文档库 最新最全的文档下载
当前位置:文档库 › 2-电磁振荡的周期和频率

2-电磁振荡的周期和频率

2-电磁振荡的周期和频率
2-电磁振荡的周期和频率

教学目标

知识目标

1、理解LC振荡电路的固有周期(频率)的决定因素.

2、会应用公式或定性分析有关问题,并能正确应用公式进行相关的计算.

能力目标

通过演示实验,亲自动手实验,培养观察思考,动手操作的实验能力.

情感目标

1、学会应用实验来研究问题的方法,培养探索精神.

2、通过对收音机原理了解,理解理论与实践的联系.教学建议

1、要启发学生认识到:LC回路的周期、频率由回路本身的特性,即本身的电容量和电感线圈的自感系数决定.所以把电路的周期、频率叫固有周期、固有频率.

2、LC回路的周期和频率公式课本是直接给出的,要让学生通过观察实验了解公式的内容,它所反映的物理量之间的关系,能用公式对有关问题进行简单分析和计算.式中各物理量的单位,有的学生容易出错,要提醒学生注意.

重点、难点和疑点及解决办法

1、重点

LC振荡电路的周期公式,频率公式是教材中的重点内容.通过实验现象观察,定性地得出了电感L大(小)、电容C大(小)、周期长(短)的结论.

2、疑点

为什么电容越大,电感越大,周期就越大?通过对电容充放电作用,线圈的自感作用对公式进行定性分析,以利于加深对公式的理解.

教法建议

1、教师通过演示实验法、类比法引入公式,通过例题分析应用与巩固。

2、学生通过观察,在教师启发下分析思考,自己做实验验证,例题思考讨论、归纳、总结,理解巩固、掌

握应用。电磁振荡的周期和频率的教学设计方案

课时安排:1课时

教具学具:

1、LC振荡回路示教板、准备两个以上电感不同的线圈(可拆变压器的220V线圈)、电容器.

2、大屏幕示波器(观察振荡电流周期变化情况)等.

3、每两个学生一只中波小收音机.

教师与学生的教学互动设计:教师先对比设问启发学生思考猜想,再通过实验演示,指导学生观察现象,分析

研究,总结出周期的公式,再通过例题分析研究、讨论,巩固应用公式

教学过程设计:

一、引入新课

上节课我们通过比较电磁振荡与简谐运动有很多相似之处,它们的运动都有周期性,我们知道振动的周期只与其本身的条件有关,而电磁振荡中的振荡电流周期又是由什么因素决定的呢?电感L、电容C的大小对振荡的快慢有怎样的影响?其他因素(q、i、U大小)与周期有没有关系?下面来研究这个问题.

二、提出问题

(1)机械振动中,周期和频率的概念、意义是什么?单摆周期由什么决定?

启发同学答出,T(s)、f(Hz)意义,

(2)电磁振荡的周期和频率的意义是什么?

在同学回答的基础上,归纳指出,振荡电路里发生无阻尼自由振荡时的周期和频率叫做振荡电路的固有周期和固有频率.

对比,联系单摆的振动,初步猜测一下电磁振荡的周期和频率与什么因素有关系?与LC回路中的电感L、电容C有何关系(定性)?

三、演示实验

简介如图所示电路,多抽头带铁芯的线圈,L值较大(可用220V或两个110V可拆变压器线圈串联而成)2

—3个电解电容器(100F、500F、1000F)演示电流表(指针在表盘中央),二个电源(6V,45V)等操作和观察,注意观察什么?(电流表指针摆动的快慢)选用不同的L或C值,发生电磁振荡时,电流表指针摆动的快慢程度(周期和频率)与L、C值的初步关系是什么?

启发同学根据实验现象,推理、分析得到①电容C不变时,电感L越大,振荡周期T就越长,频率越低.②当电感L不变时,电容C越大,振荡周期就越长,频率越低.

换用不同电压的电源,当L、C值不变时,表针摆动的快慢程度相同(仅摆动次数不同)

在同学回答的基础上小结指出LC振荡电路的固有周期(T)和固有频率(f),决定于电路中线圈的电感L 和电容器的电容C

[提出问题]论述现象如何解释?

[归纳指出]电容越大,容纳电荷就越多,充放电需要的时间就越长,因而周期就长,频率就低.线圈的电感L越大,阻碍电流变化的延时作用就越强,使放电、充电的时间就越长.

