文档库 最新最全的文档下载
当前位置:文档库 › 高等数学知识点总结 (1)

高等数学知识点总结 (1)

高等数学知识点总结 (1)
高等数学知识点总结 (1)

高等数学(下)知识点

主要公式总结

第八章 空间解析几何与向量代数 1、

二次曲面

1)

椭圆锥面:2

2

222z b y a x =+ 2)

椭球面:122

222

2=++c

z b y a x 旋转椭球面:1222222=++c z a y a x 3)

单叶双曲面:122

222

2=-+c

z b y a x 双叶双曲面:1222222=--c z b y a x 4)

椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b

y a x =-22

22 5)

椭圆柱面:1222

2=+b y a x 双曲柱面:122

22=-b

y a x

6)

抛物柱面:

ay x =2 (二) 平面及其方程 1、

点法式方程:

0)()()(000=-+-+-z z C y y B x x A

法向量:),,(C B A n =ρ

,过点),,(000z y x

2、

一般式方程:

0=+++D Cz By Ax

截距式方程:

1=++c

z

b y a x 3、

两平面的夹角:),,(1111C B A n =ρ,),,(2222C B A n =ρ,

?∏⊥∏21 0212121=++C C B B A A ;?∏∏21//

2

1

2121C C B B A A ==

4、

),,(0000z y x P 到平面0=+++D Cz By Ax 的距离:

(三) 空间直线及其方程 1、

一般式方程:?????=+++=+++0

022221111D z C y B x A D z C y B x A

2、

对称式(点向式)方程:

p

z z n y y m x x 0

00-=-=-

3、

两直线的夹角:),,(1111

p n m s =ρ

,),,(2222p n m s =ρ

?⊥21L L 0212121=++p p n n m m ;?21//L L

2

1

2121p p n n m m ==

4、

直线与平面的夹角:直线与它在平面上的投影的夹角,

?∏//L 0=++Cp Bn Am ;?∏⊥L p

C n

B m

A ==

第九章 多元函数微分法及其应用 1、 连续:

),(),(lim

00)

,(),(00y x f y x f y x y x =→

2、

偏导数:

x

y x f y x x f y x f x x ?-?+=→?), (), (lim

),(00000

00 ;y y x f y y x f y x f y y ?-?+=→?)

,(),(lim ),(0000000

3、

方向导数:

βαcos cos y

f

x f l f ??+??=??其中

β

α,为

l

的方向角。

4、

梯度:),(y x f z =,则j y x f i y x f y x gradf y x ρ

ρ),(),(),(000000+=。

5、

全微分:设),(y x f z =,则d d d z z z x y x y

??=

+?? (一) 性质 1、

函数可微,偏导连续,偏导存在,函数连续等概念之间的关系:

2、 微分法

1) 复合函数求导:链式法则

(,),(,),(,)z f u v u u x y v v x y ===,则

z z u z v x u x v x ?????=?+??????,z z u z v

y u y v y

?????=?+??????

充分条件

1)

求函数),(y x f z =的极值 解方程组 ?????==0

y x f f 求出所有驻点,对于每一个驻点),(00y x ,令

),(00y x f A xx =,),(00y x f B xy =,),(00y x f C yy =,

① 若02>-B AC ,0>A ,函数有极小值, 若02>-B AC ,0

② 若02<-B AC ,函数没有极值; ③ 若02=-B AC ,不定。

2、 几何应用

1)

曲线的切线与法平面

曲线????

???===Γ)

()()

(:t z z t y y t x x ,则Γ上一点),,(000z y x M (对应参数为0t )处的

切线方程为:

)

()()(00

0000t z z z t y y y t x x x '-='-='-

法平面方程为:0))(())(())((000000=-'+-'+-'z z t z y y t y x x t x

2) 曲面的切平面与法线

曲面

0),,(:=∑z y x F ,则∑上一点),,(000z y x M 处的切平面方程为:

法线方程为:

)

,,(),,(),,(0000

00000000z y x F z z z y x F y y z y x F x x z y x -=-=-

第十章 重积分

(一) 二重积分 :几何意义:曲顶柱体的体积

1、 定义:

∑??=→?=n

k k k k

D

f y x f 1

),(lim d ),(σηξσλ

2、 计算: 1)

直角坐标

?

??

???≤≤≤≤=b x a x y x y x D )()(),(21??,

21()

()

(,)d d d (,)d b

x a

x D

f x y x y x f x y y φφ=???

?

?

??

???≤≤≤≤=d y c y x y y x D )()(),(21φφ, 21()()(,)d d d (,)d d y c y D f x y x y y f x y x ??=????

2) 极坐标

?

??

???≤≤≤≤=βθαθρρθρθρ)()(),(21D ,

21()

(

)

(,)d d (cos ,sin )d D

f x y x y d f β

ρθαρθ

θρθρθρρ=????

1、 定义: ∑???

=→Ω

?=n

k k

k k k

v f v z y x f 1

),,(lim

d ),,(ζηξ

λ

2、 计算:

1)

直角坐标

???

???

D

y x z y x z z z y x f y x v z y x f ),()

,(21d ),,(d d d ),,( -------------“先一后二”

??

????

Z

D b

a

y x z y x f z v z y x f d d ),,(d d ),,( -------------“先二后一”

2)

柱面坐标

????

???===z

z y x θρθρsin cos ,

(,,)d (cos ,sin ,)d d d f x y z v f z z ρθρθρρθΩ

Ω

=???

???

3)

球面坐标

(三) 应用 曲面

D y x y x f z S ∈=),(,),(:的面积:

第十一章 曲线积分与曲面积分 (一) 对弧长的曲线积分

1、 定义:0

1

(,)d lim (,)n

i i i L

i f x y s f s λξη→==??∑?

