文档库 最新最全的文档下载
当前位置:文档库 › 矩阵投影与最小二乘方法

矩阵投影与最小二乘方法

矩阵投影与最小二乘方法
矩阵投影与最小二乘方法

题目:《神奇的矩阵——矩阵投影与最小二乘方法》

学校:哈尔滨工程大学

姓名:黎文科

联系方式: QQ群:53937814 联系方式: 190356321@https://www.wendangku.net/doc/1011654228.html,

矩阵投影与最小二乘方法

最小二乘法(Least Squares Method,简记为LSE)是一个比较古老的方法,源于天文学和测地学上的应用需要。在早期数理统计方法的发展中,这两门科学起了很大的作用。丹麦统计学家霍尔把它们称为“数理统计学的母亲”。此后近三百年来,它广泛应用于科学实验与工程技术中。美国统计史学家斯蒂格勒( S. M. Stigler)指出, 最小二乘方法是19世纪数理统计学的压倒一切的主题。1815年时,这方法已成为法国、意大利和普鲁士在天文和测地学中的标准工具,到1825年时已在英国普遍使用。

追溯到1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。时年24岁的高斯也计算了谷神星的轨道。奥地利天文学家海因里希·奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。高斯于其1809年的著作《关于绕日行星运动的理论》中。在此书中声称他自1799年以来就使用最小二乘方法,由此爆发了一场与勒让德的优先权之争。

近代学者经过对原始文献的研究,认为两人可能是独立发明了这个方法,但首先见于书面形式的,以勒让德为早。然而,现今教科书和著作中,多把这个发明权归功于高斯。其原因,除了高斯有更大的名气外,主要可能是因为其正态误差理论对这个方法的重要意义。勒让德在其著作中,对最小二乘方法的优点有所阐述。然而,缺少误差分析。我们不知道,使用这个方法引起的误差如何,就需建立一种误差分析理论。高斯于1823年在误差e 1 ,… , e n 独立同分布的假定下,证明了最小二乘方法的一个最优性质: 在所有无偏的线性估计类中,最小二乘方法是其中方差最小的!在德国10马克的钞票上有高斯像,并配了一条正态曲线。在高斯众多伟大的数学成就中挑选了这一条,亦可见这一成就对世界文明的影响。

现行的最小二乘法是勒让德( A. M. Legendre)于1805年在其著作《计算慧星轨道的新方法》中提出的。它的主要思想就是选择未知参数,使得理论值与观测值之差的平方和达到最小:

2

211

()()m m

i i i H y y ===-=-∑∑理论值观测值

我们现在看来会觉得这个方法似乎平淡无奇,甚至是理所当然的。这正说明了创造性思维之可贵和不易。从一些数学大家未能在这个问题上有所突破,可以看出当时这个问题之困难。欧拉、拉普拉斯在许多很困难的数学问题上有伟大的建树,但在这个问题上未能成功。

在高斯发表其1809年著作之前,约在1780年左右,拉普拉斯已发现了概率论中的“中心极限定理”。根据这个定理,大量独立的随机变量之和,若每个变量在和中起的作用都比较小,则和的分布必接近于正态。测量误差正具有这种性质。一般地说,随机(而非系统)的测量误差,是出自大量不显著的来源的叠加。因此,中心极限定理给误差的正态性提供了一种合理的理论解释。这一点对高斯理论的圆满化很有意义,因为高斯原来的假定(平均数天然合理)总难免给人一种不自然的感觉。

耐人寻味的是,无论是中心极限定理的发明者拉普拉斯,还是早就了解这一结果的高斯,都没有从这个结果的启示中去考察误差分布问题。对前者而言,可能是出于思维定势的束缚,这对拉普拉斯来说可算不幸,他因此失掉了把这个重要分布冠以自己名字的机会(正态分布这个形式最早是狄莫弗( De Moiv re) 1730年在研究二项概率的近似计算时得出的。以后也有其他学者使用过,但都没有被冠以他们的名字。高斯之所以获得这一殊荣,无疑是因为他把正态分布与误差理论联系了起来) 。

可以说,没有高斯的正态误差理论配合, 最小二乘方法的意义和重要性可能还不到其现今所具有的十分之一。最小二乘方法方法与高斯误差理论的结合,是数理统计史上最重大的成就之一,其影响直到今日也尚未过时!由于本文是主要介绍最小二乘法与矩阵投影之间的关系,对于最小二乘和概率之间的关系,请参看靳志辉的《正态分布的前世今生》。

1,2,,)m 代入22b C Da b C Da =+????=+ 令

12111

m a a A a ?? ? ?= ? ???,12m b b b b ?? ? ?= ? ???

, 则可写成 C A b D A x b

??= ???

从线性代数的角度来看,就是A 的列向量的线性组合无法充满整个列空间,也就是说Ax=b 这个方程根本没有解。从图形上也很好理解:根本没有一条直线同时经过所有蓝色的点!所以为了选取最合适的x ,让该等式"尽量成立",引入残差平方和函数H :

22

min()min()=min()H e b Ax =-

这也就是最小二乘法的思想。我们知道,当x 取最优值的时候,Ax 恰好对应图中线上橙色的点,而b 则对应图中蓝色的点,e 的值则应红色的线长。

看到这里你有没有和之前投影的那部分知识联系在一起呢?最小二乘的思想是想如何选取参数x 使得H 最小。而从向量投影的角度来看这个问题,H 就是向量e 长度的平方,如何才能使e 的长度最小呢?b 和a 1,a 2都是固定的,当然是e 垂直a 1,a 2平面的时候长度最小!换句话说:最小二乘法的解与矩阵投影时对变量求解的目标是一致的!

于是,根据矩阵投影的知识,我们可以直接写出最小二乘法问题的解

1()T T C A A A b D -??= ???. 其中A 称为结构矩阵,b 称为数据矩阵,T A A 称为信息矩阵,T

A b 称为常数矩阵。 为了定量地给出y C Dt =+与实验数据之间线性关系的符合程度,可以用相关系数r 来衡量.它定义为

11122221111,m m m

i i j i

i j i m m m m i i i i i i i i m a b a b r a b m a a m b b =======-=<>=????????--???? ? ?????????

