)或(-5,-2). 题三 答案:方法1:利用位似形的性质作图法(图16) 图16 作法:(1)在AB上任取一点G',作G'D'⊥BC; (2)以G'D'为边,在△ABC内作一正方形D'E'F'G'; (3)连结BF',延长交AC于F; (4)作FG∥CB,交AB于G,从F,G各作BC的垂线FE,GD,那么DEFG就是所求作的 内接正方形. 方法2:利用代数解析法作图(图17) 图17 (1)作AH(h)⊥BC(a); (2)求h+a,a,h的比例第四项x; (3)在AH上取KH=x; (4)过K作GF∥BC,交两边于G,F,从G,F各作BC的垂线GD,FE,那么DEFG就是所 求的内接正方形. 初中数学试卷 灿若寒星制作

相似三角形综合复习测试题及答案

相似三角形复习 一、选择题(每题3分,共30分) 1.已知如图,下列4个三角形中与△ABC 相似的是( ) 2.如图所示,在ABCD 中,,:2:3,4EF AB DE EA EF ==∥,则CD 的长为( ) (A )16 3 (B )8(C )10(D )16 3.如图,已知AB CD EF ∥∥,那么下列结论正确的是( ) A . AD BC DF CE = B .BC DF CE AD = C .CD BC EF BE = D .CD AD EF AF = 4.如图,△ABC 中,点D 、E 分别是AB 、AC 的中点,则下列结论:①BC =2DE ; ②△ADE ∽△ABC ;③ AC AB AE AD =.其中正确的有( ) (A )3个 (B )2个 (C )1个 (D )0个 5.下列说法正确的是( ) A. 所有的等腰梯形都相 B.所有的平行四边形都相似 C. 所的有正方形都相似 D. 所有的等腰三角形都相似 6.如图,在△ABC 中,∠B=40°,将△ABC 绕点A 逆时针旋转至在△ADE 处,使得点B 落在BC 的延长线上的D 点处,则∠BDE 的度数为( ) A.90° B.85° C.80° D.40° 7.如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若 △ABC 与△A 1B 1C 1是位似图形,且顶点都在格点上,则位似中心的坐标是( ). A.(9,0) B.(-8,0) C.(-7,0) D.(--6,0) 3题图 第2题图 E D C B A (第4题) 6题图

8.平行四边形 ABCD 中,E 是AB 延长线上一点,连结DE ,交AC 于G ,交BC 于F ,那么图中相似三角形共有( )对. A.6 B.5 C.4 D.3 9.如图,在△ABC 中,∠BAC=90°,D 是BC 中点,AE ⊥AD 交CB 的延长线于点E ,则下列结论正确的是 ( ) A. △AED ∽△ACB B. △AEB ∽△ACD C. △BAE ∽△ACE D. △AEC ∽△DAC 10.一个钢筋三角架三边长分别为2m 、5m ,6m ,现在要再做一个与其相似的钢筋三角架,而只有长为3m 和5m 的两根钢筋,要求以其中的一根为一边,从另一根上截两段(允许有余料)作为另两边,则不同的截法有 ( ) A.一种 B.两种 C.三种 D.四种或四种以上. 二、填空题(每题3分,共30分) 11.如图,AE=15,BE=4,AF=9,E F ∥BC,则FC=_______. 12.如果两个相似三角形的面积比为9︰4,那么它们的相似比为_________. 13.如图,△ABC 中,点D 在边AB 上,满足∠ACD =∠ABC ,若AC =3,AD = 1,则DB = . 14.如图,平行四边形ABCD 中,E 是AB 延长线上一点,DE 交BC 于点F ,若BE ︰AB =2︰3,S △BEF =4求S △CDF =_________. 15.如图:在△ABC 中,AB=15cm ,AC=12cm ,∠BAC 的外角平分线交BC 延长线于D ,DE ∥AB ,交AC 的延长线于点E,那么CE=_____cm.. 16.如图,正方形ABCD 的对角线AC 、BD 相交于点O ,E 是BC 的中点,DE 交AC 于F ,若DE=12,则EF 的长为 . 17.如图,矩形ABCD 中,P 是AB 上一点,将矩形ABCD 沿PD 折叠,点A 恰好落BC 边上E 点处,若DE=3PE ,CD=9, 则CE 的长 为 . G F E D C B A 第8题图 E D C B A 9题图 D B C B (第13题图) F E D C B A 第14题图 11题图