2、

计算:

),(y x f 在曲线弧L 上有定义且连续,L 的参数方程为)(),

(),

(βαψ?≤≤????

?==t t y t x ,其中)(),(t t ψ?在],[βα上具有一阶连续导数,且

0)()(22≠'+'t t ψ?,则

(二) 对坐标的曲线积分 1、

定义:设 L 为

xoy 面内从 A 到

B 的一条有向光滑弧,函数

)

,(y x P ,

),(y x Q 在 L 上有界,定义

∑?

=→?=n

k k

k k L

x P x y x P 1

),(lim d ),(ηξλ,

∑?=→?=n

k k

k k

L

y Q y y x Q 1

),(lim d ),(ηξλ

.

向量形式:??

+=?L

L

y y x Q x y x P r F d ),(d ),(d ρ

2、

计算:

设),(,),

(y x Q y x P 在有向光滑弧L 上有定义且连续, L 的参数方程为

):(),

(),(βαψ?→????

?==t t y t x ,其中)(),(t t ψ?在],[βα上具有一阶连续导数,且0)()(2

2≠'+'t t ψ?,则

设平面有向曲线弧为

?????==)

()( t y t x L ψ?:,L 上点),(y x 处的切向量的方向角为:βα,,

)

()()

(cos 22t t t ψ??α'+''=

,)

()()

(cos 22t t t ψ?ψβ

'+''=

d d (cos cos )d L

L

P x Q y P Q s αβ+=+?

?.

(三) 格林公式 1、

格林公式:设区域 D 是由分段光滑正向曲线 L 围成,函数),(,),(y x Q y x P 在D 上具有连续一阶偏导数,

则有???+=???? ????-??L

D y Q x P y x y P x Q d d d d

2、G 为一个单连通区域,函数),(,),(y x Q y x P 在G 上具有连续一阶偏导数,

y P

x Q ??=?? ?曲线积分 d d L

P x Q y +?

在G 内与路径无关

(四) 对面积的曲面积分 1、 定义:

∑为光滑曲面,函数),,(z y x f 是定义在∑上的一个有界函数,

定义 i i i i n

i S f S z y x f ?=∑??

=→∑

),,(lim d ),,(1

ζηξλ

2、

计算:———“一单二投三代入”

),(:y x z z =∑,xy D y x ∈),(,则

(五) 对坐标的曲面积分 1、 定义:

为有向光滑曲面,函数

)

,,(),,,(),,,(z y x R z y x Q z y x P 是定义在

上的有界函数,定义

1

(,,)d d lim (,,)()n

i i i i xy i R x y z x y R S λξηζ∑

→==?∑??

同理,

1

(,,)d d lim (,,)()n

i i i i yz i P x y z y z P S λξηζ∑

→==?∑??

;0

1

(,,)d d lim (,,)()n

i i i i zx i Q x y z z x R S λξηζ∑

→==?∑??

2、 性质:

1)21∑+∑=∑,则

计算:——“一投二代三定号”

)

,(:y x z z =∑,

xy

D y x ∈),(,

)

,(y x z z =在

xy

D 上具有一阶连续偏导数,

)

,,(z y x R 在

上连续,则

(,,)d d [,,(,)]d d x y

D R x y z x y R x y z x y x y ∑

=±??

??

,∑为上侧取“ + ”

, ∑为下侧取“ - ”.

其中γβα,,为有向曲面∑在点),,(z y x 处的法向量的方向角。

(六) 高斯公式 1、 高斯公式:设空间闭区域Ω由分片光滑的闭曲面∑所围成, ∑的方向取外侧, 函数,,

P Q R 在Ω上有连续的一阶偏导数,

则有 或

()?????∑

Ω++=???? ????+??+??S R Q P z y x z R y Q x P d cos cos cos d d d γβα

2、

通量与散度

通量:向量场),,(R Q P A =ρ

通过曲面∑指定侧的通量为:??∑

++=Φy x R x z Q z y P d d d d d d

散度:z

R y Q x P A div ??+

??+??=ρ (七) 斯托克斯公式 1、

斯托克斯公式:设光滑曲面 ? 的边界 ?是分段光滑曲线, ? 的侧与 ? 的正向符合右手法则,

),,(),,,(),,,(z y x R z y x Q z y x P 在包含? 在内的一个空间域内具有连续一阶偏导数, 则有

为便于记忆, 斯托克斯公式还可写作: 2、

环流量与旋度

环流量:向量场),,(R Q P A =ρ

沿着有向闭曲线?的环流量为?Γ

++z R y Q x P d d d

旋度:???

?

????-????-????-??=y P x Q x R z P z Q y R A rot , , ρ 第十二章 无穷级数 (一) 常数项级数 1、

定义:

1)无穷级数:

Λ

Λ+++++=∑∞

=n n n

u u u u u

3211

部分和:n n

k k n

u u u u u S ++++==∑=Λ3211

正项级数:

∑∞

=1

n n

u

,0≥n

u

交错级数:

∑∞

=-1

)

1(n n n

u ,0≥n u

2)级数收敛:若S

S n

n =∞

→lim 存在,则称级数

∑∞

=1

n n

u

收敛,否则称级数

∑∞

=1

n n

u

发散

3)条件收敛:

∑∞

=1n n

u

收敛,而

∑∞

=1

n n

u

发散;

2、 性质:

1)

改变有限项不影响级数的收敛性;

2) 级数

∑∞=1

n n a ,∑∞

=1

n n

b

收敛,则

∑∞

=±1

)(n n n

b a

收敛;

3) 级数

∑∞

=1

n n

a

收敛,则任意加括号后仍然收敛;

4) 必要条件:级数∑∞

=1

n n

u

收敛

?0lim =∞

→n n u .(注意:不是充分条件!) 3、

审敛法

正项级数:∑∞

=1

n n

u

,0≥n

u

1)

定义:S

S n

n =∞

→lim 存在;

2)

∑∞

=1

n n

u

收敛

?{}n

S 有界;

3) 比较审敛法:

∑∞

=1

n n

u

∑∞

=1

n n

v

为正项级数,且),3,2,1( Λ=≤n v u n n

∑∞

=1n n

v

收敛,则

∑∞

=1

n n

u

收敛;若

∑∞

=1

n n

u

发散,则

∑∞

=1

n n

v

发散.

