文档库 最新最全的文档下载
当前位置:文档库 › 平均变化率

平均变化率

平均变化率
平均变化率

江苏省盱眙中学高二数学组张勇

平均变化率

【创设情境】

1.同学们,相信大家都玩过气球吧,我们回忆一下吹气球的过程,可以发现,随着气球内气体的容量的增加,气球的半径增加的越来越慢,这种现象我们如何去解释

呢!

2.请观察教材中图,随着时间的推移,气温的变化趋势;从图中我们可以看出:在整个区间[1,32]这个31天内,气温仅仅上升了15.1;0问题1:平均每小时上升了多少度?而在区间[32,34]这两天内,气温就上升了14.80,

问题2:平均每小时上升了多少度?

我们把这个比值叫做在给定的区间上的平均变化率;

虽然A,B之间的温差与点B,C之间的温差几乎不同,但它们的平均变化率却相差很大;因此我们可以利用平均变化率的大小来刻画变量平均变化的趋势,快慢程度;

问题3:观察这个比值与这两点连线斜率之间有什么关系?

【探索研究】

1、平均变化率:

f(x)?f(x)12上的平均变化率为[x一般地,函数f(x)在区间,x]21x?x12点拨:?xxx??○x?,1本质:如果函数的自变量的“增量”为相应的函数值的“增量”为,且12f(x)?f(x)y?21?)f(x)f?y?(x?xx?xx?x)(fxy?到,则函数,

从的平均变化率为122121.

江苏省盱眙中学高二数学组张勇

○;连线的斜率(割线的斜率)2几何意义:两点)) )),(x,f(x(x,f(x1122○,或说在某个区平均变化率反映了在函数在某个区间上平均变化的趋势(变化快慢)3间上曲线陡峭的程度;

课件展示平均变化率;

【例题评析】

2+2x,分别计算f(x)在下列区间上的平均变化率1:已知函数f(x)=x; 例1.[1,2] 2. [3,4] 3. [-1,1]

?y; ,求2+△y))及邻近一点B(1+△x,的图象上取一点变题1:在曲线y=x2+1A(1,2

?x f(x)=2x+1,

:已知函变题2 的平均变化率;-1],[0,5]上函数f(x)1.分别计算在区间[-3,上的平均变化率的特点;探求一次函数y=kx+b在区间[m,n]2.1x?)f(x?y内的平均变化率在区间[1,1+]变式3:

求函数x反思:曲线上两点的连线(割线)的斜率即为函数f(x)在区间[x,x]上的BA f(x)?f(x)AB平

均变化率;x?x AB12:自由落体运动的物体的位移s(单位:s)与时间t(单位:sgt(g是例3)之间的关系是:s(t)=2重力加速度),求该物体在时间段[t,t]内的平均速度;21

【反馈练习】

???????1.0,,上的平均变化率,并比较大小;在区间y=sinx 和试比较正弦函数???? 362????23ax)?f(x f(x)在区间[-2,-1]则在区间[1,2]上的平均变化率为上的平均变化2.练习:

已知函数,率为( )

?23? D.-3 C.-2 B. A.

江苏省盱眙中学高二数学组张勇

3.在高台跳水运动中,运动员相对于水面高度与起跳的时间t的函数关系为

2(a?0,b??c?bt?at0)h(t),则( )

bbbbbb)?h(0)h()?h()h()?h(0)h()?h()h(aa2a2a2a2a??A. B.

bbbbbb???0?0

aaa22aa2a2b(0)?hh()b a?t0?0?这段时间内处于静止状态 D.C. 运动员在b a0?a4.A、B两船从同一码头同时出发,A船向北,B船向东,若A 船的速度为30km/h,B船的速度为40km/h,设时间为t,则在区间[t,t]上,A,B两船间距离变化的平均速度为_______

21【课堂小结】

1、平均变化率的概念;

如何求平均变化率;、 2 3、平均变化率的几何意义;

