文档库 最新最全的文档下载
当前位置:文档库 › 大坝温控防裂的措施

大坝温控防裂的措施

大坝温控防裂的措施
大坝温控防裂的措施

四川农业大学水利水电工程本科毕业论文大坝温控防裂的措施

作者陈彬彬

学籍批次1509

学习中心陕西延安奥鹏学习中心

层次专升本

专业水利水电工程

指导教师

- 1 -

内容摘要

本文着重介绍了砼坝温度控制的目的及砼坝产生温度裂缝的成因,阐述了温度控制所采取的以下几种措施:1、降低砼混合物中粗骨料和拌和用水的温度;2、在砼浇筑层上布置蛇形冷却管,采用循环水进行砼人工冷却;3、降低砼混合物中水泥用量及掺外加剂,以降低砼混合物中的水化热,控制砼的温度上升;4、砼施工中采用薄层浇筑、对砼的表面洒水养护以及砼混合物中掺缓凝剂等。采取这些温控措施降低砼在凝固过程中产生的温度,以达到防止发生温度裂缝的目的。同时列举了在工程中成功利用温度控制措施以防止温度裂缝发生的实例。

关键词:砼坝温度控制措施

目录

一、案例正文 (1)

(一)、砼坝温度控制的目的 (1)

(二)、温度控制措施 (2)

二、案例分析 (4)

(一)、砼拱坝工程概 (4)

(二)、温控设计基本资料 (5)

(三)、温度控制标准的确定 (5)

(四)、温度控制措施及实施效果 (6)

(五)、工程效果 (8)

参考文献 (9)

大坝温控防裂的措施

一、案例正文

大体积砼水工建筑物因尺寸大而产生体积变化。这种体积变化因受到约束而造成坝内开裂,并将影响已完建大坝内的应力状态。砼内最大的体积变化起因于温度变化。在多数情况下由温变与温差而产生的开裂趋势,砼坝的开裂是人们所不希望的,因为开裂会破坏建筑物的整体性,从而有损其功能并招致砼的过早变质。因此,通过适当的设计及施工措施可使砼坝的开裂趋势减小到容许的程度。

(一)、砼坝温度控制的目的

采用砼作为水工建筑物的筑坝材料,坝体的砼体积皆愈来愈大,因此必须在砼坝施工中采取温度控制措施。在大体积砼坝采取温度控制措施是为了:一是防止由于砼温升过高、内外温差过大及气温骤降产生各种温度裂缝;二是为做好接缝灌浆,满足结构受力要求,提高施工工效,简化施工程序提供依据。采用何种温控措施和做到什么程度,需根据对坝的研究、施工方法及其温度环境而定。

大体积砼坝的开裂是一种不希望发生的情况,因其影响坝的抗渗性、耐久性、内应力和外观。当坝体内某部位的拉应力超过砼抗拉强度时,就会产生裂缝。这种拉应力的产生可能是由于坝上作用荷载所致。但更常见的是由于砼的体积变化受到约束。大体积砼最大的体积变化来源于温度变化。在大多数情况下,采用适当的设计和施工方法,可以使温度变化和温差造成的砼开裂减轻到能容许的程度。

采取各种温控措施,尽量减小砼体积变化,就能采用较大的浇筑块,从而能使施工更快、更经济。后期冷却是温控措施之一,如果收缩缝要进行灌浆,这种措施也是不可缺少的。在采取温控措施费用过高,或者不能充分控制温度的地方,为减小开裂趋势可在坝内设置接缝。设缝可使砼的补尝体积变化发生在规定的地方,而后可对接缝进行灌浆以形成整体结构;设缝还可减小砼浇筑块的尺寸,使体积变化不产生导致开裂的拉应力。

某些结构物上除采用预冷措施和埋设冷却水管外,还使用了一套完整的温度处理办法。这些办法就是减少水泥的用量,采用低热水泥和有效地使用粉煤灰代替一部分水泥。

1、砼坝体积变化

大体积砼结构由于其尺寸大而产生体积变化,是设计人员所熟知的。砼早期温度变化产生的体积变形,可以控制在适当的限度之内,并能结合结构设计预以考虑。最终稳定温度状态,取决于坝址条件,同时,对于随后周期的体积变化则几乎无法加以控制。

理想的情况是简单地设法消除任何温降。要达到这个目的,就必须在低温下浇筑砼,使水泥水化热所产生的温升刚好能使砼温度达到其最终稳定温度。但是,大多数防止温度裂缝的措施,只能接近这一情况。接近的程度取决于坝址的条件、结构应力是否经济等。

主要体积变化,是由浇筑后不久发生的最高温度下降到最终稳定温度这段温降所引起的。

限制新浇砼的浇筑温度和尽量减少浇筑后的温升,能在一定程度上控制最高温度。在砼拌和前,采取预冷措施降低一种或几种砼组成材料的温度,能在一定程度内降低浇筑温度。限制新浇砼的温升,则可以采用预埋设冷却水管,薄层间歇浇筑,采用限制水化热的砼配合比设计等项措施。这些措施能够有效地降低砼的最高温度,降低最高温度就会相应地减少随后发生的体积变化,以及随之产生的开裂趋势。

2、砼坝温度裂缝

大体积砼内产生温度裂缝,是由于砼发生温降,并且其体积变化受到约束,因而产生拉应力所致。所产生的应力,与温降的数值和速率、发生温降时砼的龄期、砼的弹性和非弹性性质有关。约束可能是外部的,如建筑物地基产生的约束;也可能是内部的,如砼内部对表面产生的约束。在结构剖面上发生非线性温度变化,也会产生拉应力。由于砼具有非弹性性质,故产生的应力和坝的温度发展过程有关。

每年秋天在基岩上浇筑大块体砼,而在冬季又停止浇筑,这样的大体积砼最易开裂。在这种情况下;基岩约束大,温降也可能很大(由于砼浇筑温度和最高温度都相当高),而且由于表面暴露,使砼表面温度下降的很快。在暴露的块体顶面边缘开始发生裂缝,并向块体内部发展,同时又沿侧面向下发到距基岩面 1 米左右的地方为止。这些裂缝的大小变化很大,从深度仅十几毫米极其微小的裂缝,到宽度不等完全贯穿施工块体的不规则结构裂缝。最宽的裂缝是在顶部边缘,一般宽度为 0.4~0.8 毫米。

在远离地基,并高出相邻块体 8~15 米的高浇筑块内,在每年较冷月份里也可能发生类似的贯穿裂缝。在这种情况中,块体上部将以比较快的速度冷却,而位于相邻块体高程以下的部分,依据其龄期,可能还保持原来的温度,甚至温度还在升高。

因内部约束而产生的表面裂缝,很少有一定的形态规律。最常见的裂缝,是沿着抗拉强度较低的水平施工缝发展。这种裂缝一般发生在采用木模或绝热钢模板,而后来又在较低的外露温度下拆模时。一旦拆去模板,混凝土表面发生温度突降,于是内外之间形成很大的温度差。除了水平施工缝以外,其他最常见的表面裂缝,是发生在表面不规则处的垂直或接近垂直的裂缝,诸如孔洞、凹角或在浇筑中发生的施工中断处等。这类裂缝的发展,大多不超过一个浇筑层。但往往正是上述贯穿裂缝的开端。

(二)、温度控制措施

1、预冷

最积极而有效的温控方法之一,是降低砼的浇筑温度。降低现场浇筑温度的方法很多,这些方法包括从限制一天中的较热时间或一年中的较热月份里砼的浇筑量,全面冷却砼混合物的各种材料,以达到低于设计的最高砼浇筑温度。

降低砼的浇筑温度的方法(一种或几种方法一起用),要根据冷却的要求和承包者的设备及其以往的经验而定。对某些建筑物而言,粗骨料堆上洒水并搭盖凉棚,也许是唯一需要的预冷措施。洒水的效果,在很大程度上取决于所用水的温度和承包者对料堆的运用情况。同时,还可得到附带的蒸发冷却效果,但这仅限于相对湿度较低的地区。对混凝土拌和厂和水管等进行隔热和(或)在表面涂反光油漆也有好处。

拌和用的水可以冷却到不同的程度,但最常用的水温是 0~5o C 之间。在混合料中加冰或碎冰,是一个有效的冷却方法,因其优点是利用冰融化吸热取得冷却效果。但是,大量加水,在一些实际工程中可能不是很现实的。例如,倘若粗骨料和沙子两者的含水量较大,则加进混合料中的拌和用水就很少,用冰代替部分拌和用水的数量不会很多。

如果将粗骨料冷却到 4o C 左右,有以下几种方法:

(1)、把骨料放在冷水罐里冷却一定的时间。

(2)、用压缩冷却空气通过正在输进料堆和在皮带机上以及经过拌合楼料仓的粗骨料,也可得到比较有效的冷却效果。

(3)、用冷水喷洒也能冷却骨料。

(4)、砂子可通过垂直管形冷却。也可用冷空气气流直接对皮带机上输送的砂子进行冷

却。

将砂子浸泡在冷水中是不现实的,因为冷却后要除去砂子内的水份比较困难。

2、后期冷却

大体积砼进行后期冷却的主要目的是使得在施工期内将砼温度降低到所需的收缩缝灌浆温度。

后期冷却是控制裂缝的有效措施。在埋入每一浇筑层顶部的蛇形冷却管中,用循环冷水进行大体积砼的人工冷却,将显著降低砼的高峰温度。但是,在浇筑后最初几天中,由于水化热增加很快,以及砼的导热系数相当低,埋入的冷却管实际上并不能防止砼的温升。采用埋管系统可使冷却具有灵活性。在任何时间和任何部位,均能得到所要求的冷却程度,这样就能减少砼内部高温和表面低温形成的较大温度差。在秋冬季形成的这种温度差,最容易导致开裂。

