文档库 最新最全的文档下载
当前位置:文档库 › 声辐射的基本特征

声辐射的基本特征

声辐射的基本特征
声辐射的基本特征

相位随空间的变化率是如此之小,以至于相反相位的两点距离非常之近,以至于稀疏形变刚好可以抵消压缩形变。因此总的辐射就非常的弱了。这种现象也称之为声短路现象。

例如没有安装在大障板上的扬声器单元在低频振动时候,纸盆前方的疏密变化刚好被纸盆后方的疏密变化抵消,形成声短路。如果将扬声器前后辐射隔开,比如安装在一个尺寸够大的障板上,低频辐射效果将会显著增强,总音量都增强了,基于此的是无限大障板式设计的放音系统。现代常用的方式是将扬声器安装在封闭箱或者倒相箱之中。这也是为什么在测定扬声器基本参数时将扬声器安装在一个障板上的原因,并且测试信号的频率愈低,障板的尺寸也就要越大。

FPGA声源定位

基于FPGA的实时声源定位 李俊杰,何友,宋杰时间:2009年08月05日字体:大中小 关键词:FPGA声源定位时延估计 摘要:提出了利用2个麦克风基于FPGA的声源定位的方法。具体通过基于相位变换改进的互相关方法成功在低信噪比(10dB)的噪声环境下完成声源定位。利用同样的算法和硬件结构,可以在1片FPGA芯片上实现5组并行的时域处理的系统,而且每个麦克风的功耗只有77mW~108mW。 关键词:声源定位;时延估计;FPGA 实时声源定位在许多方面得到了应用,例如声音的识别和电话会议,可以利用阵列麦克风来实现对多个声源信号的获取和并行处理[1-3]。由于处理多路语音信号需要多个处理器,使得其实现费用昂贵,即便是使用DSP,系统也会带来很大的功耗,因而限制了其在许多实际中的应用。例如Brown大学发展的大规模麦克阵列系统利用多个DSP处理器和缓冲器来实现声源的定位,每个麦克的功耗达到了400mW。这大大超过了一些便携式设备(PDA 和手机)的功耗,因此最好的解决办法是设计专用芯片。 本文将阐述声源定位系统在FPGA中的实现,为专用芯片提供一个可行性参考,具有很好的商业应用价值。以前采用DSP[4]或是DSP+FPGA[5]实现多路声源信号的定位,而本设计的整个定位系统除了前端的模拟部分外其余部分均在FPGA中实现。采取有效的算法后,整个硬件实现的功耗可以控制在77mW~108mW之间。 1声源定位的算法 现有许多算法[1-4]实现声源定位,包括基于信号子空间的方法(例如MUSIC算法)和空间似然方法[2,4]等,最为常用的方法是估计信号的对应的麦克对到达延时(TDOA)[3]估计方法。该方法的每一组麦克对将声源定位在3维空间的一个双曲面上,这样通过多个麦克对确定的双曲面的交点能有效地实现声源的定位。TDOA估计方法已进行了很多研究[3,6],最为普通的是广义互相关GCC(Generalized Cross Correlation)方法[6]。与其他的方法相比,基于GCC的方法计算量小、计算效率高。 假设2个麦克各自接收的信号分别为m1(t)和m2(t)(包括噪声、回响和声音的延时信号)。常用的估计延时的方法是互相关方法:

声制冷的基本原理

目前的电冰箱及空调器所使用的制冷技术多为通过压缩机由制冷剂制冷。长期以来得到广泛应用的制冷剂是氟利昂,它被称为电冰箱和空调器中不可缺少的“血液”,但近年来人们发现由于全世界大量使用氟利昂已使地球臭氧层变得稀薄,温室效应太阳益明显,人类赖以生存的生态环境受到严重的危害。国际上已制定了控制氟利昂使用的“蒙特利尔议定书”。一些国家相继宣布,到本世纪末,将全部停止氟利昂的使用。因此,制冷技术科技界将面临两条途径:一是寻求氟利昂的替代物,这方面国内外正在进行大量的试验研究工作。就目前情况看,这些替代物并不十分理想,例如它的制冷效率以及和润滑油的兼容性并不理想,而且这些替代物是否对人类生存环境绝对无害,还要经历很长时间的考验,才能下定论;另一条途径则是广泛地开发新的制冷技术。在此情况下,声制冷技术是值得关注和研究的课题之一。 1 声制冷原理 所谓声制冷,即利用声能达到热量从冷端转移到热端的一门技术。在热力学中,最基本的热机有两类:发动机和制冷机。发动机将从高温热源吸收的热量部分转化为机械能输出,并向低温热源释放热量。制冷机则消耗外界提供的功,由低温热源泵热,并向高温热源释放热量。这里它没有对热机中功的形式加以限制,它可以是机械能形式的功,也可以是电功,磁功等。声能是一种振荡形式的能量,如果能够实现热能与声能的相互转化并与外界热源的热量交换,即可制成声发动机和声制冷机。利用热声效应可以实现声能与热能的相互转化以及与外热源的热量交换。 1.1 热声效应 热声效应是指可压缩的流体的声振荡与固体介质之间由于热相互作用而产生的时均能量效应。可产生热声效应的流体介质必须有可压缩性、较大的热膨胀系数、小的普朗特数,而且对于要求较大温差,较小能量流密度的场合,流体比热要小,对于要求较小温差,较大能量流密度的场合,流体比热要大。因此,理想气体如空气、氦气,特别是氦气,适用于较大温差,较小能量流密度的场合;在近临界区的简单液体,如CO2,简单的碳氢化合物CmHm等,适用于较小温差,较大能量流密度的场合。显然,后者适用于家用电器的制冷。 其实,在我们的太阳常生活中,存在着大量的“热声效应”(1)。例如,在讲演者周围建立起的声场中,声波在空气介质中传播,会引起压强与位移的变化。而压强与位移的变化又会导致气体介质的温度振荡,这些变化与振荡以及它们与周围固体边界发生相互作用就会产生热声效应。但是这里由热声效应引起的局部温度振荡和热流的量都很小,前者约为10-4℃,后者约为10-8w/m2,所以人们不易感觉得到,更无法加以利用了。其中主要原因是由于声源的能量较小,如果声源的 图1 共振型热声制冷机的工作原理 图2 驻波热声制冷机 图3 行波热声制冷机 图4 Stirling制冷机