高中数学导数之变化率问题

冷世平之教案设计【高二下】 选修2-2第一章导数及其应用第1课时 1 课题:§1.1.1变化率及导数的概念 三维目标: 1、 知识与技能 ⑴理解平均变化率的概念; ⑵了解瞬时速度、瞬时变化率的概念; ⑶理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵; ⑷会求函数在某点的导数或瞬时变化率; ⑸理解导数的几何意义。 2、过程与方法 ⑴通过大量的实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数; ⑵通过动手计算培养学生观察、分析、比较和归纳能力; ⑶通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法。 3、情态与价值观 ⑴通过学生的积极参与、学习变化率与导数的知识,培养学生思维的科学性、严密性,不断认识数形结合和等价转化的数学思想; ⑵通过运动的观点体会导数的内涵,使学生掌握导数的概念,从而激发学生学习数学的兴趣; ⑶通过对变化率与导数的学习,不断培养自主学习、合作交流、善于反思、勤于总结的科学态度和锲而不舍的钻研精神,提高参与意识和合作精神 教学重点:瞬时速度、瞬时变化率的概念及导数概念的形成,导数及几何意义的理解。 教学难点:在平均变化率的基础上去探求瞬时变化率,导数及几何意义的理解。 教学过程: 一、引入课题: 为了描述现实世界中运动、过程等变化的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度。 二、讲解新课: 【探究1】气球膨胀率 同学们,相信大家都玩过气球吧,我们回忆一下吹气球的过程,可以发现,随着气球内气体的容量的增加,气球的半径增加的越来越慢, 从数学角度,如何描述这种现象呢? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是34 ()3 V r r π=,如果将半径r 表示为体积V 的函数, 那么()r V 。 【分析】⑴当V 从0增加到1时,气球半径增加了(1)(0)0.62()r r dm -≈,气球的平均膨胀率为(1)(0)0.62(/)10 r r dm L -≈-;⑵当V 从1增加到2时,气球半径增加了(2)(1)0.16()r r dm -≈,气球的平均膨胀率为(2)(1)0.16(/)21 r r dm L -≈-。可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了。 【思考】当空气容量从1V 增加到2V 时,气球的平均膨胀率是多少? 【答案】2121 ()()r V r V V V -- 【探究2】高台跳水

营销问题及平均变化率问题与一元二次方程【公开课教案】

第2课时营销问题及平均变化率问题与一元二次方程 1.会用列一元二次方程的方法解决营销问题及平均变化率问题;(重点、难点) 2.进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生应用数学的意识. 一、情景导入 某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元? 二、合作探究 探究点一:利用一元二次方程解决营销问题 某超市将进价为40元的商品按定价50元出售时,能卖500件.已知该商品每涨价1元,销售量就会减少10件,为获得8000元的利润,且尽量减少库存,售价应为多少? 解析:销售利润=(每件售价-每件进价)×销售件数,若设每件涨价x元,则售价为(50+x)元,销售量为(500-10x)件,根据等量关系列方程即可. 解:设每件商品涨价x元,根据题意,得 (50+x-40)(500-10x)=8000,即x2-40x+300=0.解得x1=10,x2=30. 经检验,x1=10,x2=30都是原方程的解. 当x=10时,售价为10+50=60(元),销售量为500-10×10=400(件). 当x=30时,售价为30+50=80(元),销售量为500-10×30=200(件). ∵要尽量减少库存,∴售价应为60元. 方法总结:理解商品销售量与商品价格的关系是解答本题的关键,另外,“尽量减少库存”不能忽视,它是取舍答案的一个重要依据. 探究点二:利用一元二次方程解决平均变化率问题 某商场今年1月份的销售额为60万元,2月份的销售额下降10%,改进经营管理后月销售额大幅度上升,到4月份销售额已达到121.5万元,求3,4月份销售额的月平均增长率. 解析:设3,4月份销售额的月平均增长率为x,那么2月份的销售额为60(1-10%)万元,3月份的销售额为60(1-10%)(1+x)万元,4月份的销售额为60(1-10%)(1+x)2万元. 解:设3,4月份销售额的月平均增长率为x. 根据题意,得60(1-10%)(1+x)2=121.5,则(1+x)2=2.25, 解得x1=0.5,x2=-2.5(不合题意,舍去). 所以,3,4月份销售额的月平均增长率为50%.方法总结:解决平均增长率(或降低率)问题的关键是明确基础量和变化后的量.如果设基础量为a,变化后的量为b,平均每年的增长率(或降低率)为x,则两年后的值为a(1±x)2.由此列出方程a(1±x)2=b,求出所需要的量. 三、板书设计 营销问题及平均变化率

《函数的变化率》教案(新人教A版1)

课题:3.1 函数的变化率 教学目标: 1、知识目标:通过生活实例使学生理解函数增量、函数的平均变化率的概念; 掌握求简单函数平均变化率的方法,会求函数的平均变化率; 理解函数的平均变化率的含义,引出函数的瞬时变化率概念,简单应用 为下一节导数概念的学习打好基础。 2、能力目标:使学生在研究过程中熟悉数学研究的途径:背景——数学表示——应用, 培养学生独立思考,解决问题的能力和在生活中建立数学模型,用数学理 论解释生活问题、应用数学的能力。 3、情感目标:使学生通过学习,了解简单的情景蕴涵建立模型解决问题的一般思想方法, 鼓励学生主动探究、不惧困难,勇于挑战自我的思想品质。并养成学生探究 ——总结型的学习习惯。 教学重点:函数自变量的增量、函数值的增量的理解 函数平均变化率和瞬时变化率的理解和简单应用。 教学难点:函数平均变化率转化为瞬时变化率的理解。 教学方法:例举分析——归纳总结——实际应用 教学过程: 一、引入: 1、情境设置:(图片)巍峨的珠穆朗玛峰、攀登珠峰的队员两幅陡峭程度不同的图片 2、问题:当陡峭程度不同时,登山队员的感受是不一样的,如何用数学来反映山势的 陡峭程度,给我们的登山运动员一些有益的技术参考呢? 3、引入:让我们用函数变化的观点来研讨这个问题。 二、例举分析: (一)登山问题 例:如图,是一座山的剖面示意图:A是登山者的出发点,H是山顶,登山路线用y=f(x)表示 才