3、水泥的用量

大体积砼建筑物,要求单位水泥用量比一般尺寸的砼建筑物少,因为其强度要求较低.但因其体积大,故散发到表面的热量较少,会达到较大的高峰温度数值。由于砼内产生的热量与每立方米水泥用量成正比,所以选择的混合物应在达到所要求的强度和耐久性的同时,水泥的用量要最小。大体积砼坝的水泥用量,过去是每立方米 200~300 公斤,但现在加用其它胶凝材料后已接近 100 公斤左右。

为了改善硅酸盐水泥的某些性能,同时达到增加产量和降低成本的目的,在硅酸盐水泥熟料中掺加适量的各种混合材料与石膏共同磨细的水硬性胶凝材料,称为掺混合材水泥。掺混合材水泥目前最常用的是粉煤灰水泥。粉煤灰是火电厂的燃料粉煤燃烧后收集的飞灰。粉煤灰和适量石膏磨细制成粉煤灰水泥。在混凝土中掺入适量粉煤灰和磨细的石膏可以削减拌和物中胶凝材料的水化热所引起的最高温度。之所以可能,是因为粉煤灰的水化热发展速度比硅酸盐水泥低得多,粉煤灰一部分可以用来代替部分硅酸盐水泥,一部分可以改善混凝土的和易性,节约费用,生产优质砼。

4、其它各种措施

(1)、薄层浇筑:按适当厚度分层浇筑砼,并将浇筑下一层的时间适当推迟几天,以便

- 4 - 由每层表面自然散失热量。

(2)、洒水养护:在每个浇筑层的顶面和侧面进行洒水养护,可降低砼表面附近的温度。在砼表面适当用水养护,可以使其表面温度接近于养护水的温度,而不是空气温度。在低湿度地区,蒸发冷却,可使表面温度比养护水的温度稍低一些。

(3)、缓凝剂:砼混合物中掺缓凝剂,并与水管冷却结合使用,可得到降温效果。缓凝剂可减缓水泥早期发热速度,因而在浇筑后的第二和第三天内,总温度的升高值,将比用同一混合物但未加缓凝剂时的温度低 1o C~2o C。这一实际效益随所用缓凝剂的类型和使用量的不同而变化。缓凝剂用量百分数,一般大约为水泥重量的 0.25~0.33%。

(4)、表面处理:如果大体积砼结构的表层砼能在较低的温度下凝固,并在砼的早期龄期内保持这种温度,则可能最大限度地减少表面裂缝。在这种条件下,表面拉力可以减小,或者当内部砼随后降温时,表面甚至会处于受压状态。这种表层冷却可在接近并平行于表层砼内,埋设较密的冷却管,并通水循环来实施。

(5)、温降速度:大体积砼的温度应力产生的开裂趋势,可通过控制温降的速度和发生温降的时间,使之减至最小的程度。在不用人工冷却的厚剖面内,温降一般十分缓慢,因而不存在什么问题。但是在用人工冷却的薄剖面内,温度就下降得非常快,这种温降可能就要加以控制。这就是靠减少蛇形冷却水的用量,或者是提高冷却水的温度来控制。冷却系统的运用和给每根蛇形冷却管供水的总管的布置,应该做到使每根蛇形冷却管能单独使用。在必要的部位,也应采用中断冷却一段时期的办法。对于不用人工冷却的薄剖面,可以在暴露面用保温模板和保温层来控制冬季的温降。这种措施不仅降低了热交换的速度,而且也降低近表面的温度差,从而可以有效地减少裂缝。

二、案例分析

(一)、砼拱坝工程概况

1、砼拱坝坝体设计

铜头电站拦河坝为三心圆截面砼双曲薄拱坝,拱坝建基第三系泥钙质砾岩上,属国内的前例。坝基周围设置砼垫座,坝体内无孔洞。大坝建基高程 686.5m,正常蓄水位 760m,坝顶高程761.5m,最大坝高 75m,拱冠梁顶厚 3.5m,底部厚 13.5m,宽 22.8m,坝体厚高比为 0.217。坝顶外圆弧长 108.6m,坝底外圆弧长 45.2m。坝体以四条横缝分为五个坝段,最大仓面面积

为560m2,最小面积仅为 70m2,大坝砼总量 6.57 万

m3。 2 、拱坝施工综述

坝址区河床两岸岩体出露,且呈介于“V”与“U”型之间河谷特性,施工条件极为艰难。通过对工程砼施工强度和坝址区域地形地貌等因素的综合分析比较,选择在坝下游 1.5km

处设置2×1.5m3砼拌和楼和2×0.8m3拌和站各一座,其中2×1.5m3砼拌和楼生产四级配拱坝砼,大坝左右岸坝肩高程 761.5m 和 770m 上分别布置一台门机,同时在基坑配置一台WD-400 履带式吊车。

拱坝于 92 年 11 月开始坝肩开挖,93 年 10 月坝肩开挖至河床水面高程,同年 10 月 25 日河床截流,94 年 4 月坝基开挖结束。坝体砼于 94 年 6 月开始浇筑,7~9 月上旬进行坝基

- 5 - 及坝肩固结灌浆,95 年 6 月 20 日大坝浇筑至坝顶高程 761.5m,月平均上升 7.8m,最大月上升 12.0m。坝体高程 694~733m,灌区封拱时间为 95 年 4~5 月,95 年 11 月底下闸蓄水发电,发电初期控制最高限制水位 738.4m(正常高水位 760m)。

(二)、温控设计基本资料

1、气象水文资料

坝址区属温带气候,温热湿润,年内温差不大。多年月平均相对湿度为 83%,多年平均气

温15.8o C,极端最高气温 35.5o C,极端最底气温-4.6o C。寒潮是按月平均气温 3 天内连续下降 5o C 以上统计,年均气温骤降次数为 3 次,一般降温幅度为 6~9o C。出现的时段为11 月至次年 3 月,寒潮是导致坝体表面裂缝的主要外因,重视砼表面保护尤为重要。

2、砼试验资料

(1)、砼原材料

砂石骨料:采用灵关河赵家坝料场的天然砂石骨料。

水泥:采用夹江水泥厂生产的 425#中热硅酸盐水

泥。粉煤灰:使用成都火力发电厂的粉煤灰。

氧化镁:使用辽宁海城生产的氧化镁熟料,采用在水泥厂与水泥熟料一起棒磨的外掺方式,其均匀性是可靠的。

(2)、砼力学性能

受拱坝所处地质条件的制约,设计要求砼选用弹模低和抗拉高的砼,经大量的力学试验,优选最佳砼配合比见表 1,其砼力学性能见表 2。

表 1 砼配合比表

序号砼设计标号水灰比级配用水量㎏水泥用量砂率% 掺和料外加剂

1 R90200# 0.65 四105 135 2

2 23% 0.158%

2 R90200# 0.65 四105 135 22 20% 0.158%

表 2 砼主要力学性能

设抗压强度弹性模数×极限抗拉×干缩 180d 徐变抗渗陷度

计Mpa 103Mpa 10-4 ×10-6 度28d cm 28d 90d 28d 90d 28d 90d

标10-6Mp

号 a

R902 18.5 25.6 24.6 28.2 0.82 0.9 470 31.3 S8 5~7 00#

(3)、外加剂

经试验选择,坝体砼的外加剂采用减水剂与引气剂,旨在减少水泥用量,改善砼和易性、提高抗拉、抗压强度及延缓水泥水化热发散速度。减水剂选用开山屯木质黄酸钙,掺量为0.15%;引气剂选用 RSF—B,掺量为 0.008%。

(三)、温度控制标准的确定

- 6 -

1、上、下层温差标准

坝体砼浇筑要求短间歇均匀连续上升,上下层温差不明显。对于长间歇老砼的上下温差应严格控制。经计算:

(1)、短间歇均匀连续浇筑上升的坝体,上下层允许温差为 20o C;

(2)、对于浇筑块顶面及侧面长期暴露的坝体,上下层允许温差 17o C。

2、砼浇筑温度及允许最高温度

坝块的最高温度为砼浇筑温度加水化热温升扣除散热影响所能达到的最大值。本工程坝体允许的最高温度经分析与计算,其成果见表 3。

表 3 坝体各月允许最高温度及砼浇筑温度单位:o C 月份

1 2 3 4 5 6 9 10 11 12 项目

设计最高温

22 24 29 31 34 36 35 31 29 25

砼浇筑温度22 24 12 12~20 22 24 22 坝体砼浇筑温度在 11 月至次年 3 月按多年年平均气温考虑,其他月份按低于多年平均气温 2~3o C 考虑。

3、保温标准

坝址区寒潮发生多集中在 11 月和 3、4 月期间,降温幅度约为 6~9o C,此时气温骤降所形成的温度应力与年气温降温所形成的温度应力叠加。经计算分析,砼坝体出现表面裂缝,应采取保护措施。

(四)、温度控制措施及实施效果

1、施工时段分析及对策

拱坝坝基砼原计划于 3~4 月的低温季节浇筑,由于坝基地质原因,致使坝基开挖量及其处理量增大,因而计划大坝从 94 年 6 月份开始浇筑,6 月底达到高程 691m,7~9 月上旬进行坝基固结及帷幕灌浆,9 月中旬重新开始浇筑,预计次年 6 月份坝体浇筑完毕。

由上述计划可知,大坝基础砼在夏季施工,温度控制问题十分突出,而坝体砼基本上处于低温季节,经分析研究,决定在坝基范围内采用外掺 MgO 微膨胀砼技术,补偿砼变形收缩,达到制约基础砼受基岩约束产生裂缝的目的。