因而周期就越长,频率就越低,总而言之,LC电路的周期和频率由电路本身的性质(L、C值)决定,与电容器的带电量的多少,电流大小无关.

四、总结规律并运用

1、固有周期和固有频率公式

大量精确的实验和电磁学理论证明,电磁振荡的固有周期T,跟LC电路中电感L和电容C的乘积的平方根

成正比,即,各物理量都用国际制单位,比例系数为2,则有公式

式中T、f、L、C的单位分别是秒、赫、亨和法(单位符号是s、Hz、H、F)

公式表明,适当地选择电容C和电感L,就可以使电路的固有周期和频率符合我们的各种需要,通常应用中是可变电容器和电感线圈组成LC电路,要得到不同周期和频率的振荡电流,可通过改变电容器的电容C来实现,如图19—16所示,亦可通过改变电感L来实现,如图19-17所示:

收音机中调节谐振电路的周期,就是通过调节可变电容来实现的.

让学生打开收音机,观察并找到调谐电容.调节调揩旋钮时,观察动片的变化.

要求学生分析

①旋入动片,旋出动片时正对面积如何变化?电容C大小如何改变?

②C变化对周期、频率大小变化有何关系.

2、例题讲析

【例1】如图所示LC振荡电路中可变电容器C的取值范围为10pF~360pF,线圈的电感为H,求此电路能获得的振荡电流的最高频率多大?

解析:因为LC电路的固有频率为,当L不变时,则有,可知:

当电容C为最小值时(即pF),振荡电流的频率最高;

当电容C为最大值时(即pF)振荡电流的频率最低.

所以由题给条件,即可求得最高和最低频率,计算时注意各量要用相应的国际单位制的主单位.

电容,

则有最高频率和最低频率分别为:

【例2】在图(甲)中,LC振荡电路中规定图示电流方向为电流i的方向,则振荡电流随时间变化的图像如图(乙)所示

那么,电路中各物理量在一个周期内的情况是:

________________时刻,电容器上带电量为零;

________________时刻,线圈中的磁场最强;

________________时刻,电容器两板间的电场强度值最大;

________________时刻,电路中电流达到反向最大值;

________________时刻内是对电容器的充电过程.

解析:分析这类问题的关键是要搞清电场能和磁场能相互转化的过程,以及它所对应的物理状态和物理量间的关系,由题图可知电容器C正在放电,当t=0时,C带电量最多,两板间电压最大,电场能也最大,而此时磁场能最小(为零),对应的电流i最小(为零),随着C放电的持续,带电量、电压、电场能将逐渐减小,而磁场能、电流i将逐渐变大,磁场能、电流达到最大之后由于电感L和电容C的作用,将对电容反向充电,直至最大,依此类推,故可得知,A、C时刻电流最大,磁场最强,电场为零,C带电量为零,当电流为零时(对应图中的O、B、D)电容器上带电量最多,相应的电场强度值为最大,同理可知C时刻电流达到最大,电容经过T/4放电完毕后,紧接着又对电容反向充电,又经T/4,充电到最大值,即带电量、电压、电场能达最大,

磁场能、电流变为零,这个过程对应着图中的,类似的道理可知也是对电容的充电过程.

五、总结、扩展

1、LC振荡电路的周期公式,频率公式要理解其物理含义,它只由电路本身的特性(L、C值)决定,所以叫做固有周期和固有频率,应用中,通过改变LC回路中的电感L或电容C,周期和频率也随之改变,满足各种需要.

2、应用周期公式、频率公式进行计算时,要特别注意各个物理量的单位,常用电容器的单位有微法(F)

和皮法(pF),代入公式时一定要换为法(F),电感L的单位有时是毫亨或微亨(mH或H),代入公式时要换为亨(H),这样得到的周期和频率的单位才是正确的(秒和赫)

六、板书设计

电磁振荡的周期和频率

一、固有周期

1、定义

2、公式

3、决定因素

4、注意事项

二、固有频率

1、定义

2、公式

3、决定因素

典型例题

关于最值问题

例1 在如图所示电路中,将开关K扳向a,给电容器充足电后,再把开关扳向b,经过时间t电容器

放电完毕,且放电电流最大值为.如果把电池组的电动势增大到原来的2倍,重复上述过程时,放电过程所用时间和放电电流的最大值应分别为().