水下结构声辐射FEM-BEM简化计算方法研究

DOI :10.7495/j .i ssn .1009‐3486.2019.01.015 水下结构声辐射FEM/BEM简化计算方法研究 收稿日期:2017‐06‐21;修回日期:2018‐03‐13。 作者简介:方 斌(1978-),男,副教授,博士,主要研究方向为潜艇声隐身技术。通信作者:方 斌,robin _fb @163.c om 。 方 斌,李瀚钦,金哲民,周其斗 (海军工程大学舰船与海洋学院,武汉430033) 摘 要:为提高水下结构声辐射FEM /BEM 方法的计算速度,首先以节点位移作为中间变量对湿表面处结构和流体的运动方程进行解耦;然后,采用单元的外法向矢量来表示相关系数,并简化了积分奇异性的处理;最后,以脉动球和水下加筋圆柱壳为算例进行了计算,计算结果、理论结果与试验结果吻合较好,由此验证了方法的有效性。 关键词:FEM /BEM ;水下结构;声辐射;简化算法 中图分类号:TB 532 文献标志码:A 文章编号:1009-3486(2019)01-0074-06 OnsimplifiedFEM/BEMmethodforacoustic radiationofunderwaterstructures FANG Bin ,LI Han ‐q in ,JIN Zhe ‐min ,ZHOU Qi ‐dou (College of Naval Architecture &Ocean ,Naval Univ .of Engineering ,Wuhan 430033,China )Abstract:A simplified method for acoustic radiation of underwater structures is proposed so as to im ‐p rove calculation speed of conventional FEM /BEM method .Nodal displacements are used as interme ‐diate variable for solving the coupled motion equations of structure and fluid on their interface .Exte ‐rior normal vector of elements are used to impress correlation coefficients ,and nonexistence problems are solved by a simpler method .It can be found that calculation results using this method are in agree ‐ment with the theoretical and experimental results for both the uniformly driven spherical shell and the underw ater stiffened cylindrical shell ,thus the validity of this method is verified . Keywords:FEM /BEM ;underwater structures ;acoustic radiation ;simplified computing method 水下结构声辐射问题是潜艇声隐身技术研究中的一个基本问题,对潜艇结构水下振动及声辐射噪声的预报具有重要的作用。水下结构声辐射问题可以采用FEM /BEM 耦合方法进行求解[1-3],但存在如下困难:①结构与流体耦合计算需要将流体的边界积分耦合到结构的运动方程中,进而求解有限元方法离散得到的运动方程,典型的做法是先计算出流体对结构影响的附加质量矩阵,然后将其与结构质量矩阵组合在一起求解,其中附加质量矩阵和运动方程的求解需要分开进行,且二者的求解计算量都很大;②边界元法得到 的是非对称满元矩阵,而且系数矩阵与频率有关, 对较宽的频带范围,巨大的计算量和存储空间限制了求解规模;③边界元中系数矩阵元素需要经过数值积分得到,消耗较多的计算时间。 为解决上述问题,Gordon [4-5] 采用直接边界元方法,将结构有限元与湿表面处Helmholtz 积分方程耦合求解,计算湿表面处的流体压力和法向速度,然后利用外域流场的Helmholtz 积分方程计算外域场点的辐射声压。其中,结构有限元与湿表面处Helmholtz 方程的耦合求解是算法的核心。Gordon 采用的方法是利用湿表面的法向 第31卷 第1期 2019年2月 海军工程大学学报 JOURNAL OF NAVAL UNIVERSITY OF ENGINEERING Vol .31 No .1 Feb .2019 万方数据

声发射原理

声发射 1.测试原理 材料在受到外荷载作用时,其内部贮存的应变能快速释放产生弹性波,发生声响,称为声发射。1950年,德国人凯泽(J.Kaiser)发现多晶金属的应力从其历史最高水平释放后,再重新加载,当应力未达到先前最大应力值时,很少有声发射产生,而当应力达到和超过历史最高水平后,则大量产生声发射,这一现象叫做凯泽效应。从很少产生声发射到大量产生声发射的转折点称为凯泽点,该点对应的应力即为材料先前受到的最大应力。后来国外许多学者证实了在岩石压缩试验中也存在凯瑟效应,许多岩石如花岗岩、大理岩、石英岩、砂岩、安山岩、辉长岩、闪长岩、片麻岩、辉绿岩、灰岩、砾岩等也具有显著的凯泽效应,从而为应用这一技术测定岩体初始应力奠定了基础。 地壳内岩石在长期应力作用下达到稳定应变状态。岩石达到稳定状态时的微裂结构与所受应力同时被“记忆”在岩石中。如果把这部分岩石用钻孔法取出岩芯,即该岩芯被应力解除,此时岩芯中张开的裂隙将会闭合,但不会“愈合”。由于声发射与岩石中裂隙生成有关,当该岩芯被再次加载并且岩芯内应力超过它原先在地壳内所受的应力时,岩芯内开始产生新的裂隙,并伴有大量声发射出现,于是可以根据岩芯所受载荷,确定出岩芯在地壳内所受的应力大小。 凯泽效应为测量岩石应力提供了一个途径,即如果从原岩中取回定向的岩石试件,通过对加工的不同方向的岩石试件进行加载声发射试验,测定凯瑟点,即可找出每个试件以前所受的最大应力,并进而求出取样点的原始(历史)三维应力状态。 2.测试步骤 (1)试件制备 从现场钻孔提取岩石试样,试样在原环境状态下的方向必须确定将试样加工成圆柱体试件,径高比为1:2~1:3。为了确定测点三维应力状态,必须在该点的岩样中沿六个不同方向制备试件,假如该点局部坐标系为oxyz,则三个方向选为坐标轴方向,另三个方向选为oxy,oyz, ozx平面内的轴角平分线方向。为了获得测试数据的统计规律,每个方向的试件为15~25块。 为了消除由于试件端部与压力试验机上、下压头之间摩擦所产生的噪声和试件端部应力集中,试件两端浇铸由环氧树脂或其他复合材料制成的端帽(参见图4-23)。 (2)声发射测试 将试件放在单压缩试验机上加压,并同时监测加压过程中从试件中产生的声发射现象。图4-23是一组典型的监测系统框图。在该系统中,两个压电换能器(声发射接受探头)固定在试件上、下部,用以将岩石试件在受压过程中产生的弹性波转换成电信号。该信号经放大、鉴别之后送入定区检测单元,定区检测是检测二个探头之间的特定区域里的声发射信号,区域外的信号被认为是噪声而不被接受。定区检测单元输出的信号送入计数控制单元,计数控制单元将规定的采样时间间隔内的声发射模拟量和数字量(事件数和振铃数)分别送到记录仪或显示器绘图、显示或打印。