实际施工过程中,坝基砼在 6 月份浇筑,坝体主要在低温季节浇筑,通过跳块浇筑,在满足温控要求条件下,实现坝体短间歇均匀连续上升,坝体月均上升达 7.8m,最大月均上升达 10.8m。其施工速度在砼筑坝中尚属罕见。

2、降低水化热温升

(1)、选用了夹江 425#中热硅酸盐水泥,次水泥自身发热量较小,从而使水泥水化热作为砼水化热温升的热源,得到了有效控制,降低了砼水化热温升。

(2)、在砼中掺 20~30%的粉煤灰,采取超量掺法,即一部分粉煤灰代替水泥,减少水泥

- 7 -

用量,降低砼水化热温升;一部分则替代砂,改善砼的和易性。经试验测定,每立方米砼中加粉煤灰 10 公斤,可获得降低水化热 0.7 o C 的明显效果。

(3)、为了进一步减少水泥用量,经试验比较,采用复合式外加剂,即掺木钙、减水

剂和 RSF—B、引气剂,可节约水泥 10%,并有助于减少干缩和提高抗裂能力等。

(4)、鉴于坝体内无孔洞,决定尽量采用四级配砼,也可减少水泥用量,降低温升。

(5)、经分析计算,坝体还需布置预埋冷却水管,具体布置为在坝体高程 694~754m 间

埋设 1 英寸蛇形管,▽754m 以上天然冷却。冷却水管采用纵向布置,梅花形排列,层距2m,间距 1.5m。一期冷却采用通河水方式,通水时间从砼浇筑后 5~6 天开始,持续 30~50 天,可有效地消减水化热温升,消减坝块最高温度,实测最高温度见表 4。

表 4 坝体各月允许最高温度及实测情况表单位:o C 月

1 2 3 4 5 6 9 10 11 12

项目

设计最高温

22 24 29 31 34 36 35 31 29 25

砼浇筑温度20.5 22.3 27.8 30.2 32.9 34.8 33.6 29.8 27.3 23.2 从表中所知,坝体砼的实测最高温度均未超过允许的范围,从而说明采取的温度控制是合理的、有效的。

3、降低砼浇筑温度

(1)、降低砼出机口温度:砼骨料取自地笼,要求堆料高度不低于 8m,上拌合楼的骨料皮带机上拱设凉棚,降低骨料温度,控制及降低砼出机口温度。

(2)、坝址地区在 11 月到次年 3 月,气温较低,采用全天浇筑施工。其他时段,采用早、晚及夜间浇筑,降低砼浇筑温度,同时加快浇筑覆盖速度,缩短已浇筑表面暴露时间,防止温度回升,有效控制砼的浇筑温度。实测砼浇筑温度情况见表 5。

(3)、受砼入仓机械及气温等诸多因素制约,结合温度控制要求,坝块砼浇筑采取薄层,短间歇连续上升的施工方案。层厚为 1.5~2m。若仓面面积大于 200m2时,采取薄层台阶法浇筑;若其面积小于 200m2时,采取平浇筑法,层厚不超过 3.0m,层间间歇时间为 4~6

表 5 砼浇筑温度实测情况表单位:o C 月

6 7 8 9 10 11 12 1 2 3 4 5 6

项目

允许浇筑

22 24 24 32 12 12 20 22

温度

- 8 -

实测浇筑19. 20. 17. 13. 10.

7.0 7.1 10. 12. 18. 19.

温度8 7 9 8 1 2 6 9 1

天,薄层施工还可以充分利用坝顶及侧面散热,加之在坝体层面采用河水流水养护,以降低砼浇筑块的最高温度。

4、坝体表面保护措施

寒潮及气温骤降是造成坝体砼表面裂缝的主要因素之一。坝址地区的寒潮及气温骤降在11 月至次年 3 月时段内时常发生,为控制坝体砼表面裂缝的发生,应采取表面保护措施。

本工程坝体为薄拱坝,控制坝体砼表面裂缝更显重要。经综合分析比较,采用内贴气垫薄模保温;侧面及顶面采用草袋保温,并加以水湿,有效地防止表面裂缝的发生。

通过采用上述有效的温度控制措施,使坝体砼的浇筑温度及最高温度都得到了有效的控制,满足了设计要求,经全面仔细的检查,未发现一条裂缝,创造了无裂缝大坝的奇迹。

(五)、工程效果

1、选择合理的施工时段是温度控制的基本前提。坝体基础砼采用外掺 MgO 微膨胀砼是科学的、成功的,解决了坝基砼在夏季施工的难题。坝体砼从 10 月开始浇筑,至次年 6 月浇筑完毕,砼主要在低温季节浇筑,从而有效地控制了砼最高温度。

2、坝址区气候温和、湿度大、水温低、基岩弹模低等给温控提供了有利条件。采用气垫薄模加强表面保护是合理的、有效的温控措施之一。内贴法施工是较成功的。

3、通过优化砼分缝分层分块,选择采用薄层短间歇均匀上升法施工是合理的和现实的。并使坝体月匀上升达到 7.8m,最大上升为 10.8m 的超常规速度,创造砼筑坝速度的新高。

4、优选最优施工配合比,提高砼的极限拉伸值,增强砼自身的抗裂能力,采用双掺技术,即掺粉煤灰及外加剂,大大地降低了水泥用量,对坝体温控防裂起到重要的作用。通过坝体初期蓄水前后观测,未发现裂缝,说明本工程所采取的一系列温控防裂措施既简单又合理。

- 9 -

参考文献

1.美国恳务局著.拱坝设计翻译组译.潘家铮校.《拱坝设计》.水利电力出版社,1984 年 6 月,第 188 页、第 190 页至第 194 页。

2.祁庆和主编.《水工建筑物》.中国水利水电出版社,1986 年 1 月。

3.邰连河主编,《道路建筑材料》,人民交通出版社,1998 年 9 月。

混凝土施工防裂措施方案

混凝土施工防裂措施方案 1、施工工艺流程及操作要点 (1)工艺流程 进行预拌混凝土超长墙体施工期裂缝控制,必须建立全过程控制体系。该体系是在传统混凝土工程工艺流程的基础上,针对施工期裂缝防治完善而成。主要工艺流程如下: 基于裂缝防治的结构及构造措施优化→混凝土原材料优选→配合比体积稳定性优化设计→混凝土拌制及运输→混凝土浇注→混凝土养护及拆模 (2)操作要点 1)基于裂缝防治的结构及构造措施优化 a)要求混凝土具有足够的强度,较小的早期收缩变形及良好的抗裂能力; b)较长的现浇钢筋混凝土墙体是收缩裂缝的高发区,墙体中的钢筋除应满足强度要求外,应充分考虑混凝土收缩而加强,应有足够的配筋率,钢筋布置宜细而密分布。水平构造钢筋宜置于受力钢筋外侧,当置于内侧时,宜在混凝土保护层内加设防裂钢筋网片。 c)配筋率及间距应考虑混凝土收缩变形规律,结合结构计算和工程经验确定。 d)剪力墙中温度、收缩应力较大的部位,水平分布钢筋的配筋率宜适当提高。 e)墙中的预埋管线宜置于受力钢筋内侧,当置于保护层内时,宜在其外侧加置防裂钢筋网片。预留孔、预留洞周边应配有足够的加强钢筋并保证有足够的锚固长度。 2)混凝土原材料优选 为控制预拌混凝土施工期间收缩裂缝的发生,预拌混凝土供应方应对混凝土原材料进行优化选择。 3)配合比体积稳定性优化设计 对要求施工期间不出现早期裂缝的结构(构件),预拌混凝土供应方应在优选原材料和常规配合比设计的基础上,进行抗裂配合比优化设计,使混凝土除具有符合设计和施工所要求的性能外,还具有抵抗收缩开裂所需要的性能。 4)收缩、体积稳定性试验及评价 为提供有良好抗裂性能的混凝土,预拌混凝土供应方应在优选原材料、优化配合比的基础上进行收缩、体积稳定性试验及评价。 5)混凝土拌制及运输