∑∑∑∑∑∑∑

最小二乘法是从误差拟合角度对回归模型进行参数估计或系统辨识,并在参数估计、系统辨识以及预测、预报等众多领域中得到极为广泛的应用。在数据拟合领域,最小二乘法及其各种变形的拟合方法包括:一元线性最小二乘法拟合、多元线性拟合、多项式拟合、非线性拟合。最小二乘法能将从实验中得出的一大堆看上去杂乱无章的数据中找出一定规律,拟合成一条曲线来反映所给数据点总趋势,以消除其局部波动。它为科研工作者提供了一种非常方便实效的数据处理方法。随着现代电子计算机的普及与发展,这个占老的方法更加显示出其强大的生命力。

参考文献

1.陈希孺院士,《最小二乘法的历史回顾与现状》

2.靳志辉,《正态分布的前世今生》

3.小班得瑞博客,投影矩阵与最小二乘

4.《最小二乘法的应用研究》

矩阵投影与最小二乘方法

题目:《神奇的矩阵——矩阵投影与最小二乘方法》 学校:哈尔滨工程大学 姓名:黎文科 联系方式: QQ群:53937814 联系方式: 190356321@https://www.wendangku.net/doc/1011654228.html,

矩阵投影与最小二乘方法 最小二乘法(Least Squares Method,简记为LSE)是一个比较古老的方法,源于天文学和测地学上的应用需要。在早期数理统计方法的发展中,这两门科学起了很大的作用。丹麦统计学家霍尔把它们称为“数理统计学的母亲”。此后近三百年来,它广泛应用于科学实验与工程技术中。美国统计史学家斯蒂格勒( S. M. Stigler)指出, 最小二乘方法是19世纪数理统计学的压倒一切的主题。1815年时,这方法已成为法国、意大利和普鲁士在天文和测地学中的标准工具,到1825年时已在英国普遍使用。 追溯到1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。时年24岁的高斯也计算了谷神星的轨道。奥地利天文学家海因里希·奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。高斯于其1809年的著作《关于绕日行星运动的理论》中。在此书中声称他自1799年以来就使用最小二乘方法,由此爆发了一场与勒让德的优先权之争。 近代学者经过对原始文献的研究,认为两人可能是独立发明了这个方法,但首先见于书面形式的,以勒让德为早。然而,现今教科书和著作中,多把这个发明权归功于高斯。其原因,除了高斯有更大的名气外,主要可能是因为其正态误差理论对这个方法的重要意义。勒让德在其著作中,对最小二乘方法的优点有所阐述。然而,缺少误差分析。我们不知道,使用这个方法引起的误差如何,就需建立一种误差分析理论。高斯于1823年在误差e 1 ,… , e n 独立同分布的假定下,证明了最小二乘方法的一个最优性质: 在所有无偏的线性估计类中,最小二乘方法是其中方差最小的!在德国10马克的钞票上有高斯像,并配了一条正态曲线。在高斯众多伟大的数学成就中挑选了这一条,亦可见这一成就对世界文明的影响。 现行的最小二乘法是勒让德( A. M. Legendre)于1805年在其著作《计算慧星轨道的新方法》中提出的。它的主要思想就是选择未知参数,使得理论值与观测值之差的平方和达到最小: 2 211 ()()m m i i i H y y ===-=-∑∑理论值观测值

投影仪的使用说明

投影仪使用说明书 一、目的 1、对ph-3500投影仪的维护和保养以及保持仪器的良好使用状态可以保证仪 器原有的精度和延长仪器的用寿命。 二、简单的介绍投影仪 1、投影仪的用途: ph-3500系列投影仪一种光、机、电、计算机一体化的精密高效光学计量仪器。它被广泛应用于机械、仪表、钟表、电子、轻工等行业,院校、研究所以及计量检定部门的计量室、试验室和生产车间。本仪器能高效率地检测各种形状复杂工件的轮廓尺寸和表面形状,如样板、冲压件、凸轮、螺纹、齿轮、成形铣刀以及丝攻等各种工具、刀具和零件。 2、投影仪的仪器介绍 (1)总体介绍 1、投影屏(照面纸和玻璃) 2、屏幕旋转按钮 3、角度计数器 4、XY轴计 数器5、投影透镜6、X轴调节手柄7、光纤照明灯8、等高投影灯9、载物台10、控制面板11、Y轴调节手柄12、载物台深降手柄 (2)角度计数器以及XY周计数器 2、1角度计数器 1、角度显示屏 2、角度显示屏置零键 3、ABS/INC状态切换指示 4、显 示单位切换/断开设置键5、ABS/INC状态切换键 2、2.XY轴计数器 6 、单位切换指示(inch英寸mm毫米)7、X轴移动指示量8、Y轴移 动指示量 9、X轴置零设置键10、Y轴指零设置键 (3)控制面板 1、电源总开关(I:ON/O:OFF) 2、等高投影开关灯(I:ON/O:OFF) 3、等 高投射灯亮度调节(¤;亮/¤:暗)4、光纤照明灯开关(I:ON/O:OFF) 5、光纤照明灯亮度调节(上图标:表面光/下图标:斜面及反射面光源) (4)投影仪显示屏 1、照面玻璃 2、照面玻璃旋转扭 3、显示屏固定扭 4、“零”基准线 三、PH-3500投影仪在测试前的准备和测试的操作规程 (1)操作前的准备工作 1、作业环境:室内环境,并能有效的避免外来光对投影仪显示屏的直射 2、揭开投影仪的保护套并整理好, 3、清洁测量工作台面以及载物台 4、确认投影仪XY轴的移动自如 5用纱布(清洁布)擦去待测物附着的毛刺及杂质 6、插上投影仪电源开关,打开投影仪的电源主开关,打开透过照明开关。 7、调节屏幕旋转旋钮,将其角度调到“零”基准线 (2)投影仪的测量

投影大屏系统混合矩阵说明书

混合矩阵切换器说明书 第一章系统简介 MultiView Matrix 系列混合矩阵切换器,是一款高性能的专业PC信号切换设备,用于多个PC信号输入输出交叉切换,提供四种信号源的输入,信号源分别是是Video,VGA,DVI,YPbPr,每种信号单独传输,单独切换,输出可以是RGB和DVI,使信号传输衰减降至最低,图像信号能高保真输出。广泛应用在大屏幕显示工程、电视教学、指挥控制中心等场合。 Multiview Matrix系列混合矩阵切换器,主板采用自主研发出应于切换系统的巨量数据传输芯片技术,全新推出我公司独创的 180G/s处理高速宽带总线,彻底根除了处理数据总线带宽低下引起的显示速度慢且不稳定的瓶颈。 采用网络控制,可以传输数据量大。 可以支持RGB、DVI、HDTV、S-Video、NTSC/PAL格式信号输入,分辨率从640x480到1920x1200,刷新频率为60Hz;对每路输入信号采样都有特征记忆功能,在前级矩阵中可以任意切换输入信号,只要做过采样调整的信号再此输入,设备会自动配置记忆参数,无需二次采样调整。 可以支持RGB和 DVI信号同时输出,分辨率最高可达到1920x1200,刷新频率为60Hz,方便客户配置显示单元。 第二章技术参数 一计算机输入信号: 数量 4到72路DVI/RGB信号; 类型 DVI(数字)/ RGB(模拟); 分辨率 640x350,640x400,720x400,640x480,848x480,800x600, 848x480,1024x768,1152x864,1280x720,1280X768, 1280X960,1280x1024,1360x768,1400x1050,1440x900, 1600x1200,1680x1050,1792x1344,1856x1392, 1920x1080,1920x1200 像素, 刷新频率为60Hz;