基于MATLAB的声源定位系统

基于MATLAB的声源定位系统摘要 确定一个声源在空间中的位置是一项有广阔应用前景的有趣研究,将来可以广泛的应用于社会生产、生活的各个方面。 声源定位是通过测量物体发出的声音对物体定位,与使用声纳、雷达、无线通讯的定位方法不同,前者信源是普通的声音,是宽带信号,而后者信源是窄带信号。根据声音信号特点,人们提出了不同的声源定位算法,但由于信号质量、噪声和混响的存在,使得现有声源定位算法的定位精度较低。此外,已有的声源定位方法的运算量较大,难以实时处理。 关键词:传声器阵列;声源定位;Matlab

目录 第一章绪论 (1) 第二章声源定位系统的结构 (2) 第三章基于到达时间差的声源定位原理 (3) 第四章串口通信 (5) 第五章实验电路图设计 (8)

第六章总结 (16) 第七章参考文献 (17) 第一章绪论 1.1基于传声器阵列的定位方法简述 在无噪声、无混响的情况下,距离声源很近的高性能、高方向性的单传声器可以获得高质量的声源信号。但是,这要求声源和传声器之间的位置相对固定,如果声源位置改变,就必须人为地移动传声器。若声源在传声器的选择方向之外,则会引入大量的噪声,导致拾取信号的质量下降。而且,当传声器距离声源很远,或者存在一定程度的混响及干扰的情况下,也会使拾取信号的质量严重下降。为了解决单传声器系统的这些局限性,人们提出了用传声器阵列进行声音处理的方法。

传声器阵列是指由一定的几何结构排列而成的若干个传声器组成的阵列。相对于单个传声器而言具有更多优势,它能以电子瞄准的方式从所需要的声源方向提供高质量的声音信号,同时抑制其他的声音和环境噪声,具有很强的空间选择性,无须移动传声器就可对声源信号自动监测、定位和跟踪,如果算法设计精简得当,则系统可实现高速的实时跟踪定位。 传声器阵列的声音信号处理与传统的阵列信号处理主要有以下几种不同: (1)传统的阵列信号处理技术处理的信号一般为平稳或准平稳信号,相关函数可以通过时间相关来准确获得,而传声器阵列要处理的信号通常为短时平稳的声音信号,用时间平均来求得准确的相关函数比较困难。 (2)传统的阵列信号处理一般采用远场模型,而传声器阵列信号处理要根据不同的情况选择远场模型还是使用近场模型。近场模型和远场模型最主要的区别在于是否考虑传声器阵列各阵元因接收信号幅度衰减的不同所带来的影响,对于远场模型,信源到各阵元的距离差与整个传播距离相比非常小,可忽略不计,对于近场模型,信源到各阵元的距离差与整个传播距离相比较大,必须考虑各阵元接收信号的幅度差。 (3)在传统的阵列信号处理中,噪声一般为高斯噪声(包括白、色噪声),与信源无关,在传声器阵列信号处理中噪声既有高斯噪声,也有非高斯噪声,这些噪声可能和信源无关,也可能相关。 由于上述阵列信号处理间的区别,给传声器阵列信号处理带来了极大的挑战。声波在传播过程中要发生幅度衰减,其幅度衰减因子与传播距离成正比,信源到传声器阵列各阵元的距离是不同的,因此声波波前到达各阵元时,幅度也是不同的。 另外,当声音信号在传播时,由于反射、衍射等原因,使到达传声器的声音信号的路径除了直达路径外还存在着多条其它路径,从而产生接收信号的幅度衰减、音质变差等不

