文档库 最新最全的文档下载
当前位置:文档库 › CRH2型动车组牵引电动机概述

CRH2型动车组牵引电动机概述

CRH2型动车组牵引电动机概述

CRH2型动车组采用MT205型三相鼠笼异步电动机,每辆动车配置4台牵引电动机(并联连接),一个基本动力单元共8台,全列共汁16台。电动机额定功率为300kW。最高转速6120r/min.最高试验速度达7040r/min。

牵引电动机由定子、转子、轴承、通风系统等组成.绝缘等级为200级。牵引电动机采用转向架架悬方式,机械通风方式冷却,平行齿轮弯曲轴万向接头方式驱动。外形如图7.62。所有牵引电动机的外形尺寸、安装尺寸和电气特性相同,各动车的牵引电动机可以实现完全互换。牵引电动机在车体转向架上的安装位置见图7.63。

同直流电动机相比,三相异步电动机有着显著的优越性能和经济指标,其持续功率大而体积小、质量轻。具体地说有以下优点:

(1)功率大、体积小、质量轻。由于没有换向器和电刷装置,可以充分利用空间,同时在高速范围内因不受换向器电动机中电抗电势及片间电压等换向条件的限制,可输出较

大的功率,再生制动时也能输出较大的电功率,这对于发展高速运输是十分重要的。

(2)结构简单、牢固,维修工作量少。三相交流牵引电动机没有换向器和电刷装置,无需检查换向器和更换电刷,电动机的故障大大降低。特别是鼠笼形异步电动机,转子无绝缘,除去轴承的润滑外,几乎不需要经常进行维护。

(3)良好的牵引特性。由于其机械特性较硬,有自然防空转的性能,使黏着利用率提高。另外,三相交流异步电动机对瞬时过电压和过电流不敏感(不存在换向器的环火问题),它在起动时能在更长的时间内发出更大的起动转矩。合理设计三相交流牵引电动机的调频、调压特性,可以实现大范围的平滑调速,充分满足动车组运行需要。

(4)功率因数高,谐波干扰小。其电源侧可采用四象限变流器,可以在较广范围内保持动车组电网侧的功率因数接近于1,电流波形接近于正弦波,在再生制动时也是如此,从而减小电网的谐波电流,这对改善电网的供电条件、减小通信信号干扰、改善电网电能质量和延长牵引变电站之间的距离十分有利。

CRH2型动车组采用的牵引电动机除具有上述传统异步电动机的优点外,还有以下特点:

电动机整体机械强度很高,高速运行时能承受很大的轮轨冲击力;采用耐电晕、低介质损耗的绝缘系统以适应变频

电源供电;为了防止电动机轴承的电蚀,电动机前后端采用绝缘轴承;电动机转子导条采用低电阻、温度系数高的铜合金材料,保证传动系统的控制精度;为了减轻电动机自重,电动机采用轻质高强度材料;采用经过验证的轴承和轴承润滑结构,从而减少电动机的维护,保证电动机轴承更可靠工作;在输出一定功率的情况下,为减少体积,采用强迫通风和优化的通风结构,充分散热,以降低电动机的温升,提高材料的利用率;电动机的非传动轴端安装了2个速度传感器,用以给传动控制系统提供速度信号,便于逆变器控制和制动控制。

7.6.2技术参数

7.6.2.1主要技术参数

型号MT205

方式三相鼠笼异步电动机

极数4极

相数3相

额定值

输出功率 300kW

电压2000V

电流106A

频率140Hz

转差率1.4%

转速4140r/min

效率94.O%

功率因数 87.0%

绝缘类别等级200

温度上升极限200K(定子绕组;电阻法)

冷却方式强制风冷方式(20m3/min)

动力传送方式平行齿轮弯曲轴万向接头方式

最高使用转速6120r/min

最高试验转速7040r/min

轴承润滑脂unimaxRNO.2

质量440kg

额定参数说明:由于干线动车组载荷变化范围小,仅为整车自重的10%,所以电动机额定点的考核一般是在动车组最苛刻条件下电动机的稳定运行点。

其他相关参数见表7.27

表7.27牵引电动机参数表

7.6.2.2接口尺寸

图7.64为牵引电动机三维视图,由图可以看到电动机与转向架、联轴节的安装部位,与通风系统连接的电动机通风口;与传动系统相连的速度传感器信号线和三相电源线。

图7.65为牵引电动机外形图,轴伸为带键的锥面,与联轴节过盈配合,悬挂上有2个φ30的通孔,电动机侧面凸台有2个M27的螺纹孔,用4个M27的螺栓与转向架连接。

7.6.3牵引电动机组成

7.6.3.1概述

牵引电动机主要由定子(包括铝托架)、转子、轴承、传感器等部件组成,以下针对牵引电动机主要部分的结构进行说明。

7.6.3.2定子

定子框采用以连接板连接铁芯的无框架结构框,设有安装转向架的凸头和安装座;定子框的两侧采用铝合金铸件(铝托架)制作部件,实现定子框整体轻量化。

(1)铝托座(非传动侧和传动侧),其外形图如图7.66所示。

铝托架的材质以及厚板都考虑到列车高速运行状态,铝托架的定子框安装时,通过加强筋提高其强度,通过加厚及加强筋的加强提高了铝托架的框架安装部的强度。

非传动侧的铝托架,处于采用强制风冷方式的需要,在托架上部设置风道,在托架端面安装了转速检侧器外壳。另外,在传动侧,上部安装了端子壳。

安装时,用8个M12的螺栓将铝托座固定在机座上,为了防止铁和铝热膨胀上的差异而产生的偏差,采用了双重配合方式。

(2)定子铁芯

定子铁芯采用硅钢片和SPCC(端板)叠压而成,外形图如图7.67,定子铁芯上设置的切槽为后退式切槽,增加通风空间,提高冷却效果。

(3)定子线圈

定子线圈由u相绕组,V相绕组,W相绕组,各相由3个线圈串联而成。

由于逆变器运行时的高频电流引起的集肤效应,会造成

交流阻抗变大,温度上升过高。为了防止此问题,增加线圈的并列根数,并将线圈的导体截面形状做成扁平状。

另外,线圈间的连接全部采用银焊,并用绝缘材料进行绝缘后,再用无溶剂漆进行真空浸渍处理。

(4)引出线

在传动端的铝托座上部接线盒,其内连接有引出线,并使用接头用银焊焊接在三相线圈的引出连线上。电动机外部设置橡胶衬套,可以将三相电源引出线牢牢固定,然后再用绝缘材料进行处理。引出线绝缘部分是用蚂蟥钉固定的,当列车在通过道砟受冲击或其他原因使得铝托架产生断裂时,具有不用分离引出线连接部位就可以直接更换。

