文档库 最新最全的文档下载
当前位置:文档库 › 函数奇偶性在解题中的应用

函数奇偶性在解题中的应用

函数奇偶性在解题中的应用
函数奇偶性在解题中的应用

函数奇偶性在解题中的应用

徐辉

函数的奇偶性是函数的重要性质之一,也是日常考试和高考中数学的重点和热点内容之一。它应用广泛,在高中数学的各个分支中都有着极为重要的应用,在解题过程中如果应用的好,常能使难题变易,繁题变简,起到事半功倍的效果。

1.用于求值

例1:已知奇函数,则

解:因为奇函数,

所以对任意,都有成立.

令,则有,从而可得;

令,则有,

从而

故.

注:此解利用了若函数是奇函数,则对定义域内的任意,

都有这一性质,特别地,当0在定义域内时,必有.

2.用于比较大小

例2.已知偶函数在区间上单调递减,试比较

的大小.

解:因为是偶函数,所以,故此题只需比较的大小即可.

又因在区间上单调递减,而且

所以,故.

注:此解利用了若函数是偶函数,则对定义域内的任意x,都有这一性质.当然此题也可利用偶函数图象关于y

轴对称这一性质,首先得到在区间是单调递增的,然后再用单调性进行求解.

3.用于求最值

例3.如果奇函数在区间[3,7]上是增函数且最小值为5,那么在区间[-7,-3]上是()

A. 增函数且最小值为-5

B. 增函数且最大值为-5

C. 减函数且最小值为-5

D. 减函数且最大值为-5

解:由在区间[3,7]上是增函数且最小值为5,有, 又是奇函数,而奇函数的图象关于原点对称,

故有在[-7,-3]上也是增函数,且当x=-3时,函数取得最大值,

故选B.

注:此解利用了奇函数图象关于原点对称这一性质.

4.用于求参数的值

例4.已知函数(a、b、c∈Z)是奇函数,又f(1)=2,f(2)<3,求a、b、c的值.

解:由是奇函数,知f(-x)=-f(x),

从而,即-bx+c=-(bx+c),c=-c,∴c=0.

又由f(1)=2,知,得a+1=2b①,

而由f(2)<3,知,得②

由①②可解得-1<a<2.

又a∈Z,∴a=0或a=1.

若a=0,则b=,应舍去;

若a=1,则b=1∈Z.

∴a=1,b=1,c=0.

注:本题从函数的奇偶性入手,利用函数的思想建立方程或不等式,组成混合组,最终使问题得以解决. 当然此题也可采用取特殊值的方法得到c的值,如由f(-1)=-f(1),可得c=0. 5.用于求函数的解析式

例5.已知定义在(-∞,+∞)上的函数f(x)的图像关于原点对称,且当x>0时,f(x)=x2-2x+2,求函数f(x)的解析式。解:当x<0时,-x>0,故f(-x)=(-x)2-2(-x)+2=x2+2x+2 因函数f(x)的图像关于原点对称,故函数f(x)为奇函数,

于是f(-x)=-f(x),从而当x<0时,f(x)=-f(-x)=-(x2+2x+2)=-x2-2x-2,

又当x=0时,f(0)=f(-0)=-f(0),从而f(0)=0,

因此f(x)在(-∞,+∞)上的解析式是

注:(1)若x=0在奇函数的定义域内,则其图像必过原点;(2)由奇偶函数在原点一侧的解析式,必能求得它在原点另一侧的解析式,基本思想是通过“-x”实现转化;(3)容易漏求当x=0时的解析式(前提是指0在定义域内).

6.用于讨论函数的单调性

例6.试讨论函数f(x)=的单调性.

解: 易知f(x)为(-∞,0)∪(0,+∞)上的奇函数, 因此可先讨论f(x)在(0,+∞)上的单调性, 再根据奇函数的图像关于原点对称这一性质得到f(x)在(-∞,0)上的单调性.

设且,则

①若,则,,

所以,即,故f(x)在(0,2]上单调递减;

②若,则,,

所以,即,故f(x)在(2,+∞)单调递增.

又因f(x)为(-∞,0)∪(0,+∞)上的奇函数, 其图像关于原点对称

故f(x)在[-2,0)和(0,2]上单调递减,在(-∞,-2)和(2,+∞)单调递增.

注:利用函数的奇偶性讨论函数的单调性,只需讨论原点左或右单侧的单调性,然后利用对称性写出另一侧的单调性即可.7.用于判断函数奇偶性

例7. 已知函数是偶函数,且不恒等于0,则()

A. 是奇函数

B. 是偶函数

C. 可能是奇函数也可能是偶函数

D. 不是奇函数也不是偶函数解:令,

所以是奇函数,

又是偶函数,

因此f(x)是奇函数,故选A。

注:一般地,在公共的定义域内,我们有:奇函数±奇函数=奇函数,偶函数±偶函数=偶函数,奇函数×奇函数=偶函数,偶函数×偶函数=偶函数,奇函数×偶函数=奇函数. 运用以上性质可

帮助解决和积函数的奇偶性问题.

8.用于判断函数图像的对称性

例8.已知函数f(x)满足f(x+y)+f(x-y)=2f(x)·f(y),且,

试证:(1)f(0)=1; (2)f(x)的图象关于y轴对称。

解:(1)令x=y=0,有,又∴; (2)令x=0,得

∴为偶函数,

∴的图象关于y轴对称.

