文档库 最新最全的文档下载
当前位置:文档库 › 数学模型数学建模 第二次作业 微分方程实验

数学模型数学建模 第二次作业 微分方程实验

数学模型数学建模 第二次作业 微分方程实验
数学模型数学建模 第二次作业 微分方程实验

2 微分方程实验

1、微分方程稳定性分析

绘出下列自治系统相应的轨线,并标出随t 增加的运动方向,确定平衡点,并按稳定的、渐近稳定的、或不稳定的进行分类:

,,,+1,(1)(2)(3)(4);2;2;2.dx dx dx dx

x x y x dt dt dt dt

dy dy dy dy y y x y dt dt dt dt

????==-==-????????????????===-=-????????

解:(1)根据定义,代数方程组的实根即为系统的平衡点,即P(0, 0),

利用直接法判断其稳定性。在点P(0,0)处,系统的线性近似方程的系数矩阵为

1001A ??=??

??

,解得其特征值λ1=1,λ2=1; p=-(λ1+λ2)=-2<0,q=λ1λ2=1>0;对照稳定性的情况表,可知平衡点(0, 0)是不稳定的。

图形如下:

(2)根据定义,代数方程组的实根即为系统的平衡点,即P(0, 0), 利用直接法判断其稳定性。解得其特征值λ1=-1,λ2=2;

p=-(λ1+λ2)=-1<0,q=λ1λ2=-2<0;易知平衡点(0, 0)是不稳定的。

(3)根据定义,代数方程组的实根即为系统的平衡点,即P(0, 0),

利用直接法判断其稳定性。解得其特征值λ1=0 + 1.4142i,λ2=0 - 1.4142i;p=-(λ1+λ2)=0,q=λ1λ2=1.4142;易知平衡点(0, 0)是不稳定的。

(4)根据定义,代数方程组的实根即为系统的平衡点,即P(1, 0),

利用直接法判断其稳定性。解得其特征值λ1=-1,λ2=-2;

p=-(λ1+λ2)=3,q=λ1λ2=2;易知平衡点(1, 0)是稳定的。

2、种群增长模型

一个片子上的一群病菌趋向于繁殖成一个圆菌落。设病菌的数目为N ,单位

成员的增长率为r1,则由Malthus 生长律有1dN

r N dt

=?,但是,处于周界表面的

那些病菌由于寒冷而受到损伤,它们死亡的数量与N 1/2成比例,其比例系数为r2,求N 满足的微分方程.不用求解,图示其解族.方程是否有平衡解,如果有,是否为稳定的?

解:根据题意列出N 满足的微分方程:

1

2

12dN

r N r N dt =- (1)

得到其解为N 1=0, N 2=2221/r r ; 由(1)得:

11

22212122

1

()()2d N r r N r N r N dt -=-?- (2)

解得N=2221/4r r

画出N (t )的图形,即微分方程的解族,如下图所示:

可以判断出其中N 1=0是不稳定的;N 2=2221/r r 是稳定的。

3、单种群开发模型

考虑单种群开发方程:

1-x-Ex dx x r dt N

=() 在不求解的情况下,绘出其解族曲线。(2)用数学表达式证明:在稳定状态下,

最优捕捞率为E*= 2

r

解:由本问题的目标出发,渔场中鱼量达到稳定的平衡状态时的情形,不必知道每一时刻的鱼量变化情况,故不需要解出方程,只需要讨论方程的平衡点并分析其稳定性。

平衡点:

满足F(x)=

1-x-Ex dx x r dt N

=()= 0 (1) 的点称为方程的平衡点。 解得的两个平衡点为:

0(1)E

x N r

=-

,10x =

容易算出两个解E-r 和r-E

称平衡点是稳定的是指:对方程(1)的任一个解()x x t =,恒有

lim ()*t x t x →∞

= (2)

判断平衡点x *是否稳定,可根据一阶近似方程:

()'(*)(*

)dx

F x F x x x dt

=?- (3) 判断。该方程的一般解为:

(*)()*F x t x t C e x =?+

于是有下述结论:

若F'(x*)<0,则x *是稳定平衡点;

若F'(x*)>0,则x *不是稳定平衡点。 应用上述近似判别法,所以有

当E0? x 0是稳定平衡点,x 1不是;

当E>r 时, 01F'(x )>0, F'(x )<0? x 0不是稳定平衡点,x 1是;

结果分析:当捕捞适度(即:E

x N r

=-

, 从而获得持续产量Ex 0,而当捕捞过度(即:E>r )时,渔场产量将减至x 1=0,破坏性捕捞,从而是不可持续的。

进一步讨论:如何控制捕捞强度E 使得持续产量Ex 0最大:

00()(1)E h x Ex N E r

==-

2(1)02

m dh E r N E dx r =-=?= 结论:最优捕捞率为*2

r

E = 。 4、Gompertz 模型

设渔场鱼量增长服从Gompertz 模型:

x

N

rx dt dx ln =,其中r 为固有增长率,N 为最大种群数量。若单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*

0x 。

解:()t x 变化规律的数学模型为

()Ex x

N

rx dt t dx -=ln 记 Ex x

N

rx x F -=ln )( (1) 令()0=x F ,得0ln

=-Ex x

N

rx r

E

Ne

x -=0,01=x .

则有平衡点为1,0x x . 又()E r x

N

r x F --=ln

',()()∞=<-=1'0',0x F r x F . 推出平衡点o x 是稳定的,而平衡点1x 不稳定.

(2)最大持续产量的数学模型为:

??

?

?

?≠=-=.0,0ln ..max x Ex x N rx t s Ex h Ex

()x f

由前面的结果可得 r E E N

e h -

=

r E

r E

e r EN Ne dE dh ---=,令.0=dE

dh

得到最大产量的捕捞强度r E m =, 从而得到最大持续产量e rN h m /=,

此时渔场鱼量水平e

N

x =

*

0。

5、有限资源竞争模型:

微分方程1

11111222

2221122[(1)][(1)]dx x a c b x b x dt dx x a c b x b x dt ?=-+--???

?=-+--??

是两个物种为了共同的有限资源而竞争的模型,假设c1>a1,c2>a2。试用微分

方程稳定性理论分析:(1)如果1212a a c c >,则1()0();

x t t →→∞(2)如果12

12

a a c c <

则2()0();

x t t →→∞(3)用图形分析方法来说明上述两种情况

解:(1)令111111122222221122()[(1)]0()[(1)]0dx f x x a c b x b x dt dx f x x a c b x b x dt ?

==-+--=???

?==-+--=??

得方程的平衡点为P 0(0,0),P 1(1111c a c b -,0),P 2(0, 2222

c a

c b -). 对平衡点P 0(0,0),

系数矩阵11

2200c a A c a -??=??-??