偏最小二乘法

偏最小二乘法 ( PLS)是光谱多元定量校正最常用的一种方法 , 已被广泛应用 于近红外 、 红外 、拉曼 、核磁和质谱等波谱定量模型的建立 , 几乎成为光谱分析中建立线性定量校正模型的通用方法 〔1, 2〕 。近年来 , 随着 PLS 方法在光谱分析尤其是分子光谱如近红外 、 红外和拉曼中应用 的深入开展 , PLS 方法还被用来解决模式识别 、定量校正模型适用性判断以及异常样本检测等定性分析问题 。 由于 PLS 方法同时从光谱阵和浓度阵中提取载荷和得分 , 克服主成分分析 ( PCA)方法没有利用浓度阵的缺点 , 可有效降维 , 并消除光谱间可能存在的复共线关系 , 因此取得令人非常满意的定性分析结果 〔3 ~ 5〕 。 本文主要介绍PLS 方法在光谱定性分析方面的原理及应用 实例 。 偏最小二乘方法(PLS-Partial Least Squares))是近年来发展起来的一种新的多元统计分析法, 现已成功地应用于分析化学, 如紫外光谱、气相色谱和电分析化学等等。该种方法,在化合物结构-活性/性质相关性研究中是一种非常有用的手段。如美国Tripos 公司用于化合物三维构效关系研究的CoMFA (Comparative Molecular Field Analysis)方法, 其中,数据统计处理部分主要是PLS 。在PLS 方法中用的是替潜变量,其数学基础是主成分分析。替潜变量的个数一般少于原自变量的个数,所以PLS 特别适用于自变量的个数多于试样个数的情况。在此种情况下,亦可运用主成分回归方法,但不能够运用一般的多元回归分析,因为一般多元回归分析要求试样的个数必须多于自变量的个数。 §§ 6.3.1 基本原理 6.3 偏最小二乘(PLS ) 为了叙述上的方便,我们首先引进“因子”的概念。一个因子为原来变量的线性组合,所以矩阵的某一主成分即为一因子,而某矩阵的诸主成分是彼此相互正交的,但因子不一定,因为一因子可由某一成分经坐标旋转而得。 在主成分回归中,第一步,在矩阵X 的本征矢量或因子数测试中,所处理的仅为X 矩阵,而对于矩阵Y 中信息并未考虑。事实上,Y 中亦可能包含非有用的信息。所以很自然的一种想法是,在矩阵X 因子的测试中应同时考虑矩阵Y 的作用。偏最小二乘正是基于这种思想的一种回归方法。 偏最小二乘和主成分分析很相似,其差别在于用于描述变量Y 中因子的同时也用于描述变量X 。为了实现这一点,在数学上是以矩阵Y 的列去计算矩阵X 的因子,与此同时,矩阵Y 的因子则由矩阵X 的列去预测。其数学模型为: E P T X +'=F Q U Y +'=

openGL投影矩阵原理及数学推导

openGL投影矩阵 概述 显示器是2d的。3d场景需要转换为2d图像才能显示在屏幕上。投影矩阵(GL_PROJECTION)用于完成这个工作。投影矩阵将观察坐标(eye coordinates)转换成裁剪坐标(clip coordinates)。然后,裁剪坐标被除以w,转换为规范化的设备坐标(NDC)。 需要记住的一点是,裁剪操作和规范化都由投影矩阵(GL_PROJECTION)完成。下面介绍如何用6个参数(left,right,bottom,top,near,far)构建投影矩阵。 裁剪(clipping)操作是在裁剪坐标上进行的,安排在透视除法执行之前。裁剪坐标xc,yc,zc同wc比较,若每个分量都落在(-wc,wc)外,那么此坐标将被裁剪掉。 在透视投影中,3d场景中的点(观察坐标)从平截头体中映射到正方体(NDC)中;x坐标从[l,r]映射到[-1,1],y坐标从[b,t]映射到[-1,1],z坐标从[n,f]映射到[-1,1]。 注意到,观察坐标系是右手系,规范设备坐标系是左手系。这就有,在观察坐标系中,摄像机朝向沿着-z,而在NDC中,方向沿着z。由于glFrustum()只接受正参数,所以构造投影矩阵的时候要变号。 openGL中,3d场景中,观察坐标系下的点被投影到近投影面。下图展示了观察坐标系点(xe,ye,ze)投影到近投影面上的点(xp,yp,zp)。 从Top View of Projection看,xe投影到xp,根据等比性质:

从Side View of Projection看,yp计算类似: 注意到,xp和yp依赖于-ze,这一点要引起重视。在观察坐标被投影矩阵转换为裁剪坐标后,裁剪坐标仍然是同质坐标。在规范化阶段执行透视除法变为规范设备坐标(NDC)。 因此,可以将wc的值定为-ze。投影矩阵最后一行为(0,0,-1,0) 下一步,将xp,yp映射到xn,yn,此为线性映射[l,r]=>[-1,1],[b,t]=>[-1,1]:

透视投影(perspectiveprojection)变换推导

透视投影是3D固定流水线的重要组成部分,是将相机空间中的点从视锥体(frustum)变换到规则观察体(Canonical View Volume)中,待裁剪完毕后进行透视除法的行为。在算法中它是通过透视矩阵乘法和透视除法两步完成的。 透视投影变换是令很多刚刚进入3D图形领域的开发人员感到迷惑乃至神秘的一个图形技术。其中的理解困难在于步骤繁琐,对一些基础知识过分依赖,一旦对它们中的任何地方感到陌生,立刻导致理解停止不前。 没错,主流的3D APIs如OpenGL、D3D的确把具体的透视投影细节封装起来,比如 gluPerspective(…) 就可以根据输入生成一个透视投影矩阵。而且在大多数情况下不需要了解具体的内幕算法也可以完成任务。但是你不觉得,如果想要成为一个职业的图形程序员或游戏开发者,就应该真正降伏透视投影这个家伙么?我们先从必需的基础知识着手,一步一步深入下去(这些知识在很多地方可以单独找到,但我从来没有在同一个地方全部找到,但是你现在找到了)。 我们首先介绍两个必须掌握的知识。有了它们,我们才不至于在理解透视投影变换的过程中迷失方向(这里会使用到向量几何、矩阵的部分知识,如果你对此不是很熟悉,可以参考 可以找到一组坐标(v1,v2,v3),使得 v = v1 a + v2 b + v3 c (1) 而对于一个点p,则可以找到一组坐标(p1,p2,p3),使得 p – o = p1 a + p2 b + p3 c (2) 从上面对向量和点的表达,我们可以看出为了在坐标系中表示一个点(如p),我们把点的位置看作是对这个基的原点o所进行的一个位移,即一个向量——p – o(有的书中把这样的向量叫做位置向量——起始于坐标原点的特殊向量),我们在表达这个向量的同时用等价的方式表达出了点p: p = o + p1 a + p2 b + p3 c (3) (1)(3)是坐标系下表达一个向量和点的不同表达方式。这里可以看出,虽然都是用代数分量的形式表达向量和点,但表达一个点比一个向量需要额外的信息。如果我写出一个代数分量表达(1, 4, 7),谁知道它是个向量还是个点! 我们现在把(1)(3)写成矩阵的形式:

投影仪使用方法

投影仪简单使用方法 第一步:将笔记本电脑与投影仪连接(包括电源线与数据线),如图1、图2所示: 第二步:按下电源开关键打开投影仪,如图3 所示: 数据接口 电源接口 梯形调整键 图1 图2 图3

第三步:将电脑屏幕切换至投影仪上。 (1) windows xp 系统。 打开笔记本电脑,并按下键盘组合键(Fn+F7)将电脑屏幕切换到投影仪上。 说明:Fn 为功能键,F7为电脑屏幕输出键。由于各品牌笔记本电脑的差异性,输出键有所不同,因此可根据具体笔记本电脑而定,一般情况下都为F1至F12中的其中一个,并具有小电脑的图标在上面。上图所示的该类型笔记本电脑的输出键为F7。 (2) windows 7系统 屏幕切换组合键为:Windows+P ,按下组合键后就出现快速投影管理(如图5),这样,按左右箭头键选择 。 图1 Windows 7 快速投影管理 仅计算机:不切换到外接显示器或投影机上。 复制:在计算机和投影机上都显示同样的内容 扩展:增加你笔记本显示屏的显示空间,把笔记本显示屏变大,可以放更多窗口在桌面。 仅投影仪:笔记本电脑本身屏幕不显示。 图4 图5

第四步:画面图像调整。 使用投影仪时,可根据实际需要左右移动“大小键”来调整画面的大小,如果画面扭曲变形,可适当地抬高(或降低)投影的高度或按“梯形调整键”来调整画面。(如图3、图6所示)。 大小键 第四步:关闭投影仪。 如图2所示,投影仪使用完毕后,按下投影仪电源“开关键”,屏幕上出现是否关闭投影仪的提示,选择关闭,并按“确认键”确定(如图3所示)。此时请注意,切不可立刻拔掉电源线,当投影仪关闭后,它还需要一小段时间来进行散热,这时散热风扇会快速运转(伴有很大的嗡叫声),直至风扇停止运转后,方可拔掉电源线。 小提示:如果关闭投影仪后马上拔掉电源,投影仪得不到及时的散热,将严重损害硬件及其使用寿命。

投影矩阵的定义

视锥就是场景中的一个三维空间,它的位置由视口的摄像机来决定。这个空间的形状决定了摄像机空间中的模型将被如何投影到屏幕上。透视投影是最常用的一种投影类型,使用这种投影,会使近处的对象看起来比远处的大一些。对于透视投影,视锥可以被初始化成金字塔形,将摄像机放在顶端。这个金字塔再经过前、后两个剪切面的分割,位于这两个面之间的部分就是视锥。只有位于视锥内的对象才可见。 视锥由凹视野( 在上图中,变量 投影矩阵是一个典型的缩放和透视矩阵。投影变换将视锥变换成一个直平行六面体的形状。因为视锥的近处比远处小,这样就会对靠近摄像机的对象起到放大的作用,也就将透视应用到了场景当中。 在视锥中,摄像机与空间原点间的距离被定义为变量 视矩阵将摄像机放置在场景的原点。又因为投影矩阵需要将摄像机放在 将两个矩阵相乘,得到下面的矩阵: 下图显示了透视变换如何将一个视锥变换成一个新的坐标空间。注意:锥形体变成了直平行六面体,原点从场景的右上角移到了中心。 在透视变换中,

这个矩阵基于一定的距离(这个距离是从摄像机到邻近的剪切面)对对象进行平移和旋转,但是它没有考虑到视野( 在这个矩阵中, 在程序中,使用视野角度来定义x和y缩放系数比使用视口的水平和垂直尺寸(在摄像机空间中)并不方便多少。下面两式使用了视口的尺寸,并且与上面的公式相等: 在这些公式中,Zn表示邻近的剪切面的位置,变量Vw和Vh表示视口的高和宽。这两个参数与 D3DVIEWPORT2结构中的dwWidth和dwHeight成员相关。 不管你使用那个公式,将同世界和视变换一样,可以调用下面的 D3DMATRIX ProjectionMatrix(const float near_plane,// distance to near clipping plane const float far_plane,// distance to far clipping plane const float fov_horiz,// horizontal field of view angle, in radians const float fov_vert)// vertical field of view angle, in radians { float h, w, Q; w = (float)cot(fov_horiz*0.5); h = (float)cot(fov_vert*0.5); Q = far_plane/(far_plane - near_plane); D3DMATRIX ret = ZeroMatrix(); ret(0, 0) = w; ret(1, 1) = h; ret(2, 2) = Q; ret(3, 2) = -Q*near_plane; ret(2, 3) = 1; return ret; } // end of ProjectionMatrix()