注:(1)如果能说明一个函数是奇函数或是偶函数,就能说明它的对称性;(2)抽象函数奇偶性的证明,常用到赋值法及奇偶性的定义.

9.用于解方程

例9.解关于x的方程.

解:原方程等价于,

令则,

若再令,则上式可化为

考察函数,显见其为奇函数且在R上是增函数,故有

从而,

故,即原方程的解为集为.

注:此题若使用常规解法将会比较繁琐,而若能仔细观察方程形式上的特点,灵活应用函数奇偶性进行求解,则会使问题变得非常简捷.

10.用于解不等式

例:已知定义在(-1,1)的函数y=f(x)既是奇函数又是减函数,解不等式f(1-x)+f(1- x2)<0.

解:先求f(1-x)+f(1- x2)的定义域:①不等式f(1-x)+f(1-x2)<0,即f(1-x)<-f(1-x2)

因为f(x)是奇函数,故有-f(1-x2)=f(x2-1)

从而原不等式就化为:f(1-x)<f(x2-1).

又已知f(x)是减函数,所以1-x>x2-1,即x2+x-2<0,可得-2<x<1 ②

由①②可得{x|0<x<1}.

注:此题的解题思路是首先利用函数的奇偶性,将不等式f(1-x)+f(1- x2)<0化为f(1-x)<f(x2-1),再利用函数的单调性,去掉函数符号f,将之化为普通的不等式1-x>x2-1,然后再进行求解.在求解的过程中,要特别注意函数的定义域对x 的限制.

11.用于证明不等式

例11.证明关于的不等式成立.

证:令,则,

故为偶函数.

而当时,,

从而当时,,,

故,即成立.

注:利用函数的奇偶性证明不等式,需先构造一个函数并证明这个函数的奇偶性,然后再利用这个函数的奇偶性进行解题,在解题的过程中,要充分利用奇偶函数的定义及图像的对称性等性质.

函数的奇偶性教学设计

《函数的奇偶性》教学设计 五华县高级中学叶双霞 教材来源:人教版高中数学必修一 一、教材分析 “奇偶性”是人教版必修1中第一章“集合与函数概念”的第3节“函数的基木性质”的第2小节。 函数的奇偶性是函数的一条重要性质,教材从学生熟悉的初中学过的的一些轴对称图形入手,体会到数形结合思想,初步学会用数学的眼光看待事物,感受数学的对称美。尝试画出f(x) = χ2和f(x)=∣x∣的图像,从特殊到一般,从具体到抽象,比较系统地介绍了函数的奇偶性?从知识结构看,奇偶性既是函数概念的拓展和深入,乂是为以后学习基本初等函数奠定了基础。因此,本节课起着承上启下的重要作用。二、学情分析 从学生的认知基础看,学生在初中己经学习了轴对称图形和中心对称图形, 并且有了一定数量的简单函数的储备。同时,上节课学习了函数单调性,积累了研究函数的基本方法与初步经验。 三、教学目标 【知识与技能】 1. 理解奇函数、偶函数的概念及其几何意义; 2. 能从定义、图像特征、性质等多种角度判断函数的奇偶性,学会函数的应用。 【过程与方法】 通过实例观察、具体函数分析、数与形的结合,定性与定量的转化,让学生经历函数奇偶性概念建立的全过程,体验数学概念学习的方法,积累数学学习的经验。【情感、态度与价值观】 1. 在经历概念形成的过程中,培养学生内容、归纳、抽象、概括的能力: 2?通过H主探索,体会数形结合的思想,感受数学的对称美。

. 教学重点和难点 重点:函数奇偶性的概念和函数图像的特征。 难点:利用函数奇偶性的概念和图像的对称性,证明或判断函数的奇偶性。 五、教学方法 引导发现法为主,直观演示法、类比法为辅。 PPT 课件。 七、教学过程 (一) 情境导入、观察图像 设计意图:通过图片引起学生的兴趣,培养学生的审美观,激发学习兴趣。 师:“同学们,这是我们生活中常见的一些具有对称性的物体,你能说出它 们有什么特点吗? ” 生:“它们的共同点都是关于某一地方是对称的。” 师:“是的,而我们今天要学习的函数图像也有类似的对称图像,首先我们 来尝试画一下f(x) = X 2和f(x)=∣x ∣的图像,并一起探究儿个问题。” (二) 探究新知、形成概念 探究1 ?观察下列两个函数f(x) = X 2和f(x)=仪|的图象,它们有什么共同特征吗? !1! 六、教学手 出示一组轴对称和中心对称的图片。

高中数学解题方法谈:函数奇偶性的判定方法

函数奇偶性的判定方法 函数奇偶性的判定方法较多,下面把常见的判定方法分类加以研究分析. 1.定义域判定法 例1 判定()(1)2f x x x =-- 的奇偶性. 解:要使函数有意义,须20x -≥,解得2x ≥, 定义域不关于原点对称, ∴原函数是非奇非偶函数. 评注:用定义域虽不能判定一个函数是奇函数还是偶函数,但可以通过定义域不关于原点对称,来否定一个函数的奇偶性. 2.定义判定法 例2 判断()f x x a x a =++-和奇偶性. 解: 函数()f x x a x a =++-的定义域为R ,且 ()()()()f a x a x a x a x a x a x a f x -=-++--=--+-+=-++=, ∴函数()f x 是偶函数. 评注:在定义域关于原点对称的前提下,可根据定义判定函数的奇偶性. 3.等价形式判定法 例3 判定2211 ()11x x f x x x ++-=+++的奇偶性. 解:()f x 的定义域为R ,关于原点对称,当0x =时,()0f x =, ∴图象过原点. 又0x ≠ 时,22 22 ()(1)(1)1()(1)(1)f x x x f x x x -+-+==-+--, (1)()f f x ∴-=-. 又(0)0f =,∴()f x 为奇函数. 评注:常用等价变形形式有:若()()0f x f x +-=或()1() f x f x -=-,则()f x 为奇函数;若()()0f x f x --=或 ()1() f x f x -=,则()f x 为偶函数(其中()0f x ≠). 4.性质判定法 例4 若0a >,()([])f x x a a ∈-,是奇函数,()() g x x ∈R 是偶函数,试判定()()()x f x g x ?= 的奇偶性.