又c 1>a 1,c 2>a 2则p=-[(c 1-a 1)+(c 2-a 2)] <0,所以该平衡点不稳定。

以此类推:

对平衡点P 1(1111

c a

c b -,0):系数矩阵21111

1

112111()()0b c a a c b A c a c a c c -?

?--

???

?

=-??

-+-??

?

?

则p=

2112111

a c c a c a c --+

,q= 11211221)()[())]

a c

c a c a c -----(c ,

若12

12a a c c >,且假设c1>a1,c2>a2,则q<0不稳定

而对于P2(0, 22

22c a c b -),有p>0,且q>0稳定,此时1()0();

x t t →→∞,说明物

种1最终要灭亡。

(2) 而如果1212a a c c <

的情况下则方程在P1(11

11c a c b -,0)稳定,其他点不稳定,

此时

2()0();

x t t →→∞说明物种2最终会灭亡。

6、考虑Lorenz 模型

'1123'223'3

1223()()()()()()()()()()()()

x t x t x t x t x t x t x t x t x t x t x t x t βσσρ?=-+?

=-+??=-+-?

其中σ=10,ρ=28,β=8/3,且初值为,x 1(0)=x 2(0)=0,x 3(0)=ε,ε为一个

小常数,假设ε=10-10,且0≤t≤100。

(1)用函数ode45求解,并画出x2~x1,x2~x3,x3~x1的平面图; (2)适当地调整参数σ,ρ,β值,和初始值x 1(0),x 2(0)=0,x 3(0),重复一的工作,看有什么现象发生。 解:

1 .建立自定义函数,在edit 中建立―Lorenz.m‖的M 文件.程序如下:

function dy = Lorenz(~,y) dy=zeros(3,1);

dy(1)=10*(-y(1)+y(2));

dy(2)=28*y(1)-y(2)-y(1)*y(3); dy(3)=y(1)*y(2)-8*y(3)/3; end

2.在edit 中建立―Lzdis.m‖的M 文件,用来求解和绘图。程序如下:

[t,y]=ode45('Lorenz',[0,30],[12,2,9]); figure(1) plot(t,y(:,1)) figure(2) plot(t,y(:,2)) figure(3) plot(t,y(:,3)) figure(4)

plot3(y(:,1),y(:,2),y(:,3)) plot3(y(:,1),y(:,2),y(:,3)) 3.运行得到如下的结果:

Figure(1)是y(1) 即x 1 关于t 的变化关系图

0510********

-20

-15-10-5051015

20

Figure(2)是y(2) 即x 2关于t 的变化关系图

Figure(3)是y(3) 即x 3关于t 的变化关系图

5

10

15

20

25

30

-25-20-15-10-505101520

25051015202530

5

10152025303540

45

Figure(4)为)x \1\x 2 x 3的空间关系图

4.验证―蝴蝶效应‖

洛伦兹方程的解对初始值十分敏感,现对x 2的初始值稍加修改,将2改为2.01和1.99,让后求解x 3的数值解。用edit 命令建立―lzsensi.m‖的M 文件,程序如下:

clf hold

[t,u]=ode45('Lorenz',[0 15],[12,2,9]); plot(t,u(:,3),'Color','r');

[t,v]=ode45('Lorenz',[0 15],[12,2.01,9]); plot(t,v(:,3),'Color','b');

[t,w]=ode45('Lorenz',[0 15],[12,1.99,9]); plot(t,w(:,3),'Color','k');

运行得到不同初始条件下的x 3关于t 的图形:

-20

20

黑色线(k )表示初值条件为[12,1.99,9]时的x 3-t 图形 绿色线(b )表示初值条件为[12,2,9]时的x 3-t 图形 红色线(r )表示初值条件为[12,2.01,9]时的x 3-t 图形

容易看出:随着时间的推移,三条曲线的吻合程度越来越差,差距越来越大,变化也越来越不明显,成为混沌状态。

051015

5

10152025303540

45

2.3 加分实验(餐厅废物的堆肥优化问题)

一家环保餐厅用微生物将剩余的食物变成肥料。餐厅每天将剩余的食物制成桨状物并与蔬菜下脚及少量纸片混合成原料,加入真菌菌种后放入容器内。真菌消化这此混合原料,变成肥料,由于原料充足,肥料需求旺盛,餐厅希望增加肥料产量。由于无力购置新设备,餐厅希望用增加真菌活力的办法来加速肥料生产.试通过分析以前肥料生产的记录(如表2.1所示),建立反映肥料生成机理的数学模型,提出改善肥料生产的建议。

解:根据题意:将食物浆与蔬菜下脚及少量纸片混合成原料,加入真菌菌种,在

容器内发酵转化成肥料。为了增加肥料产量,在不购买新设备的条件下,依靠增

加真菌活力的方法加速肥料的生产。实验记录给出了食物浆、蔬菜下脚、碎纸的

量,并给出了投料日期和产出日期,这样我们可以知道肥料生成的时间长短。并

且通过分析温度、湿度及投料比,确定最佳方案生产肥料。于是我们的问题可以

描述为:

1、在什么温度下生成肥料的速率最快;

2、在什么湿度下生成肥料的速率最快;

3、在什么样的投料比下生成肥料的速率最快。

为了解决上面提出问题,需要知道肥料生成的的天数,同时计算出对应天数下食物浆、蔬菜下脚、碎纸之间的比例。除此之外还要建立温度和湿度的图像,通过比较来确立最合适的生成机制。

在解决这个问题的过程中主要运用控制变量法。

通过查找资料,将以北方的温度和湿度为模版,建立温度和湿度的图像。

首先,进行模型假设:

1 将容器看作封闭的,不考虑质量的损耗。

2 以北方的温度和湿度为标准。

3 真菌的数量相同,初始活力相同。

4容器内生化反应过程中的温度不受人为因素控制,但受外界环境的影响。餐厅没有温度控制方面的投资。

5 反映开始前,真菌和发酵物分别储藏,不发生反应。

6 容器内的真菌分布均匀,且处于发酵的最佳状态。

7 在一定时间内,温度和湿度取平均值。

建立数学模型:

首先确立食物浆和蔬菜下脚的比例,并以比例为横坐标,肥料生成时间为纵坐标,建立坐标系,做出图像。

编号(食物浆/蔬菜下脚)比例碎纸肥料生成天数

1 2.77419 0 28

2 1.41772 0 27

3 3.38095 0 27

4 2.47561 0 26

5 2.82143 0 33

6 1.98113 0 36

7 8.06667 0 35

8 3.43750 0 47

9 1.86364 9 49

10 0.95000 6 49

11 1.50980 7 49

12 1.36842 6 49

食物浆与蔬菜下脚比例和肥料生成天数关系

由图可以看出七八月份的产出明显要短,生成速率明显要高,增加碎纸的容器反而分解速率更低。从图中可以看出编号为4的当食物浆与蔬菜下脚比例为2.5左右且无碎纸,时间为7月27日到8月22日时,产出时间最短,生成速率最高,说明此时真菌的活性最大。比较编号为5—8组和9—12组可以看出,添加碎纸的组产出时间明显增长,说明碎纸片对真菌的活力起减缓作用,因此,在食物浆与蔬菜下脚比例为2.5左右且无碎纸,投料时间为七月下旬时,真菌活性最大,所需时间最短,速度最快。

然后变换图像,使其横坐标按顺序排列:

可以看出,在不考虑温度和湿度的情况下,当比例为2.47561时,产出速率最快。

通过查找资料,找到北方的平均温度和相对湿度,并作出了图像:

月份平均温度(摄氏度)相对湿度百分率%

1 -0.4 63

2 0 65

3 3.