问题:当自变量x 表示登山者的水平位置,函数值y 表示登山者所在高度时,陡峭程度应怎 样表示? 分析:1、选取平直山路AB 放大研究 若),(),,(1100y x B y x A 自变量x 的改变量: 1x x =? 函数值y 的改变量:1y y =? 直线AB 的斜率: x y x x y y k ??=--=0101 说明:当登山者移动的水平距离变化量一定(x ?为定值)时, 垂直距离变化量(y ?)越大,则这段山路越陡峭; 2、选取弯曲山路CD 放大研究 方法:可将其分成若干小段进行分析:如CD 1的陡峭程度可用直线CD 1的斜率表示。(图略) 结论:函数值变化量(y ?)与自变量变化量)(x ?的比值 x y ??反映了山坡的陡峭程度。 各段的 x y ??不同反映了山坡的陡峭程度不同,也就是登山高度在这段山路上的平均变化量不同。当x y ??越大,说明山坡高度的平均变化量越大,所以山坡就越陡;当 x y ??越小,说明山坡高度的平均变化量小,所以山坡就越缓。 所以, k k k k x x x f x f x y --=??++11)()(——高度的平均变化成为度量山的陡峭程度的量,叫做函数f(x)的平均变化率。 三、 函数的平均变化率与应用。 (一) 定义:已知函数)(x f y =在点0x x =及其附近有定义, 令0x x x -=?; )()()()(0000x f x x f x f x f y y y -?+=-=-=?。 则当0≠?x 时,比值 x y x x f x x f ??=?-?+)()(00 叫做函数)(x f y =在0x 到x x ?+0之间的平均变化率。

苏教版高中数学高二选修1-1练习平均变化率

§3.1 导数的概念 3.1.1 平均变化率 一、基础过关 1.如图,函数y =f (x )在A ,B 两点间的平均变化率为________. 2.过曲线y =2x 上两点(0,1),(1,2)的割线的斜率为________. 3.函数y =1在[2,5]上的平均变化率是________. 4.一物体的运动方程是s =3+t 2,则在一小段时间[2,2.1]内相应的平均速度为________. 5.设函数y =f (x )=x 2-1,当自变量x 由1变为1.1时,函数的平均变化率为________. 6.过曲线y =f (x )=x 2+1上两点P (1,2)和Q (1+Δx,2+Δy )作曲线的割线,当Δx =0.1时, 割线的斜率k =________. 二、能力提升 7.甲、乙二人跑步路程与时间关系如右图所示,________跑得快. 8.将半径为R 的球加热,若半径从R =1到R =m 时球的体积膨胀 率为28π3 ,则m 的值为________. 9.在x =1附近,取Δx =0.3,在四个函数①y =x ,②y =x 2,③y =x 3,④y =1x 中,平均变化率最大的是________. 10.求函数y =sin x 在0到π6之间和π3到π2 之间的平均变化率,并比较它们的大小. 11.一正方形铁板在0℃时,边长为10 cm ,加热后膨胀.当温度为t ℃时,边长变为 10(1+at ) cm ,a 为常数,试求铁板面积对温度的膨胀率. 12.已知气球的体积为V (单位:L)与半径r (单位:dm)之间的函数关系是V (r )=43 πr 3. (1)求半径r 关于体积V 的函数r (V ); (2)比较体积V 从0 L 增加到1 L 和从1 L 增加到2 L 半径r 的平均变化率;哪段半径变化较快(精确到0.01)?此结论可说明什么意义? 三、探究与拓展 13.巍巍泰山为我国的五岳之首,有“天下第一山”之美誉,登泰山在当地有“紧十八, 慢十八,不紧不慢又十八”的俗语来形容爬十八盘的感受,下面是一段登山路线

高中数学变化率问题教案

§1.1.1变化率问题 教学目标 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。 导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33 4)(r r V π= ? 如果将半径r 表示为体积V 的函数,那么3 43)(π V V r = 分析: 3 43)(π V V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为 )/(62.00 1) 0()1(L dm r r ≈-- ⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为 )/(16.01 2) 1()2(L dm r r ≈-- 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少 ?