A、B、C、D、

分析与解:当开关K扳向b时,L、C组成振荡电路,其周期的最大电流无关,只由L、C 的值确定,所以改变电池组电动势时,改变了充电最大电量——变为原来的2倍,而放电时间不受影响——仍为t.

电容最大带电量2倍,电路其他要素未变,所以放电的最大电流变为2倍——2.

答案:B.

平均电流强度

例2 有一理想的LC振荡电路,电容器的电容为C,残留的电感为L,开始时,电容器两端的电压为U,电路中无电流。现让电容C通过L放电,到电容C放电结束时,在这段时间内,放电的平均电流强度为___________。

分析与解:电容放电前带电量,放电后经过时间放电完毕。

平均电流:

答案:.

应用振荡器的能量周期性变化解题

例3 如图所示的振荡电路中,线圈自感系数H,电容器电容F,使电容器带电(上板带正

电,下板带负电)后,接通K,从接通 K时算起,当s时,电路中电流方向为__________。(填顺时针或逆时针)。当t为___________s时,线圈中的磁场能第一次达到最大。

分析与解:LC振荡电路的周期

,电容放电后被充电过程,电流方向与放电电流方向相反,电流减小,电流方向是逆时针方向。

当时,电流达到最大值,磁场能第一次达到最大,即

答:逆时针方向;。

电磁波的开拓史——通信的发展史

自从通信技术出现的那一天起,科学家们就一直把开发电磁波的各个波段、利用电磁波进行通信作为重要的研究方向之一.可以说通信的发展史,就是电磁波的开拓史.什么是电磁波呢?

我们向水面投掷石块,水面会泛起水波;拨动琴弦,空气中激起声波.这些是我们看得见、听得到的.还有一些是我们肉眼看不见、耳朵听不着的,这就是电磁波.

电磁波的发现归功于德国物理学家赫兹和英国物理学家麦克斯韦.麦克斯韦指出:"交变的电场会产生交变的磁场,而交变的磁场又会激起交变的电场."这就是说,只要在空间某处存在一个交变的电场,那么它的周围就会产生一个新的交变磁场,而这个新的交变磁场又会在远处激发一个交变的电场.这种交替变化的电场和磁场称为电磁场.这种交变的电磁场会在空间以电磁波的形式由近及远地传播开去,这就是电磁波.麦克斯韦在1864年用数学的方法从理论上严格地推导出了电磁波的波动方程,并求得电磁波的传播速度等于光速.麦克斯韦预言了电磁波的存在.

20年后,德国物理学家赫兹通过实验验证了麦克斯韦的预言,电磁波的确存在,它就像我们身边的桌椅一样是实实在在的.从此,一项划时代的新技术――无线电技术诞生了.不久,各国的学者纷纷开始研究如何利用电磁波作为无线传输信息的工具.1894年,电磁波进入了通信领域,开创了无线通信的新时代.

电磁场理论教学中一个值得注意的问题

高中物理课本甲种本(1985年第1版)第三册第153页在介绍麦克斯韦电磁场理论时叙述道:“麦克斯韦用场的观点分析了电磁现象,认为变化的电场能够在周围空间产生磁场.这是电磁场理论的第二个要点.一个静止的电荷,它产生的是静电场,即空间各点的电场强度不随时间而改变.这个电荷一旦运动起来,电场就发生变化.另一方面,运动电荷要产生磁场,用场的观点来分析这个问题,就可以说:这个磁场是由变化的电场产生的.”笔者认为,这里用运动电荷产生磁场为例来说明电磁场理论的第二个要点是欠妥的.比甲种本早一年出版的乙种本(1984年第1版)以及主要由它修订而成的现行课本(必修)中没有这个例子,但是这个例子在现在的高中物理教学中仍然存在着不良的影响.最近,笔者带学生在中学教育实习时发现了甲种本的这个例子,接着对广州市的中学物理教学做了调查,发现目前仍有一些中学在教学中喜欢使用甲种本的这个例子.所以,有必要对这个例子做进一步的分析.