4 70

4 8.4 73

5 13.4 77

6 18 87

7 21.5 94

8 23.5 89

9 21.3 73

10 16 64

11 9.1 64

12 2.7 63

做出图像:

与我们通常的理解相近,当处于北方夏季时,温度要高(相对湿度也高),用于分解食物的酶活性也高,即此时菌种的活力相对较高。

事实上,如果做出平均气温和湿度的曲线,于上面的曲线比较,也就找出了具有一般性的最佳生成机制。

综上分析,要想使增加肥料的产量,必须使菌种在合理的温度和湿度条件下,合理的搭配投料比。由我们的模型知道,当温度在21.5~23.5 ,相对湿度在

73%~94%时,投料比为0.40394时肥料的生成速率最快。

一阶常微分方程初值问题

00(,)

()dy

f x y dx

y x y

?=???=? 数值解法是近似计算中很重要的部分。

常微分方程初值问题的数值解法是求方程的解在点列

1(0,1,)n n n x x h n -=+= 上的近似值n y ,这里n h 是1n x -到n x 的步长,一般略去下标记为h 。

常微分方程初值问题的数值解法一般分为两大类:

(1)单步法:这类方法在计算n y 时,只用到1n x +、n x 和n y ,即前一步的值。因此,在有了初值以后就可以逐步往下计算。典型方法如龙格–库塔()R K -方法。 (2)多步法:这类方法在计算1n y +时,除用到1n x +、n x 和n y 以外,还要用

(1,2,,;0)n p y p k k -=> ,即前面k 步的值。典型方法如Adams 方法。

经典的R K -方法是一个四阶的方法,它的计算公式是:

1

12341213

243(22)6

(,)(,)22(,)22

(,)

n n n n n n

n n n n h y y K K K K K f x y h h K f x y K h h K f x y K K f x h y hK +?

=++++??

=???=++??

?

=++??=++?? R K -方法的优点是:单步法、精度高,计算过程便于改变步长,缺点是计算量

较大,每前进一步需要计算四次函数值f 。

数学模型具有弹性,如果有更多更全面的数据,可以找出参数,建立具有一般性的模型公式。模型的缺点是没有充分利用生物实验的数据来确立模型公式,再有模型对温度和湿度的依赖性很大,也无法计算容器内部热量的产生和扩散。

利用四阶龙格-库塔方法求解微分方程的初值问题问题1

(1)TestRK4('ode1', 1, [0 -1], 5, inline('-x-1'))

TestRK4('ode1', 1, [0 -1], 10, inline('-x-1'))

TestRK4('ode1', 1, [0 -1], 20, inline('-x-1'))

(2)TestRK4('ode2', 1, [0 1], 5, inline('1./(x+1)'))

TestRK4('ode2', 1, [0 1], 10, inline('1./(x+1)'))

TestRK4('ode2', 1, [0 1], 20, inline('1./(x+1)'))

问题2

(1)TestRK4('ode3', 3, [1 0], 5, inline('x.^2.*(exp(x)-x)'))

TestRK4('ode3', 3, [1 0], 10, inline('x.^2.*(exp(x)-x)'))

TestRK4('ode3', 3, [1 0], 20, inline('x.^2.*(exp(x)-x)'))

数学建模实验答案-概率模型

数学建模实验答案-概率模型

实验10 概率模型(2学时) (第9章 概率模型) 1.(验证)报童的诀窍p302~304, 323(习题2) 关于每天报纸购进量的优化模型: 已知b 为每份报纸的购进价,a 为零售价,c 为退回价(a > b > c ),每天报纸的需求量为r 份的概率是f (r )(r =0,1,2,…)。 求每天购进量n 份,使日平均收入,即 1 ()[()()()]()()()n r r n G n a b r b c n r f r a b nf r ∞ ==+=----+ -∑∑ 达到最大。 视r 为连续变量,f (r )转化为概率密度函数p (r ),则所求n *满足 * ()n a b p r dr a c -= -? 已知b =, a =1, c =,r 服从均值μ=500(份),均方差σ=50(份)的正态分布。报童每天应购进多少份报纸才能使平均收入最高,这个最高收入是多少 [提示:normpdf, normcdf] 要求:

(1) 在同一图形窗口内绘制10 ()()n y n p r dr =?和2()a b y n a c -= -的图形,观察其交点。 [提示] 22 ()2()r p r μσ-- = ,0 ()()()n n p r dr p r dr p r dr -∞ -∞ =-?? ? ☆(1) 运行程序并给出结果: (2) 求方程0()n a b p r dr a c -= -?的根n *(四舍五入取整),并求G (n *)。

mu=500;sigma=50; a=1; b=; c=; r=n+1; while (a-b)*n*normpdf(r,mu,sigma)>1e-6 r=r+1; end r=n+1:r; G=sum((a-b)*n*normpdf(r,mu,sigma)); r=0:n; G=G+sum(((a-b)*r-(b-c)*(n-r)).*normpdf(r,mu,sigma)) ☆(2) 运行程序并给出结果: 2.(编程)轧钢中的浪费p307~310 设要轧制长l=的成品钢材,由粗轧设备等因素决定的粗轧冷却后钢材长度的均方差σ=,问这时钢材长度的均值m应调整到多少使浪费最少。 平均每得到一根成品材所需钢材的长度为 () () m J m P m = 其中, 2 2 () 2 ()(), () 2 x m l P m p x dx p xσ πσ - - ∞ == ? 求m使J(m)达到最小。 等价于求方程 () () z z z λ ? Φ =- 的根z*。 其中:

常微分方程在数学建模中的应用.