声发射基本介绍

声发射检测的基本原理 当材料或结构受应力作用时,由于其微观结构的不均匀及缺陷的存在,导致局部产生应力集中,造成不稳定的应力分布。当这种不稳定状态下的应变能积累到一定程度时,不稳定的高能状态一定要向稳定的低能状态过渡,这种过渡通常是以塑性变形、相变、裂纹的开裂等形式来完成。在此过程中,应变能被释放,其中一部分以应力波的形式释放出来,这种以弹性应力波的形式释放应变能的现象叫做声发射,也叫应力波发射。固体材料产生局部变形时,不仅产生体积变形,而且会产生剪切变形,因此会激起两种波,即纵波(又称压缩波)和横波(剪切波)。产生这种波的部位叫作声发射源。这种纵波和横波从声发射源产生后通过材料介质向周围传播,--部分通过介质直接传到安放在固体表面的传感器,形成检测信号,还有一部分传到表面后会产生折射,一部分形成折射波返回到材料内部,另一部分则形成表面波(又称瑞利波),表面波沿着介质的表面传播,并到达传感器,形成检测信号。通过对这些信号进行探测、记录和分析就能够实现对材料进行损伤评价和研究。其原理如图所示 图声发射检测原理 AE detecting schematic 材料在应力作用下的变形与开裂是结构失效的重要机制。这种直接与变形和断裂机制有关的源,通常称为传统意义上的声发射源。近年来,流体泄漏、摩擦、撞击、燃烧等与变形和断裂机制无直接关系的另一类弹性波源,也归到声发射源范畴,称为其它声发射源或二次声发射源。 2. 2声发射信号处理 声发射信号是一种复杂的波形,包含着丰富的声发射源信息,同时在传播的过程中还会发生畸变并引入干扰噪声。如何选用合适的信号处理方法来分析声发射信号,从而获取正确的声发射源信息,一直是声发射检测技术发展中的难点。根据分析对象的不同,可把声发射信号处理和分析方法分为两类:一是声发射信号波形分析,根据所记录信号的时域波形及与此相关联的频谱、相关函数等来获取

热辐射成像实验

实验3 热辐射成像实验 热辐射是19世纪发展起来的新学科,至19世纪末该领域的研究达到顶峰,以致于量子论这个婴儿注定要从这里诞生。黑体辐射实验是量子论得以建立的关键性实验之一,也是高校实验教学中一重要实验。物体由于具有温度而向外辐射电磁波的现象成为热辐射,热辐射的光谱是连续谱,波长覆盖范围理论上可从0到∞,而一般的热辐射主要靠波长较长的可见光和红外线。物体在向外辐射的同时,还将吸收从其他物体辐射的能量,且物体辐射或吸收的能量与它的温度、表面积、黑度等因素有关。 【实验目的】 1、研究物体的辐射面、辐射体温度对物体辐射能力大小的影响,并分析原因。 2、测量改变测试点与辐射体距离时,物体辐射强度P 和距离S 以及距离的平方S 2的关系,并描绘P-S 2曲线。 3、依据维恩位移定律,测绘物体辐射能量与波长的关系图。 4、测量不同物体的防辐射能力,你能够从中得到哪些启发?(选做) 5、了解红外成像原理,根据热辐射原理测量发热物体的形貌(红外成像)。 【实验原理】 热辐射的真正研究是从基尔霍夫(G.R.Kirchhoff )开始的。1859年他从理论上导入了辐射本领、吸收本领和黑体概念,他利用热力学第二定律证明了一切物体的热辐射本领r (ν,T )与吸收本领α(ν,T )成正比,比值仅与频率ν和温度T 有关,其数学表达式为: ),() ,(),(T F T T r νναν= (3-1) 式中F (ν,T )是一个与物质无关的普适函数。在1861年他进一步指出,在一定温度下用不透光的壁包围起来的空腔中的热辐射等同于黑体的热辐射。1879年,斯特藩(J.Stefan )从实验中总结出了黑体辐射的辐射本领R 与物体绝对温度T 四次方成正比的结论;1884年,玻耳兹曼对上述结论给出了严格的理论证明,其数学表达式为: 4T R T σ= (3-2) 即斯特藩-玻耳兹曼定律,其中4212/10673.5K cm w -?=σ为玻耳兹曼常数。 1888年,韦伯(H.F.Weber )提出了波长与绝对温度之积是一定的。1893年维恩(wilhelmwien )从理论上进行了证明,其数学表达式为:

声发射的基本原理

声发射的基本原理 声发射检测的原理,从声发射源发射的弹性波最终传播到达材料的表面,引起可以用声发射传感器探测的表面位移,这些探测器将材料的机械振动转换为电信号,然后再被放大、处理和记录。固体材料中内应力的变化产生声发射信号, 在材料加工、处理和使用过程中有很多因素能引起内应力的变化,如位错运动、孪生、裂纹萌生与扩展、断裂、无扩散型相变、磁畴壁运动、热胀冷缩、外加负荷的变化等等。人们根据观察到的声发射信号进行分析与推断以了解材料产生声发射的机制。 声发射检测的主要目的是:①确定声发射源的部位;②分析声发射源的性质;③确定声发射发生的时间或载荷;④评定声发射源的严重性。一般而言,对超标声发射源,要用其它无损检测方法进行局部复检,以精确确定缺陷的性质与大小。 声发射技术的特点 声发射检测方法在许多方面不同于其它常规无损检测方法,其优点主要表现为: (1) 声发射是一种动态检验方法,声发射探测到的能量来自被测试物体本身,而不是象超声或射线探伤方法一样由无损检测仪器提供; (2) 声发射检测方法对线性缺陷较为敏感,它能探测到在外加结构应力下这些缺陷的活动情况,稳定的缺陷不产生声发射信号; (3) 在一次试验过程中,声发射检验能够整体探测和评价整个结构中缺陷的状态; (4) 可提供缺陷随载荷、时间、温度等外变量而变化的实时或连续信息,因而适用于工业过程在线监控及早期或临近破坏预报; (5) 由于对被检件的接近要求不高,而适于其它方法难于或不能接近环境下的检测,如高低温、核辐射、易燃、易爆及极毒等环境; (6) 对于在役压力容器的定期检验,声发射检验方法可以缩短检验的停产时间或者不需要停产; (7) 对于压力容器的耐压试验,声发射检验方法可以预防由未知不连续缺陷引起系统的灾难性失效和限定系统的最高工作压力; (8) 由于对构件的几何形状不敏感,而适于检测其它方法受到限制的形状复杂的构件。 由于声发射检测是一种动态检测方法,而且探测的是机械波,因此具有如下的特点:(1) 声发射特性对材料甚为敏感,又易受到机电噪声的干扰,因而,对数据的正确解释要有更为丰富的数据库和现场检测经验; (2) 声发射检测,一般需要适当的加载程序。多数情况下,可利用现成的加载条件,但有时,还需要特作准备; (3) 声发射检测目前只能给出声发射源的部位、活性和强度,不能给出声发射源内缺陷的性质和大小,仍需依赖于其它无损检测方法进行复验。 声发射的应用 前人们已将声发射技术广泛应用于许多领域,主要包括以下方面: 声发射检测应用在高压储氢罐检测上(1) 石油化工工业:低温容器、球形容器、柱型容器、高温反应器、塔器、换热器和管线的检测和结构完整性评价,常压贮罐的底部泄漏检测,阀