函数的奇偶性及其应用举例

函数的奇偶性及其应用举例 (湖北省红安县职教中心 金哲、曾诚) 【摘要】 函数是贯穿于初中、高中、大学数学教学的一条主线,也是高中数学的核心 内容,那么真正掌握函数,其中最主要的就是掌握函数的基本性质。函数的奇偶性是函数重要性质之一。近几年高职统考以及技能高考对于函数的奇偶性一直都是热点问题。本文将通过对函数的奇偶性及其应用进行一个系统研究。 【关键词】 函数的奇偶性,判定,应用 一、奇、偶函数的定义: 若函数)(x f ,在其定义域内,任取x 都有))()()(()(x f x f x f x f =--=-或者, 则称函数)(x f 在区间I 上是奇函数(或者偶函数) 二、函数的奇偶性分类 ???? ? ?? =--=-≠--≠-=--=-)()()()()()()()(:)()(:)()(:x f x f x f x f x f x f x f x f x f x f x f x f 且既奇且偶函数: 且非奇非偶函数偶函数奇函数 三、奇、偶函数的图象: 奇函数?图象关于原点成中心对称的函数 偶函数?图象关于y 轴对称的函数。 四、函数奇偶性的性质: ①具有奇偶性的函数,其定义域关于原点对称 ②若f(x)是奇函数,且x 在0处有定义,则f(0)=0 ③奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同 偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反 ④任意定义在R 上的函数f(x)都可以唯一地表示成一个奇函数与一个 偶函数的和。 五、 判断函数奇偶性的方法: (1)定义法:欲判断函数)(x f 在给定区间或者定义域内的奇偶性:

第一步:先判断给定区间或者定义域是否关于原点对称,若 不对称,则函数)(x f 一定是非奇非偶函数。 第二步:若对称,再判断)(x f -与)(x f 的关系: ①若)(x f -=-)(x f ,则)(x f 是奇函数 ②若)(x f -=)(x f ,则)(x f 是偶函数 ③若)(x f -=-)(x f 且)(x f -=)(x f ,则)(x f 是既奇且偶函数 ④若)(x f -≠-)(x f 且)(x f -≠)(x f ,则)(x f 是非奇非偶函数 (2)图象法:图象关于原点成中心对称的函数是奇函数; 图象关于y 轴对称的函数是偶函数。, 六、函数奇偶性的应用: (1)函数奇偶性的判断 例1、(2011年高职统考第4题)下列函数为奇函数的为 )0(.5 1<=x x y A )0(.7 1>=x x y B 2 1.x y C = 3 1.x y D = 析:A,B ,C 这三个函数的定义域都不关于原点对称,故均为非奇非偶函数, 只有D 选项,定义域为()+∞∞-,,关于原点对称,并且()3 13 1x x -=-,故D 项所在函数为奇函数。 例2、(2014年文化综合第25题改编)下列函数中为奇函数的是 A .2 ()1f x x =- B .3 ()f x x = C .5()3x f x ?? = ??? D .2 ()log f x x = 析:A 项2()1f x x =-的定义域为()+∞∞-,关于原点对称,但 () 11)(2 2 -=--=-x x x f ,)()(x f x f =-故为偶函数; C 项5()3x f x ?? = ??? 定义域 为()+∞∞-,关于原点对称,但)()()()(,35)(x f x f x f x f x f x -≠-≠-??? ??=--且, 故为非奇非偶函数;D 项2()log f x x =,定义域为()+∞,0,不关于原点对称, 故为非奇非偶函数,只有B 项符合。 例3、判断函数12)(2+-=x x x f 的奇偶性: 析:(法1-定义法)()f x 函数的定义域是()-∞+∞, , ∵ 2()21f x x x =-+,

《函数的奇偶性与周期性》教案

教学过程 一、课堂导入 我们生活在美的世界中,有过许多对美的感受,请想一下有哪些美? 对于对称美,请想一下哪些事物给过你对称美的感觉呢? 生活中的美引入我们的数学领域中,它又是怎样的情况呢?若给它适当地建立直角坐标系,那么会发现什么特点? 数学中对称的形式也很多,这节课我们就来复习在坐标系中对称的函数

二、复习预习 1、复习单调性的概念 2、复习初中的轴对称和中心对称 3、预习奇偶性的概念 4、预习奇偶性的应用

三、知识讲解 考点1 函数的奇偶性 [探究] 1. 提示:定义域关于原点对称,必要不充分条件. 2.若f(x)是奇函数且在x=0处有定义,是否有f(0)=0?如果是偶函数呢? 提示:如果f(x)是奇函数时,f(0)=-f(0),则f(0)=0;如果f(x)是偶函数时,f(0)不一定为0,如f(x)=x2+1. 3.是否存在既是奇函数又是偶函数的函数?若有,有多少个? 提示:存在,如f(x)=0,定义域是关于原点对称的任意一个数集,这样的函数有无穷多个.