微分方程应用 1 引言 常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具. 数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题. 因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用. 2 数学模型简介 通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等.学会建立数学模型对解决实际生活问题会有很大的帮助. 建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁.随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域.一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节. 3 常微分方程模型 3.1 常微分方程的简介

数学建模作业——实验1

数学建模作业——实验1 学院:软件学院 姓名: 学号: 班级:软件工程2015级 GCT班 邮箱: 电话: 日期:2016年5月10日

基本实验 1.椅子放平问题 依照1.2.1节中的“椅子问题”的方法,将假设中的“四腿长相同并且四脚连线呈正方形”,改为“四腿长相同并且四脚连线呈长方形”,其余假设不变,问椅子还能放平吗?如果能,请证明;如果不能,请举出相应的例子。 答:能放平,证明如下: 如上图,以椅子的中心点建立坐标,O为原点,A、B、C、D为椅子四脚的初始位置,通过旋转椅子到A’、B’、C’、D’,旋转的角度为α,记A、B两脚,C、D两脚距离地面的距离为f(α)和g(α),由于椅子的四脚在任何位置至少有3脚着地,且f(α)、g(α)是α的连续函数,则f(α)和g(α)至少有一个的值为0,即f(α)g(α)=0,f(α)≥ 0,g(α)≥0,若f(0)>0,g(0)=0,

则一定存在α’∈(0,π),使得 f(α’)=g(α’)=0 令α=π(即椅子旋转180°,AB 边与CD 边互换),则 f(π)=0,g(π)>0 定义h(α)=f(α)-g(α),得到 h(0)=f(0)-g(0)>0 h(π)=f(π)-g(π)<0 根据连续函数的零点定理,则存在α’∈(0,π),使得 h(α’)=f(α’)-g(α’)=0 结合条件f(α’)g(α’)=0,从而得到 f(α’)=g(α’)=0,即四脚着地,椅子放平。 2. 过河问题 依照1.2.2节中的“商人安全过河”的方法,完成下面的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米之一,而当人不在场时,猫要吃鸡、鸡要吃米,试设计一个安全过河的方案,并使渡河的次数尽量的少。 答:用i =1,2,3,4分别代表人,猫,鸡,米。1=i x 在此岸,0=i x 在对岸,()4321,,,x x x x s =此岸状态,()43211,1,1,1x x x x D ----=对岸状态。安全状态集合为 :

《数学建模与数学实验》本科教学日历

《数学建模与数学实验》本科教学日历 数学建模部分 开设课程课程名称数学建模课程编号0701107 施教单位理学院 课内学时 总课时36 课程性质公共基础讲授课时28 修读要求选修实践课时8 选用教材教材名称数学建模教程出版社名称高等教育出版社 出版时间 及版次 2011年出版,第一版印刷时间2011年 其他情况 教学安排 班次授课对象及人数任教教员(指导教员)姓名及职称数学建模A 各专业本科学员 吴孟达教授 段晓君教授 毛紫阳讲师 王丹讲师 数学建模B 各专业本科学员 吴孟达教授 段晓君教授 毛紫阳讲师 王丹讲师 课次节 次 授课内容 教学 方法 采用现代化教学手段(课时) 多媒体电教双语网络实验 1 1 (1)什么是数学建模?数学建模的一般概念 (2)几个数学建模问题 讲授 1 2 (1)数学建模的一般步骤 (2)敏感问题调查案例 讲授 1 2 3 (1)行走步长问题 (2)雨中行走淋雨量最小问题 (3)道路是越多越通畅吗? 讲授 1 4 (1)有奖销售的抽奖策略问题 (2)“非诚勿扰”女生最佳选择问题 (3)网络文章流行度预测和招聘匹配 讲授 1 3 5 (1)线性规划模型基本概念 (2)整数规划模型 (3)0-1规划模型 讲授 1 6 (1)非线性规划 (2)多目标规划 讲授 1 4 7 (1)最短路算法 (2)最小生成树算法 讲授 1 8 (1)最大流算法 (2)PageRank算法 讲授 1 5 9 规划模型上机实践实践 1

课次节 次 授课内容 教学 方法 采用现代化教学手段(课时) 多媒体电教双语网络实验10 图论模型上机实践实践 1 6 11 (1)博弈模型基本概念 (2)Nash平衡和Pareto最优 (3)博弈论案例 讲授 1 12 (1)贝叶斯纳什均衡 (2)拍卖模型 讲授 1 7 13 社会选择理论中的选举问题数学模型-阿罗不可能定理讲授 1 14 越野长袍团体赛排名规则公平性问题讲授 1 8 15 军事作战模型-Lanchester作战模型讲授 1 16 自动化车床管理模型讲授 1 9 17 (1)“边际效应”基本概念 (2)实物交换模型,最佳消费模型、报童售报问题 讲授 1 18 (1)价格弹性模型 (2)合作效益的Shapley值分配模型 讲授 1 10 19 (1)聚类分析基本概念 (2)常用聚类算法 讲授 1 20 (1)方差分析基本概念 (2)单因素方差分析 (3)双因素方差分析 讲授 1 11 21 (1)主成分分析基本概念 (2)因子分析 讲授 1 22 (1)一元回归分析 (2)多元回归分析 (3)多元回归模型的检验与优化 讲授 1 12 23 聚类分析和方差分析上机实践实践 1 24 主成分分析和多元回归分析上机实践实践 1 13 25 (1)遗传算法基本思想 (2)算法步骤 讲授 1 26 遗传算法计算实例讲授 1 14 27 (1)模拟退火算法基本思想 (2)算法步骤 讲授 1 28 模拟退火算法计算实例讲授 1 15 29 (1)蚁群算法基本思想 (2)算法步骤 讲授 1 30 (1)数学建模中的计算机仿真 (2)不可召回的秘书招聘问题 (3)车灯光源优化设计 (4)生命游戏 讲授 1 16 31 遗传算法上机实践实践 1 32 模拟退火算法上机实践实践 1

数学建模之微分方程建模与平衡点理论

微分方程 列微分方程常用的方法: (1)根据规律列方程 利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建 立微分方程模型。 (2)微元分析法 利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对 微元而不是直接对函数及其导数应用规律。 (3)模拟近似法 在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有 所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能 近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性 质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。 一、模型的建立与求解 1.1传染病模型 (1)基础模型 假设:t时刻病人人数() x t连续可微。每天每个病人有效接触(使病人治病的接触)的人数为λ,0 t=时有0x个病人。 +?病人人数增加 建模:t到t t

()()()x t t x t x t t λ+?-=? (1) 0,(0)dx x x x dt λ== (2) 解得: 0()t x t x e λ= (3) 所以,病人人数会随着t 的增加而无限增长,结论不符合实际。 (2)SI 模型 假设:1.疾病传播时期,总人数N 保持不变。人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。 2.每位病人每天平均有效接触λ人,λ为日接触率。有效接触后健康者变为病人。 依据:患病人数的变化率=Ni(t)(原患病人数)* λs(t)(每个病人每天使健康人变为病人的人数) 建模: di N Nsi dt λ= (4) 由于 ()()1s t i t += (5) 设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型 0(1),(0)di i i i i dt λ=-= (6)