大体积混凝土温控及防裂技术

建筑工程 Architecture 114 大体积混凝土温控及防裂技术 王静静杜崇磊 (烟建集团有限公司混凝土分公司) 中图分类号:TU75 文献标识码:B 文章编号1007-6344(2015)02-0114-01 摘要:混凝土结构中,经常会出现由于温度效应产生的裂缝。大体积混凝土施工中,温度变形产生的裂缝成为了最常见以及最严重的质量通病。 关键词:大体积混凝土温控防裂技术 混凝土基础温差的控制是人们过去经常关注的问题,对混凝土的后期保护却没有引起足够重视,以致很多混凝土建筑都有不同程度的裂缝出现。随着科技水平的不断发展,人们逐渐认识到温度变化是造成大体积混凝土开裂的关键因素。 一、大体积混凝土温度变形产生的原因分析 大体积混凝土中主要温度因素是水泥水化热,其温升经常会到达30--50摄氏度。水泥水化作用,使混凝土在硬化过程的最初几天,产生大量的水化热。然而,导热不良的混凝土就会对这种热量进行累积,以致混凝土温度升高、体积增大。大体积混凝土结构的壁越厚,其中心的水化热升温就越大。混凝土未充分硬化部分的弹性模量在升温时很小,壁内累积的压应力数值较小;混凝土已混凝土本结硬,在降温收缩时弹性模量特别大,这种收缩就会产生极大的拉应力。浇筑温度与水化热温度共同构成了最高温度。如果对最高温度值,没有采取适当的方法进行控制,没有对内外温度差通过恰当的保温措施进行减少,没有对温度应力通过改善约束条件进行减少,就会使大体积混凝土结构出现温度裂缝,甚至会出现贯穿性裂缝。 外界气温变化就会引起混凝土内部温度变。尤其在大陆性气候地区或寒冷地区,混凝土温度变形的最主要因素就是外界温度变化。很多事例显示,寒潮期间经常会出现大体积混凝土裂缝。因为气温比较低,混凝土短时间内徐变不能充分发挥,同时温度梯度大,就会形成很大的温度应力。建筑施工期间,混凝土内部经常会产生很大的拉应力。 水化热、浇灌温度以及外界气温变化等各种温度差,以及叠加应力,共同形成了混凝土的内部温度应力。强迫变形引起了温度应力,约束力越大,应力就会越大。而混凝土属于脆性材料,抗拉强度只有抗压强度的10%左右,混凝土内部温度应力大于混凝土抗拉强度时,混凝土自然就会因为温度变形而产生裂缝。受弯断面和孔洞四周应力集中的区域、混凝强度最差的地方、温度变化较大的表面以及应力最大的核心区域是混凝土温度变形最易发生的地方。 二、避免大体积混凝土出现裂缝的措施分析 (一)配制混凝土的材料分析 1、水泥 水化热就会引起混凝土内部大的温差,混凝土内部较大的温差就会产生温度裂缝。因此降低混凝土内部温差以及有效控制水化热,就能预防温度裂缝的产生。只有处理好混凝土的主要材料水泥,就能从整体上降低水化热。低水化热的水泥就能对水化热起到很好的控制作用。通过诸多实验得出,水泥中的主要放热成分铝酸三钙与硅酸三钙占的比例较大,因此,通过向水泥中加入中热硅酸盐、低热矿渣等有效物质,就能够对这两种成分有效的中和,就能降低水泥的水化热。 2、粉煤灰 硅、铝氧化物是构成粉煤灰的主要成分。硅铝氧化物与水泥接触就会发生二次反应,对材料的活性有很好的增强作用,同时,减少了水泥在混凝土中的含量,进而会有效避免混凝土裂缝的出现。粉煤灰颗粒能够在二次反应后均匀的分布在混凝土中,有效的改变与完善混凝土的内部结构,进而使混凝土内部的孔隙率减小,对孔结构起到优化作用,就会很大程度的增强混凝土硬化后的性能。因此,实际施工过程中,经常会在混凝土中加入粉煤灰,对混凝土出现裂缝起到很好防治的作用。 3、骨料 粗骨料:粒径的大小与级配有很大的关系,选择粒径较大的骨料就会降低水泥砂浆及水泥的使用量,进而会降低水化热,就能很好的预防裂缝的形成。细骨料:同样道理,配制混凝土时,应选用中粗沙。同时,应调整沙子的含泥量,这能够有效的防止混凝土出现收缩变化,进而防止混凝土产生裂缝。 4、外加剂 混凝泥土中加入适当的减水剂、缓凝剂以及引气剂等外加剂,也能有效的避免混凝土出现过多的裂缝。其原理是:减水剂对混凝土的融合性有很好的促进作用,进而提高了混凝土的强度,使水灰比降低,水泥含量降低,就能有效防止裂缝的出现。缓凝剂能够延长混凝土放热峰值的时间。引气剂对混凝土的和易性与可泵性具有很好的增强作用,能够充分发挥混凝土的耐久性,就增强了混凝土的抗裂性。应该注意,添加外加剂的混凝土与基准混凝土的收缩比一定保持在35%左右,必须有效控制外加剂的使用量,防止用量过大,改变混凝土的使用性能。 (二)混凝土施工方式的选择分析 1、混凝土的拌制与浇筑 施工过程中,混凝土的拌制非常重要,混凝土材料的使用性能会直接受到混凝土拌制效果的影响。因此,施工中要严格按照标准对混凝土进行拌制,并有效的控制混凝土出机口坍落度。同时,要调整好混凝土拌合物出机口的温度,对温度进行合理控制,可以利用送冷风以及冷却的方式调节。 运用有效的振捣方式,进行混凝土的浇筑,并合理分布振捣的时间,尤其是泛浆与间距的控制。同时,浇筑工作完成后,要适当的压实与抹平浇筑表面,能够很好的控制混凝土的裂缝的产生。另外,使用分层浇筑的方式,能够使下层混凝土在初凝时内凝结良好,对防止裂缝的产生也有很好的预防效果。 2、混凝土隔热保护与日常维护分析 大体积混凝土出现裂缝的主要原因是内外温差大,因此,采取一定的措施对混凝土的温度控制是浇筑结束后非常重要的工作。通过实施隔热保护就能促进混凝土表面快速散热。拆模时,更应注意外部的环境温度,必须实施有效的表面保护,防止因温差形成裂缝。 混凝土浇筑施工结束后,一定要采取日常维护措施。对混凝土的表面进行洒水,保持湿润状态,就能增加混凝土内部的强度。混凝土浇筑结束12--18小时后,就应对其进行实施保护,维护时间应持续20天以上。 三、建议与结语 (一)建议 1、改善混凝土的约束条件 混凝土结构的约束决定了混凝土应力的大小,分缝间距与约束作用有密切关系。合理的分缝不仅能减轻约束作用,而且也能缩小约束范围。通畅分缝间距以12--18米为宜。同时,应考虑后浇缝的宽度,以及应满足同截面钢筋的搭接比度,一般以1米为宜。应选用膨胀水泥配制后浇缝混凝土,整体结构浇筑40天后,就能进行后浇缝。 2、对结构的钢筋进行合理搭配 限制裂缝的出现还与合理的配筋有关。合理的配筋能够减少数目小而宽度大的裂缝,改善数目多而宽度小的裂缝,这样就减轻了裂缝的程度。构造钢筋部位不仅要设置在结构表层,而且在结构薄弱部位也要设置。 3、对混凝土一定要加强保温与养护 为了有效减少混凝土内外温度差及混凝土表面温度梯度,防止表面裂缝,无论是常温还是负温施工,都必须实施混凝土的保温措施。常温保护能够缓冲混凝土受到大气温度变化与雨水侵袭的温度影响。负温保护层一定要使用不透气的材料,才能见效,应根据工程特点、气温以及控制混凝土内外温度差等条件设计负温保护层。保温层还有保湿的作用,同样能够提高混凝土表面抗裂能力。养护期以不低于一个月为宜,较寒冷的地区应该适当延长。 (二)结语 大体积混凝土结构使用性能,会因裂缝受到很大的影响。只有对大体积混凝土的裂缝做好预防措施,发现裂缝并及时采取措施进行修补调整,才能不使其应用受到影响。 参考文献 [1]唐祥胜.大体积混凝土裂缝控制与防止措施[D].合肥工业大学,2005. [2]李树奇.大体积混凝土防裂技术措施的研究[D].天津大学,2004. [3]刘琳莉.桥梁大体积混凝土水化热施工控制研究[D].西南交通大学,2012.

大坝温控防裂的措施要点

四川农业大学水利水电工程本科毕业论文大坝温控防裂的措施 作者陈彬彬 学籍批次1509 学习中心陕西延安奥鹏学习中心 层次专升本 专业水利水电工程 指导教师

- 1 - 内容摘要 本文着重介绍了砼坝温度控制的目的及砼坝产生温度裂缝的成因,阐述了温度控制所采取的以下几种措施:1、降低砼混合物中粗骨料和拌和用水的温度;2、在砼浇筑层上布置蛇形冷却管,采用循环水进行砼人工冷却;3、降低砼混合物中水泥用量及掺外加剂,以降低砼混合物中的水化热,控制砼的温度上升;4、砼施工中采用薄层浇筑、对砼的表面洒水养护以及砼混合物中掺缓凝剂等。采取这些温控措施降低砼在凝固过程中产生的温度,以达到防止发生温度裂缝的目的。同时列举了在工程中成功利用温度控制措施以防止温度裂缝发生的实例。 关键词:砼坝温度控制措施

目录 一、案例正文 (1) (一)、砼坝温度控制的目的 (1) (二)、温度控制措施 (2) 二、案例分析 (4) (一)、砼拱坝工程概 (4) (二)、温控设计基本资料 (5) (三)、温度控制标准的确定 (5) (四)、温度控制措施及实施效果 (6) (五)、工程效果 (8) 参考文献 (9)