六种常见制冷方式.docx

六种常见制冷方式 一、蒸汽式压缩制冷 原理:在蒸汽压缩制冷循环系统中,压缩机从蒸发器吸入低温低压的制冷剂蒸汽, 经压缩机绝热压缩成为高温高压的过热蒸汽,再压入冷凝器中定压冷却,并向冷却 介质放出热量,然后冷却为过冷液态制冷剂,液态制冷剂经膨胀阀(或毛细管)绝 热节流成为低压液态制冷剂,在蒸发器内蒸发吸收空调循环水(空气)中的热量, 从而冷却空调循环水(空气)达到制冷的目的,流出低压的制冷剂被吸入压缩机, 如此循环工作。 压缩机功能: 把制冷剂蒸气从低压状态压缩至高压状态,创造了制冷剂在冷凝器中常温液化的 条件。被称为整个装置的“心脏”。 冷凝器功能: 使压缩机排出的制冷剂过热蒸气冷却,并凝结为制冷剂液体,在冷凝器内制冷剂的热量排放给冷却介质。 分类:水冷式冷凝器、风冷式冷凝器、蒸发式冷凝器。 风冷式冷凝器: 使用和安装方便,不需要冷却水、热量由分机将其带入大气中。但同样传热系数低, 相对其他类型重量偏大,翅片表面会积灰是散热能力下降,须及时清理。 蒸发器功能: 依靠制冷剂液体的蒸发来吸收冷却介质热量的换热设备,它在制冷系统中的任务 是对外输出冷量。 分类:满液式(沉浸式)蒸发器、干式蒸发器。干式蒸发器:沉浸式蛇管、壳管 式、板式、喷淋式等。 节流装置功能: 截流降压:高压常温的制冷剂流过膨胀阀后,就变为低压、低温的制冷剂液体。 控制制冷剂流量:膨胀阀通过感温包感受蒸发器出口处制冷剂过热度的变化来控制 阀的开度,调节进入蒸发器的制冷剂流量,使其流量与蒸发器的热负荷相匹配。 控制过热度:膨胀阀具有控制蒸发器出口制冷剂过热度的功能,即保持蒸发器的 传热面积的充分利用,又防止压缩机冲缸事故的发生。

辐射屏蔽设计

辐射防护的方法 辐射对人体的照射方式有外照射和内照射两种。体外辐射源对人体的照射称为外照射,进入人体的放射性同位素对人体的照射,称为内照射。 外照射的基本防护原则是,缩短照射时间、加大人员与辐射源的距离和进行适当的屏蔽。内照射防护最根本的方法是尽量减少放射性物质进入体内的机会。例如制定合理的卫生管理制度,通风,密闭存放和操作,个人防护等等。 第一节 X 或射线的外照射防护 与X 、射线相关的辐射源有:X 射线机、加速器X 射线源和放射性核素。X 射线机的工作电压通常低于400kV ,电子加速器产生的高能X 射线一般为2~30MeV 。放射性核素产生的X 或射线一般在几keV 到几MeV 之间。 1.1 X 或辐射源的剂量计算 1、 X 射线机 X 射线机的发射率常数X 定义为:当管电流为1mA 时,距离阳极靶1m 处,由初级射线束 产生的空气比释动能率,其单位是mGym 2mA -1min -1。 发射率常数X 与X 射线管类型、管电压及其电压波形、靶的材料和形状、以及过滤片的 材料和厚度等因素有关。准确的发射率常数应通过实验测量得出。准确度要求不高时,也可查手册中的发射率常数曲线来近似估计。 空气比释动能率.K a 可近似按下式计算: 20)/(r r I K X a δ= (2.1)

式中,r 0=1m;I是管电流,单位是mA; . K a 的单位是mGymin-1。 例1:为某患者做X射线拍片,设X射线管钨靶离患者,曝光时间。已知管电压为90kV、管电流50mA,出口处过滤片为2mm铝。试估算患者表面所在处的吸收剂量(忽略人身的散射影响)。 解:查得该条件下,发射率常数 X 为 mGym2mA-1min-1,由公式(2.1)计算 . K a 为693 mGymin-1, 空气比释动能为 mGy。吸收剂量值近似等于空气比释动能值,为 mGy。 2、加速器X射线源 由加速器输出的电子束产生的X射线源的发射率,同电子能量、束流强度、靶物质的 原子序数以及靶的厚度等因素有关,并随出射角度而异。 一般,当电子能量低于1MeV时,最大发射率方向倾向于与电子束入射方向垂直;随着电子能量增高,最大发射率方向越来越偏向入射电子束方向。 加速器X射线的发射率常数 a 定义为,将X射线源看成点源,单位束流(1mA)在标准距离1m处所形成的吸收剂量指数率,其单位是Gym2mA-1min-1。当电子束入射到低Z厚靶材 料上时,向垂直方向和向前方向出射的X射线的发射率常数 a ',可以利用对于高Z厚靶的a 值乘以表中给出的修正因子给予粗略地估计。 表近似估计低Z靶或结构材料的X射线发射率所用的修正因子