考点2 周期性 (1)周期函数: 对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y =f(x)为周期函数,称T为这个函数的周期. (2)最小正周期: 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.

四、例题精析 【例题1】 【题干】判断下列函数的奇偶性 (1)f(x)=lg 1-x 1+x ;(2)f(x)= ? ? ?x2+x(x>0), x2-x(x<0); (3)f(x)= lg(1-x2) |x2-2|-2 .

第03讲-函数的基本性质(单调性、奇偶性、周期性)

第03讲 函数的性质 (单调性、奇偶性、周期性、对称性) 【考纲解读】 2. 函数概念与基本初等函数I (指数函数、对数函数、幂函数) (1)函数 ④ 理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义. 【知识梳理】 1.单调性 定义: ①∈?21,x x 区间M(A M ?定义域), 012>-?x x 若②()()012>-=?x f x f y , 则③()x f 在M 上是增函数(M 称为增区间); 若②()()012<-=?x f x f y , 则③()x f 在M 上是减函数(M 称为增区间). 函数单调性题目类型 (1)利用定义的常见单调性题目: ①②?③,判断函数的单调性; ②③?①,判断自变量大小; ①③?②,判断函数值的大小。 (2)已知单调性,反求参数范围; (3)利用导数研究函数单调性; (4)利用已知函数的图像研究函数单调性; (5)复合函数的单调性 2.奇偶性 定义: (1)若()()x f x f D x =-∈?,,则()x f 是偶函数; 若()()000x f x f D x =/-∈?,使得,则()x f 不是偶函数; (2)若()()x f x f D x -=-∈?,,则()x f 是奇函数; 若()()000x f x f D x -=/-∈?,使得,则()x f 不是奇函数; 注意:定义的否定形式. 3.周期性:定义: 若存在非零常数T ,使得()()x f T x f D x =+∈?,, 则()x f 为周期函数,T 是一个周期. 4.对称性 (1)偶函数的图像关于y 轴对称; (2)奇函数的图像关于原点对称; (3)指数函数x a y =和对数函数x y a log =是互为反函数,它们的图像关于直线x y =对称; (4)若()x f 满足()()x a f x a f +=-,则()x f 的图像关于直线a x =对称; (5)若()x f 满足()()x a f x a f +-=-,则()x f 的图像 关于点()0, a 对称; (6)若()x f 满足()()x b f x a f +=-,则()x f 的图像 关于直线2 b a x += 对称; (7)若()x f 满足()()x a f b x a f +-=-2,则()x f 的 图像关于点()b a ,对称; 【典例精讲】 考点一 单调性 例1.(15湖南理)设函数()ln(1)ln(1)f x x x =+--,则()f x 是( ) A.奇函数,且在(0,1)上是增函数 B.奇函数,且在(0,1)上是减函数 C.偶函数,且在(0,1)上是增函数 D.偶函数,且在(0,1)上是减函数 【答案】A. 【解析】 试题分析:显然,)(x f 定义域为)1,1(-,关于原点对称,又∵)()1ln()1ln()(x f x x x f -=+--=-, ∴)(x f 练习 (2012山东理)设0a >且1a ≠, 则“函数()x f x a =在R 上是减函数”,是“函数 3()(2)g x a x =-在R 上是增函数”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 (2006北京)已知(31)4,1 ()log ,1 a a x a x f x x x -+?是 (,)-∞+∞上的减函数,那么a 的取值范围是 (C) (A )(0,1)(B )1(0,)3(C )11[,)73 (D )1 [,1)7 考点二 奇偶性 例2. (2013上海春)已知真命题:“函数()y f x =的图像关于点( )P a b 、成中心对称图形”的充要条件为“函数 ()y f x a b =+- 是奇函数”. (1)将函数3 2 ()3g x x x =-的图像向左平移1个单位,再向上平移2个单位,求此时图像对应的函数解析式,并利用题设中的真命题求函数()g x 图像对称中心的坐标; (2)求函数2 2()log 4x h x x =- 图像对称中心的坐标; (3)已知命题:“函数 ()y f x =的图像关于某直线成轴对 称图像”的充要条件为“存在实数a 和b,使得函数 ()y f x a b =+- 是偶函数” .判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明). 【答案】(1)平移后图像对应的函数解析式为32(1)3(1)2y x x =+-++, 整理得33y x x =-,

函数的单调性及奇偶性(含答案)

函数的单调性及奇偶性 一、单选题(共10道,每道10分) 1.已知函数是上的增函数,若,则下列不一定正确的是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:函数单调性的定义 2.已知定义在上的函数满足:对任意不同的x1,x2,都有.若 ,则实数a的取值范围是( ) A. B. C. D. 答案:C 解题思路:

试题难度:三颗星知识点:函数单调性的定义 3.已知定义在上的函数满足:对任意不同的x1,x2,都有 .若,则实数a的取值范围是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:函数单调性的定义 4.函数的单调递减区间是( ) A. B. C. D.无减区间 答案:A 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 5.函数的单调递减区间是( ) A., B., C., D., 答案:A 解题思路:

试题难度:三颗星知识点:函数的单调性及单调区间 6.函数的单调递增区间是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 7.若是奇函数,则实数a的值为( ) A.1 B.-1

C.0 D.±1 答案:A 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 8.若是定义在上的偶函数,则a的值为( ) A.±1 B.1 C.-1 D.-3 答案:C 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 9.设是定义在[-2,2]上的奇函数,若在[-2,0]上单调递减,则使成立的实数a的取值范围是( ) A.[-1,2] B. C.(0,1) D.