4)

比较法的推论:∑∞

=1n n

u ,∑∞

=1n n v 为正项级数,若存在正整数m ,当m n >时,n n kv u ≤,而∑∞

=1

n n

v

收敛,则

∑∞

=1

n n

u

敛;若存在正整数

m ,当m n >时,n n kv u ≥,而∑∞=1

n n v 发散,则∑∞

=1

n n u 发散.

5)

比较法的极限形式:∑∞

=1n n u ,∑∞

=1n n v 为正项级数,若)0( lim +∞<≤=∞→l l v u n

n

n ,而∑∞=1n n v 收敛,则

∑∞

=1

n n

u

收敛;若

0lim >∞→n

n

n v u 或+∞=∞→n n n v u lim ,而∑∞=1n n v 发散,则

∑∞

=1

n n

u

发散.

6)

比值法:∑∞

=1n n u 为正项级数,设l u u n

n n =+∞→1

lim ,则当1l 时,级数∑∞

=1

n n u 发散;当1

=l 时,级数

∑∞

=1

n n

u

可能收敛也可能发散.

7) 根值法:

∑∞

=1

n n

u

为正项级数,设l u n

n n =∞

→lim

,则当1

=1

n n u 收敛;则当1>l 时,级数∑∞

=1

n n u 发散;当1

=l 时,级数

可能收敛也可能发散.

8) 极限审敛法:

∑∞

=1

n n

u

为正项级数,若

0lim >?∞

→n n u n 或+∞=?∞

→n n u n lim ,则级数∑∞

=1

n n u 发散;若存在1>p ,使得

)0( lim +∞<≤=?∞

→l l u n n p

n ,则级数∑∞

=1

n n u 收敛.

交错级数:

莱布尼茨审敛法:交错级数:∑∞

=-1

)1(n n n u ,0≥n

u 满足:),3,2,1( 1Λ=≤+n u u n n ,且0lim =∞

→n n u ,则级数∑∞

=-1

)1(n n n u 收敛。

任意项级数:

∑∞

=1

n n

u

绝对收敛,则

∑∞

=1

n n

u

收敛。

常见典型级数:几何级数:

?????≥<∑∞

=1 1 0q q aq n n

发散,

收敛, ; p -级数:?????≤>∑

∞=1p 1 11发散,收敛,p n n p (二) 函数项级数 1、

定义:函数项级数

∑∞

=1

)(n n

x u

,收敛域,收敛半径,和函数;

2、 幂级数:

∑∞

=0

n n

n x

a

3、

收敛半径的求法:ρ=+∞→n

n n a a 1

lim

,则收敛半径 ???

?

?????=∞++∞=+∞<<=0 , ,00 ,1

ρρρρR 4、 泰勒级数

展开步骤:(直接展开法) 1) 求出Λ

,3,2,1 ),()(=n x f n ; 2)

求出

Λ

,2,1,0 ),(0)(=n x f n ;

3) 写出

n n n x x n x f )(!

)

(00

0)(-∑

=; 4)

验证0)(!

)1()(lim )(lim 10)1(=-+=++∞→∞→n n n n n x x n f x R ξ是否成立。

间接展开法:(利用已知函数的展开式) 1)),( ,!

10+∞-∞∈=

∑∞

=x x n e n n

x ; 2)),( ,!

)12(1

)1(sin 0

121

+∞-∞∈+-=∑∞

=++x x n x

n n n ;

3)),( ,)!

2(1)1(cos 0

21

+∞-∞∈-=∑∞

=+x x n x

n n

n ;

4)

)1 ,1( ,11

-∈=-∑∞

=x x x n n ; 5))1 ,1( ,)1(110

-∈-=+∑∞

=x x x n n n 6)]1 ,1( ,1)1()1ln(0

1

-∈+-=+∑∞

=+x x n x n n n

7)

)1 ,1( ,)1(11

22

-∈-=+∑∞

=x x x n n n 8))1 ,1( ,!)1()1(1)1(1

-∈+--+=+∑

=x x n n m m m x n n

m

Λ

5、 傅里叶级数 1)

定义:

正交系:

Λ

Λnx nx x x x x cos ,sin ,,2cos ,2sin ,cos ,sin ,1函数系中任何不同的两个函数的乘积在区间] ,[ππ-上积分为

零。

傅里叶级数:

)sin cos (2)(1

0nx b nx a a x f n n n ++=∑∞

=

系数:???

???

?====??--),3,2,1(d sin )(1)

,2,1,0(d cos )(1ΛΛn x nx x f b n x nx x f a n n ππππππ

2)

收敛定理:(展开定理)

设 f (x ) 是周期为2?的周期函数,并满足狄利克雷( Dirichlet )条件: 1) 在一个周期内连续或只有有限个第一类间断点; 2) 在一个周期内只有有限个极值点, 则 f (x ) 的傅里叶级数收敛 , 且有 3)

傅里叶展开:

①求出系数:???

???

?