辐射探测实验2-实验报告

符合法测量放射源活度实验报告 班级: 姓名: 学号: 一. 实验目的 1、 学习符合测量的基本方法。 2、 学习用符合方法测定60Co 放射源的活度。 二. 实验内容 1、调整符合系统的参量,选定工作条件,观察各级输出信号波形及其时间关系。 2、测量符合装置的分辨时间。 3、用γβ-符合方法测量60Co 级联衰变的放射性活度。 三. 实验原理 符合技术是利用电子学方法在不同探测器的输出脉冲中把有时间关联的事件选择出来。选择同一时刻脉冲的符合称为瞬时符合。选择不同时的,但有一定时间联系的脉冲符合称为延迟符合。相反,排斥同一时刻或有时间关联脉冲的技术就是反符合或延迟反符合。符合法是研究相关事件的一种方法,在核物理与核技术应用的各领域中获得了广泛应用,如测量放射源的活度、研究核反应产物的角分布、激发态的寿命及角关联的测量、测量飞行粒子的能谱,研究宇宙射线和实现多参数测量等。γβ-符合实验装置图如图2-1。 图2-1 γβ-实验装置 脉冲线性定时延迟线性定时延迟符合光电光电塑料跟随器 跟随器 高压电源 发生器高压电源 放大器单道成形 定标器 放大器单道成形 定标器 定标器 电路 示波器 NIM 机箱低压电源 γ 探头 倍增管倍增管 β 探头 闪烁体 NaI 晶体

1、 符合分辨时间τ 探测器的输出脉冲总有一定的宽度,在选择同时事件的脉冲符合时,当从两个探测器输出的脉冲起始时间差别很小,以至于符合装置不能区分它们的时间差别时,就会被当作同时事件而记录下来,即符合装置有一定的时间分辨能力,符合装置所能够区分的最小时间间隔称为符合分辨时间,它的大小与输入脉冲的形状、持续时间、符合电路的性能都有关系。 分辨时间是符合装置的基本参量,它决定了符合装置研究不同事件间的时间关系时所能达到的精确度,对于大量的在时间上互不相关的独立事件来说,只要两个探测器的输出信号偶然地同时发生在τ时间间隔内,这时符合电路也将把它们作为同时事件而输出符合脉冲,但这个事件不是真符合事件,这种不具有相关性的事件之间的符合称为偶然符合。例如某个核在某时刻发生衰变,其β粒子被β探测器记录,但级联的γ没有被γ探测器记录到,然而此时恰好γ探测器记录了另外一个衰变核的γ射线,那么这两个来自于不同原子核衰变的β和γ射线在符合电路中产生的符合就是无时间关联事件的符合,即属于偶然符合。 假定不具有时间关联的两道脉冲均为理想的矩形脉冲,其宽度为τ,偶然符合的计数率和两个输入道的计数率分别为n rc 、n 1和n 2 ,则有 212n n n rc ??=τ 2 12n n n rc = τ (2-1) 显然,减少τ,能够减少偶然符合几率,但由于辐射进入探测器的时间与输出脉冲之间存在统计性的时间离散,当τ太小时,使得某些同时事件的脉冲因前沿离散而时距大于符合电路分辨时间的可能性增加,从而使得真符合丢失的几率增大。 2、 测量符合分辨时间的方法 1) 偶然符合方法测量分辨时间 通过测定偶然符合计数率rc n 和两道各自的计数率1n 和2n ,根据(2-1)式就可以得到符合分辨时间τ。其中两道的计数率应是时间上无关联的粒子在两个探测器中分别引起的计数率;符合道计数率rc n 应纯粹是偶然符合。但实际测量到的符合计数率中还包含有本底符合计数率 b n 。本底符合计数率是由宇宙射线和周围物体中天然放射性核素的级联衰变,以及散射等产生的符合计数所构成。所以实际测量到的符合计数率rc n '为:

基于STM32的声源定位装置

目录 1 前言 (1) 2 总体方案设计 (3) 2.1 方案比较 (3) 2.1.1 声源信号产生方案 (3) 2.1.2 声源的选择 (3) 2.1.3 坐标解算方案 (4) 2.2 方案选择 (4) 3 单元模块设计 (6) 3.1 各单元模块功能介绍及电路设计 (6) 3.1.1 555构成的多谐振荡器电路 (6) 3.1.2 电源电路设计 (7) 3.1.3 自动增益控制电路设计 (7) 3.1.4 有源二低通滤波电路 (8) 3.1.5 有源二阶高通滤波电路 (9) 3.1.6 STM32F103最小系统电路 (10) 3.1.7 液晶显示电路 (11) 3.1.8 电平转换电路 (12) 3.2 电路参数的计算及元器件的选择 (13) 3.2.1 电源电路参数的计算 (13) 3.2.2 555定时器外围元件参数的计算 (14) 3.2.3 音源坐标位置的计算 (15) 3.2.3 元器件的选择 (17) 3.3特殊器件的介绍 (19) 3.3.1 STM32F103单片机介绍 (19) 3.3.2 ILI9320液晶简介 (21) 3.3.3 VCA810简介 (24) 4软件设计 (26) 4.1软件设计开发环境介绍 (26) 4.1.1编程软件开发环境介绍 (26) 4.1.2绘图软件开发环境介绍 (27) 4.2软件设计流程图 (28) 4.2.1主程序流程图 (28) 4.2.1液晶初始化流程图 (29)

4.2.2 ADC初始化流程图 (30) 5系统调试 (32) 6系统功能、指标参数 (33) 6.1系统实现的功能 (33) 6.2系统指标参数测试 (33) 6.2.1带通滤波器的频率响应 (33) 6.2.2 555定时器构成的多谐振荡器测试 (35) 6.2.3 STM32 ADC电压采集测试 (35) 6.2.4 VCA810电路测试 (36) 6.3系统功能及指标参数分析 (38) 7结论 (39) 8总结与体会 (40) 9 谢辞 (42) 10参考文献 (43) 附录 (44) 附录一:部分原理图 (44) 附录二:部分PCB图 (45) 附录三:核心代码 (46) 附录四:实物图 (51) 附录五:外文资料翻译 (52)