函数奇偶性的归纳总结

函数的奇偶性的归纳总结 考纲要求:了解函数的奇偶性的概念,掌握判断一些简单函数的奇偶性的方法。 教学目标:1、理解函数奇偶性的概念; 2、掌握判断函数的奇偶性的类型和方法; 3、掌握函数的奇偶性应用的类型和方法; 4、培养学生观察和归纳的能力,培养学生勇于探索创新的精神。 教学重点:1、理解奇偶函数的定义; 2、掌握判断函数的奇偶性的类型和方法,并探索其中简单的规律。 教学难点:1、对奇偶性定义的理解; 2、较复杂函数奇偶性的判断及函数奇偶性的某些应用。 教学过程: 一、知识要点: 1、函数奇偶性的概念 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f =-,那么函数)(x f 就叫做偶函数。 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f -=-,那么函数)(x f 就叫做奇函数。 理解: (1)奇偶性是针对整个定义域而言的,单调性是针对定义域内的某个区间而言的。这两个概念的区别之一就是,奇偶性是一个“整体”性质,单调性是一个“局部”性质; (2)定义域关于原点对称是函数具有奇偶性的必要条件。 2、按奇偶性分类,函数可分为四类: 奇函数非偶函数、偶函数非奇函数、非奇非偶函数、亦奇亦偶函数. 3、奇偶函数的图象:

奇函数?图象关于原点成中心对称的函数,偶函数?图象关于y 轴对称的函数。 4、函数奇偶性的性质: ①具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。 ②常用的结论:若f(x)是奇函数,且x 在0处有定义,则f(0)=0。 ③奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同,最值相反。奇函数f(x)在区间[a,b](0≤a

函数奇偶性在解题中的应用

函数奇偶性在解题中的应用 徐辉 函数的奇偶性是函数的重要性质之一,也是日常考试和高考中数学的重点和热点内容之一。它应用广泛,在高中数学的各个分支中都有着极为重要的应用,在解题过程中如果应用的好,常能使难题变易,繁题变简,起到事半功倍的效果。 1.用于求值 例1:已知奇函数,则 解:因为奇函数, 所以对任意,都有成立. 令,则有,从而可得; 令,则有, 从而 . 故. 注:此解利用了若函数是奇函数,则对定义域内的任意, 都有这一性质,特别地,当0在定义域内时,必有. 2.用于比较大小 例2.已知偶函数在区间上单调递减,试比较 的大小.

解:因为是偶函数,所以,故此题只需比较的大小即可. 又因在区间上单调递减,而且 所以,故. 注:此解利用了若函数是偶函数,则对定义域内的任意x,都有这一性质.当然此题也可利用偶函数图象关于y 轴对称这一性质,首先得到在区间是单调递增的,然后再用单调性进行求解. 3.用于求最值 例3.如果奇函数在区间[3,7]上是增函数且最小值为5,那么在区间[-7,-3]上是() A. 增函数且最小值为-5 B. 增函数且最大值为-5 C. 减函数且最小值为-5 D. 减函数且最大值为-5 解:由在区间[3,7]上是增函数且最小值为5,有, 又是奇函数,而奇函数的图象关于原点对称, 故有在[-7,-3]上也是增函数,且当x=-3时,函数取得最大值, 故选B. 注:此解利用了奇函数图象关于原点对称这一性质. 4.用于求参数的值 例4.已知函数(a、b、c∈Z)是奇函数,又f(1)=2,f(2)<3,求a、b、c的值.

解:由是奇函数,知f(-x)=-f(x), 从而,即-bx+c=-(bx+c),c=-c,∴c=0. 又由f(1)=2,知,得a+1=2b①, 而由f(2)<3,知,得② 由①②可解得-1<a<2. 又a∈Z,∴a=0或a=1. 若a=0,则b=,应舍去; 若a=1,则b=1∈Z. ∴a=1,b=1,c=0. 注:本题从函数的奇偶性入手,利用函数的思想建立方程或不等式,组成混合组,最终使问题得以解决. 当然此题也可采用取特殊值的方法得到c的值,如由f(-1)=-f(1),可得c=0. 5.用于求函数的解析式 例5.已知定义在(-∞,+∞)上的函数f(x)的图像关于原点对称,且当x>0时,f(x)=x2-2x+2,求函数f(x)的解析式。解:当x<0时,-x>0,故f(-x)=(-x)2-2(-x)+2=x2+2x+2 因函数f(x)的图像关于原点对称,故函数f(x)为奇函数, 于是f(-x)=-f(x),从而当x<0时,f(x)=-f(-x)=-(x2+2x+2)=-x2-2x-2,

函数的基本性质(教案)