(5)由于采用强迫通风冷却方式,电动机非传动端的铝托座上部设置风道。另外,为了

固定速度传感器,铝托座端面上设置5个M10的螺栓固定的传感器盖。为了固定电动机引出线,在电动机传动端铝托座上部设置接线盒。

7.6.3.3转子

转子为牢固的鼠笼形状,该构造适用于高速运转。转子导条采用电阻系数较大,强度足够的铜锌合金(红铜)。为了尽量减小运转过程中因温度上升而产生的热膨胀,短路环采用电阻系数较小的纯铜。此外,为了应对高速转动,还在短路环的外围设置保持环。其外观图如图7.68所示。

转子由铁芯、转子导条、端环、护环、转子压板等零部件组成。

(1)转子铁芯

转子铁芯采用硅钢片和SPCC(端板)叠压而成,热套在转子轴上。另外,铁芯设置通风孔,使转子轻量化的同时,也提高了电动机的冷却效率。转子断面图如图7.69所示。

(2)转子导条及端环转子导条采用铜锌合金,转子导条为矩形形状,插入在转子铁芯46个转子槽中。转子导条插好后,从转子铁芯外周通过镦粗挤压变形,牢固地固定在转子槽中。转子导条的两端通过银焊牢固焊接在端环上,端环采用纯铜。

(3)转子轴

轴材用铬钼钢,传动端的螺纹为M42×2-6g。轴伸与联轴节采用锥度配合:大径侧为φ68mm,锥度为1/10,锥度长

为75mm。

(4)为了确保转子高速旋转时的安全,在端环的外周设置护环。

7.6.3.4轴承装配

传动侧使用的轴承是NU214C4P6,非传动侧使用的轴承是6311C4P6,传动侧的圆柱滚子轴承考虑到保持架导向面的滑动摩擦生热,并为了有效解决该问题,采用了滚子导向方式的保持架;为了有效防止轴承的电蚀,在两侧轴承的外圈上喷镀了陶瓷,形成了绝缘保护膜。

轴承润滑采用的结构是:在中间加油时通过加油嘴加进的润滑脂能从2处均衡地注入到轴承内部,能延长分解的周期。另外,在传动侧、非传动侧设有注油管路,电动机解体检查时,可以很容易地进行清洗。另外,为了增大润滑脂量,在传动侧、非传动侧的端盖上设有环状润滑脂室,这种结构能为轴承不断提供新的润滑脂。使用时要注意充填油量以及中途注油量,不混合使用不同种类的润滑脂,在拆卸和装入时,使用油压压进。轴承充填润滑脂后,实施1400r/min左右(工业频率)30min的空载运转,使润滑脂充分进入各个部位。

采用电动机轴承装配图说明轴承装配图的构成及维护特点,突出轴承室的结构特点。传动侧轴承、非传动侧轴承构造如图7.70和图7.71所示:

7.6.3.5通风系统

冷却风采用从车体管道抽取的方式,排气部安装了排风罩盖以防止雪雨进入。如图7.72所示,风从非传动端端盖的进风口进入电动机内部。在电动机内部,通风道有3条,一条是定转子间隙形成风道,一条是转子上的通风孑L形成风道。另一条是定子外表面采用钢板焊成的风道。前2条风道是电动机的主要通风道,而后一条风道主要用来降低定子

线圈端部的局部温度。风量从端盖通风口流出,经风罩排出电动机外部。

7.6.3.6速度传感器

牵引电动机在非传动轴端安装了两个速度传感器.用以给传动控制系统提供速度信号,便于逆变器控制和制动控制,外形图如图7.73所示。

(1)速度传感器

①各车轮直径大小不一致造成转速存在差异。逆变器频率设定依据:

a.行进时按4台并联电动机中转数最低的电动机设定频率;

b.再生时按4台并联电动机中转数最高的电动机设定频率。

②空转检测。

③控制制动器。

④运行方向检测和控制主电路。

(2)速度传感器原理

齿轮接近磁铁时,磁力线就会集中到齿轮的齿部,并随齿轮旋转发生变化。磁力线移动变化经磁阻元件检测、电路处理后作为脉冲输出。速度传感器工作原理和输出信号见图7.74和图7.75。

速度传感器使用时要注意及时清洁,不要使本体的顶端以及PG齿轮外围堆积灰尘。

7.6.4牵引电动机调节特性

由动车组牵引特性图7.76可看出,牵引电动机的调节

运行特性可分为三个调节区:启动加速区、恒功率输出区I 和恒功率输出区Ⅱ。

(1)启动加速区

如果电动机的磁通保持不变,则电动机可以在任何转速下发挥较大的转矩。电动机保持磁通恒定的控制方式有:恒磁通控制、恒电压频率比控制、恒转子全磁通控制等。

(2)恒功率输出区I

通过改变电动机特性曲线,把传统的恒转矩与恒功段的转换点提前,保持电动机磁通不变,在恒功的最初阶段电动机电压继续保持增加,而转差频率下降,电流下降,转矩随定子频率成反比变化,即恒功恒磁阶段。

(3)恒功率输出区Ⅱ

当牵引电动机电压提高到最大数值后,可认为Us≈Es,则可得到式(7.28):