弹塑性矩阵推导

弹塑性矩阵推导

考虑材料的塑性,其增量形式的本构关系可表达为 p d σ=(D -D )d ε (1) 式(1)中,D 为弹性矩阵,p D 为塑性矩阵。 弹性矩阵D 的形式为 422000333242000333224000333000000 000000000K G K G K G K G K G K G K G K G K G G G G ??+--??????-+-???? =??--+?????? ?????? D (2) 体积模量3(12) E K μ= -,剪切模量2(1) E G μ=+。 在应变空间内,塑性矩阵可表达为 1()T f f A ??= ??p D D D σσ (3) 式中, ( )()T T p f f f f A B ????=--????D D σσσσ (4) f 为屈服函数;p σ为塑性应力,p p =σD ε; 1/2(()())T p T p T p f f f f B f f f ωθε??? ???? ??? '=???? ????????? σσ I σσσ (5) [111000]T '=I ;p ω为塑性功;p θ为塑性体应变;p ε为等效塑性应变; κ为反映加载历史的参数。 当p κω=时 当p κθ=时 当p κε=时

对于Drucker-Prager 模型,其屈服条件为 120f I J α== (6) 1x y z I σσσ=++,222222 21()2 x y z xy yz zx J S S S S S S = +++++,α为材料常数。 2 2f J α?''=?I σ (7) 222T x y z xy yz zx S S S S S S '??=??S (8) 22 ()32f K J J αα?'''==+?D D I I σ (9) 222 ( )()(3)92T T T f f A K K G J J ααα??'''===+??D I I σσ (10) 1()T f f A ??= ??p D D D σσ 222 22222 222222112123113211212311321121231131121121121(3)(3)999(9)(9)(9)(T T T T T T K K K G J J K G K G K G J K G J K G J m mn ml S m S m S m mn n nl S n S n S n ml nl l S l S l S l S m S n S l ααααααααβββββββββββββ''= + +''''=++++++=p D I I I I S SS 21121122231122132123123123 1122231231132232 113113113113212113223113)()()S S S S S S m S n S l S S S S S S m S n S l S S S S S ββββββββββββββββββββ?? ? ? ???? ? ? ?????? ?????????? 令4 3 p K G =+,23 q K G =- 弹塑性矩阵可表达为 211212311321121231132 1121231132112112112112112223112213123 123123 112223()(p m q mn q ml S m S m S m q mn p n q nl S n S n S n q ml q nl p l S l S l S l S m S n S l G S S S S S S m S n S l S S G βββββββββββββββββββββββ------------------=-=-----?-?----?-ep p D D D 21231132232 113113113113212 113223 113)()S S S S m S n S l S S S S G S ββββββββββ?? ?? ? ??? ? ? ???? -???----?-?-??? ?

偏最小二乘法算法

偏最小二乘法 1.1 基本原理 偏最小二乘法(PLS )是基于因子分析的多变量校正方法,其数学基础为主成分分析。但它相对于主成分回归(PCR )更进了一步,两者的区别在于PLS 法将浓度矩阵Y 和相应的量测响应矩阵X 同时进行主成分分解: X=TP+E Y=UQ+F 式中T 和U 分别为X 和Y 的得分矩阵,而P 和Q 分别为X 和Y 的载荷矩阵,E 和F 分别为运用偏最小二乘法去拟合矩阵X 和Y 时所引进的误差。 偏最小二乘法和主成分回归很相似,其差别在于用于描述变量Y 中因子的同时也用于描述变量X 。为了实现这一点,数学中是以矩阵Y 的列去计算矩阵X 的因子。同时,矩阵Y 的因子则由矩阵X 的列去预测。分解得到的T 和U 矩阵分别是除去了大部分测量误差的响应和浓度的信息。偏最小二乘法就是利用各列向量相互正交的特征响应矩阵T 和特征浓度矩阵U 进行回归: U=TB 得到回归系数矩阵,又称关联矩阵B : B=(T T T -1)T T U 因此,偏最小二乘法的校正步骤包括对矩阵Y 和矩阵X 的主成分分解以及对关联矩阵B 的计算。 1.2主成分分析 主成分分析的中心目的是将数据降维,以排除众多化学信息共存中相互重叠的信息。他是将原变量进行转换,即把原变量的线性组合成几个新变量。同时这些新变量要尽可能多的表征原变量的数据结构特征而不丢失信息。新变量是一组正交的,即互不相关的变量。这种新变量又称为主成分。 如何寻找主成分,在数学上讲,求数据矩阵的主成分就是求解该矩阵的特征值和特征矢量问题。下面以多组分混合物的量测光谱来加以说明。假设有n 个样本包含p 个组分,在m 个波长下测定其光谱数据,根据比尔定律和加和定理有: A n×m =C n×p B p×m 如果混合物只有一种组分,则该光谱矢量与纯光谱矢量应该是方向一致,而大小不同。换句话说,光谱A 表示在由p 个波长构成的p 维变量空间的一组点(n 个),而这一组点一定在一条通过坐标原点的直线上。这条直线其实就是纯光谱b 。因此由m 个波长描述的原始数据可以用一条直线,即一个新坐标或新变量来表示。如果一个混合物由2个组分组成,各组分的纯光谱用b1,b2表示,则有: 1122 T T T i i i a c b c b =+ 有上式看出,不管混合物如何变化,其光谱总可以用两个新坐标轴b1,b2来表示。因此可以 推出,如果混合物由p 个组分组成,那么混合物的光谱就可由p 个主成分轴的线性组合表示。