变化的电场能够在周围的空间产生磁场是麦克斯韦电磁场理论的第二个要点,也是麦克斯韦对电磁场理论的最主要的贡献.这样,不但传导电流(由电荷运动引起)能够在周围空间产生磁场,而且变化的电场(或“位移电流”)也能够在周围空间产生磁场.也就是说,产生磁场的途径有两种:电流(传导电流)或者变化的电场(或叫做“位移电流”).甲种本的这个例子所讲的“运动电荷要产生磁潮,可以从两个层次来理解.

一、把“运动电荷要产生磁潮理解为电荷运动形成电流(传导电流),这个电流要产生磁场,这是中学生所能理解的层次.按照这种理解,这个电场是由传导电流产生的,而不是由“位移电流”产生的,即不是由变化的电场产生的.甲种本的论断是错误的.

二、从较高的层次来理解“运动电荷要产生磁潮这句话.电荷的运动是任意的,由于既有速度v,又有加速度a,这个电荷产生的电场和磁场是非常复杂的,要用电动力学的方法才能处理,一般中学生不可能理解到这一层次,而且这时在运动电荷产生的磁场中,既有由变化的电场产生的,也有由传导电流产生的,到底哪一部分主要,要视电荷的运动情况及观测点的位置而定.在电荷附近(近场区)磁场主要由传导电流产生,所以不能简单地认为“这个磁场是由变化的电场产生的”.

综上分析,甲种本用一个运动电荷产生磁场为例来说明电磁场理论的第二个要点是欠妥的,其结论“这个磁场是由变化的电场产生的”是不对的.

值得指出的是,麦克斯韦电磁场理论的第二个要点包含着深刻而新颖的思想,在相当长的一段时间内难以为物理学家们所接受,直到25年之后,赫兹用实验证实了电磁波的存在,从而证明麦克斯韦电磁场理论的正确性,这个理论才得到人们的普遍承认.可见,“变化的电场能够在周围空间产生磁场”这一假说并非能用一个例子来加以形象说明的.在高中阶段讲麦克斯韦电磁场理论的第二个要点时,可以像必修本或乙种本那样,简要地给出麦克斯韦的假说,而不要企图找什么形象的例子来说明.倒是有必要向学生强调:电流和变化的电场是产生磁场的两种途径.最近笔者带学生到中学教育实习时,就有一些中学生问实习老师(笔者带的实习生):“当稳恒电流通过直导线时,周围空间的磁场是稳定的,而电场却不随时间做均匀变化,这不是与老师讲的电磁场理论的第二个要点相矛盾吗?”这说明学生误以为要产生磁场就必须有变化的电场,并不明白电流和变化的电场均可以产生磁场.或者说,学生学习了变化的电场能够在周围空间产生磁场,却忘记了电流是产生磁场的基本途径.

电磁学的两种研究方式

整个电磁学的研究可分为以“场”和“路”两个途径进行,这两种方式均在高中教材里体现出来.只有明确它们各自的特征及相互联系,才能有计划、有目的地提高学生的思维品质,培养学生的思维能力.场的方法是研究电磁学的一般方法.场是物质,是物质的相互作用的特殊方式.中学物理的电磁学部分完全可用场的概念统帅起来,静电场恒定电场恒定磁场静磁场似稳电磁场迅变电磁场等,组成一个关于场的系统,该系统包括中学物理电学部分的各章内容.

“路”是“场”的一种特殊情况.中学教材以“路”为线的大骨架可理顺为:静电路、直流电路、磁路、交流电路、振荡电路等.

“场”和“路”之间存在着内在的联系.麦克斯韦方程是电磁场的普遍规律,是以“场”为基础的.“场”是电磁运动的实质,因此可以说“场”是实质,“路”是方法.

世界电信日

5月17日是“世界电信日”,它来源于电报的发明.

电信是指利用电报、电话、传真、无线电设备和互联网络等手段传递信息的通讯方式.1844年电报正式用于公众通信,最初的国际电报只能为使电报发挥更大的作用,1865年5月17日,法国、德国、俄国、意大利、奥地利等20多个国家在法国巴黎签订了《国际电报公约》,并宣告国际电报联盟正式成立.随着电报和电话的发明,信息的传递方便、快捷起来,人类也从此进入了电信时代,国际电报联盟因此于1932年在西班牙马德里召开的第五届代表大会上,决定将“国际电报联盟”改名为“国际电信联盟”ITU International Telecommunication Union.1947年联盟成为联合国的一个专门机构,总部设在瑞士日内瓦.国际电信联盟目

前共有188个成员,中国于1920年加入该组织.