式中为常数。

式(7.29)的左端实际上以一定的比例代表着电动机的功率数值。为了使电动机有恒定的输出功率,电压和频率的调节可以采用Us不变、fsl/fs等于常数的调节方式。

综上所述,CRH2型动车组牵引电动机调节特性如图7.77所示

7.6.5牵引电动机谐波分析

CRH2型动车组牵引异步电动机由静止逆变器供电时,其

定子电压可分解为一个基波分量和一系列谐波分量。牵引异步电动机在变频调节时,通常是在恒磁通或消弱磁场下运行。这时可以忽略磁路的饱和,而将电动机作为一个线性装置来考虑,从而可应用叠加原理。这就是说,利用谐波等值电路,可以单独分析电动机在各次谐波下的响应特性,然后进行叠加而得到在非正弦电压运行下的综合结果。

(1)谐波电流

利用谐波等值电路可计算出相应的谐波电流,电源电压的各谐波分量Uk可用傅氏级数分解求得,故谐波电流Ik=Uk/Zk。Zk即k次谐波等值电路的输入阻抗,其值利用相应的电路关系不难求得。当频率高时k次谐波电流的有效值为一般情况下没有零序谐波和偶次谐波,所以总的谐波电流为如果电动机的基波电流为J,则电动机总的有效电流为

由于s在电动机的整个运行过程中均十分接近于1,从谐波等值电路可以看出,谐波电流的数值近于恒定,而与电动机的转速以及负载情况无关。只有基波电流取决于负载的大小,轻载时电动机谐波电流的相对含量较满载时要大很多,所以轻载时电动机的损耗明显大于电动机在纯正弦电压下运行的损耗。

对于一个给定的电压波形,电动机电流中谐波成分的相对含量取决于电动机总漏电抗的标幺值。总漏电抗的标幺值可以表示为

式中UN——电动机的额定正弦波相电压;

JN——电动机的额定负载电流。

对单脉冲电压,谐波电压的大小反比于谐波的次数,即,代入式(7.30)得

若以基波相电压U1作为电动机的额定正弦电压,则

将式(7.35)代入式(7.34),可得是次谐波电流的标幺值为

由式(7.36)可见,总的谐波电流反比于总电抗的标幺值。

(2)谐波转矩

非正弦电源下,由于电动机气隙中存在时间谐波磁势,从而产生附加的谐波。根据产生的具体原因和性质的不同,谐波转矩又可分为两种,即稳定谐波转矩和振动谐波转矩。

①稳定谐波转矩

稳定(恒定)的谐波转矩是由同次数的气隙谐波磁通和谐波转子电流的相互作用产生。若气隙中包括基波在内共有”个旋转磁场,则会产生(n-1)个稳定谐波转矩。这些谐波转矩可以采用与基波相同的方法进行计算,即可采用相应的谐波等值电路求解。

电动机的合成电磁转矩应为基波转矩与谐波转矩的代数和。这些谐波转矩本身数值很小,且正向和负向谐波转矩之间可相互抵消(如5次谐波转矩在抵消后只剩一个极小的

反向转矩),所以实际上这种谐波转矩造成的电动机额定转矩的减少是微不足道的,通常可不予考虑。

②振动谐波转矩

振动谐波转矩由不同次数的谐波磁通和谐波转子电流的相互作用产生。若气隙中包括基波在内有n个旋转磁场,则会产生(n2-n)个振动转矩。而其中影响较大的转矩是由基波旋转磁场与谐波转子电流所形成。例如5次谐波的定子电流在气隙中产生的5次谐波磁场以5倍的同步速度反向旋转,从而在转子中感应6倍基波频率的转子电流,而该转子电流与基波旋转磁场相作用即形成6倍基波频率的振动转矩;7次谐波的定子电流在气隙中产生的7次谐波磁场以7倍同步速度正向旋转,也在转子中感应6倍基波频率的电流,从而与基波磁场一起形成6倍基波频率的振动转矩。

11次和13次定子谐波电流与基波磁场将产生12次谐波振动转矩,进而可以推广到任意次定子谐波电流与任意次时问谐波磁场所产生振动转矩,其振动频率可以从电流和磁场谐波次数得出来(谐波电流和磁场以其旋转方向加正负号表示)。

综上所述,异步电动机在非正弦电源下运行时,除去基波成分之外,还有若干不同振幅和频率的电流及谐波磁通。这些谐波将引起电动机的附加铜耗和铁耗,损耗总增量约为基波损耗的20%,所导致电动机温升的提高将使效率降低2%

左右。同时这些谐波又产生稳定谐波转矩和振动谐波转矩,稳定谐波转矩的影响可以忽略,振动谐波转矩约为额定转矩的5%~10%,其主要影响是使电动机转矩产生脉动,从而造成电动机转速(主要是低速时)的振荡。适当增加电动机的漏感抗,可以将电动机的谐波电流限制在给定的极限范围之内。应当指出,上面着重分析的是六阶梯波电压逆变器供电的情况,当采用电流型逆变器向电动机供电时,基本情况相似,只是谐波铜耗略有增大,且振动谐波转矩的数值会随负载电流而变化。

7.6.6牵引电动机检验

7.6.6.1试验种类

试验的种类如表7.28所示,其中划有“○”标记的是需要进行试验的项目,划有“-”标记的是不需要进行试验的项目。另外,试验时,在无特别指定的条件下使用50Hz 或60Hz的工频电源,按代用额定参数进行试验评价。关于型式试验及特殊试验只对最初的1台进行实施,交货验收试验时要对全数进行试验。表7.29给出了电动机的相关参数。