投影仪正确使用方法及注意事项

桥头镇中心小学投影仪正确使用方法 一、开机: 开启设备前,先打开电源插座开关,后开设备。放下银幕时,放下银幕,放到最低后,一定要记得把银幕开关掷于中间停止位置;投影仪开机时,指示灯闪烁说明设备处于启动状态,当指示灯不再闪烁时,方可进行下一步操作。开机时,机器有个预热的过程,大概有10秒钟。在这期间,千万不要以为投影仪还没有工作而反复按压启动键,频繁开机产生的冲击电流会影响灯泡的使用寿命(10000小时,如每天开6小时,可用4.5年)。 二、使用过程中: 1、在使用过程中,如出现意外断电却仍需启动投影仪的情况时,要等投影机冷却5—10分钟后,再次启动。 2、连续使用时间不宜过长,一般控制在4小时以内,夏季高温环境中,使用时间应再短些。 3、开机后,要注意不断切换画面以保护投影机灯泡,不然会使LCD板或DMD板内部局部过热,造成永久性损坏。 附:投影机使用误区: ①开大会时,长时间固定一个标题投影在大屏幕上。②上课提前0.5小时开机并固定一个画面不动。③上课中间固定一个画面超过15分钟不切换画面。④下课后忘记关闭多媒体投影机。 三、关机:(用遥控器关机) 关闭设备,先关闭各设备电源,后关闭插座电源。用遥控器关闭电源(键),指示灯不闪烁时才能关闭投影仪;按摇控器右上角红色键,这时投影仪底部有红色的闪烁的信号灯等待数分钟,使信号灯不闪时,拔掉投影仪的电源插头,千万不要直接拔掉投影仪的电源插头,这样会因投影仪正常工作产生的热量没有被释放掉会烧掉主板,投影仪被关闭后,无法马上再打开,等待数分钟投影仪底部有红色的闪烁的信号灯不闪烁时才能打开。收起银幕时,银幕开关掷于向上,收起银幕,收到最顶后,一定要记得把银幕开关掷于中间停止位置;关机后不能马上断开电源,要等投影仪的风扇不再转动、闪烁的灯不再闪烁后,让机器散热完成后自动停机。 四、其它: 1、尽量减少开关机次数对灯泡寿命有益。(到课室外上课期间要关机) 2、投影仪闲置(上、下午放学、周六、周日、节假日)时,一定要完全切断电源。

投影矩阵的计算过程

投影矩阵的计算过程3d模型经过世界坐标变换、相机坐标变换后,下一步需要投影变换。投影变换的目的就是要把相机空间转换到标准视图空间,在这个空间的坐标都是正规化的,也就是坐标范围都在[-1,1]之间,之所以转换到这个空间是为了后续操作更方便。下面的讨论都是以列向量来表示,这样在变换操作时,采用的是矩阵左乘法,如果采用的是行向量的话,那就相反,矩阵右乘法即是向量在左边乘以变换矩阵。采用哪种表示并不影响结果,只需要把该种表示下得出的变换矩阵转置一下,就是采用另外一种表示模式需要的结果。常见的投影有两种,正交投影和透视投影,正交投影相对来说更简单,所以先来看看正交投影。最简单的正交变换矩阵 1 0 0 0 0 1 0 0 0 0 0 1 这个正交变换是不可逆变换,变换后x和y保留,z变成了0,在实际应用中,更常见的情况是限定x、y、z在一定的范围内的进行投影变换,比如x[l,r],y[b,t],z[n,f]。那么要把这段空间中的点变换到-1和1之间,只要完成两个变换,首先把坐标轴移到中心,然后进行缩放就可以了。采用列向量的话,那就是缩放矩阵乘以平移矩阵。2/(r-l) 0 0 0 1 0 0 -(r+l)/2 2/(r-l) 0 0 -(r+l)/(r-l) 0 2/(t-b) 0 0 x 0 1 0 -(b+t)/2 = 0 2/(t-b) 0 -(t+b)/(t-b) 0 0 2/(f-n) 0 0 0 1 -(n+f)/2 0 0 2/(f-n) -(f+n)/(f-n) 0 0 0 1 0 0 0 1 0 0 0 1 透视投影类比于我们人眼系统,看一个物体,会有远小近大的效果。在转换到相机空间后,相机是这个空间的原点,和正交投影体是一个长方体或者立方体不同,透视投影体是一个锥体被近平面截取掉头部剩下的空间。假定仍然采用上面的坐标表示。在透视投影下,空间上面的任何一点P投影到近平面上某点q,通过三角几何学我们可以得到qx=px*n/pz ,y点同理。假定直接投影到近平面,则该矩阵很简单,用Ma表示下面的矩阵1 0 0 0 0 1 0 0 0 0 1 0 0 0 1/n 0 则齐次空间某点(x,y,z ,1)被该矩阵转换后变成了(x ,y z, z/n) ,除以z/n,则变成了(nx/z,ny/z,n ,1) 正好吻合上面的公式。 undefined 但是我们知道投影变换需要把坐标变换到-1和1之间,假定先不考虑z轴的变换,在x轴和y轴上面经过上述变换后,已经投影在近平面了,假设近平面xy在[l,r] 和[b,t]之间了,因此只需要和上面的正交投影一样,进行平移和缩放操作就可以了,平移矩阵Mb为 1 0 0 -(l+r)/2 0 1 0 -(t+p)/2 0 0 1 -(f+n)/2 0 0 0 1 以及缩放矩阵Mc 2/(r-l) 0 0 0 0 2/(t-b) 0 0 0 0 2/(f-n) 0 0 0 0 1 McXMbXMa 得到的矩阵为2/(r-l) 0 -(r+l)/(n*(r-l))0 0 2/(t-b) -(t+b)/(n*(t-b)) 0 0 0 j k 0 0 1/n 0 j k 为未知数,这个矩阵也可以同时乘以n,则变为2n/(r-l) 0 -(r+l)/(r-l) 0 0 2n/(t-b) -(t+b)/(t-b) 0 0 0 j k 0 0 1 0 为了求解J k,我们需要把z变换到-1 和1 因此当z=n时为-1,z=f时为1 (j*n+k)/n= j+k/n=-1; 同理j+k/f=1; 得到k=2f*n/(n-f) j=-(n+f)/(n-f) 代入上面的矩阵,就得出通用的正交变换矩阵。而且在一般情况下r=-l ,b=-t 因此上述矩阵可以简化为n/r 0 0 0 0 n/t 0 0 0 0 -(n+f)/(n-f) 2f*n/(n-f) 0 0 1 0 n/r 和n/t可以进一步简化成水平半视角和垂直半视角的三角函数来表示,而水平视角和垂直视角和透视窗口的宽高比有是成正比的,最终上面两行可以用宽高