====??--),3,2,1(d sin )(1)

,2,1,0(d cos )(1ΛΛn x nx x f b n x nx x f a n n ππππππ;

②写出傅里叶级数

)sin cos (2)(1

0nx b nx a a x f n n n ++=∑∞

=;

③根据收敛定理判定收敛性。

高等数学知识点总结 (1)

高等数学(下)知识点 主要公式总结 第八章 空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111C B A n =ρ,),,(2222C B A n =ρ, ?∏⊥∏21 0212121=++C C B B A A ;?∏∏21// 2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: (三) 空间直线及其方程 1、 一般式方程:?????=+++=+++0 022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程: p z z n y y m x x 0 00-=-=-

同济六版高等数学(下)知识点整理

第八章 1、向量在轴上的投影: 性质:?cos )(a a u =(即Prj u ?cos a a =),其中?为向量a 与u 轴的夹角; u u u b a b a )()()( +=+(即Prj u =+)(b a Prj u a + Prj u b ); u u a a )()( λλ=(即Prj u λλ=)(a Prj u a ). 2、两个向量的向量积:设k a j a i a a z y x ++=,k b j b i b b z y x ++=,则 =?b a x x b a i y y b a j z z b a k =1 1) 1(+-y y b a z z b a i +21)1(+-x x b a z z b a j +3 1) 1(+- x x b a y y b a k =k b a b a j b a b a i b a b a x y y x z x x z y z z y )()()(-+-+- 注:a b b a ?-=? 3、二次曲面 (1) 椭圆锥面:222 22z b y a x =+; (2) 椭圆抛物面:z b y a x =+22 22; (旋转抛物面:z a y x =+2 22(把把xOz 面上的抛物线z a x =22 绕z 轴旋转)) (3) 椭球面:1222222=++c z b y a x ; (旋转椭球面:122 2 22=++c z a y x (把xOz 面上的椭圆122 22=+c z a x 绕z 轴旋转)) (4) 单叶双曲面:1222222=-+c z b y a x ; (旋转单叶双曲面:122 222=-+c z a y x (把 xOz 面上的双曲线122 22=-c z a x 绕z 轴旋转))

高数部分知识点总结

高数部分知识点总结 1 高数部分 1.1 高数第一章《函数、极限、连续》 求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法 0,,0,0,1则,对于型和型的题目直接用洛必达法则,对于、、型0, 0,的题目则是先转化为型或型,再使用洛比达法则;3.利用重要极0, 1xx1x,1(1,x),e限,包括、、;4.夹逼定理。 (1,),exlimlimlimsinxxx,0,0x,, 1.2 高数第二章《导数与微分》、第三章《不定积分》、第四 章《定积分》 第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。 对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。在此只提醒一点:不定积分f(x)dx,F(x),C中的积分常数C 容易被忽略,而考试时如果在答, 案中少写这个C会失一分。所以可以这样建立起二者之间的联系以加 f(x)dx深印象:定积分的结果可以写为F(x)+1,1指的就是那一分,, f(x)dx,F(x),C把它折弯后就是中的那个C,漏掉了C也就漏掉了, 这1分。

第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下 a f(x)dx限上做文章:对于型定积分,若f(x)是奇函数则有,,a aaa f(x)dxf(x)dxf(x)dx=0;若f(x)为偶函数则有=2;对于,,,,a,a0 ,,2t,,xf(x)dx型积分,f(x)一般含三角函数,此时用的代换是常,02 用方法。所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利 aaa 奇函数,0偶函数,2偶函数用性质、。在处理完积分上下,,,,a,a0 限的问题后就使用第三章不定积分的套路化方法求解。这种思路对于证明定积分等式的题目也同样有效。 1.3 高数第五章《中值定理的证明技巧》 由本章《中值定理的证明技巧》讨论一下证明题的应对方法。用 E、(AB)C、以下这组逻辑公式来作模型:假如有逻辑推导公式A:,, DE)F,由这样一组逻辑关系可以构造出若干难易程度不等的(C::, 证明题,其中一个可以是这样的:条件给出A、B、D,求证F成立。 为了证明F成立可以从条件、结论两个方向入手,我们把从条件入手证明称之为正方向,把从结论入手证明称之为反方向。正方向入手时可能遇到的问题有以下几类:1.已知的逻辑推导公式太多,难以 E就从中找出有用的一个。如对于证明F成立必备逻辑公式中的A,可能有AH、A(IK)、(AB) M等等公式同时存在,有的逻辑::,,,

高数知识点总结

高数重点知识总结 1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。 3、无穷小:高阶+低阶=低阶 例如:1lim lim 020==+→→x x x x x x x 4、两个重要极限:()e x e x x x x x x x x =?? ? ??+=+=∞ →→→11lim 1lim )2(1 sin lim )1(1 0 经验公式:当∞→→→)(,0)(,0x g x f x x ,[] ) ()(lim ) (0 )(1lim x g x f x g x x x x e x f →=+→ 例如:()33lim 10 031lim -? ? ? ? ?-→==-→e e x x x x x x 5、可导必定连续,连续未必可导。例如:||x y =连续但不可导。 6、导数的定义:()00 00 ') ()(lim ) (') ()(lim x f x x x f x f x f x x f x x f x x x =--=?-?+→→? 7、复合函数求导: [][])(')(')(x g x g f dx x g df ?= 例如:x x x x x x x y x x y ++=++ = +=2412221 1', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx 例如:y x dx dy ydy xdx y x y yy x y x - =?+- =?=+=+22,),2('0'22,),1(1 22左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若?? ?==) ()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[] ) (')('/)('/)/(/22 t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f ??=-?+ 例如:计算 ?31sin