表7.28试验种类

备注:低频堵转试验及特性的计算对最初的4台进行。

表7.29额定参数

CRH2型动车组牵引电动机概述

CRH2型动车组牵引电动机概述 CRH2型动车组采用MT205型三相鼠笼异步电动机,每辆动车配置4台牵引电动机(并联连接),一个基本动力单元共8台,全列共汁16台。电动机额定功率为300kW。最高转速6120r/min.最高试验速度达7040r/min。 牵引电动机由定子、转子、轴承、通风系统等组成.绝缘等级为200级。牵引电动机采用转向架架悬方式,机械通风方式冷却,平行齿轮弯曲轴万向接头方式驱动。外形如图7.62。所有牵引电动机的外形尺寸、安装尺寸和电气特性相同,各动车的牵引电动机可以实现完全互换。牵引电动机在车体转向架上的安装位置见图7.63。 同直流电动机相比,三相异步电动机有着显著的优越性能和经济指标,其持续功率大而体积小、质量轻。具体地说有以下优点: (1)功率大、体积小、质量轻。由于没有换向器和电刷装置,可以充分利用空间,同时在高速范围内因不受换向器电动机中电抗电势及片间电压等换向条件的限制,可输出较

大的功率,再生制动时也能输出较大的电功率,这对于发展高速运输是十分重要的。 (2)结构简单、牢固,维修工作量少。三相交流牵引电动机没有换向器和电刷装置,无需检查换向器和更换电刷,电动机的故障大大降低。特别是鼠笼形异步电动机,转子无绝缘,除去轴承的润滑外,几乎不需要经常进行维护。 (3)良好的牵引特性。由于其机械特性较硬,有自然防空转的性能,使黏着利用率提高。另外,三相交流异步电动机对瞬时过电压和过电流不敏感(不存在换向器的环火问题),它在起动时能在更长的时间内发出更大的起动转矩。合理设计三相交流牵引电动机的调频、调压特性,可以实现大范围的平滑调速,充分满足动车组运行需要。 (4)功率因数高,谐波干扰小。其电源侧可采用四象限变流器,可以在较广范围内保持动车组电网侧的功率因数接近于1,电流波形接近于正弦波,在再生制动时也是如此,从而减小电网的谐波电流,这对改善电网的供电条件、减小通信信号干扰、改善电网电能质量和延长牵引变电站之间的距离十分有利。 CRH2型动车组采用的牵引电动机除具有上述传统异步电动机的优点外,还有以下特点: 电动机整体机械强度很高,高速运行时能承受很大的轮轨冲击力;采用耐电晕、低介质损耗的绝缘系统以适应变频

CRH3型动车组牵引电机安装架的探究

CRH3型动车组牵引电机安装架的探究 【摘要】CRH3型动车组是中国当下运行速度最快的动车车辆,其驱动装置采用架悬式,有别于其他常见的轴悬式和体悬式。牵引电机是动力转向架驱动装置的重要组成之一,西门子公司对CRH3型车的电机安装采用板弹簧结构悬于构架上,不仅能够承载电机自重,而且减弱了运行过程中由牵引电机带来的摇头惯量。这一结构设计的巧妙性不言而喻。本文将通过SolidWorks软件参照CRH3型动车转向架建立等比例的三维模型,然后通过SIMPACK分析软件建立其整车的动力学模型,得到其性能参数,为以后再创新建立数据依据。 【关键词】板弹簧;侧滚惯量;动力学分析 1.前言 1.1 CRH3型车概述 1.1.1 CRH3型车在我国的发展 CRH3型车以德国ICE3动车组转向架SF500的结构形式为基础,针对我国CRH3项目宽车体的要求,对其转向架的各部件质量、重心以及悬挂参数进行了调整,使其运营速度(300km/h)和试验速度(350km/h)在我国4种CRH系列车中均居首位。 1.1.2 CRH3型车转向架的特点 CRH3型高速动车组采取“四动四拖”的编组形式,由8节车辆组成。其构架为H型箱型焊接结构,由两根中间为凹形的侧梁组成;一系悬挂为螺旋钢弹簧加垂向液压减震器组成;转臂式定位方式;二系悬挂采用带有应急橡胶堆的高度自动调节的空气弹簧组成,且空气弹簧辅助气室由枕梁内腔承担;在车体和转向架之间装有双抗蛇形减震器、横向减震器、抗侧滚扭杆装置和Z形双拉杆牵引装置;动力转向架采用轮盘制动方式,非动力转向架采用轴盘制动方式;动力转向架采用挠性浮动齿式联轴节式牵引电机弹性架悬式驱动装置;轴箱采用自密封式双列圆锥滚动轴承。 1.1.3 CRH3型车牵引电机安装架的探究 通过在整车环境下对牵引电机安装吊杆的动力学分析,得到吊杆的横向刚度6KN/mm、垂向刚度30KN/mm。 1.2安装架的探究思路 探究安装架的灵感来自现有安装架的优点。CRH3型车牵引电机安装架的板弹簧结构巧妙的减少了其对整车侧滚惯量的影响。构架和牵引电机质量相近,但

CRH3型动车组牵引与控制特性分析

2 CRH3型动车组牵引与控制特性分析 2.1 CRH3动车组牵引系统组成部分 在CRH3动车组上装有四个完全相同且互相独立的动力单元。每一个动力单元有一个牵引变流器和一个控制单元,四个并联的牵引电动机以及一个制动电阻器单元。牵引零部件辅助设备所需的3相AC 440V60Hz 电流由动车组的辅助变流器单元提供。每个基本的动力单元主要包含以下关键器件: 1. 主变压器。主变压器设计成单制式的变压器,额定电压为单相AC 25kV 50Hz。变压器被布置在动车组没有驱动的变压器车车底,并且每一个变压器的附近都布置有一套冷却系统。主变压器箱体是由钢板焊接的,主变压器箱安装在车下,主变压器采用强迫导向油循环风冷方式。主变压器的次级绕组为牵引变流器提供电能。它使用一个电气差动保护、冷却液流量计和电子温度计对主变压器进行监控和保护。 2. 牵引变流器。牵引变流器采用结构紧凑,易于运用和检修的模块化结构。在运用现场通过更换模块可方便更换和维修。牵引变流器由多重四象限变流器、直流电压中间环节和逆变器组成,牵引变流器的模块具有互换性。 3. 牵引电机。动车组总共由16个牵引电机驱动,位于动力转向架上。牵引电机按高速列车的特殊要求而设计。具有坚固的结构,优化重量,低噪音排放,高效率和紧凑设计的特征。四极三相异步牵引电机按绝缘等级200 制造。牵引电机是强迫风冷式。牵引电机使用的是牵引变流器的电压源逆变器供电,变频变压( VVVF) 调速运行方式。 4. 其他部件。动车组其他牵引系统部件还包括牵引电机通风机、过压限制电阻等。某些零部件被设计成即使出现故障也能在小幅度减少或不减少性能的情况下运行。 CRH3型动车组采用交-直-交传动方式。以交流异步感应电动机作为牵引电机的高速动车组适宜采用再生制动方式。制动时它将交流电动机做为发电机使用,从而产生制动力矩,并将其所发出的电能反馈回电网。在所有的制动方式中,再生制动是唯一向电网反馈能量的制动方式,同电阻制动相比,减少了庞大而笨重的制动电阻,同时免去了一整套通风冷却装置。目前国外大多数动车均采用了