数学建模第二次作业(3)

数学建模 任意两个城市之间的最廉价路线 参与人员信息: 2012年 6 月 6 日

一、问题提出 某公司在六个城市C1、C2、C3、C4、C5、C6中都有分公司,从Ci 到Cj 的直达航班票价由下述矩阵的第i 行、第j 列元素给出(∞表示无直达航班),该公司想算出一张任意两个城市之间最廉价路线表,试做出这样的表来。 0 50 ∞ 40 25 10 50 0 15 20 ∞ 25 ∞ 15 0 10 20 ∞ 40 20 10 0 10 25 25 ∞ 20 10 0 55 10 25 ∞ 25 55 0 二 、问题分析 若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点(通 常是源节点和阱节点)之间总权和最小的路径就是最短路问题。最短路问题是网络理论解决的典型问题之一,可用来解决管路铺设、线路安装、厂区布局和设备更新等实际问题。最短路问题,我们通常归属为三类:单源最短路径问题、确定起点终点的最短路径问题、全局最短路径问题———求图中所有的最短路径。 题中要求算出一张任意城市间的最廉价路线表,属于全局最短路问题,并且使得该公司总经理能够与各个子公司之间自由往返。(此两点为主要约束条件) Floyd 算法,具体原理如下: (1) 我们确定本题为全局最短路问题,并采用求距离矩阵的方法 根据路线及票价表建立带权矩阵W ,并把带权邻接矩阵我w 作为距离矩阵的初始值,即(0)(0)()ij v v D d W ?== (2)求路径矩阵的方法 在建立距离矩阵的同时可建立路径矩阵R ,()ij v v R r ?=,ij r 的含义是从i v 到j v 的最短路径要经过点号为ij r 的点。 (3)查找最短路径的方法 若()1v ij r p =,则点1p 是点i 到j 的最短距离的中间点,然后用同样的方法再分头查找。 三、 模型假设: 1.各城市间的飞机线路固定不变 2.各城市间飞机线路的票价不改变 3.忽略乘客除票价以外的各项开销费用 4.不考虑雷雨云、低云、大风、雷暴、冰雹等主要天气因素对飞行的影响。

数学建模实验答案初等模型

实验02 初等模型(4学时) (第2章初等模型) 1.(编程)光盘的数据容量p23~27 表1 3种光盘的基本数据 CAV光盘:恒定角速度的光盘。 CLV光盘:恒定线速度的光盘。 R2=58 mm, R1=22.5 mm,d, ρ见表1。

CLV光盘的信息总长度(mm) L CLV 22 21 () R R d π- ≈ CLV光盘的信息容量(MB) C CLV = ρL CLV / (10^6) CLV光盘的影像时间(min) T CLV = C CLV / (0.62×60) CAV光盘的信息总长度(mm) L CAV 2 2 2 R d π≈ CAV光盘的信息容量(MB) C CAV = ρL CAV / (10^6) CAV光盘的影像时间(min ) T CAV = C CAV / (0.62×60) 1.1(验证、编程)模型求解 要求: ①(验证)分别计算出LCLV, CCLV和TCLV三个3行1列的列向量,仍后输出结果,并与P26的表2(教材)比较。 程序如下:

②(编程)对于LCAV, CCAV和TCAV,编写类似①的程序,并运行,结果与P26的表3(教材)比较。 ★要求①的程序的运行结果: ★要求②的程序及其运行结果:

1.2(编程)结果分析 信道长度LCLV 的精确计算:21 2R CLV R L d π=? 模型给出的是近似值:2221() CLV R R L L d π-= ≈ 相对误差为:CLV L L L δ-= 要求:

①取R2=58 mm, R1=22.5 mm,d, ρ见表1(题1)。 分别计算出LCLV, L和delta三个3行1列的列向量,仍后将它组合起来输出一个3行3列的结果。 ②结果与P26的表2和P27(教材)的结果比较。 [提示] 定积分计算用quad、quadl或trapz函数,注意要分别取d的元素来计算。要用数组d参与计算,可用quadv(用help查看其用法)。 ★编写的程序和运行结果: 程序:

数学建模与数学实验习题

数学建模与数学实验课程总结与练习内容总结 第一章 1.简述数学建模的一般步骤。 2.简述数学建模的分类方法。 3.简述数学模型与建模过程的特点。 第二章 4.抢渡长江模型的前3问。 5.补充的输油管道优化设计。 6.非线性方程(组)求近似根方法。 第三章 7.层次结构模型的构造。 8.成对比较矩阵的一致性分析。 第五章 9.曲线拟合法与最小二乘法。 10 分段插值法。 第六章 11 指数模型及LOGISTIC模型的求解与性质。 12.VOLTERRA模型在相平面上求解及周期平均值。 13 差分方程(组)的平衡点及稳定性。 14 一阶差分方程求解。 15 养老保险模型。

16 金融公司支付基金的流动。 17 LESLLIE 模型。 18 泛函极值的欧拉方法。 19 最短路问题的邻接矩阵。 20 最优化问题的一般数学描述。 21 马尔科夫过程的平衡点。 22 零件的预防性更换。 练习集锦 1. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵 31/52a b P c d e f ?? ??=?????? ,(1)确定矩阵P 的未知元素。 (2)求 P 模最大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取0.58)。 2. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵 322P ? ???=?????? ,(1)将矩阵P 元素补全。 (2)求P 模最 大特征值。 (3)分析矩阵P 的一致性是否可以接受。 3.考虑下表数据

(1)用曲改直的思想确定经验公式形式。 (2)用最小二乘法确定经验公式系数。 4.. 考虑微分方程 (0.2)0.0001(0.4)0.00001dx x xy dt dy y xy dt εε?=--????=-++?? (1)在像平面上解此微分方程组。(2)计算0ε=时的周期平均值。(3)计算0.1ε=时,y 的周期平均值占总量的周期平均值的比例增加了多少? 5考虑种群增长模型 '()(1/1000),(0)200x t kx x x =-= (1)求种群量增长最快的时刻。(2)根据下表数据估计参数k 值。 6. 布均匀,若环保部门及时发现并从某时刻起切断污染源,并更新湖水(此处更新指用新鲜水替换污染水),设湖水更新速率是 3 (m r s 单位:)。 (1) 试建立湖中污染物浓度随时间下降的数学模型? 求出污染物浓度降为控制前的5%所需要的时间。 7. 假如保险公司请你帮他们设计一个险种:35岁起保,每月交费400元,60岁开始领取养老金,每月养老金标准为3600元,请估算该保险费月利率为多少(保留到小数点后5位)? 8. 某校共有学生40000人,平时均在学生食堂就餐。该校共有,,A B C 3 个学生食堂。经过近一年的统计观测发现:A 食堂分别有10%,25%的学生经常去B ,C 食堂就餐,B 食堂经常分别有15%,25%的同学去