[课题]:第一章集合与函数概念 1.3 函数的基本性质 主备人:高一数学备课组陈伟坚编写时间:2013年9月30日使用班级(21)(22) 计划上课时间:2013-2014学年第一学期第6 周星期一至三(四至六月考)[课标、大纲、考纲内容]: 学生在初中已学过一次函数、二次函数、反比例函数的图象与性质,通过这些基本初等函数引入函数的单调性和最值,学生还是容易接受的,但很多学生的二次函数的性质还不过关,需要加强。学生的阅读理解能力还是较弱,教师需要引导学生对函数的单调性、奇偶性的定义理解透彻。 1、重点:理解函数的单调性、最大(小)值及其几何意义;求函数的单调区间和最值;奇偶性的定义,判定函数的奇偶性的方法;运用函数图象理解和研究函数的性质。 2、难点:运用函数图象理解函数单调性和奇偶性的定义,研究基本函数的单调性和奇偶性。 第1课时 1.3.1 单调性与最大(小)值(1) 【教学目标】 1. 运用已学过的函数特别是二次函数的图象,理解函数的单调性的定义及其几何意义; 2. 学会运用函数图象理解和研究函数的性质; 3. 会用定义证明函数的单调性

【教学重难点】 教学重点: 理解函数的单调性的含义及其几何意义. 教学难点: 用定义证明函数的单调性. 【教学过程】 一、引入课题 1. 观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律: 2. ○ 2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ . 2.f(x) = -2x+1 ○1 从左至右图象上升还是下降 ______? ○ 2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ . 3.f(x) = x 2 ○ 1在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ . ○2 在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ . 二、新课教学 (一)函数单调性定义 1.增函数 一般地,设函数y=f(x)的定义域为I , 如果对于定义域I 内的某个区间D 上的任意两个自变量的值x 1,x 2,当x 1

函数奇偶性的应用

对应学生用书P106 基础达标 一、选择题 1.有下列4个命题: ①偶函数的图象一定与纵轴相交; ②奇函数的图象一定通过原点; ③既是奇函数又是偶函数的函数一定是f(x)=0(x∈R); ④偶函数的图象关于纵轴对称. 其中正确的命题有() A.1个B.2个 C.3个D.4个 解析:只有④正确,③中x∈R,定义域只要关于原点对称即可.函数f(x)=0不唯一.答案:A 2.若函数y=f(x)的定义域是[0,1],则下列函数中,可能是偶函数的一个为() A.y=[f(x)]2B.y=f(2x) C.y=f(|x|) D.y=f(-x) 解析:A、B、D三项函数的定义域不关于原点对称. 答案:C 3.设f(x)是定义在R上单调递减的奇函数.若x1+x2>0,x2+x3>0,x3+x1>0,则() A.f(x1)+f(x2)+f(x3)>0 B.f(x1)+f(x2)+f(x3)<0 C.f(x1)+f(x2)+f(x3)=0 D.f(x1)+f(x2)>f(x3) 解析:利用减函数和奇函数的性质判断. ∵x1+x2>0,∴x1>-x2. 又∵f(x)是定义在R上单调递减的奇函数, ∴f(x1)<-f(x2).∴f(x1)+f(x2)<0. 同理,可得f(x2)+f(x3)<0,f(x1)+f(x2)<0.∴2f(x1)+2f(x2)+2f(x3)<0. ∴f(x1)+f(x2)+f(x3)<0. 答案:B

4.函数f(x)是R上的偶函数,且在[0,+∞)上单调递增,则下列各式成立的是() A.f(-2)>f(0)>f(1) B.f(-2)>f(1)>f(0) C.f(1)>f(0)>f(-2) D.f(1)>f(-2)>f(0) 解析:∵f(x)是R上的偶函数, ∴f(-2)=f(2), 又∵f(x)在[0,+∞)上递增, ∴f(-2)>f(1)>f(0). 答案:B 5.已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则f(6)的值为() A.-1 B.0 C.1 D.2 解析:∵f(x)是定义在R上的奇函数,∴f(0)=0.又f(6)=f(4+2)=-f(4)=-f(2+2)=f(2)=f(0+2)=-f(0)=0. 答案:B 6.若定义在R上的函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是() A.f(x)为奇函数B.f(x)为偶函数 C.f(x)+1为奇函数D.f(x)+1为偶函数 解析:令x1=x2=0,得f(0)=2f(0)+1,所以f(0)=-1,令x2=-x1,得f(0)=f(x1)+f(-x1)+1,即f(-x1)+1=-f(x1)-1, 所以f(x)+1为奇函数. 答案:C 二、填空题 7.若y=(a-1)x2-2ax+3为偶函数,则在(-∞,3]内函数的单调区间为________.解析:a=0,y=-x2+3结合二次函数的单调性知. 答案:增区间(-∞,0),减区间[0,3] 8.若f(x)=ax2+bx+c(a≠0)是偶函数,则g(x)=ax3+bx2+cx的奇偶性是________.解析:∵f(x)=ax2+bx+c是偶函数,∴b=0,g(x)=ax3+cx,即为奇函数. 答案:奇函数 9.若函数f(x)满足f(-x)=-f(x),又在(0,+∞)上单调递增,且f(3)=0,则不等式x·f(x)<0的解集是________. 解析:

函数的奇偶性公开课优秀教案(比赛课教案)