动车组与牵引电机

动车组与牵引电机 曹连芃 1. 动车组 动车组就是由动车和拖车组成或全部由若干动车固定连挂在一起组成的车组,主要用于高速铁路旅客运输。目前动车组多数都采用电力驱动,由外部接触网供电。 高铁指的是高速铁路,在高速铁路上跑的依然是动车组,是高速动车组。 在动车组中具有动力(有牵引电机)的车称为动车,没有动力的车称为拖车。 动力集中型列车将动力装置集中安装在列车的一端或两端的动力车(车头、机车)上,车头的车轮是由电机驱动的动力轮,动力车只作牵引不载客。拖车的车轮无电机驱动,只载客不牵引,图1中上图是动力集中型列车。 图1—动力集中型牵引列车与动力分散型牵引列车 动力分散型列车的动力轮分散在多节车辆,无专用的牵引车,列车的全部车辆都可以载客。目前高速动车组基本都是动力分散型列车。 在我国动车组主要型号为CRH1、CRH2、CRH3、CRH5、CRH380,每种型号又细分为多种型号。CRH系列统称为“和谐号”。 2. 牵引电机 牵引电机是直接带动车轮旋转的电机,由于串励式直流电动机有很好的拖动特性,速度控制也方便,长期来电力机车都是采用直流电机牵引。但直流电机的电刷与换向器磨损是致命的缺点,维护保养频繁又麻烦。自从有了大功率电力电子器件,各类变流器、逆变器得到普及应用,电力机车开始采用三相交流电机,相比直流电动机交流电动机没有电刷与换向器,没有直接磨损部件,故障率与维护大大减少;由于换向器限制了电压与电流,直流电机无法做到特大

功率,而交流电机可以做到很大的功率;交流电机单位重量功率比直流电机高出2倍以上,造价也低很多,所以目前动车组牵引电机均采用三相交流电机。交流电机主要是三相异步电机与三相永磁同步电机两种。 2.1. 交流异步牵引电机 下面介绍一种交流异步牵引电机的基本结构: 图2是定子铁芯与转子铁芯,铁芯由导磁良好的硅钢片叠成,内圆周有36个嵌线槽,用来嵌装三相绕组。 图2—定子铁芯与转子铁芯 定子绕组采用三相4极36槽双层叠绕组,图3是嵌有绕组的铁芯。 图3--嵌有绕组的定子铁芯

动车组牵引传动系统设计

(此文档为word格式,下载后您可任意编辑修改!) 动车组牵引传动系统设计 摘要 本文简述了我国动车组牵引传动系统的特点及发展现状,阐述了动车传动系统的设计思路,并讲解了动车组牵引传动系统分析仿真模型理论知识。论述了动车组牵引传动系统设计中包括传动系统功率的分析,牵引功率、黏着牵引力、启动加速度、平均加速度、列车运行最高速度等进行列 车牵引特性的设计。 通过动车组牵引传动系统的设计过程分析得到了设计过程中的规律讨论了在设计过程中遇到的问题,总结了设计时应注意的问题。 关键词:牵引传动系统、分析仿真模型,牵引功率,黏着牵引力,启动加速度

第一章CRH3型动车组的牵引传动系统的简介1.1 CRH3型动车组的牵引传动系统的简介 CRH3型动车组为8辆编组的动力分散交流传动电动车组,4动4拖,其中相邻的两辆动车为一个基本动力单元,每个动力单元具有独立的牵引传动系统,如图l所示,主要由1台主变压器、2台牵引变流器和8台牵引电机等组成。牵引变压器原边额定电压为单相交流25 kV/50 Hz,副边为l 550 V/50 Hz。牵引变流器输入侧为四象限脉冲整流器(4QC),2个4QC并联为一个共同的DC连接供电,中间电容区部分存储能量,输出平滑的直流电压。输出端为一个PWM逆变器,将DC连接电压转换成牵引系统所要求的变压变频i相电源驱动4个并联的异步牵引电机。本研究采用DTC系统来控制逆变和电机驱动部分,并对整个牵引传动系统进行建模研究。 1.2 CRH3型动车组的牵引传动系统的特点 CRH3型动车组在不同的速度时刻根据牵引/制动曲线输出所需的牵引力,使动车组顺利完成牵引或制动过程。 牵引工况时,牵引力和速度的数学关系为:

动车组牵引电机故障分析及诊断

动车组牵引电机故障分析及诊断 铁路运输作为我国最为重要的交通方式,尤其是客运的动车组列车更与人们的生活息息相关。随着我国“八纵八横”的提出,我国铁路运营里程达到了历史新高。尤其是近些年复兴号的上线运营,使动车组列车速度等级提上新高。动车组列车在运营过程中会出现牵引电机故障的情况发生,牵引电机作为动车组列车的最为重要的驱动部件,故障的处理确保了动车组列车运行的安全性。本文基于动车组列车牵引电机的结构及功能,提出运营过程中常见故障的解决方式。 标签:动车组;牵引电机;结构功能;故障 引言:牵引电机的状态关系到整個动车组的安全运行,所以对动车组牵引电机的故障诊断十分必要。本文基于牵引电机的结构进行分析,提出了牵引电机常见故障转子故障,定子故障,轴承故障,电机偏心故障,并对动车组牵引电机的常见故障诊断方法进行了研究。 1. 牵引电机结构 我国动车组普遍采用的三相鼠笼式异步电机,采用架悬式悬挂,强迫风冷方式散热组成。我国的CRH1型车牵引电机采用三相鼠笼式异步电机,每辆动力车辆带有4个牵引电机,全列20个;CRH2型动车组列车采用四极三相鼠笼式异步电机。每辆动力转向架具有16个电机,电机组装方式见动车组转向架组成图。 牵引电机主要由定子、转子、轴承和机座组成。以某车型动车组牵引电机为例,采用YJ105A型电机,该电机克服直流牵引电机的众多弊端。 2. 牵引电机常见故障 牵引电机在列车前进过程中存在供电驱动,制动蓄电的功能,在运行过程中,由于速度等级较高,常出现各种各样的故障,根据某动车段反馈的信息,常见的牵引电机故障有4部分组成,比例如图表2所示。 3. 牵引电机常见故障 牵引电机在列车前进过程中存在供电驱动,制动蓄电的功能,在运行过程中,由于速度等级较高,常出现各种各样的故障,根据某动车段反馈的信息,常见的牵引电机故障有4部分组成[1]。 3.1转子故障 牵引电机常见的转子故障有转子断条和断裂。这些故障会使动车组列车整个驱动装置温度过高,造成牵引电机负载太高,压力太大。

CRH2型动车组牵引传动系统工作原理及控制

CHR2型动车组牵引传动系统工作原理及控制 CRH2型动车组牵引传动系统设备配置及工作原理 概论 牵引传动系统是CRH2型高速动车组的动力来源。整个系统动力均匀分布于整列动车组的四个基本单元之中,形成了一个完整的组合的动力源。巨有牵引功率大、启动平稳、快速快捷、有效抑制空转和滑行保护到位等特性,并与多个系统连锁控制,实现运行平稳,多级调速和准确停车。 一、牵引传动系统的组成 CRH2型高速动车组以四动四托为编组,其中2,3,6,7号车为动车,1,4,5,8号车是拖车,配备两个牵引系统,首尾两车各设有司机室可双向行驶。正常情况下两个牵引系统均工作,当某一系统发生故障时可自动切断故障源继续行驶。 CRH2型高速动车组采用动力分散交流传动模式,主要有受电弓,牵引变压器,脉冲整流器,中间环节,牵引变流器,牵引电动机,齿轮传动等组成。

二、牵引传动系统的主要设备配置 2.1:车顶设备配置 各车辆间的主电路均采用高压电缆和高压电缆连接器连接。高压电缆连接器分为直线型,5度倾斜型,T型等几种,通过这些高压电缆连接器接通高压电缆。供电设备配置在4,6号车前部车顶,主要有受电弓和接地保护开关等。 2.2:车底设备配置 动车组牵引传动系统车底设备主要有网侧高压电气设备,牵引变压器,牵引变流器,牵引电动机等设备组成。全列共计2台牵引变压器,4台牵引变流器,16台牵引电动机。牵引变压器位于2,6号车底,牵引变流器和牵引电动机皆配置在2,3,6,7号车底。 三、动车组牵引传动系统主要设备 3.1:受电弓 动车组受电弓是从接触网获得电能的主要设备,也是动车组主电路的高压设备之一。受电弓主要通过列车运行时压缩空气进入升弓装置气囊升起受电弓,使受电弓滑板与接触线接触而获电;绛弓时排出 3.2

动车组牵引传动系统的

动车组牵引传动系统设计 摘要 本文简述了我国动车组牵引传动系统的特点及发展现状,阐述了动车传动系统的设计思路,并讲解了动车组牵引传动系统分析仿真模型理论知识。论述了动车组牵引传动系统设计中包括传动系统功率的分析,牵引功率、黏着牵引力、启动加速度、平均加速度、列车运行最高速度等进行列 车牵引特性的设计。 通过动车组牵引传动系统的设计过程分析得到了设计过程中的规律讨论了在设计过程中遇到的问题,总结了设计时应注意的问题。 关键词:牵引传动系统、分析仿真模型,牵引功率,黏着牵引力,启动加速度

第一章 CRH3型动车组的牵引传动系统的简介1.1 CRH3型动车组的牵引传动系统的简介 CRH3型动车组为8辆编组的动力分散交流传动电动车组,4动4拖,其中相邻的两辆动车为一个基本动力单元,每个动力单元具有独立的牵引传动系统,如图l所示,主要由1台主变压器、2台牵引变流器和8台牵引电机等组成。牵引变压器原边额定电压为单相交流25 kV/50 Hz,副边为l 550 V/50 Hz。牵引变流器输入侧为四象限脉冲整流器(4QC),2个4QC并联为一个共同的DC连接供电,中间电容区部分存储能量,输出平滑的直流电压。输出端为一个PWM逆变器,将DC连接电压转换成牵引系统所要求的变压变频i相电源驱动4个并联的异步牵引电机。本研究采用DTC系统来控制逆变和电机驱动部分,并对整个牵引传动系统进行建模研究。 1.2 CRH3型动车组的牵引传动系统的特点 CRH3型动车组在不同的速度时刻根据牵引/制动曲线输出所需的牵引力,使动车组顺利完成牵引或制动过程。

牵引工况时,牵引力和速度的数学关系为: 再生制动时,制动力和速度的数学关系为:

浅谈CRH2型动车组牵引电机检修常见故障及分析

龙源期刊网 https://www.wendangku.net/doc/0f1852274.html, 浅谈CRH2型动车组牵引电机检修常见故障及分析 作者:刘勇 来源:《中国科技博览》2013年第37期 摘要:对CRH2型动车组牵引电机检修常见故障现象及原因进行分析,提出改进建议。 關键词:CRH2;牵引电机;常见故障;轴承;速度传感器;原因分析;改进建议。 【分类号】:U266.2;U269 1.问题的提出 动车组牵引电机作为动车组十大关键技术之一,它性能的好坏直接影响到动车组可靠运行。为维持牵引电机正常工作,检修部门不得不采取临修、专项修和定期检修等方法来维护牵引电机正常功能,但实际上牵引电机故障仍屡屡出现,运行维护成本很高。 CRH2型动车组牵引电机采用鼠笼式、三相交流异步电机,由定子、转子、轴承、通风系统及速度传感器等部件组成。同直流电动机相比,具有功率大、体积小、质量轻、结构简单、便于维护的特点。随着牵引电机绕组绝缘质量的提高及浸漆工艺的改进,绕组故障的发生逐渐减少,然而随着动车组牵引电机的高速化,牵引电机轴承故障和速度传感器故障越来越突出,两者的使用状态直接影响牵引电机使用性能,涉及到动车组运行安全。本文主要从牵引电机轴承和速度传感器常见故障现象进行分析。 2.CRH2型动车组牵引电机轴承常见故障及分析 CRH2型动车组牵引电机轴承一般采用日本NSK轴承,在运行及检修中常见故障现象有 以下两种:(1)轴承异音(2)轴承过热 根据2010年至2013年牵引电机检修期间处理的入厂鉴定和返工故障类型统计,其中轴承类故障分布大致见下表1。 2.1轴承异音故障现象及分析 在牵引电机综合试验和手动转动电机轴时,发现牵引电机轴承异音主要有以下三种故障现象: (1)轴承发出干磨声,且声音中含有与转速无关、不规则金属声音。

动车组牵引传动系统CRH380B(L)

CRH380B动车组牵引传动系统 本章主要介绍动车组牵引传动系统工作原理及主要组成部件牵引变压器、变流器、牵引电机及限压电阻等电气设备结构、性能特点。 第一节动车组牵引传动方式 CRH380B动车组整列为一个高压单元,由两个对称的牵引单元组成(每四辆车为一个牵引单元),牵引单元间由车顶高压线缆连接。CRH380BL动车组由两个独立的高压单元组成(前、后八辆分别为一个高压单元),每个高压单元由两个对称的牵引单元组成(每四辆车为一个牵引单元),牵引单元间由车顶高压线缆连接。如图4-1所示 图4-1 CRH380BL动车组高压单元 CRH380B和CRH380BL动车组高压供电系统组成、工作原理基本相同:接触网高压电经受电弓进入动车组,经主断路器(MCB)等高压部件,一路直接进入本牵引单元、另一路经隔离开关(RLDS)、车顶高压电缆进入另一牵引单元。 CRH380B动车组牵引传动系统采用4动4拖的动力配置,01、03、06、08车为动车,02、04、05、07车为拖车,全列由2个牵引单元组成,每个牵引单元由1台变压器、两台变流器和2个动车的8台牵引电机组成,全车共计16台牵引电动机;CRH380BL动车组牵引传动系统采用8动8拖的动力配置,01、03、06、08、09、11、14、16车为动车,02、04、05、07、10、12、13、15车为拖车,全列由四个牵引单元组成,每个牵引单元由一台变压器、两台变流器和2个动车的8台牵引电机组成,全车共计32台牵引电动机。

第二节牵引系统构成及工作原理 一、原理及基本组成 CRH380B动车组整列为一个高压单元,由两个对称的牵引单元组成(每四辆车为一个牵引单元,如图4-2),牵引单元间由车顶高压线缆连接。 CRH380BL动车组由两个独立的高压单元组成(前、后八辆分别为一个高压单元),每个高压单元由两个对称的牵引单元组成(每四辆车为一个牵引单元),牵引单元间由车顶高压线缆连接。 图4-2 牵引单元 CRH380B(L)动车组高压供电系统组成、工作原理基本相同。接触网高压电经受电弓进入动车组,经主断路器(MCB)等高压部件,一路直接进入本牵引单元,接连接到牵引变压器的原边绕组,另一路经隔离开关(RLDS)、车顶高压电缆进入另一牵引单元。 牵引单元主要由主变压器、牵引变流器和牵引电机等组成。动车组高压设备安装在变压器车02、07、10(CRH380BL)、15(CRH380BL)车顶上,每个变压器车安装1架受电弓,正常运行时,每个高压单元仅升起1架受电弓,另一架受电弓备用,处于折叠状态。本高压单元高压部件或牵引单元发生故障时,可将故障受电弓或牵引单元隔离,不影响另一个动力单

CRH2型动车组牵引传动系统

第六章 CRH2 型动车组牵引传动系统 第一节概述 一、CRH2 牵引传动系统基本组成 CRH2 动车组牵引传动系统主要由受电弓(包括高压电器设备)、牵引变压器、四象限变流器、牵引逆变器和牵引电机组成。1.高压电器设备高压电器主要作用是完成从接触网到牵引变压器的供电。主要包括:受电弓、主断路器、避雷器、电流互感器、接地保护开关等。 CRH2 动车组采用 DSA250 型受电弓。该受电弓为单臂型结构,额定电压/电流为 25kV/1000A,接触压力 70±5N,弓头宽度约 1950mm,具有自动降弓功能,适应接触网高度为 5300~6500mm,列车运行速度 250km/h。 CRH2 动车组采用 CB201C-G3 型主断路器。主断路器为真空型,额定开断容量为 100MVA,额定电流 AC200A,额定断路电流 3400A,额定开断时间小于 0.06s,采用电磁控制空气操作。 CRH2 动车组采用 LA204 或 LA205 型避雷器。额定电压为 AC42kV (RMS),动作电压为 AC57kV 以下(V1mA,DC),限制电压为107kV。由氧化锌(ZnO)为主的金属氧化物组成,是非线性高电阻体的无间隙避雷器。 CRH2 动车组采用 TH-2 型高压电流互感器。变流比为 200/5A,用于检测牵引变压器原边电流值。CRH2 动车组 SH2052C 型接地保护开关。额定瞬时电流为 6000A(15 周),电磁控制空气操作,具有安全连锁。 2.牵引变压器 CRH2 动车组采用的是 TM210 型牵引变压器,