偏最小二乘法(PLS)简介

偏最小二乘法(PLS)简介 偏最小二乘法(PLS )简介 偏最小二乘法(PLS )简介 简介 偏最小二乘法是一种新型的多元统计数据分析方法,它于1983年由伍德(S.Wold)和阿巴诺(C.Albano)等人首次提出。近几十年来,它在理论、方法和应用方面都得到了迅速的发展。 偏最小二乘法 长期以来,模型式的方法和认识性的方法之间的界限分得十分清楚。而偏最小二乘法则把它们有机的结合起来了,在一个算法下,可以同时实现回归建模(多元线性回归)、数据结构简化(主成分分析)以及两组变量之间的相关性分析(典型相关分析)。这是多元统计数据分析中 的一个飞跃。 偏最小二乘法在统计应用中的重要性体现在以下几个方面: 偏最小二乘法是一种多因变量对多自变量的回归建模方法。偏最小二乘法可以较好的解决许多以往用 普通多元回归无法解决的问题。 偏最小二乘法之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。 主成分回归的主要目的是要提取隐藏在矩阵X 中的相关信息,然后用于预测变量Y 的值。 这种做法可以保证让我们只使用那些独立变量,噪音将被消除,从而达到改善预测模型质量的目的。但是,主成分回归仍然有一定的缺陷,当一些有用变量的相关性很小时,我们在选取主成分时就很容易把它们漏掉,使得最终的预测模型可靠性下降,如果我们对每一个成分 进行挑选,那样又太困难了。 偏最小二乘回归可以解决这个问题。它采用对变量X 和Y 都进行分解的方法,从变量X 和Y 中同时提取成分(通常称为因子),再将因子按照它们之间的相关性从大到小排列。现在,我们要建立一个模型,我们只要决定选择几个因子参与建模就可以了 基本概念 偏最小二乘回归是对多元线性回归模型的一种扩展,在其最简单的形式中,只用一个线性模 型来描述独立变量Y 与预测变量组X 之间的关系: 偏最小二乘法(PLS) 简介

投影仪使用方法及常见问题与解决方法

投影仪连接笔记本常见问题与解决方法 一、了解投影仪的接口 投影仪的接口大致可以分为两类:模拟信号接口和数字信号接口,有些机型还提供有音频输入、输出端子。其中模拟信号接口主要包括:15针VGA接口、Video接口、S-Video接口等。数字信号接口主要包括:USB接口,IEEE1394接口,DVI接口和HDMI接口等。 投影仪连接笔记本用得最多接口就是VGA和DVI接口,不过DVI 接口并不是所有投影机都配备,一般在一些中高档投影机才出现DVI 数字接口,而近一两来有些新品还配备了HDMI接口,HDMI接口是在DVI接口的基础上,增加了数字音频输入,从而成为专用的多媒体信息接口,而且支持1920*1080 DPI高清晰的数字信号,因此

HDMI接口多出现在高端家用投影机上,而一些高端多媒体商务投影机也有配备HDMI接口的。 注意:投影仪接口有in和out之分,用户切记不要把笔记本视频连线连接到VGA out去,如果接错信号口,这样不论你怎么设置,投影机都不能正常工作的。 二、Fn+F4组合键 不少用户把投影仪与笔记本连接好后,开启投影机,但投影仪扔不能显示笔记本画面,这可能是投影仪与笔记本连接的视频端口未被激活导致的,此时只要按住笔记本电脑的Fn键,然后同时按下标识为LCD/CRT 或显示器图标的对应功能键,如图Fn+F4键进行切换即可。 三、注意笔记本与投影仪分辨率匹配

现在的笔记本多为宽屏,一些与宽屏笔记本兼容性较差的投影仪甚至不能适应宽屏分辨率,导致投影画面出现虚化现象,分辨率相差越大,画面虚化程度越明显。 当使Fn+F4用切换之后还是无法显示的时候,可能就是计算机输入分辨率的问题了,这时只要把计算机的显示分辨率调整到投影仪允许的范围内即可,同时也需要注意投影机画面宽高比的设置。有时投影画面虽然能显示,但是只是显示了电脑上的一部分图像,这时也可能是电脑的输出分辨率过高造成的,用户可适当降低电脑分辨率再进行投影。 四、活用投影仪信号源设换键

投影仪操作步骤

投影仪操作步骤 1、放下投影荧幕。 2、先用白色无线遥控按“向下按钮”把白色荧幕放下来,按“方形按钮”,表示暂停,按“向上按钮”向上收回荧幕。 3、使用EPSON专用遥控器,对准悬挂的投影仪按一下“POWER”键,注意看投影仪上有一个LED电源指示灯由“黄”变“绿”,这个时候投影仪会慢慢把图像投到荧幕上。 4、把会议室下面的蓝色VGA视屏输出线,插入笔记本电脑的VGA端口中,再在电脑上按FN+(功能键),并且按下EPSON专用遥控器上的“search”键。(注意投影仪的分辨率为 1024*768)。 说明笔记本电脑外接显示设备时,通常有四种显示输出控制。 笔记本液晶屏亮,外接显示设备亮 笔记本液晶屏亮,外接显示设备不亮 笔记本液晶屏不亮,外接显示设备亮 笔记本液晶屏不亮,外接显示设备不亮 所以我们要注意通过显示输出控制来切换投影形式。 各型号笔记本电脑键盘上投影切换功能键:TOSHIBA(Fn+F5) ;IBM(Fn+F7) ;Compaq(Fn+F4) ;Gateway(Fn+F3) ;NEC(Fn+F3) ;DELL(Fn+F8);LENOVO(Fn+F3) Panasonic(Fn+F3) ;Fujitsu(Fn+F10) ;DEC(Fn+F4) ;Sharp(Fn+F5) ;Hitachi(Fn+F7) ;

有时候需多次按下切换键。 5、关闭投影仪,使用EPSON专用遥控器,对准投影仪按下“Power”键,看到屏幕提示后再按一下,投影仪就关闭了。 注意投影画面出现移位 具体操作为:按下投影仪上的 “MENU”→“信号设定”→“调整信号”→“移位”,通过调整上下左右方向键来调整投影的移位。