《函数的奇偶性》教案 一、教材分析 “奇偶性”是人教版必修1中第一章“集合与函数概念”的第3节“函数的基本性质”的第2小节。 函数的奇偶性是函数的一条重要性质,教材从学生熟悉的初中学过的的一些轴对称图形入手,体会到数形结合思想,初步学会用数学的眼光看待事物,感受数学的对称美。尝试画出和的图像,从特殊到一般,从具体到抽象,比较系统地介绍了函数的奇偶性.从知识结构看,奇偶性既是函数概念的拓展和深入,又是为以后学习基本初等函数奠定了基础。因此,本节课起着承上启下的重要作用。 二、学情分析 从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,上节课学习了函数单调性,积累了研究函数的基本方法与初步经验。 三、教学目标 【知识与技能】 1.理解奇函数、偶函数的概念及其几何意义; 2.能从定义、图像特征、性质等多种角度判断函数的奇偶性,学会函数的应用。 【过程与方法】 通过实例观察、具体函数分析、数与形的结合,定性与定量的转化,让学生经历函数奇偶性概念建立的全过程,体验数学概念学习的方法,积累数学学习的经验。 【情感、态度与价值观】 1.在经历概念形成的过程中,培养学生内容、归纳、抽象、概括的能力; 2.通过自主探索,体会数形结合的思想,感受数学的对称美。 四、教学重点和难点 重点:函数奇偶性的概念和函数图像的特征。

难点:利用函数奇偶性的概念和图像的对称性,证明或判断函数的奇偶性。 五、教学方法 引导发现法为主,直观演示法、类比法为辅。 六、教学手段 PPT课件。 七、教学过程 (一)情境导入、观察图像 出示一组轴对称和中心对称的图片。 设计意图:通过图片引起学生的兴趣,培养学生的审美观,激发学习兴趣。 师:“同学们,这是我们生活中常见的一些具有对称性的物体,你能说出它们有什么特点吗?” 生:“它们的共同点都是关于某一地方是对称的。” 师:“是的,而我们今天要学习的函数图像也有类似的对称图像,首先我们来尝试画一下和的图像,并一起探究几个问题。” (二)探究新知、形成概念 探究1.观察下列两个函数和的图象,它们有什么共同特征吗?

高中数学函数解题技巧及方法

专题1 函数 (理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求. 函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。

函数的奇偶性及周期性综合运用

函数的奇偶性及周期性 1. 已知定义在 R 上的奇函数 f(x) 满足 f(x+2)= -f(x) f(6) 的值为 ( ) A.-1 B.0 C.1 D.2 【答案】 B 【解析】 ∵ f(x+2)=-f(x), ∴ f(6)=f(4+2)=-f(4)=f(2)= -f(0) 又 f(x) 为R 上的奇函数 , ∴ f(0)=0. ∴ f(6)=0. 2. 函数 f ( x) x 3 sin x 1( x R), 若 f(a)=2, 则 f(-a) 的值为 ( ) A.3 B.0 C.-1 D.-2 【答案】 B 【解析】 设 g ( x) 3 sinx, 很明显 g(x) 是一个奇函数 . x ∴ f(x)=g(x)+1. ∵ f(a)=g(a)+1=2, ∴ g(a)=1. ∴ g(-a)=-1. ∴ f(-a)=g(-a)+1=-1+1=0. 3. 已知 f(x) 是定义在 R 上的偶函数 , 并满足 f(x+2)= 1 1 x 2 时 ,f(x)=x-2, 则 f ( x) f(6.5) 等于?? ( ) A.4.5 B.-4.5 C.0.5 D.-0.5 【答案】 D 【 解 析 】 由 f(x 2) 1 得 f(x 4) 1 f ( x ) f ( x 2) f(6.5)=f(2.5). 因为 f(x) 是偶函数 , 得 f(2.5)=f(-2.5)=f(1.5), 而 1 x 2 时 ,f(x)=x-2, 所以 f(1.5)=-0.5. 综上 , 知f(6.5)=-0.5. 4. 已知函数 f(x) 是定义在 R 上的奇函数 , 当 x>0时 ,f(x)= - 是 ( ) A. ( 1) B. ( 1] C. (1 ) D. [1 ) 【答案】 A 【解析】 当 x>0时 f ( x ) 1 2 x 1 1 x 2 当 x<0时,-x>0, ∴ f( x ) 1 2 x . 又∵ f(x) 为 R 上的奇函数 , ∴ f(-x)=-f(x). ∴ f ( x ) 1 2 x . ∴ f ( x ) 2 x 1 . ∴ f ( x) 2 1 1 即 2 x 1 . x ∴ x<-1. 2 2 ∴不等式 f ( x ) 1 的解集是 ( 1) . 2 5. 设 g(x) 是定义在 R 上、以 1为周期的函数 . 若函数 f(x)=x+g(x) 则f(x) 在区间 [0,3] . f ( x) 那 么 f(x) 的 周 期 是 4, 得 2 x 则不等式 f ( x) 1 的解集 2 1 2 在区间 [0,1] 上的值域为 [-2,5],

高一数学《函数奇偶性》教案

第三节 函数奇偶性(高一秋季班组第五次课10.05) 一.教学目标 1.了解奇偶函数的概念,会判断函数奇偶性; 2.奇偶性的应用 3.奇偶性与单调性综合 二.教学内容 1.偶函数:一般地,如果对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f =-,那么函数)(x f 就叫做偶函数。 奇函数:一般地,如果对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f -=-,那么函数)(x f 就叫做奇函数。 奇偶性:如果函数)(x f 是奇函数或偶函数,那么就说明函数)(x f 具有奇偶性。 正确理解函数奇偶性的定义:定义是判断或讨论函数奇偶性的依据,由定义知,若x 是定义域中的一个数值,那么-x 也必然在定义域中,因此,函数)(x f y =是奇函数或偶函数的一个必不可少的条件是:定义域在数轴上所示的区间关于原点对称。换言之,所给函数的定义域若不关于原点对称,则这个函数必不具有奇偶性。 无奇偶性函数是非奇非偶函数;若一个函数同时满足奇函数与偶函数的性质,则既是奇函数,又是偶函数。 两个奇偶函数四则运算的性质: ①两个奇函数的和仍为奇函数;②两个偶函数的和仍为偶函数;③两个奇函数的积是偶函数; ④两个偶函数的积是偶函数; ⑤一个奇函数与一个偶函数的积是奇函数。 例1.判别下列函数的奇偶性: f(x)=|x +1|+|x -1| ; f(x)= 23x ; f(x)=x +x 1 ; f(x)=21x x + ; f(x)=x 2,x ∈[-2,3] 思考:f(x)=0的奇偶性? 练习1.判断下列函数的奇偶性.