平均变化率教案

高中数学选修2—2 平均变化率(教案)

高中数学选修2—2 1.1.1 平均变化率(教学设计) 一、教学目标 知识与技能: 1、理解平均变化率的概念; 2、通过具体事例,感受平均变化率广泛存在于日常生活之中,经历运用数学 描述刻画现实世界的过程。 过程与方法: 1、通过动手计算培养学生观察、分析、比较和归纳能力; 2、通过对实际问题的探究使学生体会类比、从特殊到一般的数学思想。 情感、态度与价值观: 感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程。体会数学的博大精深以及学习数学的意义。 二、教学重点、难点 重点:平均变化率的概念的归纳得出;求函数在某个区间的平均变化率。 难点:从实际例子归纳出函数的平均变化率的过程。 三、教学方法 引导学生通过由特殊到一般的思想方法得到平均变化率的概念;引导学生通过积极探究、讨论,逐步理解如何求函数的平均变化率。 四、教学基本流程 创设情境,引导探索分析归纳,建立概念 例题讲解,尝试应用回顾反思,感悟升华

五、教学过程(具体如下表) 教 学 环 节 教学内容师生互动设计意图备注 创设情景、 引入新课问题一:速率问题 汽车在启动后的0--10秒内,行驶了 200米,那么它行驶的平均速率是多少 问题二:高台跳水 播放郭晶晶跳水视频,让学生看高台 跳水情形,然后提出问题: 在高台跳水运动中,给出运动员相对于水 面的高度h(单位:m)与起跳后的时间t(单 位:s)存在函数关系h(t)= ++10.思考, 我们可以用什么物理量来描述运动员在某 段时间内的运动快慢情况(平均速度),然 后给出平均速度的实质: 平均速度实质就是 运动员在某段时间内的 位移对于时间的平均变 化率,在物理上叫平均 速度,又把这个问题引 导平均变化率上。使平 均变化率再次体现变化 的快慢. 让学生操作验证: 计算:5.0 0≤ ≤t和2 1≤ ≤t的平均速度v 在5.0 0≤ ≤t这段时间里, ) / ( 05 .4 5.0 )0( )5.0( s m h h v= - - =; 在2 1≤ ≤t这段时间里, ) / (2.8 1 2 )1( )2( s m h h v- = - - = 然后比较快慢,体现可以用平均速度描述 运动的快慢。 给出问题激发学生的求知 欲,组织学生讨论、交流, 引导学生得到结果。 给学生提出问题,引导学 生通过所学的物理知识回 答问题,最终引导学生意 识到平均速度就是平均变 化率,所描述的运动的快 慢就是变化的快慢。 利用学生很熟悉 的物理问题并从 简单的背景出发, 有利于学生利用 原有的知识解决 我们所设置的问 题,符合学生的认 知规律。,让学生 意识到可以用变 化率体现事物变 化的快慢情况。 平均速度的 变化学生们 能感同身 受,对这个 问题的研究 能使他们有 很好的接受 感,从而进 一步激发他 们强烈的求 知欲。 h t o

高中数学选修1-1《变化率问题》教案

人教版选修1-1第三章导数及其应用P72—74 21020 30 教材分析 本节课是导数的起始课,教材从变化率问题开始,引入平均变化率的概念,并用平均变化率探求瞬时变化率,然后,从数学上给予变化率在数量上的精确描述,即导数。这样处理符合学生的认知规律,使学生的导数学习有了生长点,因此函数平均变化率教学的成败,直接决定导数概念的学习与理解。 二、教学目标分析 1、知识与技能:理解平均变化率的意义,为后续建立瞬时变化率和导数的数学 模型提供丰富的背景。 2、过程与方法:感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程。 3、情感态度与价值观:体会平均变化率的思想及内涵,使学生逐渐掌握数学研 究的基本思考方式和方法,培养学生互相合作的风格以

及勇于探究、积极思考的学习精神。 三、重点与难点分析: 根据新课程标准及对教材的分析,确定本节课重难点如下: 重点:平均变化率的实际意义和数学意义 难点:平均变化率概念的理解和运用 四、学情分析 1、有利因素: 高二学生个性活泼、思维活跃、积极性高,已具有对数学问题进行合理探究的意志与能力。 2、不利因素: 学生两极分化开始形成,学生个体差异比较明显。 五、教法学法 根据对教材、重难点、目标及学生情况的分析,本着教法为学法服务的宗旨,确定以下教法、学法: 探究发现式教学法、类比学习法,并利用多媒体辅助教学。遵循“以学生为主体、教师是数学课堂活动的组织者、引导者和参与者”的现代教育原则。依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。 六、教学过程设计 (一)创设情景、激发热情 [情境1]: 法国《队报》网站的文章称刘翔以不可思议的速度统治了赛场。这名21岁的中国人跑的几乎比炮弹还快,赛道上显示的12.94秒的成绩已经打破了12.95奥运会记录,但经过验证他是以12.91秒平了世界纪录,他的平均速度达到8.52m/s。 平均速度的数学意义是什么? 【设计意图】 数学学习过程中的兴趣是主体性学习的内在动力,也是学好数学的基本保证。一个引人入胜的开头,会拓宽学生思路,尊重学生的生命活动,激发兴趣,大大提高教学效率。 (二)感知过程、建构概念 [情境2]:广州市2009年1月18日到2月18日的日最高气温变化曲线: ) (C T 20 30