数学建模——微分方程的应用

第八节 数学建模——微分方程的应用举例 微分方程在物理学、力学、经济学和管理科学等实际问题中具有广泛的应用,本节我们将集中讨论微分方程的实际应用,尤其是微分方程经济学中的应用. 读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力. 分布图示 ★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题 内容要点: 一、衰变问题 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t 的质量. 用x 表示该放射性物质在时刻t 的质量, 则 dt dx 表示x 在时刻t 的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为 .kx dt dx -= (8.1) 这是一个以x 为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中0>k 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t 增加时, 质量x 减少. 解方程(8.1)得通解.kt Ce x -=若已知当0t t =时, ,0x x =代入通解kt Ce x -=中可得,00kt e x C -= 则可得到方程(8.1)特解 ,)(00t t k e x x --= 它反映了某种放射性元素衰变的规律. 注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素( U 238)的半衰期约为50亿年;通常的镭( Ra 226)的半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始量, 一克Ra 226 衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.

西南大学2016年春《数学建模》作业及答案(已整理)(共5次)

西南大学2014年春《数学建模》作业及答案(已整理) 第一次作业 1:[填空题] 名词解释: 1.原型 2.模型 3.数学模型 4.机理分析 5.测试分析 6.理想方法 7.计算机模拟 8.蛛网模型 9.群体决策 10.直觉 11.灵感 12.想象力 13.洞察力 14.类比法 15.思维模型 16.符号模型 17.直观模型 18.物理模型19.2倍周期收敛20.灵敏度分析21.TSP问题22.随机存储策略23.随机模型24.概率模型25.混合整数规划26.灰色预测 参考答案: 1.原型:原型指人们在现实世界里关心、研究或者从事生产、管理的实际对象。2.模型:指为某个特定目的将原形的某一部分信息简缩、提炼而构造的原型替代物。3.数学模型:是由数字、字母或其它数字符号组成的,描述现实对象数量规律的数学公式、图形或算法。4.机理分析:根据对客观事物特性的认识,找出反映内部机理的数量规律,建立的模型常有明显的物理意义或现实意义。5.测试分析:将研究对象看作一个"黑箱”系统,通过对系统输入、输出数据的测量和统计分析,按照一定的准则找出与数据拟合得最好的模型。6.理想方法:是从观察和经验中通过想象和逻辑思维,把对象简化、纯化,使其升华到理状态,以其更本质地揭示对象的固有规律。7.计算机模拟:根据实际系统或过程的特性,按照一定的数学规律用计算机程序语言模拟实际运行情况,并依据大量模拟结构对系统或过程进行定量分析。8.蛛网模型:用需求曲线和供应曲线分析市场经济稳定性的图示法在经济学中称为蛛网模型。9.群体决策:根据若干人对某些对象的决策结果,综合出这个群体的决策结果的过程称为群体决策。10.直觉:直觉是人们对新事物本质的极敏锐的领悟、理解或推断。11.灵感:灵感是指在人有意识或下意识思考过程中迸发出来的猜测、思路或判断。12.想象力:指人们在原有知识基础上,将新感知的形象与记忆中的形象相互比较、重新组合、加工、处理,创造出新形象,是一种形象思维活动。13.洞察力:指人们在充分占有资料的基础上,经过初步分析能迅速抓住主要矛盾,舍弃次要因素,简化问题的层次,对可以用那些方法解决面临的问题,以及不同方法的优劣作出判断。14.类比法:类比法注意到研究对象与以熟悉的另一对象具有某些共性,比较二者相似之处以获得对研究对象的新认识。15.思维模型:指人们对原形的反复认识,将获取的知识以经验的形式直接储存于人脑中,从而可以根据思维或直觉作出相应的决策。16.符号模型:是在一定约束条件或假设下借助于专门的符号、线条等,按一定形式组合起来描述原型。17.直观模型:指那些供展览用的实物模型以及玩具、照片等,通常是把原型的尺寸按比例缩小或放大,主要追求外观上的逼真。18.物理模型:主要指科技工作者为一定的目的根据相似原理构造的模型,它不仅可以显示原型的外形或某些特征,而且可以用来进行模拟实验,间接地研究原型的某些规律。19.2倍周期收敛:在离散模型中,如果一个数列存在两个收敛子列就称为2倍周期收敛。20.灵敏度分析:系数的每个变化都会改变线性规划问题,随之也会影响原来求得的最优解。为制定一个应付各种偶然情况的全能方法,必须研究以求得的最优解是怎样随输入系数的变化而变化的。这叫灵敏性分析。21.TSP问题:在加权图中寻求最佳推销员回路的问题可以转化为在一个完备加权图中寻求最佳哈密顿圈的问题,称为TSP问题。22.随机存储策略:商店在订购货物时采用的一种简单的策略,是制定一个下界s和一个上界S,当周末存货不小于s时就不定货;当存货少于s 时就订货,且定货量使得下周初的存量达到S,这种策略称为随机存储策略。23.随机模型:如果随机因素对研究对象的影响必须考虑,就应该建立随机性的数学模型,简称为随机模型。24.概

数学建模实验报告

数学建模实验报告

一、实验目的 1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握 数学建模分析和解决的基本过程。 2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新 能力,为今后从事科研工作打下初步的基础。 二、实验题目 (一)题目一 1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。设每个 乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直 到电梯中的乘客下完时,电梯需停次数的数学期望。 2、问题分析 (1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。所以选择采用计算机模拟的 方法,求得近似结果。 (2)通过增加试验次数,使近似解越来越接近真实情况。 3、模型建立 建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每 个乘客只会在某一层下,故没列只有一个1)。而每行中1的个数 代表在该楼层下的乘客的人数。 再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。 例如: 给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为: m = 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 c = 1 1 0 1 0 1 1 1 4、解决方法(MATLAB程序代码):

n=10;r=10;d=1000; a=0; for l=1:d m=full(sparse(randint(1,r,[1,n]),1:r,1,n,r)); c=zeros(n,1); for i=1:n for j=1:r if m(i,j)==1 c(j)=1; break; end continue; end end s=0; for x=1:n if c(x)==1 s=s+1; end continue; end a=a+s; end a/d 5、实验结果 ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。 (二)题目二 1、问题:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6 千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千 克,工人20名,可获利9万元.今工厂共有原料60千克,工人 150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何 安排生产计划,即两种饮料各生产多少使获利最大.进一步讨 论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划. 2、问题分析 (1)题目中共有3个约束条件,分别来自原料量、工人数与甲饮料产量的限制。 (2)目标函数是求获利最大时的生产分配,应用MATLAB时要转换