手机辐射测量实验报告

手机辐射测量实验 课程名称:电磁兼容设计任课教师:实验教师: 班级:姓名: 同组同学: 一、实验目的 现代社会手机越来越普及,人们在享受方便快捷的同时,也在遭受手机信号产 生的电磁辐射的危害。打电话时手机离人脑很近,手机信号很容易被脑部组织吸收,产生一些难以预料的后果,因此用实验的方法了解手机辐射的大小分布;了解不同 制式、不同通话状态、不同使用条件下手机辐射大小的变化,对于我们正确防护至 关重要。 不同品牌的手机通信质量、信号强度总有差异,不同型号手机辐射强度大小、 不同网络之间的辐射差异以及不同距离的辐射强度大小究竟如何都是值得关心的问题。 二、实验设备 测量系统组成:(如右图) Agilent EMI接收机 E7405A 喇叭天线 3115 复合天线 3142 指针式电场测量仪 VUFM1670 电磁辐射分析仪NBM-550 各向同性电场探头EF0391 该系统可进行30M~18GHz频段的辐射发射测试。 手机信号的频段也在此范围内。 三、实验内容 1、测量手机的电磁辐射强度与距离的关系。测量距离分别取1.5 米、2 米和 2.5 米,测量时注意手机的位置保持不变,记录测量数据,比较其大小,分析原 因。 2、测量手机不同方位的辐射强度,测量取手机距复合天线1.5 米。取前面、 背面和侧面,手机放垂直方向。 3、测量手机不同状态的辐射强度变化,如待机、开机、关机、拨通瞬间和 正常通话几种状态,使用指针式电场测量仪,为减小测量误差可测三次取平均, 测量时尽量保持手机位置不变。尽量减少周围人员走动。 4、测量手机发短信、收短信时、浏览网页时的电场强度,记录测量数据。 5、测量使用手机耳机时辐射强度的变化,并解释“辐射强度变小”的原因, 用指针式电场测量仪测。 6、测量使用蓝牙时手机辐射的强度、信号弱与强时手机辐射强度的变化、不 同制式手机的辐射强度差异。 7、网络上流传在密闭空间打手机,如电梯间、小汽车内,信号强度会大几千倍,是真的吗?请设计实验验证。 四、实验数据及分析 1、测量手机的电磁辐射强度与距离的关系

基于SYSNOISE软件的薄板振动声辐射数值仿真研究

基于SYSNOISE软件的薄板振动声辐射数值仿真研究 作者:刘先锋薛伟飞陈进 摘要:建立了薄板振动与声辐射的数学分析模型,利用SYSNOISE 计算出振动薄板的表面声压、场点声压和声辐射功率级。研究了不同约束和不同激励点位置对薄板声辐射的影响,比较了加筋板与光板的声辐射功率,得到了一些抑制薄板结构振动和声辐射的方法,从而为汽车设计及其减振降噪提供了可靠的措施。 关键词:声辐射、SYSNOISE、声功率 1. 引言 车身壁板结构厚度小、质量轻,特别容易产生振动并且辐射噪声,因此计算汽车车身薄板受到外部激励时的振动和声辐射特性是十分必要的,然而在大多数工程实际问题中,结构振动引起的声辐射常常是无法用解析解的形式予以解决,SYSNOISE是国际著名振动和声学测试分析软件公司LMS(Leuven Measurement System International)研发的大型声学计算分析软件[1-3],能快速地进行声学计算分析。本文利用振动声学软件SYSNOISE,对不同约束和不同激励点位置条件下薄板声辐射进行研究,比较了加筋板与板的声辐射功率级,得到一些抑制薄板结构振动和声辐射的方法,从而为汽车车身设计及减振降噪提供了可靠的预报和措施。 2. 薄板结构振动和声辐射的理论 2.1 声辐射功率的计算 机械噪声大部分是由结构振动而辐射的,结构声辐射功率表示了声辐射系统向外辐射噪声的能力,它不仅与振动弹性物体固有的物理特性有关,还与激励力大小、频率以及辐射声环境有关[4]。根据空气介质的连续条件,认为邻近振动表面一层的振动速度就是振动表面的速度。振动表面任一点的振动速度为,如果振动表面为平面,设振动表面任意一点的振动声压为V (x,ω ) p( y,ω),则由瑞利积分得