高中数学第一章导数及其应用1.1.1平均变化率教案

§1.1.1平均变化率 教学目标: 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. (一)、探究新知,揭示概念 教学过程设计 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. (二)、探究新知,揭示概念 实例一:气温的变化问题 现有南京市某年3月18日-4月20日每天气温最高温度统计图: (注:3月18日 为第一天) 1、你从图中获得了哪些信息? 2 、在“4月18日到20日”,该地市民普遍感觉“气温骤增”,而在“3月18日到4月18日”却没有这

样的感觉,这是什么原因呢? 3、 怎样从数学的角度描述“气温变化的快慢程度”呢? 师生讨论,教师板书总结: 分析:这一问题中,存在两个变量“时间”和“气温”, 当时间从1到32,气温从3.5o C 增加到18.6o C ,气温平均变化 当时间从32到34,气温从18.6o C 增加到33.4o C ,气温平均变化 因为7.4>0.5, 所以,从32日到34日,气温变化的更快一些。 【教师过渡】:“ 18.6 3.5 0.5321 -≈- 表示时间从“3月18日到4月18日”时,气温的平均变化率。 提出问题:先说一说“平均”的含义,再说一说你对 “气温平均变化率”的理解。 实例二:气球的平均膨胀率问题。 【提出问题】:回忆吹气球的过程,随着气球内空气容量的增加,气球半径增长的快慢相同吗? 学生思考回答。 假设每次吹入气球内的空气容量是相等的,如何从数学的角度解释“随着气球内空气容量的增加,气球半径增长的越来越慢”这一现象呢? 思考: 1、 这一问题与“气温的变化问题”有哪些相同的地方?你打算怎样做呢? 2、如何从数学的角度解释“随着气球内空气容量的增加,气球半径增长的越来越慢”这一现象呢?先独立思考,再在小组内交流你的想法。 学生讨论,小组交流,教师巡视。 学生充分讨论后,指名不同学生上台演示交流。 【教师过渡】:“在小组交流中,同学们采用了不同的方法解决这一问题,一部分从图形的角度入手,另一部分通过计算进行具体的量化,下面我们借助Excel 的自动计算功能与插入图表功能来研究这一问题。” (1)、观察表格,你发现了什么?(教师操作,Excel 演示) 18.6 3.50.5 321 -≈-33.418.6 7.4 3432-≈-

§1.1.1变化率问题

课题:§1.1.1变化率及导数的概念 三维目标: 1、 知识与技能 ⑴理解平均变化率的概念; ⑵了解瞬时速度、瞬时变化率的概念; ⑶理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵; ⑷会求函数在某点的导数或瞬时变化率; ⑸理解导数的几何意义。 2、过程与方法 ⑴通过大量的实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数; ⑵通过动手计算培养学生观察、分析、比较和归纳能力; ⑶通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法。 3、情态与价值观 ⑴通过学生的积极参与、学习变化率与导数的知识,培养学生思维的科学性、严密性,不断认识数形结合和等价转化的数学思想; ⑵通过运动的观点体会导数的内涵,使学生掌握导数的概念,从而激发学生学习数学的兴趣; ⑶通过对变化率与导数的学习,不断培养自主学习、合作交流、善于反思、勤于总结的科学态度和锲而不舍的钻研精神,提高参与意识和合作精神 教学重点:瞬时速度、瞬时变化率的概念及导数概念的形成,导数及几何意义的理解。 教学难点:在平均变化率的基础上去探求瞬时变化率,导数及几何意义的理解。 教学过程: 一、引入课题: 为了描述现实世界中运动、过程等变化的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度。 二、讲解新课: 【探究1】气球膨胀率 同学们,相信大家都玩过气球吧,我们回忆一下吹气球的过程,可以发现,随着气球内气体的容量的增加,气球的半径增加的越来越慢, 从数学角度,如何描述这种现象呢? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是34()3 V r r π=,如果将半径r 表 示为体积V 的函数, 那么()r V 。 【分析】⑴当V 从0增加到1时,气球半径增加了(1)(0)0.62()r r dm -≈,气球的平均膨胀率为(1)(0) 0.62(/)10 r r dm L -≈-;⑵当V 从1增加到2时,气球半径增加了(2)(1)0.16()r r dm -≈,气球的平 均膨胀率为(2)(1) 0.16(/)21 r r dm L -≈-。可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变 小了。 【思考】当空气容量从1V 增加到2V 时,气球的平均膨胀率是多少? 【答案】2121 ()() r V r V V V -- 【探究2】高台跳水

变化率和导数(三个课时教案)

第一章导数及其应用 第一课时:变化率问题 教学目标: 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.