数学建模与数学实验试卷及答案

数学建模与数学实验试卷及答案 二、本题10分(写出程序和结果) 蚌埠学院2010—2011学年第二学期 2,x在 [-5 ,5] 区间内的最小值,并作图加以验证。求函数yxe,,,3《数学建模与数学实验》补考试卷答案 f1=inline('x.^2 +exp(-x)-3') 注意事项:1、适用班级:09数学与应用数学本科1,2班 2、本试卷共1页,附答题纸1页。满分100分。 x=fmin(f1,-5,5) 3、考查时间100分钟。 y=f1(x) 4、考查方式:开卷 fplot(f1,[-5,5]) 一、填空:(每空4分,共60分) x = 0.3517,y== -2.1728 123111,,,,, ,,,,三、本题15分(写出程序和结果) 1. 已知,,则A的秩为 3 ,A的特征值为 A,612B,234,,,, ,,,,,215531,,,,,360000xx,,,12,max2.5fxx,,求解:, stxx..250000,,,1212-1.9766 4.4883 + 0.7734i 4.4883 - 0.7734i ,若令 A([1,3],:)= B([2,3],:),则,x,150001,A(2,:)= 6 1 2 ; 解: xxx,,,22,123,model: 2. 的解为 1.25 ,0.25 0.5 ; xxx,,,521,123max=2.5*x1+x2; ,242xxx,,,123,3*x1+x2<=60000; 装订线内不要答题 2*x1+x2<=50000; 3. 将1234521 分解成质因数乘积的命令为_factor(sym(‘1234521’)),

数学建模与数学实验课后习题答案

P59 4.学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生要组织一个10人的委员会,使用Q 值法分配各宿舍的委员数。 解:设P 表示人数,N 表示要分配的总席位数。i 表示各个宿舍(分别取A,B,C ),i p 表示i 宿舍现有住宿人数,i n 表示i 宿舍分配到的委员席位。 首先,我们先按比例分配委员席位。 A 宿舍为:A n = 365.21002 10237=? B 宿舍为:B n =323.31002 10333=? C 宿舍为:C n =311.4100210432=? 现已分完9人,剩1人用Q 值法分配。 5.93613 22372 =?=A Q 7.92404 33332 =?=B Q 2.93315 44322 =?=C Q 经比较可得,最后一席位应分给A 宿舍。 所以,总的席位分配应为:A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。

商人们怎样安全过河

由上题可求:4个商人,4个随从安全过河的方案。 解:用最多乘两人的船,无法安全过河。所以需要改乘最多三人乘坐的船。 如图所示,图中实线表示为从开始的岸边到河对岸,虚线表示从河对岸回来。商人只需要按照图中的步骤走,即可安全渡河。总共需要9步。

P60 液体在水平等直径的管内流动,设两点的压强差ΔP 与下列变量有关:管径d,ρ,v,l,μ,管壁粗糙度Δ,试求ΔP 的表达式 解:物理量之间的关系写为为()?=?,,,,,μρ?l v d p 。 各个物理量的量纲分别为 []32-=?MT L p ,[]L d =,[]M L 3-=ρ,[]1-=LT v ,[]L l =,[]11--=MT L μ,Δ是一个无量纲量。 ???? ??????-----=?0310100011110010021113173A 其中0=Ay 解得 ()T y 00012111---=, ()T y 00101102--=, ()T y 01003103--=, ()T y 10000004= 所以 l v d 2111---=ρπ,μρπ112--=v ,p v ?=--313ρπ,?=4π 因为()0,,,,,,=??p l v d f μρ与()0,,,4321=ππππF 是等价的,所以ΔP 的表达式为: ()213,ππψρv p =?

数学建模之微分方程建模与平衡点理论

微分方程 列微分方程常用的方法: (1)根据规律列方程 利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立微分方程模型。 (2)微元分析法 利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律。 (3)模拟近似法 在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。 一、模型的建立与求解 1.1传染病模型 (1)基础模型 假设:t 时刻病人人数()x t 连续可微。每天每个病人有效接触(使病人治病的接触)的人数为λ,0t =时有0x 个病人。 建模:t 到t t +?病人人数增加 ()()()x t t x t x t t λ+?-=?(1) 0,(0)dx x x x dt λ==(2) 解得: 0()t x t x e λ=(3) 所以,病人人数会随着t 的增加而无限增长,结论不符合实际。 (2)SI 模型

假设:1.疾病传播时期,总人数N 保持不变。人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。 2.每位病人每天平均有效接触λ人,λ为日接触率。有效接触后健康者变为病人。 依据:患病人数的变化率=Ni(t)(原患病人数)*λs(t)(每个病人每天使健康人变为病人的人数) 建模: di N Nsi dt λ=(4) 由于 ()()1s t i t +=(5) 设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型 0(1),(0)di i i i i dt λ=-=(6) 解得: 01()111kt i t e i -= ??+- ??? (7) 用Matlab 绘制图1()~i t t ,图2 ~di i dt 图形如下, 结论:在不考虑治愈情况下

第二次数学建模作业

4. 根据表1.14 的数据,完成下列数据拟合问题: 表 1.14 美国人口统计数据(百万人) 年份1790 1800 1810 1820 1830 1840 1850 1860 人口 3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 年份1870 1880 1890 1900 1910 1920 1930 1940 人口38.6 50.2 62.9 76.0 92.0 106.5 123.2 131.7 年份1950 1960 1970 1980 1990 2000 人口150.7 179.3 204.0 226.5 251.4 281.4 解答:(1): (i)执行程序: t=1790:10:2000; x=[3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.2,92.0,106.5,123.2,131.7,150.7,179.3,204 .0,226.5,251.4,281.4]; f=@(r,t)3.9.*exp(r(1).*(t-1790)); r=nlinfit(t,x,f,0.036) sse=sum((x-f(r,t)).^2) plot(t,x,'k+',1790:10:2000,f(r,1790:10:2000),'k') axis([1790,2000,0,300]),legend('测量值','理论值') xlabel('美国人口/(百万)'),ylabel('年份') title('美国人口指数增长模型图II') 运行结果: >> Untitled r = 0.0212 sse = 1.7433e+004 即,拟合效果:r =0.0212;误差平方和为:1.7433e+004. 拟合效果图(i):