大坝温控防裂的措施 一、案例正文 大体积砼水工建筑物因尺寸大而产生体积变化。这种体积变化因受到约束而造成坝内开裂,并将影响已完建大坝内的应力状态。砼内最大的体积变化起因于温度变化。在多数情况下由温变与温差而产生的开裂趋势,砼坝的开裂是人们所不希望的,因为开裂会破坏建筑物的整体性,从而有损其功能并招致砼的过早变质。因此,通过适当的设计及施工措施可使砼坝的开裂趋势减小到容许的程度。 (一)、砼坝温度控制的目的 采用砼作为水工建筑物的筑坝材料,坝体的砼体积皆愈来愈大,因此必须在砼坝施工中采取温度控制措施。在大体积砼坝采取温度控制措施是为了:一是防止由于砼温升过高、内外温差过大及气温骤降产生各种温度裂缝;二是为做好接缝灌浆,满足结构受力要求,提高施工工效,简化施工程序提供依据。采用何种温控措施和做到什么程度,需根据对坝的研究、施工方法及其温度环境而定。 大体积砼坝的开裂是一种不希望发生的情况,因其影响坝的抗渗性、耐久性、内应力和外观。当坝体内某部位的拉应力超过砼抗拉强度时,就会产生裂缝。这种拉应力的产生可能是由于坝上作用荷载所致。但更常见的是由于砼的体积变化受到约束。大体积砼最大的体积变化来源于温度变化。在大多数情况下,采用适当的设计和施工方法,可以使温度变化和温差造成的砼开裂减轻到能容许的程度。 采取各种温控措施,尽量减小砼体积变化,就能采用较大的浇筑块,从而能使施工更快、更经济。后期冷却是温控措施之一,如果收缩缝要进行灌浆,这种措施也是不可缺少的。在采取温控措施费用过高,或者不能充分控制温度的地方,为减小开裂趋势可在坝内设置接缝。设缝可使砼的补尝体积变化发生在规定的地方,而后可对接缝进行灌浆以形成整体结构;设缝还可减小砼浇筑块的尺寸,使体积变化不产生导致开裂的拉应力。 某些结构物上除采用预冷措施和埋设冷却水管外,还使用了一套完整的温度处理办法。这些办法就是减少水泥的用量,采用低热水泥和有效地使用粉煤灰代替一部分水泥。 1、砼坝体积变化 大体积砼结构由于其尺寸大而产生体积变化,是设计人员所熟知的。砼早期温度变化产生的体积变形,可以控制在适当的限度之内,并能结合结构设计预以考虑。最终稳定温度状态,取决于坝址条件,同时,对于随后周期的体积变化则几乎无法加以控制。 理想的情况是简单地设法消除任何温降。要达到这个目的,就必须在低温下浇筑砼,使水泥水化热所产生的温升刚好能使砼温度达到其最终稳定温度。但是,大多数防止温度裂缝的措施,只能接近这一情况。接近的程度取决于坝址的条件、结构应力是否经济等。 主要体积变化,是由浇筑后不久发生的最高温度下降到最终稳定温度这段温降所引起的。

混凝土温控措施(1)知识交流

混凝土温度控制 1概述 温控措施要求 (2) 常温混凝土为低温季节不采用预冷措施拌制的自然温度混凝土,也称自然入仓温度混凝土;预冷混凝土为高温季节或较高温季节采用预冷措施拌制的低温混凝土。 (3)应根据混凝土施工配合比、气温资料、施工方法等及设计允许最高温度推算出浇筑块所需的浇筑温度及出机口温度,并建立相应的关系,报监理人审批后执行。4月及10月浇筑贴坡混凝土时,混凝土出机口温度需达到7~10℃,混凝土浇筑温度控制在12~14℃。 (4) 为减少预冷混凝土温度回升,应严格控制混凝土运输时间和仓面浇筑坯覆盖前的暴露时间,混凝土运输机具应加保温设施,并减少转运次数,使预冷混凝土自出机口至仓面浇筑坯被覆盖前的温度满足浇筑温度要求。 15.14.5.3 合理的层厚及间歇期 (1)混凝土浇筑分层按设计要求进行,贴坡混凝土浇筑层厚一般采用 1.5~2m,加高混凝土浇筑层厚采用2~3m。若需变动,应经监理人书面批准。 (2) 大体积混凝土层间间歇应满足表15-7的要求,墩、墙浇筑层厚3~4m ,层间间歇时间4~9天。 表15-7 大体积混凝土浇筑层间间歇时间单位:天 注:低温季节浇筑取下限值。 (3)应在混凝土浇筑前按施工进度要求和有关层厚及间歇期要求,规划好各部位混凝土浇筑具体层厚及间歇期。 (4) 对施工计划中预计为长间歇停浇面,应在仓面布设防裂钢筋。

15.14.5.4 合理的施工程序和进度 主体建筑物施工程序和进度安排,应满足以下几点要求: (1) 混凝土在设计规定的间歇期内连续均匀上升,不得出现薄层长间歇。 (2) 贴坡混凝土安排在10月至次年4月施工。 (3) 贴坡混凝土相邻坝段之间高差不宜大于4~6m。 15.14.5.5 混凝土表面保护 (1) 大体积混凝土温控防裂满足以上温控要求外,还应满足表面保护要求。 (2) 应根据设计表面保护标准确定不同部位、不同条件的表面保温要求。尤其应重视基础约束区,贴坡部位及其它重要结构部位的表面保护。应重视防止气温骤降及寒潮的冲击。所有混凝土工程在最终验收之前,还必须加以维护及保护,以防损坏。浇筑块的棱角和突出部分应加强保护。 各部位主要保温要求如下: 1) 保温材料:保温材料应选择保温效果好且便于施工的材料,保温后表面等效放热系数:一般部位混凝土β≤2.0~3.0w/m2·℃;对永久暴露面、棱角部位、溢流面、闸墩等重要部位β≤1.5~2.0w/m2·℃。 2) 对于除过流部位之外的新浇混凝土上、下游永久暴露面,浇完拆模后立即设施工期的永久保温层。施工期的永久保温指保温至本标工程完工前。β值取15.14.5.5(2) 1)中下限值。 3) 每年入秋(9月底),应将竖井、廊道及其他所有孔洞进出口进行封堵。 4) 当日平均气温在2~3天内连续下降超过(含等于)6℃时,28天龄期内混凝土表面(顶、侧面)必须进行表面保温保护。β值取15.14.5.5(2) 1)中上限值。

混凝土防裂技术措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 混凝土防裂技术措施(正 式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4346-45 混凝土防裂技术措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 本标段混凝土以常态混凝土为主,由于工期要求,进水塔等大体积混凝土结构需在高温季节浇筑,结合工程实际情况和,对混凝土的具体施工浇筑过程、施工分层方法、养护过程、拆模时间、施工间歇时间、层间施工间歇时间、养护方法、表面保温方法(保温材料材质、保温材料厚度、复合保温方法、保温时间、保温拆除时间)制定了具体的施工方案。 混凝土产生裂缝的原因有许多种,实践证明,大体积混凝土产生裂缝的主要原因为收缩裂缝。大体积混凝土浇筑后,由于水泥在水化凝结过程中,要散发大量的水化热,因而使混凝土体积膨胀,此时,混凝土产生较小压应力。待达到最高温度以后,随着热量向外部介质散发,温度将由最高温度降至一全稳定温度或冷稳定温度场,将产生一个温差。如果浇筑温度

大坝基础垫层混凝土施工方案

****自治县****水库工程 大坝基础垫层混凝土 施工方案 编制: 审核: 批准: 二○一五年八月

目录 一、工程概况2 1.1工程简介2 1.2 库区工程地质2 1.2.1基本地质条件2 1.4气象4 1.5主要工程量5 二、编制说明5 2.1编制依据5 2.2编制原则5 2.3适用范围6 三、施工布置6 3.1 施工道路布置6 3.2 施工用水6 3.3 施工用电7 3.4临时房建及仓库7 3.5砂石生产系统(包括临时储备料仓)8 3.6混凝土拌和系统8 3.7其它8 四、总体施工程序、施工措施、主要技术控制要点和施工过程中质量保障措施9 4.1施工程序9 养护。9 4.2主要施工工艺流程9 4.3施工准备9 4.3.1混凝土原材料和配合比9 原材料质量检测9 4.3.2常态混凝土配合比10

4.4主要施工措施10 4.4.1 常态混凝土工艺流程10 4.4.2 常态混凝土的浇筑10 4.5 大坝常态混凝土基岩面及施工缝处理13 4.5.1 基岩面处理方法13 4.5.2 施工缝面的处理13 4.6 预埋件施工14 4.6.1 止水止浆片施工14 4.6.2 横缝排水槽、坝体排水孔及冷却水管施工错误!未定义书签。 4.6.3 填缝板错误!未定义书签。 4.7 大坝基础填塘、断层回填浇筑方法及措施15 4.8 模板工程16 4.9 钢筋工程17 4.9.1 钢筋的采购与保管17 4.9.2材质的检验17 4.9.3 钢筋的制作17 4.9.4 钢筋的安装18 4.9.5 钢筋工程的验收20 五、施工过程中施工质量保障措施20 1)施工仓内的运行组织与管理20 4)原材料控制22 5)施工配合比试验22 6)过程中质量控制23 (11)试验检验24 六、大坝混凝土温控防裂施工技术措施28 (7)表面保护及养护29 七、施工进度计划安排30 八、资源配置30 九、质量安全及环境保护保证措施31

大体积混凝土冷却循环水温控措施

大体积混凝土冷却循环水温控措施 由于大体积混凝土具有结构厚、体形大、施工技术要求高等特点,在大体积混凝土施工过程中,因水泥水化热作用产生很大的热量,混凝土表面热量散失较快,内部热量不易散发,从而内部与表面产生较大的温差。当温差超过一定临界值时,致使混凝土产生温度应力裂缝,从而影响工程的耐久性。本工程底板3.2米、2.6米厚采用“大体积混凝土冷却循环水温控施工工法”,防止了大体积混凝土产生温度应力裂缝的质量通病。 采用冷却循环水温控法降低大体积混凝土温升,通过测温点内热偶传感器所测混凝土内温度的变化规律,自动调节循环水管水流速度,平衡大体积混凝土内外温度,防止混凝土温差所产生的应力裂缝,确保工程质量。 5.11.1施工工艺流程 施工工艺流程见下图 5.11.2 砼温升和冷却循环水管、测温点埋设计算 (1)砼温升计算 根据经验公式:Tmax= To +Q/10 式中 Tmax----为砼内部的最高升温值; To----为砼浇筑温度。按夏天15天平均气温取30℃; Q-----为C30每立方米砼中PO42.5矿渣水泥用量取368㎏/m3, 则施工中砼中心最高温升值为:Tmax=30+368/10=66.8℃