二.新课讲授 (一)问题提出 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33 4)(r r V π= ? 如果将半径r 表示为体积V 的函数,那么343)(π V V r = 分析: 3 43)(π V V r =, ⑴当V 从0增加到1时,气球半径增加了 )(62.0)0()1(dm r r ≈- 气球的平均膨胀率为 )/(62.00 1) 0()1(L dm r r ≈-- ⑵当V 从1增加到2时,气球半径增加了 )(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.01 2)1()2(L dm r r ≈-- 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 1 212) ()(V V V r V r --

高中数学 3.1变化率与导数教案 新人教A版选修1-1

与导数教案 新人教A 版选修1-1 [教学目的] 1.了解导数形成的背景、思想和方法;正确理解导数的定义、几何意义; 2.使学生在了解瞬时速度的基础上抽象出变化率,建立导数的概念;掌握用导数的定义求导数的一般方法 3.在教师指导下,让学生积极主动地探索导数概念的形成过程,锻炼运用分析、抽象、归纳、总结形成数学概念的能力,体会数学知识在现实生活中的广泛应用。 [教学重点和难点]导数的概念是本节的重点和难点 [教学方法]讲授启发,自学演练。 [授课类型]:新授课 [课时安排]:1课时 [教 具]:多媒体、实物投影仪 [教学过程] 一、复习提问(导数定义的引入) 1.什么叫瞬时速度?(非匀速直线运动的物体在某一时刻t0的速度) 2.怎样求非匀速直线运动在某一时刻t0的速度? 在高台跳水运动中,如果我们知道运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在关系()105.69.42 ++-=t t t h ,那么我们就会计算 任意一段的平均速度v ,通过平均速度v 来描述其运动状态,但用平均速度不一定能反映运动员在某一时刻的瞬时速度,那么如何求运动员的瞬时速度呢?问题:2秒时的瞬时速度是多少?

表格1 表格2 0?t 时,在[]t ?+2,2这段时间内 ()()()1 .139.41.139.422222-?-=?-?+?= ?+-?+-=t t t t t t h h v ()()()1 .139.41.139.422222-?-=??-?-= -?+-?+=t t t t t h t h v 当-=?t 0.01时,-=v 13.051; 当=?t 0.01时,-=v 13.149; 当-=?t 0.001时,-=v 13.095 1; 当=?t 0.001时,-=v 13.104 9; 当-=?t 0.000 1时,-=v 13.099 51; 当=?t 0.000 1时,-=v 13.100 49; 当-=?t 0.000 01时,-=v 13.099 951; 当=?t 0.000 01时,-=v 13.100 049; 当-=?t 0.000 001时,-=v 13.099 995 1; 当=?t 0.000 001时,-=v 13.100 004 9; 。。。。。。 。。。。。。 问题:1你能描述一下你算得的这些数据的变化规律吗?(表格2) 关于这些数据,下面的判断对吗? 2.当t ?趋近于0时,即无论t 从小于2的一边,还是t 从大于2的一边趋近于2时,

高中数学 1.1.1变化率问题教案 新人教A版选修2-2

1.1.1变化率问题 教学目标: 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。 导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33 4)(r r V π= ? 如果将半径r 表示为体积V 的函数,那么3 43)(π V V r = 分析: 3 43)(π V V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为 )/(62.00 1) 0()1(L dm r r ≈-- ⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为 )/(16.01 2) 1()2(L dm r r ≈-- 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 1 212) ()(V V V r V r --

高中数学-变化率与导数_提高

变化率与导数 【学习目标】 (1)理解平均变化率的概念; (2)了解瞬时速度、瞬时变化率的概念; (3)理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵; (4)会求函数在某点的导数或瞬时变化率; 【要点梳理】 知识点一:平均变化率问题 1.变化率 事物的变化率是相关的两个量的“增量的比值”。如气球的平均膨胀率是半径的增量与体积增量的比值; 2.平均变化率 一般地,函数f(x)在区间[]21,x x 上的平均变化率为:2121 ()() f x f x x x -- 要点诠释: ① 本质:如果函数的自变量的“增量”为x ?,且21x x x ?=-,相应的函数值的“增量”为 y ?,21()()y f x f x ?=-,则函数()f x 从1x 到2x 的平均变化率为 2121 ()()f x f x y x x x -?=?- ② 函数的平均变化率可正可负,平均变化率近似地刻画了曲线在某一区间上的变化趋势. 即递增或递减幅度的大小。 对于不同的实际问题,平均变化率富于不同的实际意义。如位移运动中,位移S (m )从t 1秒到t 2秒的平均变化率即为t 1秒到t 2秒这段时间的平均速度。 高台跳水运动中平均速度只能粗略地描述物体在某段时间内的运动状态,要想更精确地刻画物体运动,就要研究某个时刻的速度即瞬时速度。 3.如何求函数的平均变化率 求函数的平均变化率通常用“两步”法: ①作差:求出21()()y f x f x ?=-和21x x x ?=- ②作商:对所求得的差作商,即2121 ()()f x f x y x x x -?=?-。 要点诠释: 1. x ?是1x 的一个“增量”,可用1x x +?代替2x ,同样21()()y f x f x ?=-。 2. x V 是一个整体符号,而不是V 与x 相乘。 3. 求函数平均变化率时注意,x y V V ,两者都可正、可负,但x V 的值不能为零,y V 的值可以为零。若