《数学建模与数学实验》课程论文

10级信息《数学建模与数学实验(实践)》任务书 一、设计目的 通过《数学建模与数学实验(实践)》实践环节,掌握本门课程的众多数学建模方法和原理,并通过编写C语言或matlab程序,掌握各种基本算法在计算机中的具体表达方法,并逐一了解它们的优劣、稳定性以及收敛性。在熟练掌握C 语言或matlab语言编程的基础上,编写算法和稳定性均佳、通用性强、可读性好,输入输出方便的程序,以解决实际中的一些科学计算问题。 二、设计教学内容 1线性规划(掌握线性规划的模型、算法以及Matlab 实现)。整数线性规划(掌握整数线性规划形式和解法)。 2微分方程建模(掌握根据规律建立微分方程模型及解法;微分方程模型的Matlab 实现)。 3最短路问题(掌握最短路问题及算法,了解利用最短路问题解决实际问题)。 行遍性问题(了解行遍性问题,掌握其TSP算法)。 4回归分析(掌握一元线性回归和多元线性回归,掌握回归的Matlab实现)。 5计算机模拟(掌握Monte-carlo方法、了解随机数的产生;能够用Monte-carlo 解决实际问题)。 6插值与拟合(了解数据拟合基本原理,掌握用利用Matlab工具箱解决曲线拟合问题)。 三、设计时间 2012—2013学年第1学期:第16周共计一周 目录 一、10级信息《数学建模与数学实验(实践)》任务书 (1) 二、饭店餐桌的布局问题 (3) 摘要 (3)

问题重述 (3) 模型假设 (3) 模型分析 (4) 模型的建立和求解 (4) 模型推广 (9) 参考文献 (9) 三、白酒配比销售问题 (10) 摘要 (10) 问题重述 (11) 问题分析 (12) 模型假设 (12) 符号及变量说明 (12) 模型的建立与求解 (13) 模型的检验 (18) 模型的评价与推广 (19) 附录 (21) 饭店餐桌的布局问题 摘要 饭店餐桌的布局对于一个饭店有着很重要的作用。本文讨论的就是饭店餐桌的布局问题,根据实际需求及规定建立模型,同时考虑餐桌的类型及规格,尤其是餐桌的摆放技巧,保证使饭店能容纳的人数达到最大。根据所需餐桌的数量

g0917006 第二次通信作业.doc

数据通信与网络作业 姓名:学号: CH9 Q14. 当我们打越洋电话的时,有时会感到延迟,能说明其原因吗? 答:电话网络是由多级交换局(本地局、中继局、地区局)组成的。在美国,将整个国家划分为200多个本地接入和传送区域(LATA),在一个LATA内部提供服务的运营商称为本地交换电信公司(LEC),在一个LATA内部交换局中,只有本地局与中继局,当需要跨LATA进行通信的时候,就需要跨区交换电信公司(IXC)提供LATA之间的通信服务。中国的通信运营商提供的固话通信服务过程与此类似。 通过上面的介绍,我们可知,一次越洋通信的过程如下:呼叫方接通本地局,本地局接入LATA内部的中继局,中继局通过服务接入点(POP)接入IXC网络,数据在IXC网络内部通过海底电缆进行传输,到达大洋彼岸后,通过POP 接入该地区LATA内部的中继局,然后接入中继局内部的本地局,最后接通被呼叫方。 可见,一次越洋通话,中间会经过6次通信转接,而在每次通信转接中,程控机进行交换时总是会出现程序延迟。同时,在发送方进行的模数转换与接收方进行的数模转换同样会使通话产生延迟,这样,我们就不可避免的会在越洋电话中感觉到延时。

Q17. 使用下列技术计算,下载1000000字节所需要的最小时间? a. V32 modem b. V32bis modem c. V90 modem 答:d=1000kB=8000kb,t=传输时间,v=传输速度t=d/v a. V32 modem v=9.6kbps,t=8000kb/9.6kbps≈833s b.V32bis modem v=14.4kbps,t=8000kb/14.4kbps≈556s c. V90 modem v=33.6kbps,t=8000kb/56kbps≈143s CH10 Q13. 按表10.1,发送方发送数据字10。一个3位突发性差错损坏了码字,接收方能否检测出差错?说出理由。 答:由表10.1我们可知,dataword=10时,codeword=101,一个3位突发性差错将改变所有的该codeword的所有位,所以接收方收到的codeword=010,接收方查询后发现为无效codeword,丢弃该codeword。综上所述,接收方是可以检错的。 Q14. I按表10.2,发送方发送数据字10。如果一个3位突发性差错损坏了码字的前3位,接收方能否检测出差错?说明理由。 答:由表10.2我们可知,dataword=10时,codeword=10101,一个3为突

扩散问题的偏微分方程模型,数学建模

第七节 扩散问题的偏微分方程模型 物质的扩散问题,在石油开采、环境污染、疾病流行、化学反应、新闻传播、煤矿瓦斯爆炸、农田墒情、水利工程、生态问题、房屋基建、神经传导、药物在人体内分布以及超导、液晶、燃烧等诸多自然科学与工程技术领域,十分普遍地存在着. 显然,对这些问题的研究是十分必要的,其中的数学含量极大. 事实上,凡与反应扩散有关的现象,大都能由线性或非线性抛物型偏微分方程作为数学模型来定量或定性地加以解决. MCM的试题来自实际,是“真问题⊕数学建模⊕计算机处理”的“三合一”准科研性质的一种竞赛,对上述这种有普遍意义和数学含量高,必须用计算机处理才能得到数值解的扩散问题,当然成为试题的重要来源,例如,AMCM-90A,就是这类试题;AMCM-90A要研究治疗帕金森症的多巴胺(dopamine )在人脑中的分布,此药液注射后在脑子里经历的是扩散衰减过程,可以由线性抛物型方程这一数学模型来刻划. AMCM-90A要研究单层住宅混凝土地板中的温度变化,也属扩散(热传导)问题,其数学模型与AMCM-90A一样,也是线性抛物型方程. 本文交代扩散问题建模的思路以及如何推导出相应的抛物型方程,如何利用积分变换求解、如何确定方程与解的表达式中的参数等关键数学过程,且以AMCM-90A题为例,显示一个较细致的分析、建模、求解过程. §1 抛物型方程的导出 设(,,,)u x y z t 是t 时刻点(,,)x y z 处一种物质的浓度. 任取一个闭曲面S ,它所围的区域是Ω,由于扩散,从t 到t t +?时刻这段时间内,通过S 流入Ω的质量为 2 221(cos cos cos )dSd t t t S u u u M a b c t x y z αβγ+????=++???? ??. 由高斯公式得 2222 221222()d d d d t t t u u u M a b c x y z t x y z +?Ω ???=++???? ???. (1) 其中,222,,a b c 分别是沿,,x y z 方向的扩散系数. 由于衰减(例如吸收、代谢等),Ω内的质量减少为 2 2d d d d t t t M k u x y z t +?Ω =? ???, (2) 其中2 k 是衰减系数. 由物质不灭定律,在Ω内由于扩散与衰减的合作用,积存于Ω内的质量为12M M -. 换一种角度看,Ω内由于深度之变化引起的质量增加为 3[(,,,)(,,,)]d d d d d d d . (3)t t t M u x y z t t u x y z t x y z u x y z t t Ω +?Ω =+?-?=????? ??? 显然312M M M =-,即

相关文档