循环水管道立面示意图 (2)冷却循环水管埋设计算 1)根据《高层建筑施工手册》及热交换原理,每一立方砼在规定时间内,内部中心温度降低到表面温度时放出的热量,等于砼在硬化期间散失到大气中的热量。 2)依据该基础设计尺寸、配筋、埋件、留洞、夏天昼夜气温变化及砼温升梯度等情况,以¢48冷却循环水管所承担的砼理论降温体积为基准,通过精确计算(计算过程略)确定,冷却循环水管道按照左、中、右三个循环系统进行安装。冷却循环水管安装上下中心距为660mm,左右中心距为1710mm(如下图所示),三个系统循环水管呈之字形布置。 循环水管道立面安装图 冷却循环水管道安装节点详图 (3)温控点布置及安装:

混凝土温控及防裂措施

8.11 混凝土温控防裂措施 8.11.1 基本条件及要求 8.11.1.1 混凝土允许最高温度 根据招标文件要求,坝后厂房混凝土允许设计最高温度见表8.11-1。 表8.11-1坝后厂房工程混凝土设计允许最高温度单位:℃ 注:L为浇筑块长边尺寸。 8.11.1.2 控制浇筑层最大高度和间歇时间 基础和老混凝土约束部位浇筑层高控制为 1.5m~2.0m,基础约束区以外最大浇筑高度控制在2.0m~3.0m以内,上、下层浇筑间歇时间为5d~7d,对混凝土浇筑层较厚、温控要求较严部位可适当延长2d~3d。在高温季节,可采用表面流水冷却的方法进行散热。应严格按施工图纸所示或经监理人批准的分层分块图进行浇筑。 8.11.2 混凝土出机口温度控制 (1)混凝土拌制过程中,降低混凝土的水化热温升 1) 尽量选用水化热低的水泥。 2) 在保证混凝土质量满足设计、施工要求的前提下,改善混凝土骨料级配,掺加优质的掺和料和外加剂以适当减少单位水泥用量。 (2)根据招标文件要求,在高温季节或较高温季节浇筑混凝土时,应采用预冷混凝土浇筑,在计算混凝土浇筑温度时应充分考虑混凝土运输过程中的温度回升。各月、分部位混凝土浇筑温度及出机口温度控制指标见表8.11-2。

8.11.3.1 混凝土运输温控 (1)采用搅拌车运输时,在运输混凝土前对机械运输设备喷雾或冲洗预冷,采取隔热遮阳措施。 (2)通过汽车运输的混凝土,根据拌和楼和建筑塔机、布料杆、混凝土泵等的生产能力,以及仓面浇筑的情况,合理安排汽车数量及拌和强度,一般每车运输混凝土不少于3.0m3,运输车辆安装遮阳棚,运输途中拉上遮阳棚,拌和楼前安装喷雾装置,对回程的车辆喷雾降温。 (3)运输道路优选最短路径,以使混凝土在最短时间内到达浇筑地点。 (4)在条件允许的施工现场搭设遮阳棚,启动冷却水降温系统,所有待料搅拌车进行待料洒水降温。 8.11.3.2 浇筑过程温控 (1)高温季节浇筑时,在下料的间歇期,用聚乙烯卷材覆盖仓面,防止温度倒灌。 (2)夏季浇筑仓内配备喷雾设施,喷雾设备有轴流风机、摆动式喷雾机雾化管等,根据仓面特点来配置喷雾设备,考虑摆动式喷雾机降温效果较好,一般情况下,选择用摆动式喷雾机,局部不宜用喷雾机的部位用雾化管。 (3)混凝土浇筑前,配置足够的施工设备,加快入仓强度和浇筑强度,缩短运输时间和混凝土浇筑时间,减少太阳对运输混凝土的辐射。 (4)为缩短坯层覆盖时间,加大入仓强度,可减少坯层厚度,每坯层厚调整为35~40cm。 8.11.4 混凝土冷却通水 8.11.4.1 冷却水管的布置及埋设 (1)埋设部位:有初期通水、中期通水和后期冷却要求的部位均需埋设冷却水管。冷却水管采用1英寸(直径2.54cm)黑铁管,也可采用塑料、高密聚乙烯类管材。 (2)冷却水管及供水管的规格、类型、间距长度、通水量等应满足初期、中期通水降温的要求。 (3)冷却水管的布置要求:冷却水管一般按1.5m×1.5m布置,当层厚大于2.0m时,应在浇筑层中间埋设一层冷却水管。冷却水管单根水管长度不得超过250m。中间埋设的冷却水管一般采用高密聚乙烯类管材,随仓位浇筑到高程埋设。 (4)冷却水管宜预先加工成弯段和直段两部分,在仓内拼装成蛇形管圈。

混凝土防裂控制措施(最新)

混凝土防裂控制措施 混凝土开裂后,其性能与原状混凝土性能相差很大,尤其是对耐久性的影响更大,而混凝土渗透反过来又会加速和促使混凝土的进一步恶化,严重影响结构的长期安全和耐久运行。而裂缝大多又是在早期产生的,因此,探讨裂缝产生的原因和防止裂缝的出现就显得格外重要。 混凝土产生裂缝风险的原因很多,归纳起来主要包括三类:结构设计不合理引起的裂缝;混凝土自身性能(力学、变形及热学性能)引起的裂缝;外部环境因素和约束条件引起的裂缝,三者既相互关联又相互影响。 那么混凝土防裂控制措施有哪些呢? 1、从不同的方面选择混凝土原材料 (1)掺和料的选择。为了更好地改善混凝土的抗裂性能,在混凝土的掺和料中优先选用I级或Ⅱ级粉煤灰。如果使用硅灰作为掺和料,其掺量不宜大于3%,并应采取可靠的防治裂缝的技术措施。 (2)水泥的选择。现在个体企业增多,小厂水泥也不乏存在。为了保证质量,应选择既能保证产品质量稳定、又具有大批生产能力的大型水泥厂生产的水泥。其品种优先选择的顺序是低碱水泥、硅酸盐水泥、普通硅酸盐水泥。对于不同用途、不同环境所使用的水泥,应根据设计要求来决定,例如浇筑大体积混凝土就应选择低热水泥。

(3)外加剂的选择。外加剂的选择与气温的高低、场地的远近以及混凝土运用的地方等有关系。选择的外加剂一定要与水泥的化学性能相适应,如选择多种外加剂时,要看各种外加剂之间的化学性能是否相匹配。总之,一定要选择合适的外加剂,否则适得其反。 (4)细骨料的选择。混凝土中细骨料的选择即为砂的选择,一定要选择泥量、泥块含量符合要求以及颗粒级配良好的细骨料。当细骨料级配较差时,应用几种粒径不同的细骨料进行颗粒级配,从而达到良好的级配效果。对于抗裂要求较高的混凝土,宜选取含泥量小于1.5%、含泥块量小于0.5%的中砂。 (5)粗骨料的选择。粗骨料的选择即为碎石等骨料的选择,要根据设计要求来决定。无论选择何种骨料,都应选择粒形好、空隙率小、针片状含量少、级配良好的粗骨料。 (6)经过有关技术人员的多次试验,结果表明:在混凝土中掺入一定量的纤维和(或)阻裂的有机聚合物(如聚丙希、尼龙类纤维等),可提高混凝土的抗裂性能。 2、混凝土配合比主要参数的选择 (1)水泥用量。在我们的潜意识里认为水泥加得越多越好,其实并非如此。在配置混凝土时,宜尽量降低水泥用量,只要其满足混凝土设计强度即可。通常水泥含量应符合这样一个范围:普通强度等级的混凝土水泥用量为150kg/m3-450kg/m3,高强混凝土中水泥及掺和料总量应不大于550kg/m3。

大坝混凝土施工方案

葛洲坝集团 第五工程有限公司 紫云自治县三岔河水库工程大坝混凝土施工方案 编制: 审核: 批准: 葛洲坝集团第五工程有限公司 三岔河水库工程施工项目部 二○一五年七月

目录 一、工程概况........................................ 错误!未定义书签。 工程简介........................................ 错误!未定义书签。 库区工程地质.................................. 错误!未定义书签。 基本地质条件................................ 错误!未定义书签。 气象............................................ 错误!未定义书签。 二、编制说明........................................ 错误!未定义书签。 编制依据........................................ 错误!未定义书签。 编制原则........................................ 错误!未定义书签。 适用范围........................................ 错误!未定义书签。 三、施工布置........................................ 错误!未定义书签。 施工道路布置................................... 错误!未定义书签。 负压溜槽布置................................... 错误!未定义书签。 施工用水....................................... 错误!未定义书签。 施工用电....................................... 错误!未定义书签。 临时房建及仓库.................................. 错误!未定义书签。 砂石生产系统(包括临时储备料仓)................ 错误!未定义书签。 混凝土拌和系统.................................. 错误!未定义书签。 其它............................................ 错误!未定义书签。 四、总体施工程序、施工措施、主要技术控制要点和施工过程中质量保障措施 施工程序........................................ 错误!未定义书签。 主要施工工艺流程................................ 错误!未定义书签。 施工准备........................................ 错误!未定义书签。 混凝土原材料和配合比............................ 错误!未定义书签。 原材料质量检测.............................. 错误!未定义书签。 碾压混凝土配合比设计........................ 错误!未定义书签。 提交的试验资料.............................. 错误!未定义书签。 砂浆、净浆配合比设计........................ 错误!未定义书签。