投影仪的使用方法

投影仪的使用方法 1.打开投影柜,轻放柜盖。使投影仪和银幕的距离保持在1.5—2米。在确定所有操作开关处于关闭状态后,接通电源。 2.掰住支撑杆托架(卡子),扶着支撑杆推至于投影面垂直,此时会有“卡它”声,表明支撑杆已经到位。注意动作不能猛烈。 3. 打开反射镜盖轻轻开至最大的角度。动作太大就会损坏投影盖,导致投影仪无法使用。 4. 打开电源开关,此时灯泡应点亮,风扇应转动(用手在投影仪出风口感觉出风情况或听声音来判断),如风扇不转,应该立即关闭电源停止使用。 5. 调整反射镜、调焦旋钮、色边调整旋钮,最终在银幕上得到清晰的白色亮面。 6. 在投影台上放置投影片,调整调焦旋钮,使银幕图象清晰。(使用带药面的投影片时,应使药膜面朝上) 7. 使用完毕后关闭电源开关。一手扶住支撑杆,一手扒起支撑杆插销,然后慢慢放下支撑杆至支撑杆托架(卡子)上固定。 8.盖好防尘罩,把电源线收至柜内,关好门。 注:要严格投影仪使用步骤,注意规范操作。 投影仪使用注意事项 1. 注意防尘、防潮、防腐蚀、防震动。除投影仪外,投影柜上部不得放置其他东西。 2. 使用过程中不得搬动投影仪,使用完毕后,也要等到灯丝冷却后再搬动。 3. 不要用手及坚硬物触摸投影仪的光学部件。不得擅自打开投影仪盖板,投影仪内部有电。 4. 在投影仪使用过程中,不得阻挡投影仪的进、出风口。 5. 投影教学中,投影台上投影片的四周要遮光。 6. 使用投影仪时,反射镜的张角要调整到使投影光轴与银幕垂直。 7. 一般情况下尽量只使用电源开关,不开亮度选择开关,如需使用,也要在打开电源开关1—2分钟后再打开亮度选择开关。 8.一定要注意安全,不要拽线拔电源插头。 9.在不接电源的情况,投影柜、投影仪盖板平台表面可以用拧干或干的干净软布擦拭,除此之外的部分由专业人员清洁,防止漏电事故。 10.投影仪应放在投影柜中使用。 在我们使用投影仪的时候,往往或遇到一些或大或小的问题。其实有些问题是很好解决的,只不过投影仪并不是很普及的产品,并且价格相较之下还很昂贵。因此,很多初次购买的朋友或者入门级用户,往往不敢轻易处理投影仪出现的问题。那么,今天就来看看一些关于投影仪的系列问答。以供大家参考哦! 问:投影仪连接笔记本电脑,无输出影像时怎么办? 答:笔记本电脑外接显示设备时,通常有四种显示输出控制。

投影仪正确使用方法及投影仪(特选参考)

投影仪正确使用方法及注意事项 多媒体投影机是一种贵重的教学设备,使用和保养中必须养成良好习惯,严格按操作要求去做,如若操作不当,就会给投影机带来致命损坏。 一、开机:开启设备前,先打开电源插座开关,后开设备。 1.在连接好电脑之后,先打开头投影机,再打开电脑,尤其是windowsXP系统的机器。 2.投影仪开机时,指示灯闪烁说明设备处于启动状态,当指示灯不再闪烁时,方可进行下一步操作。开机时,机器有个预热的过程,大概有10秒钟。在这期间,千万不要以为投影仪还没有工作而反复按压启动键,频繁开机产生的冲击电流会影响灯泡的使用寿命。 3.安装银幕的,放下银幕时,银幕开关掷于向下,放下银幕,放到最低后,一定要记得把银幕开关掷于中间停止位置。(如学校通用技术教室) 二、使用:严禁反复开关机,注意多进行画面切换。 1.快速反复开光投影机会损坏灯泡,缩短灯泡寿命,因此平时尽量减少开关机次数。关机后请至少等待5分钟再打开投影机。在使用过程中,如出现意外断电却仍需启动投影

仪的情况时,要等投影机冷却5—10分钟后,再次启动。 2.连续使用时间不宜过长,一般控制在4小时以内,夏季高温环境中,使用时间应再短些。 3.使用笔记本电脑时,需要链接电源线,防止中途电源用完,而导致投影机灯泡烧坏。 4.开机后,要注意不断切换画面以保护投影机灯泡,不然会使LCD板或DMD板内部局部过热,造成永久性损坏。 5.画面不清楚时,可通过调节投影机上的光圈进行调整。 6.在投影机使用过程若要移动,需轻轻移动,以免振动造成内部部件损坏。 附:投影机使用误区: ①开大会时,长时间固定一个标题投影在大屏幕上。②上课提前0.5小时开机并固定一个画面不动。③上课中间固定一个画面超过15分钟不切换画面。④下课后忘记关闭多媒体投影机。 三、关机:关闭设备,先关闭各设备电源,等投影机自动冷却再后关闭插座电源, 用遥控器关闭电源(键),指示灯不闪烁时才能关闭投影仪。关机后不能马上切断电源,要等投影机的风 ................... 扇不再转动后,闪烁的绿灯不再闪烁,变成黄灯,最后再变.......................... 成红灯, ....只有变成红灯、投影仪的风扇不再转动,才说明机

投影矩阵的推导

投影矩阵的推导(OpenGL D3D) OpenGL矩阵推导——模型视图变化 在三维编程中,模型视图变换是从三维世界到二维屏幕中一个很重要的变换,但是这个变换往往很多人都不太理解,要么是事而非。而这方面的文章不是太少就是讲的太浅没有真正的理解模型视图变换,本人在这个过程中曾经走过很多歪路,不过好在最终在自己的不懈努力下终于降伏了这只猛虎。本人就以自己的理解,通过矩阵推导过程一步一步来了解模型视图变化,最后通过两个OpenGl的程序来进一步理解模型视图矩阵。先从一个基本的模 型视图—透视投影变换讲起。 透射投影是将相机空间中的点从视锥体(frustum)变换到规则观 察体(Canonical View Volume 以下简称CVV)中,待裁剪完毕后进行透视除法的行为。 透视投影变换是令很多刚刚进入3D图形领域的开发人员感到迷 惑乃至神秘的一个图形技术。其中的理解困难在于步骤繁琐,对一些基础知识过分依赖,一旦对它们中的任何地方感到陌生,立刻导致理解停止不前。 主流的3D APIs 都把透射投影的具体细节进行了封装,从而只 需一个函数便可生成一个透射投影矩阵比如gluPerspective(),使得我们不需要了解其算法便可实现三维到二维的转化,然而实

事是,一些三维图形或游戏开发人员遇到一些视图矩阵的问题往往会不知所措,比如视景体裁剪。 以下部分内容是从别处那转过来的,主要感谢Twinsen和一个叫丁欧南的高中生。 透视投影变换是在齐次坐标下进行的,而齐次坐标本身就是一个令人迷惑的概念,这里我们先把它理解清楚。齐次坐标 对于一个向量v以及基oabc, 可以找到一组坐标(v1,v2,v3),使得 v = v1 a + v2 b + v3 c (1) 而对于一个点p,则可以找到一组坐标(p1,p2,p3),使得 p–o = p1 a + p2 b + p3 c (2) 从上面对向量和点的表达,我们可以看出为了在坐标系中表示一个点(如p),我们把点的位置看作是对这个基的原点o所进行的一个位移,即一个向量——p –o(有的书中把这样的向量叫做位置向量——起始于坐标原点的特殊向量),我们在表达这个向量的同时用等价的方式表达出了点p: p = o + p1 a + p2 b + p3 c (3)

相关文档