高中数学1.1.1变化率问题课时作业(含解析)新人教A版选修22

高中数学1.1.1变化率问题课时作业(含解析)新人教A 版选修 22 知识点一 函数的平均变化率 1.当自变量从x 0变到x 1(x 0

函数的平均变化率教案

§1.1 导 数 1.1.1 函数的平均变化率 【学习要求】 1.理解并掌握平均变化率的概念. 2.会求函数在指定区间上的平均变化率. 3.能利用平均变化率解决或说明生活中的一些实际问题. 【学法指导】 从山坡的平缓与陡峭程度理解函数的平均变化率,也可以从图象上数形结合看平均变化率的几何意义. 填一填:知识要点、记下疑难点 1.函数的平均变化率:已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx = x 1-x 0 ,Δy =y 1-y 0=f (x 1)-f (x 0)=f (x 0+Δx )-f (x 0) ,则当Δx ≠0时,商 f x 0+Δx -f x 0Δx =_Δy Δx ___叫做函数y =f (x )在x 0到x 0+Δx 之间的 平均变化率 . 2.函数y =f (x )的平均变化率的几何意义:Δy Δx =_____f (x 2)-f (x 1)x 2-x 1_____ 表示函数y =f (x )图象上过两点(x 1,f (x 1)),(x 2,f (x 2))的割线的 斜率 . 研一研:问题探究、课堂更高效 [问题情境] 在爬山过程中,我们都有这样的感觉:当山坡平缓时,步履轻盈;当山坡陡峭时,气喘吁吁.怎样用数学反映山坡的平缓与陡峭程度呢?下面我们用函数变化的观点来研究这个问题. 探究点一 函数的平均变化率 问题1 如何用数学反映曲线的“陡峭”程度? 答 如图,表示A 、B 之间的曲线和B 、C 之间的曲线的陡峭程度,可以近似地用直 线的斜率来量化. 如用比值y C -y B x C -x B 近似量化B 、C 这一段曲线的陡峭程度,并称该比值是曲线在[x B ,x C ]上的平均变化率. 问题2 什么是平均变化率,平均变化率有何作用? 答 如果问题中的函数关系用y =f (x )表示,那么问题中的变化率可用式子f (x 2)-f (x 1)x 2-x 1 表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率,平均变化率可以描述一个函数在某个范围内变化的快慢. 例1 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率. 解 从出生到第3个月,婴儿体重平均变化率为 6.5-3.53-0 =1(千克/月). 从第6个月到第12个月,婴儿体重平均变化率为 11-8.612-6 =2.46=0.4(千克/月). 问题3 平均变化率有什么几何意义? 答 设A (x 1,f (x 1)),B (x 2,f (x 2))是曲线 y =f (x )上任意不同的两点,函数y =f (x ) 的平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1 =f (x 1+Δx )-f (x 1)Δx 为割线AB 的斜率. x 1,x 2是定义域内不同的两点,因此Δx ≠0,但Δx 可正也可负;Δy =f (x 2)-f (x 1)是相应Δx =x 2-x 1的改变量,Δy 的值可正可负,也可为零.因此,平均变化率可正可负,也可为零. 跟踪训练1 如图是函数y =f (x )的图象,则: (1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________.

高中数学变化率问题、导数精选题目(附答案)

高中数学变化率问题、导数精选题目(附答案) (1)函数的平均变化率 对于函数y=f(x),给定自变量的两个值x1和x2,当自变量x从x1变为x2 时,函数值从f(x1)变为f(x2),我们把式子f(x2)-f(x1) x2-x1称为函数y=f(x)从x1到x2 的平均变化率. 习惯上用Δx表示x2-x1,即Δx=x2-x1,可把Δx看作是相对于x1的一个“增量”,可用x1+Δx代替x2;类似地,Δy=f(x2)-f(x1).于是,平均变化率 可表示为Δy Δx. (2)瞬时速度 ①物体在某一时刻的速度称为瞬时速度. ②若物体运动的路程与时间的关系式是S=f(t),当Δt趋近于0时,函数f(t) 在t0到t0+Δt之间的平均变化率f(t0+Δt)-f(t0) Δt趋近于常数,我们就把这个常数 叫做物体在t0时刻的瞬时速度. (3)导数的定义 一般地,函数y=f(x)在x=x0处的瞬时变化率是: lim Δx→0Δy Δx=lim Δx→0 f(x0+Δx)-f(x0) Δx,我们称它为函数y=f(x)在x=x0处的导数, 记作f′(x0)或y′|x=x0,即f′(x0)=lim Δx→0Δy Δx=lim Δx→0 f(x0+Δx)-f(x0) Δx. (4)导数的几何意义 函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=f′(x0)=lim Δx→0 f(x0+Δx)-f(x0) Δx. (5)导函数 从求函数f(x)在x=x0处导数的过程可以看到,当x=x0时,f′(x0)是一个确定的数.这样,当x变化时,f′(x)便是x的一个函数,我们称它为f(x)的导函数(简称导数).y=f(x)的导函数有时也记作y′.即f′(x)=y′= lim Δx→0f(x+Δx)-f(x) Δx.