一个基本动力单元 1 个,全列共计 2 个。采用壳式结构、车体下吊挂、油循环强迫风冷方式。具有 1 个原边绕组 (25kV,3060kVA)、 2 个牵引绕组(1500V,2×1285kVA),一个辅助绕组(400V,490kVA)。 3.牵引变流器 CRH2 动车组采用的是 CI11 型牵引变流器,一个基本动力单元 2 个,全列共计 4 个。采用车下吊挂、液体沸腾冷却方式。主电路结构为电压型 3 电平式,由脉冲整流器、中间直流电路、逆变器构成,不设 2 次谐振滤波装置和网侧谐波滤波器,采用 PWM 方式控制。中间直流电压为 2600V~3000V(随起牵引电机输出功率进行调整)。1 个牵引变流器采用矢量控制原理控制 4 台并联的牵引电机。 4.牵引电机 CRH2 动车组采用的是 MT205 型牵引电机,每节动力车 4 个(并联),一个基本动力单元 8 个,全列共计 16 个。牵引电机为 4 极三相鼠笼式异步电机,采用架悬、强迫风冷方式,通过弹性齿型联轴节连接传动齿轮。 、CRH2 牵引传动系统工作原理 CRH2 动车组采用交流传动系统,主要由受电弓(包括高压电器设备)、牵引变压器、四象限变流器、中间环节、牵引逆变器、牵引电机、齿轮传动系统等组成。动车组受电弓从接触网获得AC25000/50Hz 电源,为了满足动车组牵引特性的要求,牵引电机需要电压频率均可调节的三相交流电源。 CRH2 动车组牵引传动系统组成原理如图 6-1 所示。受电弓将接触网的 AC25kV

CRH5动车组牵引传动系统

第四章 动车组牵引传动系统 将司机发出的牵引指令按要求将电能转化为机械能,确保动车组实现动车组高速稳定的运行。这就需要牵引传动系统要有高度的可靠性和高效的转化能力。本章主要介绍CRH5型动车组牵引系统及辅助供电工作原理和功能。 第一节 动车组牵引传动方式 一、交流传动系统的基本组成 CRH5型动车组牵引系统使用交直交传动方式,主要由受电弓、主断路器、牵引变压器、牵引变流器及牵引电机组成。受电弓通过电网接入25kV 的高压交流电,输送给牵引变压器,降压成1770V 的交流电。降压后的交流电再输入牵引变流器,逆变成电压和频率均可控制的三相交流电,输送给牵引电机牵引整个列车。 二、交流传动工作原理及技术特点 牵引传动系统工作原理示意图如4-1所示: 图4-1 牵引传动系统工作原理示意图 CRH5型动车组牵引系统主变压器使用油冷方式。异步牵引电机的功率为550kW ,采用体悬方式,由万向轴传递牵引力。动车组有两个相对独立的主牵引系统,每个牵引单元配备一个完整的集电、牵引及辅助系统,以实现所需的牵引和辅助电路冗余,其中一个单元由3辆动车加1辆拖车构成(M-M-T-M ),另一个单元由2辆动车加2辆拖车构成(T-T-M-M )。见图4-2。 图4-2 牵引传动系统设备布置示意图 (一)每个动力单元带有一个主变压器和受电弓。在正常运行中,每列车只启用1个受 变压器 变流器 牵引电机 接触网 受电弓 高压电缆

电弓。每个牵引动力单元的牵引设备都由下列设备组成: 1.一个高压单元,带受电弓和保护装置; 2.一个主变压器; 3.两套或三套IGBT水冷技术的主牵引套件; 4.四台或六台异步牵引电机,底架悬挂,最大设计负载550kW(轮缘处功率)。由于每台电机是由一个独立的牵引逆变器驱动的,在同一车辆内轮对间轮径差最大为15mm的情况下,无需减小负载。每节动车装有两台牵引电机。 正常情况下,两个牵引系统均工作,当一个牵引系统发生故障时,可以自动切断故障源,继续运行。 (二)图4-3为第一牵引单元原理示意图,4-4为第二牵引单元原理示意图,第二牵引单元与第一牵引单元及其相似,唯一的区别是仅配备一个辅助变流器(在正常运行条件下,对于整列车来说仅需要两个辅助变流器,第三个仅作备用,随时替换出现故障的辅助变流器)。 图4-3 第一动力牵引系统电路示意图

CRH2型动车组牵引电机速度传感器故障的分析示范文本

CRH2型动车组牵引电机速度传感器故障的分析示 范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

CRH2型动车组牵引电机速度传感器故 障的分析示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 动车组高级检修中的牵引电机传感器故障往往时在动 态调试时才发现,如果发现和处理不当,会对动车组正常 修竣造成较大影响。本文通过对上海动车检修基地试修以 来的牵引电机速度传感器四起故障的分析,提出该类故障 的处理方法及质量卡控措施。 故障概况 自20xx年上海高级修基地试修以来,目前已完成100 多组(标准列)CRH2型动车组的三级检修。其中牵引电机 传感器故障共四起,由于该类故障属于动态故障,静态试 验时无法发现,须动态试验中才会出现且对动车组时速有 一定要求(大于10km/h)。一旦发生此类故障动态调试大

部分试验都将无法进行,直接影响正常的修竣交验及车辆安全。因此梳理出此类故障的现象、原因,并提出针对性的故障处理方案和预防措施就十分必要了。 原因查找及分析 2.1.故障情况 自试修以来,共发生四起,下面对四起故障情况做简要介绍。 2.1.1. 20xx年9月在对2095C做三级检修通电前测量时,发现06车01轴8~3针(线号481B~481)约为0Ω(参考值40±10KΩ)。拆下01轴SS速度传感器后测量3~4针发现阻值为0Ω,其余针间阻值良好。更换该速度传感器后,重新测量BCU处电气插头针间电阻,阻值良好,已达标,故障消除。 2.1.2. 20xx年1月在对6021AL进行动调试验过程中,当动车组第一次牵引至12km时监视器报警05车“抱

相关文档
相关文档 最新文档