(1)f(x)=x 2-|x|+1,x ∈[-1,4];(2)f(x)=1-x 2 |x +2|-2; (3)f(x)=(x -1)1+x 1-x ; (4)f(x)=????? -x 2+x x>0 ,x 2+x x<0 . 2.奇函数y =f(x)(x ∈R )的图像必过点( C ) A .(a ,f(-a)) B .(-a ,f(a)) C .(-a ,-f(a)) D .(a ,f(1a )) 解析 ∵f(-a)=-f(a),即当x =-a 时,函数值y =-f(a),∴必过点(-a ,-f(a)). 3.已知f(x)为奇函数,则f(x)-x 为( A ) A .奇函数 B .偶函数 C .既不是奇函数又不是偶函数 D .既是奇函数又是偶函数 解析 令g(x)=f(x)-x ,g(-x)=f(-x)+x =-f(x)+x =-g(x). 4.设函数f(x)和g(x)分别是R 上的偶函数和奇函数,则下列结论恒成立的是( A ) A .f(x)+|g(x)|是偶函数 B .f(x)-|g(x)|是奇函数 C .|f(x)|+g(x)是偶函数 D .|f(x)|-g(x)是奇函数 解析 由f(x)是偶函数,可得f(-x)=f(x).由g(x)是奇函数,可得g(-x)=-g(x). 由|g(x)|为偶函数,∴f(x)+|g(x)|为偶函数. 5.设f(x)=ax 7+bx +5,已知f(-7)=-17,求f(7)的值。 6.已知f(x)是奇函数,g(x)是偶函数,且f(x)-g(x)=11+x ,求f(x)、g(x)。 7.设f(x)是偶函数,g(x)为奇函数,又f(x)+g(x)=1x -1 ,则f(x)=________,g(x)=________. 答案 1x 2-1,x x 2-1 解析 ∵f(x)+g(x)=1x -1, ①∴f(-x)+g(-x)=1-x -1 .又f(x)为偶函数,g(x)为奇函数,∴f(x)-

函数的基本性质奇偶性教案2

1.3函数的基本性质-----奇偶性 (一)教学目标 1.知识与技能: 使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性. 2.过程与方法: 通过设置问题情境培养学生判断、推断的能力. 3.情感、态度与价值观: 通过绘制和展示优美的函数图象来陶冶学生的情操. 通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质. (二)教学重点与难点 重点:函数的奇偶性的概念;难点:函数奇偶性的判断. (三)教学方法 应用观察、归纳、启发探究相结合的教学方法,通过设置问题引导学生观察分析归纳,形成概念,使学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解. 对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固. (四)教学过程 一.复习与回顾 1、在初中学习的轴对称图形和中心对称图形的定义是什么? 2、要求学生同桌两人分别画出函数f (x) =x3与g (x) = x2的图象. 3、多媒体屏幕上展示函数f (x) =x3和函数g (x) = x2的图象,并让学生分别求出x =±3,x =±2, x=±1 2 ,…的函数值,同时令两个函数图象上对应的点在两个函数图象上闪现,让学生发现两个函 数的对称性反映到函数值上具有的特性:f (–x) = –f (x),g (–x) = g (x). 然后通过解析式给出证明,进一步说明这两个特性对定义域内的任意一个x都成立. 二.新课讲授 1、奇函数、偶函数的定义: 奇函数:设函数y = f (x)的定义域为D,如果对D内的任意一个x,都有f (–x) = –f (x), 则这个函数叫奇函数. 偶函数:设函数y = g (x)的定义域为D,如果对D内的任意一个x,都有g (–x) = g (x),则这个函数叫做偶函数. 问题1:奇函数、偶函数的定义中有“任意”二字,说明函数的奇偶性是怎样的一个性质?与单调性有何区别? 强调定义中“任意”二字,说明函数的奇偶性在定义域上的一个整体性质,它不同于函数的单调性 . 问题2:–x与x在几何上有何关系?具有奇偶性的函数的定义域有何特征? 奇函数与偶函数的定义域的特征是关于原点对称. 问题3:结合函数f (x) =x3的图象回答以下问题: (1)对于任意一个奇函数f (x),图象上的点P (x,f (x))关于原点对称点P′的坐标是什么? 点P′是否也在函数f (x)的图象上?由此可得到怎样的结论. (2)如果一个函数的图象是以坐标原点为对称中心的中心对称图形,能否判断它的奇偶性? 2、奇函数与偶函数图象的对称性: 如果一个函数是奇函数,则这个函数的图象以坐标原点为对称中心的中心对称图形. 反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数. 如果一个函数是偶函数,则它的图形是以y轴为对称轴的轴对称图形;反之,如果一个函数的图象关于y轴对称,则这个函数是偶函数. 3、举例分析

相关文档
相关文档 最新文档