第二部分_辐射屏蔽设计

第二部分 辐射防护的方法 辐射对人体的照射方式有外照射和内照射两种。体外辐射源对人体的照射称为外照射,进入人体的放射性同位素对人体的照射,称为内照射。 外照射的基本防护原则是,缩短照射时间、加大人员与辐射源的距离和进行适当的屏蔽。内照射防护最根本的方法是尽量减少放射性物质进入体内的机会。例如制定合理的卫生管理制度,通风,密闭存放和操作,个人防护等等。 第一节 X 或γ射线的外照射防护 与X 、γ射线相关的辐射源有:X 射线机、加速器X 射线源和放射性核素。X 射线机的工作电压通常低于400kV ,电子加速器产生的高能X 射线一般为2~30MeV 。放射性核素产生的X 或γ射线一般在几keV 到几MeV 之间。 1.1 X 或γ辐射源的剂量计算 1、 X 射线机 X 射线机的发射率常数δX 定义为:当管电流为1mA 时,距离阳极靶1m 处,由初级射线束产生的空气比释动能率,其单位是mGy ?m 2?mA -1?min -1。 发射率常数δX 与X 射线管类型、管电压及其电压波形、靶的材料和形状、以及过滤片的材料和厚度等因素有关。准确的发射率常数应通过实验测量得出。准确度要求不高时,也可查手册中的发射率常数曲线来近似估计。 空气比释动能率. K a 可近似按下式计算: 式中,r 0=1m ;I 是管电流,单位是mA ;.K a 的单位是mGy ?min -1。 例1:为某患者做X 射线拍片,设X 射线管钨靶离患者0.75m ,曝光时间0.6s 。已知管电压为90kV 、管电流50mA ,出口处过滤片为2mm 铝。试估算患者表面所在处的吸收剂量(忽略人身的散射影响)。 解:查得该条件下,发射率常数δX 为7.8 mGy ?m 2?mA -1?min -1,由公式(2.1)计算. K a 为693 mGy ?min -1,空气比释动能为6.93 mGy 。吸收剂量值近似等于空气比释动能值,为6.93 mGy 。 2、 加速器X 射线源 由加速器输出的电子束产生的X 射线源的发射率,同电子能量、束流强度、靶物质的原子序数以及靶的厚度等因素有关,并随出射角度而异。 一般,当电子能量低于1MeV 时,最大发射率方向倾向于与电子束入射方向垂直;随着电子能量增高,最大发射率方向越来越偏向入射电子束方向。 加速器X 射线的发射率常数δa 定义为,将X 射线源看成点源,单位束流(1mA )在标准距离1m 处所形成的吸收剂量指数率,其单位是Gy ?m 2?mA -1?min -1。当电子束入射到低Z 厚靶材料上时,向垂直方向和向前方向出射的X 射线的发射率常数δa ',可以利用对于高Z 厚靶的δa 值乘以表2.1中给出的修正因子给予粗略地估计。 20 )/(r r I K X a δ= (2.1)

辐射防护实验报告

《辐射防护实验报告》 专业:xxx 姓名:xxx 学号:2010xxxx 实验一:γ射线的辐射防护 一、实验目的 1、掌握X-γ剂量率仪的使用方法; 2、了解环境中的γ照射水平; 3、通过不同时间和距离的测量,获得γ外照射防护的直观认识,加强理论与实际的联系。 二、实验原理 闪烁探测器是利用核辐射与某些透明物质相互作用,使其电离和激发而发射荧光的原理来探测核辐射的。γ射线入射到闪烁体内,产生次级电子,使闪烁体内原子电离、激发后产生荧光。这些光信号被传输到光电倍增管的光阴极,经光阴极的光电转换和倍增极的电子倍增作用而转换成电信号,它的幅度正比于该次级电子能量,再由所连接的电子学设备接收、放大、分析和记录。 三、实验内容 1、测量实验室γ照射本底环境; 2、测量一条环境γ照射剂量率剖面; 3、测量岩石的γ照射剂量率; 4、加放射源,测量并计算不同测量时间情况下的剂量; 5、加放射源,测量不同距离情况下的剂量率。 四、实验设备 1、Ra-226源一个; 2、X-γ剂量率仪一台; 3、岩石标本。 五、实验步骤

布置实验台,注意:严格按照实验步骤进行,首先布置好准直器、探测仪,最后放置放射源,养成良好的操作习惯!! 实验步骤如下: 1、调节准直器以及探测仪器的相对位置; 2、设置好仪器的测量时间为30秒,记录仪器的本底剂量率Nd (连测3次,取平均值); 3、在探测仪器对面布置好放射源,使得射束中轴线和准直器中轴线重合,源探距离为1米,如上图所示,测定并记录仪器的剂量率N01(连测3次,取平均值); 4、调整仪器的测量时间为60秒,测定并记录仪器的剂量率N02(连测3次,取平均值); 5、调整仪器的测量时间为90秒,测定并记录仪器的剂量率N0(连测3次,取平均值); 6、暂时屏蔽放射源,源探距离为米,测定并记录仪器的剂量率N1(连测3次,取平均值); 7、暂时屏蔽放射源,源探距离为2米,测定并记录仪器的剂量率N2(连测3次,取平均值); 8、在校园里测量一条环境γ照射剂量率剖面,记录每个测点的仪器的剂量率(连测3次,取平均值); 9、在博物馆前的岩石标本处测量不同岩性岩石的γ照射剂量率,记录每个测量的剂量率(连测3次,取平均值); 10、数据处理。 数据处理如下: 1)本底剂量率为: 2)在距离放射源、1、2米处不同时间计数率为:

机器人的声源定位——基于NAO机器人

Abstract One of the main purposes of having a humanoid robot is to have it interact with people. This is undoubtedly a tough task that implies a fair amount of features. Being able to understand what is being said and to answer accordingly is certainly critical but in many situations, these tasks will require that the robot is first in the appropriate position to make the most out of its sensors and to let the considered person know that the robot is actually listening/talking to him by orienting the head in the relevant direction. The “Sound Localization” feature addresses this issue by identifying the direction of any “loud enough” sound heard by NAO.Related work Sound source localization has long been investigated and a large number of approaches have been proposed. These methods are based on the same basic principles but perform differently and require varying CPU loads. To produce robust and useful outputs while meeting the CPU and memory requirements of our robot, the NAO’s sound source localization feature is based on an approach known as “Time Difference of Arrival”. Principles The sound wave emitted by a source close to NAO is received at slightly different times on each of its four microphones. For example, if someone talks to the robot on his left side, the corresponding signal will first hit the left microphones, few milli-seconds later the front and the rear ones and finally the signal will be sensed on the right microphone (FIGURE 1). These differences, known as ITD standing for “interaural time differences”, can then be mathematically related to the current location of the emitting source. By solving this equation every time a noise is heard the robot is eventually able to retrieve the direction of the emitting source (azimutal and elevation angles) from ITDs measured on the 4 microphones. FIGURE 1Schematic view of the dependency between the position of the sound source (a human in this example) and the different distances that the sound wave need to travel to reach the four NAO’s micro-phones. These different distances induce times differences of arrival that are measured and used to compute the current position of the source. KEY FEATURE SOUND SOURCE LOCALIZATION

相关文档