大一高数知识点总结

大一高数知识点总结 &初等函数 一、函数的概念 1、函数的定义 函数是从量的角度对运动变化的抽象表述,是一种刻画运动变化中变化量相依关系的数学模型。 设有两个变量x与y,如果对于变量x在实数集合D内的每一个值,变量y按照一定的法则都有唯一的值与之对应,那么就称x是自变量,y是x的函数,记作y=f,其中自变量x取值的集合D叫函数的定义域,函数值的集合叫做函数的值域。 2、函数的表示方法解析法 即用解析式表示函数。如y=2x+1, y=︱x︱,y=lg,y=sin3x等。便于对函数进行精确地计算和深入分析。列表法 即用表格形式给出两个变量之间函数关系的方法。便于差的某一处的函数值。图像法 即用图像来表示函数关系的方法 非常形象直观,能从图像上看出函数的某些特性。 分段函数——即当自变量取不同值时,函数的表达式不一样,如 1??2x?1, x?0?xsin, f?x???y??x

?2x?1,x?0???0 x?0 x?0 隐函数——相对于显函数而言的一种函数形式。所谓显函数,即直接用含自变量的式子表示的函数,如y=x2+2x+3,这是常见的函数形式。而隐函数是指变量x、y之间的函数关系式是由一个含x,y的方程F=0给出的,如2x+y-3=0,e 可得y=3-2x,即该隐函数可化为显函数。 参数式函数——若变量x,y之间的函数关系是通过参数式方程? x?y 而由2x+y-3=0?x?y?0等。 ?x???t?, ?t?T?给出的,??y??t? 这样的函数称为由参数方程确定的函数,简称参数式方程,t称为参数。 反函数——如果在已给的函数y=f中,把y看作自变量,x也是y的函数,则所确定的函数x=∮叫做y=f的反函数,记作x=fˉ1或y= fˉ1. 二、函数常见的性质 1、单调性 2、奇偶性=f;奇:关于y轴对称,f=-f.) 3、周期性

高一数学知识点归纳

集合与函数概念 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。 (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。 (4)集合元素的三个特性使集合本身具有了确定性和整体性。 3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} 2.集合的表示方法:列举法与描述法。 注意啊:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作aA 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{xR| x-3>2}或{x| x-3>2} 4、集合的分类: 1.有限集含有有限个元素的集合 2.无限集含有无限个元素的集合 3.空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A 2.“相等”关系(5≥5,且5≤5,则5=5) 实例:设A={x|x2-1=0} B={-1,1} “元素相同” 结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B 的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

同济六版高等数学(下)知识点整理

第八章 1、 向量在轴上的投影: 性质:?cos )(a a u =(即Prj u ?cos a a =),其中?为向量a 与u 轴的夹角; u u u b a b a )()()( +=+(即Prj u =+)(b a Prj u a + Prj u b ); u u a a )()( λλ=(即Prj u λλ=)(a Prj u a ). 2、 两个向量的向量积:设k a j a i a a z y x ++=,k b j b i b b z y x ++=,则 =?b a x x b a i y y b a j z z b a k =1 1) 1(+-y y b a z z b a i +21)1(+-x x b a z z b a j +3 1)1(+- x x b a y y b a k ) =k b a b a j b a b a i b a b a x y y x z x x z y z z y )()()(-+-+- 注:a b b a ?-=? 3、 二次曲面 (1) 椭圆锥面:222 22z b y a x =+; (2) 椭圆抛物面:z b y a x =+2222; (旋转抛物面: z a y x =+2 2 2(把把xOz 面上的抛物线z a x =22 绕z 轴旋转)) (3) 椭球面:1222222=++c z b y a x ; (旋转椭球面: 122 222=++c z a y x (把xOz 面上的椭圆122 22=+c z a x 绕z 轴旋转)) (4) 单叶双曲面:1222222=-+c z b y a x ; (旋转单叶双曲面:122 222=-+c z a y x (把 xOz 面上的双曲线122 22=-c z a x 绕z 轴旋转) )

大学高数全册知识点整理

大学高等数学知识点整理 公式,用法合集 极限与连续 一 . 数列函数 : 1. 类型 : (1) 数列 : * ; * (2) 初等函数 : (3) 分段函数 : * ; * ;* (4) 复合 ( 含) 函数 : (5) 隐式 ( 方程 ): (6) 参式 ( 数一 , 二 ): (7) 变限积分函数 : (8) 级数和函数 ( 数一 , 三 ): 2. 特征 ( 几何 ): (1) 单调性与有界性 ( 判别 ); ( 单调定号 ) (2) 奇偶性与周期性 ( 应用 ). 3. 反函数与直接函数 : 二 . 极限性质 : 1. 类型 : * ; * ( 含); * ( 含) 2. 无穷小与无穷大 ( 注 : 无穷量 ):

3. 未定型 : 4. 性质 : * 有界性 , * 保号性 , * 归并性 三 . 常用结论 : , , , , , , , , 四 . 必备公式 : 1. 等价无穷小 : 当时 , ; ; ; ; ; ; ; 2. 泰勒公式 : (1) ; (2) ; (3) ; (4) ; (5) . 五 . 常规方法 :

前提 : (1) 准确判断( 其它如 : ); (2) 变量代换( 如 : ) 1. 抓大弃小, 2. 无穷小与有界量乘积 ( ) ( 注 : ) 3. 处理 ( 其它如 : ) 4. 左右极限 ( 包括): (1) ; (2) ; ; (3) 分段函数 : , , 5. 无穷小等价替换 ( 因式中的无穷小 )( 注 : 非零因子 ) 6. 洛必达法则 (1) 先” 处理”, 后法则 ( 最后方法 ); ( 注意对比 : 与) (2) 幂指型处理 : ( 如 : ) (3) 含变限积分 ; (4) 不能用与不便用 7. 泰勒公式 ( 皮亚诺余项 ): 处理和式中的无穷小 8. 极限函数 : ( 分段函数 ) 六 . 非常手段 1. 收敛准则 : (1) (2) 双边夹 : * , * (3) 单边挤 : * * * 2. 导数定义 ( 洛必达 ?):