变化率问题

1.1第一课时 变化率问题 一、课前准备 1.课时目标 (1) 认识平均变化率,掌握平均变化率的基本概念和基本公式; (2)掌握求函数平均变化率的步骤; (3)理解函数平均变化率的几何意义. 2.基础预探 (1)对于函数()x f y =,当自变量x 从1x 变为2x 时,函数值从()1x f 变为()2x f ,则它的平均变化率为 . (2) 习惯上常常把自变量的变化12x x -称作自变量的增量,记作x ?,函数值的变化()2x f ()1x f -称做函数值的增量,记为y ?,所以当x ?0≠时,函数的平均变化率表示为 . (3) 函数2x y =在0x x =附近的平均变化率为 . 二、学习引领 1. 平均变化率的含义 一般地,对于函数在区间[]21,x x 上的变化率()()1 212x x x f x f --称为平均变化率,注意到平均变化率是反映曲线陡峭程度的“数量化”. 2.函数平均变化率的理解 ①在式子 =??x y ()()1 212x x x f x f --=()()x x f x x f ?-?+11,x ?、y ?的值可正、可负,但x ?的值不能为0, y ?的值可为0.若函数()x f 为常数函数时,y ?0=.当1x 取定值,x ?取不同的数值时,函数的平均变化率不同;当x ?取定值,1x 取不同的数值时,函数的平均变化率也不一样. ②x ?趋于0,是指自变量的改变量越来越小,但始终不能为0,x ?、y ?在变化中都趋于0,但它们的比 值却趋于一个确定的常数. 3. 求函数平均变化率的步骤 ①求自变量的增量:12x x x -=?; ②求函数值的增量:()()12x f x f y -=?; ③求函数的平均变化率: =??x y ()()1 212x x x f x f --. 三、典例导析 题型一:函数平均变化率 例1:已知函数()13+=x x f ,计算它在区间[]9.0,1--上的平均变化率. 思路导析:应用()x f 在区间[]21,x x 上的平均变化率公式. 解:函数()13+=x x f 在区间[]9.0,1--上的平均变化率为 ()()3) 1(9.019.0=------f f . 规律总结:本题是用斜率来量化直线的倾斜程度,所以已知函数()x f y =,若0x 、1x 是定义域内不同的

函数的平均变化率与导数

导数的概念及运算 知识梳理 1. 平均变化率与瞬时变化率 (1)函数()f x 从1x 到2x 的平均变化率x y ??= . (2)函数()f x 在处0x x =的瞬时变化率为 2. 导数的概念 (1)函数()f x 在x x =o 处的导数:()f x 在点0x 处的导数就是函数()f x 在x x =o 处的瞬时变化率即()0'x f = (2)函数()f x 的导函数:当x 变化时()x f '是x 的一个函数,称()x f '为()f x 的导函数(简称导数)即()x f '= 3. 导数的几何意义与物理意义 (1)几何意义 切线方程为: (2)物理意义 4.基本初等函数的导数 ①;C '= ②();n x '= ③(sin )x '=; ④(cos )x '=; ⑤()x a '=;⑥();x e '= ⑦()l g a o x '= ; ⑧()ln x '=. 5.导数的运算法则 _______ ______ ______ [](4)()'C f x ?=_______ ___________ 6.复合函数的导数 【题型分析】 一.导数的概念及其几何意义 例1:(1)若0'()2f x =,则当k 无限趋近于0时 00()()2f x k f x k --=________ (2)如图,函数()f x 的图象是折线段ABC ,其中A B C ,, 的坐标分别为(04)(20)(64),,,,,,则((0))f f = ; 0(1)(1)lim x f x f x ?→+?-=? .(用数字作答) 二.导数的计算 例2:求下列函数的导数 (1)2()(2)()f x x a x a =+- (2)22()cos sin cos f x x x x =?+ ()()时刻的是物体运动在处的导数在函数00'0t t S S S ===t t t t ()()()'3f x g x ??=????

相关文档