相似三角形应用举例教学设计

《27.2.3相似三角形应用举例》的教学设计 绥阳县思源实验学校王玉乾 教学内容:27.2.3相似三角形应用举例 教学目标: 1.让学生学会运用两个三角形相似解决实际问题。 2.培养学生的观察﹑归纳﹑建模﹑应用能力。 3.让学生经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。 教学重点与难点 重点:运用两个三角形相似解决实际问题 难点:在实际问题中建立数学模型 教学准备:课件 教学过程: 一、复习旧知温故知新 问题1:判定两三角形相似的方法有哪些?(学生举手回答)问题2:相似三角形的性质有哪些? 设计意图:以旧引新,帮助学生建立新旧知识间的联系。 二、新课教学 (一)创设情境提出问题(课件出示图片)

问题:你能否运用相似三角形的判定与性质,测量、计算金字塔的高和河宽?(学生思考、讨论、展示交流) (二)发现问题,探求新知 活动1:探究利用三角形相似测量物高 1. 测高方法一:据史料记载,古希腊数学家,天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆.借助太阳光线构成两个相似三角形,来测量金字塔的高度. 提炼方法:同一时刻,物1高:物2高 = 影1长:影2长 例1:如图,如果木杆EF长2m,它的影长FD为3m,测OA得为201m, 求金字塔的高度BO. (让学生体会由于太阳光的照射,从图片中可以抽象出相似三角形;领会此方法测量物高的可行性和操作步骤;并根据相似三角形的性质进行求解) 2. 测高方法二:测量不能到达顶部的物体的高度,也可以用“利用镜子的反射测量高度”的原理解决. 例2:如图是小明设计用手电来测量某古城墙高 度的示意图,点 P 处放一水平的平面镜,光线从点 A 出发经平面镜反射后,刚好射到古城墙的顶端 C 处, 已知 AB = 2 米,且测得 BP = 3 米,DP = 12 米,那么该古城墙的高度是 ( ) A. 6米 B. 8米 C. 18米 D. 24米

经典相似三角形练习的题目(附参考答案详解)

实用标准文案 相似三角形 一.解答题(共30小题) 1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC. 2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF; (2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长. 3.如图,点D,E在BC上,且FD∥AB,FE∥AC. 求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD. 5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形; (2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.

6.如图,E是?ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明. 7.如图,在4×3的正方形方格中,△ABC和△DEF 的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC= _________ °,BC= _________ ; (2)判断△ABC与△DEC是否相似,并证明你的结论. 8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm. 某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问: (1)经过多少时间,△AMN的面积等于矩形ABCD面积的? (2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t 的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD 、AC 把梯形分成了四个小三角形. (1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例) (2)请你任选一组相似三角形,并给出证明. 10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE. (1)写出图中所有相等的线段,并加以证明; (2)图中有无相似三角形?若有,请写出一对; 若没有,请说明理由; (3)求△BEC与△BEA的面积之比.

相似三角形的应用举例教案(3)

27.2.2 相似三角形的应用举例 一、教学目标 1.进一步巩固相似三角形的知识. 2.能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题. 3.通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力. 二、重点、难点 1.重点:运用三角形相似的知识计算不能直接测量物体的长度和高度. 2.难点:灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题). 3.难点的突破方法 (1)本节主要探索的是应用相似三角形的判定、性质等知识去解决某些简单的实际问题(计算不能直接测量物体的长度和高度及盲区问题),学生已经学过了相似三角形的概念、判定方法及性质,在此基础上通过本课的学习将对前面所学知识进行全面应用.初三学生在思维上已具备了初步的应用数学的意识,在心理特点上则更依赖于直观形象的认识. (2)在实际生活中,面对不能直接测量出长度和宽度的物体及盲区问题,我们可以应用相似三角形的知识来测量,只要将实际问题转化为数学问题,建立相似三角形模型,再利用线段成比例来求解.在教学中,要通过这些知识的教学,帮助学生从实际生活中发现数学问题、运用所学知识解决实际问题。另外,还可以根据学生实情,选择一些实际问题,引导学生加以解决,提高他们应用知识解决问题的能力. (3)课上可以通过著名的科学家名句和如何测量神秘的金字塔的高度来激发学生学数学的兴趣,使学生积极参与探索,体验成功的喜悦. (4)运用三角形相似的知识解决实际问题对于学生来说难度较大,可以适当增加课时. 三、例题的意图 相似三角形的应用主要有如下两个方面:(1)测高(不能直接使用皮尺或刻度尺量的);(2)测距(不能直接测量的两点间的距离) .本节课通过教材P49的例3——P50的例5(教材P49例3——是测量金字塔高度问题;P50例4——是测量河宽问题;P50例5——是盲区问题)的讲解,使学生掌握测高和测距的方法.知道在实际测量物体的高度、宽度时,关键是要构造和实物所在三角形

相关文档
相关文档 最新文档