大面积混凝土地坪抗裂措施研究

大面积混凝土地坪抗裂措施研究 摘要:大面积混凝土地坪施工容易产生裂缝,这是由很多原因形成的,既有施工原因,也有设计和其他原因,混凝土裂缝不容忽视,本文对地坪裂缝原因进行了分析,提出了防治裂缝的措施。 关键词:地坪;混凝土;抗裂 商品混凝土质量稳定,工作性好,在我国的国民经济建设中发挥了重大作用。然而,随着商品混凝土的大量运用,用水量大以及对早期强度高的追求,给混凝土的质量带来隐患。工业厂房地面采用商品混凝土现浇造成地坪开裂的现象普遍存在。裂缝使混凝土的承载力降低,容易造成渗漏,使混凝土结构耐久性降低,不仅影响美观,而且会造成使用功能下降,更严重的则会影响设备的正常运行造成事故等问题。 一、地坪开裂原因分析 1.1 施工原因 1.1.1 地基处理质量失控地坪一般坐落于地基之上,地 坪地基有天然地基和人工地基之分,不论是天然地基还是人工处理地基,一旦质量失控都会导致地坪开裂。 (1)天然地基天然地基质量失控的主要原因是忽视了 地基土的均匀性所导致的,在大面积地坪范围内,总体上地

基承载力是比较均匀的,但局部总有少量的不均匀,如果忽视这些局部不均匀的影响,就会导致天然地基质量失控,使用过程中,就可能发生局部不均匀沉降,造成地坪开裂。 (2)人工处理地基软弱地基需要经过压实,换填,甚 至采用复合地基进行处理,或者因地势较低,需要进行回填处理的地基均为人工处理地基。 1.1.2 施工环境控制不严格一些工程地坪开裂后,在处 理时发现局部两层混凝土夹层中有泥土,这说明施工时未将新老混凝土结构紧密层处理干净,导致了局部空鼓、开裂。 1.1.3 基层施工质量失控地坪设计一般分为基层和面层,基层材料主要有建筑垃圾、碎石、砂、砂石、矿渣、灰土、水泥砂浆、钢渣、素混凝土等等,如果施工方法不到位,同样会导致基层质量失控。 1.2设计原因 1.2.1地坪设计抗裂能力不足地坪设计一般考虑的是理 想状态,但如果施工条件受限,实际情况与理想状态相差太多,设计强度储备不足,或地基回填时遭遇阴雨天气,施工方很难保证回填质量,而设计方未能采取有效补救措施,则会导致地坪抗裂能力降低,达不到设计要求。 1.3 材料问题 1.3.1 水泥问题水泥是混凝土的主要组成部分,是混凝 土强度的保证。如果采用过期水泥或不合格水泥产品,混凝

1-17-卢治文高温干燥地区碾压混凝土温控防裂技术研究与应用

高温干燥地区碾压混凝土温控防裂技术研究与应用 卢治文 凌春海 (中水珠江规划勘测设计有限公司,广东省广州,510610) 摘要:针对南沙水电站高温干燥地区的特点,通过采用三维混凝土温度场和徐变应力场非稳定场问题求解的有限元法数值仿真计算,预测了南沙碾压混凝土结构可能的开裂部位和开裂时间,并提出相应的控制指标和防裂措施,取得了一定的效果。 关键词:碾压混凝土;高温干燥;仿真计算;温控防裂技术;应用; 1 工程简介 南沙水电站工程位于云南省元阳县境内红河干流元江的中下游段,是以发电为主的大(Ⅱ)型工程。大坝为碾压混凝土重力坝,水库总库容2.65亿m3,总装机容量为150MW,多年平均发电量7.023亿kW·h,最大坝高为85.0m,混凝土浇筑量65万m3。 南沙水电站位于红河中游段,属元江炎热气候区,流域海拔在高程100m~1500m之间,受红河河谷地带干热焚风的影响,气候干燥炎热,绝对最高气温达41.7℃,高温季节长达8个月,年平均气温高达23.5℃,高温季节平均相对湿度50%。南沙水电站大坝碾压混凝土施工必须面临高温干燥季节条件下施工的技术难题,在这样恶劣的环境条件下进行碾压混凝土施工在国内外是少有的,具有很大的挑战性。大坝碾压混凝土温控防裂是制约大坝快速施工的首要关键技术问题,直接影响工程建设的成败。 2 温控防裂关键技术研究 近年来,随着混凝土热传导理论、工程力学、试验方法和数值仿真计算技术的快速发展和日臻完善,对水工结构混凝土裂缝成因的认识和防裂技术水平都得到了很大的提高,特别是通过对施工期混凝土温度场和应力场的非恒定时空复杂问题的精细仿真计算求解,已经能够对整个工程施工期乃至运行期的全过程情况进行严密的数值模拟,能够正确模拟工程建设中所遇到的绝大多数主要影响因素;也可以结合具体工程的气候条件、设计情况和施工计划,进行多种施工方法与工艺的防裂方法对比仿真计算分析,重要参数的敏感性对比计算分析,从而指导混凝土的实际浇筑过程,满足工程混凝土的防裂要求。 2.1 研究方法 采用三维混凝土温度场和徐变应力场非稳定场问题求解的有限元法数值仿真计算理论和方法,选取南沙碾压混凝土重力坝的6#溢流坝段和3#厂房坝段作为典型研究对象,进行整个施工期的数值仿真建模和计算分析,认识和掌握混凝土施工过程中温度、应力的时空变化规律和主要影响因素,为施工过程中进行混凝土防裂提供参考。 对于不同配合比的混凝土材料,导温系数和导热系数往往变化不大。所以对混凝土温度场影响较大的因素有混凝土的浇筑温度、绝热温升、放热系数和环境温度。 在温度应力场的计算中,弹性应变的大小主要决定于混凝土的弹模,而混凝土的弹模在不同的龄期是不同的,其变化是一个由弱变强的过程。在温控工作中,应尽量利用早期弹模小的特点,使混凝土的内外温差最大的时刻尽早出现。 2.2 大坝混凝土施工期开裂机理

混凝土冬季施工防裂控制措施

混凝土冬季施工防裂控制措施 发表时间:2015-01-26T13:55:49.803Z 来源:《防护工程》2014年第11期供稿作者:刘晓辉 [导读] 变形作用各种变形作用(温度、收缩、不匀沉降) 是引起大体积混凝土产生裂缝的主要原因。 刘晓辉中铁九局集团有限公司辽宁省 110051 摘要:混凝土的冬季施工质量控制问题,是一项关键施工技术。本文结合工程实例,阐述混凝土冬季施工在原材料选择、温度控制以及施工组织等方面的防裂控制措施。 关键词:混凝土;冬季施工;防裂控制措施 1、工程概况 沈阳市和平区地王国际花园某高层楼,属于商住两用楼,共28层,1-5层是商业网点,5层以上是住宅,建筑总高度约90 m ,总建筑面积48000 m2 ,基础由混凝土灌注桩及钢筋混凝土筏板梁组成。筏板混凝土厚度分别为1.2、1.5、1.8、2.4、2.8 m厚 ,混凝土设计强度为C45,抗渗等级要求P8,混凝土总方量约4500 m3 ,按施工技术规范标准规定厚度属于大体积混凝土结构。混凝土浇筑时间为07年11月19日至11月25日,室外自然气温为- 10~1 ℃,属于冬季施工。因此,需要制定混凝土冬季施工技术方案,防止混凝土发生温度收缩裂缝。 2、混凝土产生裂缝的原因分析 大体积混凝土在施工阶段产生温度裂缝的主要原因是:一方面由于混凝土内外温度差过大而产生的温度应力和温度变形;另一方面是结构物内外的约束要阻止这种变形,一旦温度应力超过混凝土所能承受的抗拉强度时,即产生裂缝。 2.1、变形作用各种变形作用(温度、收缩、不匀沉降) 是引起大体积混凝土产生裂缝的主要原因。它们引起的应力超过了混凝土的抗拉强度,或者认为它们引起的拉应力超过了混凝土极限拉伸时,混凝土就会开裂。混凝土表面裂纹容易渗透有害介质,腐蚀钢筋和加速混凝土碳化,不利于结构的耐久性。 2.2、约束变形如果只有变形而没有约束,混凝土也不会开裂。大体积混凝土基础受到的约束有内约束和外约束两种。内约束是混凝土内部各质点之间的相互影响、相互制约,如混凝土内外产生温差时,内部温度高混凝土要膨胀,外部温度低混凝土要收缩;内外相互制约,使外表面混凝土产生拉应力,此拉应力如果过大,就会使混凝土开裂。外约束是指另一结构物或物体引起的约束,如果混凝土在降温或收缩变形过程中,受到地基或结构边界条件的影响, 也会产生拉应力, 严重时可导致开裂。 3、防止温度收缩裂缝的技术措施 3.1、控制混凝土配合比混凝土裂纹主要是温升应力引起的。根据混凝土热工计算得出混凝土水化热引起的结构内部最高温度可达60 ℃左右。为了控制混凝土温升,优先选用低水化热品种水泥。优化混凝土施工配合比,最大限度降低水泥用量。本工程选用矿渣硅酸盐42.5#水泥。泵送混凝土的含砂率控制在40 %~44 %之间,细骨料选用中粗砂,含泥量不超过3 %。 粗骨料选择均匀坚固、含泥量小、5~30 mm级配优良碎石,含泥量小于1 % ,针片状含量小于15 %。选用大粒径骨料,可减少用水量相应减少混凝土的收缩和沁水现象,同时也可减少水泥用量,降低水化热。在混凝土中掺入适量的粉煤灰可代替部分水泥,降低水化热量,增加混凝土的和易性和保水性,从而提高混凝土的可泵性。掺入高效泵送减水剂SP402 ,提高混凝土的和易性,同时减少拌合水量,减低混凝土的收缩行。 3.2、混凝土的浇注本工程采用商品混凝土,现场设置两台混凝土输送泵,配6~7 辆混凝土运输罐车,每辆车6 m3 ,每车在运输时间约40 min ,混凝土采用缓凝混凝土,初凝时间设计为5h 。筏板板体部分最大浇筑速度为50m3/ h ,平均为37.5 m3/ h ,每天浇筑900 m3 。混凝土的运输根据现场使用情况由专人负责指挥,及时调整。根据现场实际,采用由远到近,斜面分层一次浇筑,分层厚度400~500 mm ,混凝土倾斜角度约为1∶5。混凝土浇筑过程中,两台输送泵并列推进,每台泵最大作业宽度15 m。现场值班人员根据实际情况记录每处混凝土的浇捣时间,及时安排第二次混凝土浇捣时间,避免出现施工缝。考虑混凝土冬季施工要求,混凝土用热水搅拌,保证出罐温度为8 ~10 ℃,入模温度不低于5℃。 3.3、温度控制 3.3.1、测温点布设大体积混凝土设置温度跟踪测量点,准确测量温度变化情况。根据结构形式、浇筑顺序及结构特点在不同区域布置测温点。温度监测点布置见图1所示。浇筑较早的地区布点,可较早地掌握该工程的混凝土温度变化规律,并能及时地指挥后续施工和养护工作。 3.3.2、混凝土保温养护及监控措施混凝土冬季施工最关键的防护措施是保温防冻,必要时采取供暖保温。本工程保温措施采用两层塑料布夹两层草垫子,外罩聚乙烯棚布。 由于水化热的作用,在混凝土浇筑后的3~5 d结构内部温升达到高峰值阶段。在初凝阶段,紧贴混凝土表面覆盖一层塑料薄膜,防止混凝土水分蒸发,以实现混凝土的自养护,外侧加盖双层草袋及一层塑料薄膜,确保混凝土结构表层最大温差不超过25 ℃。根据混凝土测温数据以及天气气温变化情况及时考虑防冻防寒措施。 混凝土结构的中心部位由于热量聚积,且最不容易散热,温度最高。混凝土表面散热快,温度最低。测温点的布置要能够充分反映结构温度场的变化情况。结构竖向布置3层测温点,即混凝土上表面、混凝土中心(1/ 2 厚度处)和距混凝土底面20 cm 处。 混凝土内部温度变化比较缓慢, 升温最快5 ℃/ h ,降温速度更慢,一般降温速度为4~5 ℃/ d。在混凝土内部升温阶段每2 h 测报一次温度,恒温阶段每4 h 测报一次温度,降温阶段每6 h 测报一次温度。