大一高数上复习重点

大一高数上复习重点 Prepared on 24 November 2020

高数高数重点 本章公式: 两个重要极限: 常用的8个等价无穷小公式:当x→0时, sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~1/2*(x^2) (e^x)-1~x ln(1+x)~x [(1+x)^1/n]-1~(1/n)*x 二.导数与微分 熟悉函数的可导性与连续性的关系求高阶导数会运用两边同取对数隐函数的显化会求由参数方程确定的函数的导数

三.微分中值定理与导数的应用:

洛必达法则: 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ① 在着手求极限以前,首先要检查是否满足或型,否则滥用洛必达法则会出错.当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限 . ② 洛必达法则可连续多次使用,直到求出极限为止. ③ 洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 曲线的凹凸性与拐点: 注意:首先看定义域然后判断函数的单调区间 求极值和最值 利用公式判断在指定区间内的凹凸性或者用函数的二阶导数判断(注意二阶导数的符号) 四.不定积分:(要求:将例题重新做一遍) 对原函数的理解 原函数与不定积分 1 基本积分表基本积分表(共24个基本积分公式) 不定积分的性质

2 第一类换元法(凑微分法) 2 第二类换元法(三角代换无理代换倒代换) 3 分部积分法 f(x)中含有 可考虑用代换

高中数学:选修1-1知识点总结

高中数学:选修1-1知识点总结 第一章简单逻辑用语 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句. 2、“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论. 3、原命题:“若p,则q”逆命题:“若q,则p” 否命题:“若p?,则q?”逆否命题:“若q?,则p?” 4、四种命题的真假性之间的关系: (1)两个命题互为逆否命题,它们有相同的真假性; (2)两个命题为互逆命题或互否命题,它们的真假性没有关系. ?,则p是q的充分条件,q是p的必要条件. 5、若p q ?,则p是q的充要条件(充分必要条件). 若p q A?,则A是B的充分条件或B是A的必要条件; 利用集合间的包含关系:例如:若B 若A=B,则A是B的充要条件; 6、逻辑联结词:⑴且(and) :命题形式p q ∨; ∧;⑵或(or):命题形式p q ⑶非(not):命题形式p?. 7、⑴全称量词——“所有的”、“任意一个”等,用“?”表示; 全称命题p:)( M x? p ∈ ?。 M ,x p x∈ ?;全称命题p的否定?p:)( ,x

⑵存在量词——“存在一个”、“至少有一个”等,用“?”表示; 特称命题p :)(,x p M x ∈?; 特称命题p 的否定?p :)(,x p M x ?∈?; 第二章 圆锥曲线 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 2210y x a b a b +=>> 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称 离心率 ()2 2101c b e e a a ==-<<

高等数学(下)知识点总结

主要公式总结 第八章空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111 C B A n =ρ ,),,(2222C B A n =ρ , 22 22 22 21 21 21 2 12121cos C B A C B A C C B B A A ++?++++= θ ?∏⊥∏210212121=++C C B B A A ;? ∏∏21//2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: 2 2 2 000C B A D Cz By Ax d +++++= (三) 空间直线及其方程

(完整版)高数知识点总结(上册)

高数知识点总结(上册) 函数: 绝对值得性质: (1)|a+b|≤|a|+|b| (2)|a -b|≥|a|-|b| (3)|ab|=|a||b| (4)|b a |=)0(||||≠b b a 函数的表示方法: (1)表格法 (2)图示法 (3)公式法(解析法) 函数的几种性质: (1)函数的有界性 (2)函数的单调性 (3)函数的奇偶性 (4)函数的周期性 反函数: 定理:如果函数)(x f y =在区间[a,b]上是单调的,则它的反函数)(1 x f y -=存在,且是单 值、单调的。 基本初等函数: (1)幂函数 (2)指数函数 (3)对数函数 (4)三角函数 (5)反三角函数 复合函数的应用 极限与连续性: 数列的极限: 定义:设 {}n x 是一个数列,a 是一个定数。如果对于任意给定的正数ε(不管它多么小) , 总存在正整数N ,使得对于n>N 的一切n x ,不等式 ε <-a x n 都成立,则称数a 是数列 {}n x 的 极限,或称数列{}n x 收敛于a ,记做a x n n =∞ →lim ,或 a x n →(∞→n ) 收敛数列的有界性: 定理:如果数列 {}n x 收敛,则数列{}n x 一定有界 推论:(1)无界一定发散(2)收敛一定有界 (3)有界命题不一定收敛 函数的极限: 定义及几何定义 函数极限的性质: (1)同号性定理:如果A x f x x =→)(lim 0 ,而且A>0(或A<0),则必存在0x 的某一邻域,当x 在该邻域内(点0 x 可除外),有0)(>x f (或0)(

高中数学必修1-5知识点归纳

必修1数学知识点 第一章、集合与函数概念 §1.1.1、集合 1、 把研究的对象统称为元素,把一些元素组成的总 体叫做集合。集合三要素:确定性、互异性、无序性。 2、 只要构成两个集合的元素是一样的,就称这两个 集合相等。 3、 常见集合:正整数集合:*N 或+N ,整数集合: Z ,有理数集合:Q ,实数集合:R . 4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系 1、 一般地,对于两个集合A 、B ,如果集合A 中任 意一个元素都是集合B 中的元素,则称集合A 是 集合B 的子集。记作B A ?. 2、 如果集合B A ?,但存在元素B x ∈,且A x ?, 则称集合A 是集合B 的真子集.记作:A B. 3、 把不含任何元素的集合叫做空集.记作:?.并规定: 空集合是任何集合的子集. 4、 如果集合A 中含有n 个元素,则集合A 有n 2个子集. §1.1.3、集合间的基本运算 1、 一般地,由所有属于集合A 或集合B 的元素组成 的集合,称为集合A 与B 的并集.记作:B A . 2、 一般地,由属于集合A 且属于集合B 的所有元素 组成的集合,称为A 与B 的交集.记作:B A . 3、全集、补集?{|,}U C A x x U x U =∈?且 §1.2.1、函数的概念 1、 设A 、B 是非空的数集,如果按照某种确定的对应 关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记 作:()A x x f y ∈=,. 2、 一个函数的构成要素为:定义域、对应关系、值 域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法 1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、 注意函数单调性证明的一般格式: 解:设[]b a x x ,,21∈且21x x <,则: ()()21x f x f -=… §1.3.2、奇偶性 1、 一般地,如果对于函数()x f 的定义域内任意一个 x ,都有()()x f x f =-,那么就称函数()x f 为 偶函数.偶函数图象关于y 轴对称. 2、 一般地,如果对于函数()x f 的定义域内任意一个 x ,都有()()x f x f -=-,那么就称函数()x f 为 奇函数.奇函数图象关于原点对称. 第二章、基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算 1、 一般地,如果a x n =,那么x 叫做a 的n 次方根。 其中+∈>N n n ,1. 2、 当n 为奇数时,a a n n =; 当n 为偶数时,a a n n =. 3、 我们规定: ⑴m n m n a a = () 1,,,0* >∈>m N n m a ; ⑵()01 >= -n a a n n ; 4、 运算性质:

小学1—6年级数学知识点归纳

数和数的运算 一、概念 (一)整数 1、整数的意义 自然数和0都是整数。 2、自然数 我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。 3、计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。 每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。 4、数位 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5、数的整除 整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。 如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a 的因数)。倍数和约数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。 个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。 一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。 一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。 一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。 能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。 一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12都是合数。 1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。 每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如把28分解质因数 几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。 公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况: 1和任何自然数互质。 相邻的两个自然数互质。 两个不同的质数互质。 当合数不是质数的倍数时,这个合数和这个质数互质。

《高等数学》-各章知识点总结——第1章

第1章 函数与极限总结 1、极限的概念 (1)数列极限的定义 给定数列{x n },若存在常数a ,对于任意给定的正数ε (不论它多么小), 总存在正整数N , 使得对于n >N 时的一切n , 恒有 |x n-a |<ε 则称a 是数列{x n }的极限, 或者称数列{x n }收敛于a , 记为 a x n n =∞ →lim 或xn →a (n→∞). (2)函数极限的定义 设函数f (x)在点x 0的某一去心邻域内(或当0x M >>)有定义,如果存在常数A , 对于任意给定的正数ε (不论它多么小), 总存在正数δ,(或存在X ) 使得当x满足不等式0<|x -x0|<δ 时,(或当x X >时) 恒有 |f (x)-A |<ε , 那么常数A就叫做函数f (x)当0x x →(或x →∞)时的极限, 记为 A x f x x =→)(lim 0 或f (x )→A (当x →x0).( 或lim ()x f x A →∞ =) 类似的有:如果存在常数A ,对0,0,εδ?>?>当00:x x x x δ-<<(00x x x δ<<-)时,恒有()f x A ε-<,则称A 为()f x 当0x x →时的左极限(或右极限)记作 00 lim ()(lim ())x x x x f x A f x A - +→→==或 显然有0 lim ()lim ()lim ())x x x x x x f x A f x f x A -+→→→=?== 如果存在常数A ,对0,0,X ε?>?>当()x X x X <->或时,恒有()f x A ε-<,则称A 为()f x 当x →-∞(或当x →+∞)时的极限 记作lim ()(lim ())x x f x A f x A →-∞ →+∞ ==或 显然有lim ()lim ()lim ())x x x f x A f x f x A →∞ →-∞ →+∞ =?== 2、极限的性质 (1)唯一性 若a x n n =∞ →lim ,lim n n x b →∞ =,则a b = 若0() lim ()x x x f x A →∞→=0() lim ()x x x f x B →∞→=,则A B = (2)有界性 (i)若a x n n =∞ →lim ,则0M ?>使得对,n N + ?∈恒有n x M ≤

高等数学 各章知识点总结——第9章

一、多元函数的极限与连续 1、n 维空间 2R 为二元数组),(y x 的全体,称为二维空间。3R 为三元数组),,(z y x 的全体,称为三 维空间。 n R 为n 元数组),,,(21n x x x 的全体,称为n 维空间。 n 维空间中两点1212(,,,),(,,,)n n P x x x Q y y y L L 间的距离: ||PQ 邻域: 设0P 是n R 的一个点, 是某一正数, 与点0P 距离小于 的点P 的全体称为点0P 的 邻域,记为),(0 P U ,即00(,){R |||}n U P P PP 空心邻域: 0P 的 邻域去掉中心点0P 就成为0P 的 空心邻域,记为 0(,)U P o =0{0||}P PP 。 内点与边界点:设E 为n 维空间中的点集,n P R 是一个点。如果存在点P 的某个邻域 ),( P U ,使得E P U ),( ,则称点P 为集合E 的内点。 如果点P 的任何邻域内都既有 属于E 的点又有不属于E 的点,则称P 为集合E 的边界点, E 的边界点的全体称为E 的边界. 聚点:设E 为n 维空间中的点集,n P R 是一个点。如果点P 的任何空心邻域内都包含E 中的无穷多个点,则称P 为集合E 的聚点。 开集与闭集: 若点集E 的点都是内点,则称E 是开集。设点集n E R , 如果E 的补集 n E R 是开集,则称E 为闭集。 区域与闭区域:设D 为开集,如果对于D 内任意两点,都可以用D 内的折线(其上的点都属于D )连接起来, 则称开集D 是连通的.连通的开集称为区域或开区域.开区域与其边界的并集称为闭区域. 有界集与无界集: 对于点集E ,若存在0 M ,使得(,)E U O M ,即E 中所有点到原点的距离都不超过M ,则称点集E 为有界集,否则称为无界集. 如果D 是区域而且有界,则称D 为有界区域. 有界闭区域的直径:设D 是n R 中的有界闭区域,则称1212,()max{||}P P D d D PP 为D 的直径。