碾压混凝土坝施工温度控制技术研究

科学技术创新2019.30 碾压混凝土坝施工温度控制技术研究 范华伟 (国家电力投资集团海外投资有限公司,广东珠海519031) 1概述 碾压混凝土坝自诞生以来以其坝体结构简单、施工机械化程 度高、施工速度快、工期短、投资省、 质量安全可靠、适应性强等优势,备受世界坝工界青睐。早期的碾压混凝土坝高度较低,充分利用低温季节和低温时段施工,大都简化或不作温控措施。随着坝体高度和体积增加,由于工期和安全度汛要求,高温季节和高温时段连续浇筑碾压混凝土已成惯例,需采取严格的温控防裂措施,但过于复杂的温控措施影响快速施工,增加投资。因此,研究碾压混凝土坝温控技术,简化温控措施,对温控防裂、快速施工和投资控制具有重要意义。 2温度控制标准 碾压混凝土坝温度控制的影响因素多,各种参数复杂多变,各 坝址区域条件千差万别,需充分收集并分析坝址处降水、蒸发、 气温、水温、地温、相对湿度、 风向和风速等基本资料,结合坝址处地质、水文条件和碾压混凝土特性指标等,进行大坝温度场和温度应力仿真计算。根据计算结果确定大坝温度控制标准,主要包括:基础温差、上下层温差、内外温差、表面保温标准、坝体预埋冷却水管通水温差等指标。温度控制标准以满足浇筑强度需要和防止产生裂缝为目的,不宜过高或过低,过高会使温控措施变得复杂,影响碾压混凝土快速施工,增加温控费用;过低易形成裂缝,影响大坝的防渗性、稳定性和耐久性,增加后期大坝运行难度和维护成本。 3温度控制措施 3.1温控管理机构设置 碾压混凝土坝温控管理水平直接影响大坝施工质量,参建各方应从质量控制和大坝安全的高度看待温控工作。要从根本上提高温控工作质量必须以人为本。参建各方应在施工过程中统一思想,齐抓共管,成立共同参与的温控管理机构,制定完善的工作制度并严格执行。 3.2原材料选择和配合比设计 从源头上控制碾压混凝土的水化热,必须优选原材料、 优化配合比,生产出高质量、发热量低的碾压混凝土。 当满足碾压混凝土各项特性指标时,尽量选用优质掺合料,减少单位水泥用量,选用水化热较低的水泥;选用热膨胀系数小的骨料,并严格控制砂石级配和含水量;提高人工砂的石粉含量,降低胶凝材料用量,改善碾压混凝土的工作性;选用高效缓凝减水剂,延长初凝时间,提高减水率,降低单位用水量。通过优化配合比,提高碾压混凝土的极限拉伸值,降低弹性模量,减小自生体积变形收缩,增大徐变度,降低水化热温升,提高抗裂性能。 3.3选择最佳开工日期和施工时段 通过合理地安排施工总进度计划,选择最佳的开工日期和施工时段,能有效降低温控难度,简化温控措施。选择低温季节开始浇筑 基础强约束区的碾压混凝土,尽量避免在高温季节浇筑基础强约束区的碾压混凝土,尽可能在低温季节和次低温季节浇筑至脱离基础约束区。 3.4控制入仓温度 3.4.1降低出机口温度。碾压混凝土的出机口温度直接决定入仓温度的高低,应采取多种措施控制出机口温度。VC 值是可碾性的重要指标,直接影响碾压混凝土的压实度和层间结合质量。应根据气温、湿度、降水、砂石骨料含水量、浇筑强度、运输过程中温度回升和VC 值损失情况,进行出机口VC 值的动态控制。通常可以采取以下措施降低出机口温度:a.保证胶凝材料在生产厂家有足够的安定 时间,控制散装水泥、粉煤灰、 外加剂的入罐温度,并对储料罐进行遮阳覆盖和必要时的喷雾降温。b.提高骨料堆的堆料高度,搭设遮阳防雨棚,避免阳光直射和下雨造成骨料含水量超标。高温季节在骨料堆顶部用喷雾机喷冷水雾降低骨料温度,但应严格控制骨料含水量不超标,保证碾压混凝土的VC 值在可控范围内。c.通过骨料堆下设的地弄廊道取料,地弄廊道可半埋或全埋藏于地下以获得较低的骨料温度。d.减少骨料运输过程中的温度升高,所有运输设备设置防晒 隔热措施,并尽可能在早、晚或夜间运输骨料。e.通过骨料预冷、 加冰或加冷水拌合生产低温混凝土,但该措施成本较高。且碾压混凝土用水量少,靠加冰或加冷水拌合降低出机口温度的幅度有限。f.拌合系统骨料罐尽量装满灌,以保证预冷效果。3.4.2降低运输过程中的 温度回升。碾压混凝土的出机口温度一般低于环境温度,受气温、 日照辐射、大气相对湿度、风速和蒸发等因素影响,运输过程中温度回升较快,尤其是预冷混凝土。应采取多种措施减少温度倒灌:a.优化入仓方式,缩短入仓距离,避免多次倒运,最大程度地降低入仓过程中的温度回升。b.在拌合楼前自卸运输汽车入口处设喷雾装置,对运输车辆的车厢进行喷雾冷却。c.在自卸运输汽车车厢顶部设活动防晒、防雨棚,车的侧壁设隔热板。d.在混凝土皮带运输机的顶部设防晒、防雨棚,侧壁设隔热板。e.根据仓面的施工强度合理调度拌合楼及运输车辆,防止“压车”,严格控制混凝土在车上的滞留时间。 3.5控制浇筑温度 应控制碾压混凝土浇筑温度以达到保温、 保湿、延缓初凝时间、减少VC 值损失的目的。3.5.1加强施工组织、提高浇筑强度。夏季高温季节施工应合理安排浇筑时段,尽量避免在白天高温时段浇筑,充分利用早晚和夜间低温时段及阴天浇筑。合理规划仓面面积和升层高度,采用台阶法或斜层铺筑法施工,加快碾压混凝土入仓 至覆盖的施工速度,及时摊铺、碾压、 覆盖,缩短暴晒时间,保证从拌合到碾压完毕的时间不超过2h 。3.5.2仓面喷雾、形成人工小气候。在仓面上喷雾形成人工小气候,可有效降低仓面温度,防止混凝土 失水变白、假凝、 初凝,使之具有良好的可碾性和层间结合质量。3.6表面保温、养护和通水冷却摘要:碾压混凝土坝施工温度控制是一个复杂的系统工程,要充分收集、 分析坝址处的气候、地质和水文条件,确定合适的温度控制标准。从原材料选择,配合比设计,施工时段选择,骨料堆存、 预冷,碾压混凝土拌合、运输、浇筑、覆盖保温、养护、通水冷却,施工工艺,组织管理等方面采取综合措施进行温控防裂。 关键词:碾压混凝土;施工;温度控制中图分类号:TV642.2文献标识码:A 文章编号:2096-4390(2019)30-0132-02(转下页) 132--

相关文档