大一上学期高数复习要点

大一上学期高数复习要点 同志们,马上就要考试了,考虑到这是你们上大学后的第一个春节,为了不影响阖家团圆的气氛,营造以人文本,积极向上,相互理解的师生关系,减轻大家学习负担,以下帮大家梳理本学期知识脉络,抓住复习重点; 1.主要以教材为主,看教材时,先把教材看完一节就做一节的练习,看完一章后,通过看小结对整一章的内容进行总复习。 2.掌握重点的知识,对于没有要求的部分可以少花时间或放弃,重点掌握要求的内容,大胆放弃老师不做要求的内容。 3.复习自然离不开大量的练习,熟悉公式然后才能熟练任用。结合课后习题要清楚每一道题用了哪些公式。没有用到公式的要死抓定义定理! 一.函数与极限二.导数与微分三.微分中值定理与导数的应用四.不定积分浏览目录了解真正不熟悉的章节然后有针对的复习。 一函数与极限 熟悉差集对偶律(最好掌握证明过程)邻域(去心邻域)函数有界性的表示方法数列极限与函数极限的区别收敛与函数存在极限等价无穷小与无穷大的转换夹逼准则(重新推导证明过程)熟练运用两个重要极限第二准则会运用等价无穷小快速化简计算了解间断点的分类零点定理 本章公式: 两个重要极限: 二.导数与微分 熟悉函数的可导性与连续性的关系求高阶导数会运用两边同取对数隐函数的显化会求由参数方程确定的函数的导数

洛必达法则: 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求极限以前,首先要检查是否满足或型,否则滥用洛必达法则会出错.当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限 . ②洛必达法则可连续多次使用,直到求出极限为止. ③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 曲线的凹凸性与拐点: 注意:首先看定义域然后判断函数的单调区间 求极值和最值 利用公式判断在指定区间内的凹凸性或者用函数的二阶导数判断(注意二阶导数的符号) 四.不定积分:(要求:将例题重新做一遍) 对原函数的理解 原函数与不定积分 1 基本积分表基本积分表(共24个基本积分公式) 不定积分的性质 最后达到的效果是会三算两证(求极限,求导数,求积分)(极限和中值定理的证明),一定会取得满意的成绩!

人教版高一数学知识点总结

高一数学知识总结 必修一 一、集合 一、集合有关概念 集合的含义 集合的中元素的三个特性: 元素的确定性如:世界上最高的山 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} 集合的表示方法:列举法与描述法。 注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R 列举法:{a,b,c……} 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x∈R| x-3>2} ,{x| x-3>2} 语言描述法:例:{不是直角三角形的三角形} Venn图: 4、集合的分类: 有限集含有有限个元素的集合 无限集含有无限个元素的集合 空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 A?有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 注意:B ?/B或B?/A 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A) ③如果A?B, B?C ,那么A?C ④如果A?B 同时B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 有n个元素的集合,含有2n个子集,2n-1个真子集

高等数学知识点(重点)

高等数学知识点总结 空间解析几何与向量代数 一、重点与难点 1、重点 ①向量的基本概念、向量的线性运算、向量的模、方向角; ②数量积(是个数)、向量积(是个向量);(填空选择题中考察) ③几种常见的旋转曲面、柱面、二次曲面;(重积分求体积时画图需要) ④平面的几种方程的表示方法(点法式、一般式方程、三点式方程、截距式方程),两平面的夹角;(一般必考) ⑤空间直线的几种表示方法(参数方程、对称式方程、一般方程、两点式方程), 两直线的夹角、直线与平面的夹角;(一般必考) 空间解析几何和向量代数: 。 代表平行六面体的体积为锐角时, 向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。 与是向量在轴上的投影:点的距离:空间ααθθθ??,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(22 2 2 2 2 2 212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a k j i b a c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M M d z y x z y x z y x z y x z y x z y x z y x z z y y x x z z y y x x u u ??==??=?=?==?=++?++++=++=?=?+=+=-+-+-==

(马鞍面)双叶双曲面:单叶双曲面:、双曲面: 同号) (、抛物面:、椭球面:二次曲面: 参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程: 1 1 3,,2221 1};,,{,1 30 2),,(},,,{0)()()(122 222222 22222 222 22220000002 220000000000=+-=-+=+=++??? ??+=+=+===-=-=-+++++= =++=+++==-+-+-c z b y a x c z b y a x q p z q y p x c z b y a x pt z z nt y y m t x x p n m s t p z z n y y m x x C B A D Cz By Ax d c z b y a x D Cz By Ax z y x M C B A n z z C y y B x x A 多元函数微分法及应用 z y z x y x y x y x y x F F y z F F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u x v v z x u u z x z y x v y x u f z t v v z t u u z dt dz t v t u f z y y x f x y x f dz z dz z u dy y u dx x u du dy y z dx x z dz - =??-=??=? -?? -??=-==??+??=??+??= ==??? ??+?????=??=?????+?????==?+?=≈???+??+??=??+??= , , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 : 多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22

相关文档
相关文档 最新文档