为了纪念国际电信联盟的建立,强调电信在国民经济发展和人民生活中的作用,国际电信联盟在1968年第23届行政理事会上,决定把5月17日定为“世界电信日”,并要求各会员国从1969年起根据国际电信联盟所确定的电信日主题开展纪念活动,宣传电信的重要性,普及电信科学技术,培养年轻一代对电信的兴趣,去年世界电信日的主题是“互联网:挑战、机遇与前景”.

今年5月17日是第34个“世界电信日”,主题是:“信息通信技术为全人类服务:帮助人们跨越数字鸿沟.”今年电信日的主题涵盖内容广泛,同时恰逢中宣部与科技部及中国科协联合举办的“科技创造未来”科技活动周在全国举办.信息产业部将把世界电信日纪念活动与科技活动周结合进行,采用纪念活动与技术报告相结合的形式,宣传我国通信发展成就,呼吁全社会为缩小数字鸿沟而共同努力.同时,5月17日,信息产业部将在北京举办有相关部委参加的第34届世界电信日纪念和主题报告会,同时在现场举行小型技术应用展示活动.

习题精选

1、为了增大LC振荡电路的固有频率,下列办法中可采取的是()

A.增大电容器两极板的正对面积并在线圈中放人铁芯

B.减小电容器两极板的距离并增加线圈的匝数

C.减小电容器两极板的距离并在线圈中放入铁芯

D.减小电容器两极板的正对面积并减小线圈的匝数

2、如图所示,LC振荡电路中的电感量L=0.5mH,电容量C=0.2f,电源电动势E=4V,内阻不计,电阻

,先闭合电键K,待电路稳定后再断开K,试求:

(l)振荡频率

(2)从断开K到电容器a板开始带正电所经历的最短时间

3、有一LC振荡电路,当电容调节为pF时,能产生频率为kHz的振荡电流,要获得频率为

kHz的振荡电流,则可变容器应调整多大?(设电感L保持不变)

4、一个LC振荡电路,电容器电容为C,电感线圈的自感系数为L,从电容器开始放电起计时至第二次电流达到最大植结束,所用时间为__________,电路中第一次改变电流方向所需时间为__________.

5、LC振荡电路中的振荡电流的表达式为:mA,若振荡电路的自感系数为20毫亨,则电容C=__________F,此振荡电流的有效值为__________.

6、在LC回路发生电磁振荡过程中,若用外力将电容器两板间的距离增大,则在以后的过程中:()

A.电路中振荡的总能量加大 B.振荡电流的最大值变大

C.振荡电流的频率变大 D.振荡电流的周期变大(提示:拉大两板间距离,外力要克服库仑力做功)

答案:

1、D

2、16kHz,s

3、50pF

4、5、;0.1mA 6、ABC

2017-2018学年高中物理第三章电磁振荡电磁波第1节电磁振荡教学案教科版选修3-4

第1节 电_磁_振_荡 对应学生用书 P37 电 磁 振 荡 [自读教材·抓基础] 1.振荡电流和振荡电路 (1)振荡电流:大小和方向都随时间做周期性迅速变化的电流。 (2)振荡电路:产生振荡电流的电路。 (3)LC 振荡电路:由线圈L 和电容器C 组成的电路,是最简单的振荡电路。 2.电磁振荡的过程 (1)放电过程:由于线圈的自感作用,放电电流由零逐渐增大,电容器极板上的电荷逐渐减小,电容器里的电场逐渐减弱,线圈的磁场逐渐增强,电场能逐渐转化为磁场能,振荡电流逐渐增大,放电完毕,电流达到最大,电场能全部转化为磁场能。 (2)充电过程:电容器放电完毕后,由于线圈的自感作用,电流保持原来的方向逐渐减小,电容器将进行反向充电,线圈的磁场逐渐减弱,电容器里的电场逐渐增强,磁场能逐渐转化为电场能,振荡电流逐渐减小,充电完毕,电流减小为零,磁场能全部转化为电场能。 此后,这样充电和放电的过程反复进行下去。 3.电磁振荡的分类 (1)无阻尼振荡: 1.振荡电流是大小和方向都随时间做周期性迅速变化的电流。能够产生振荡电流的电路叫振荡电路,最简单的振荡电路是LC 振荡电路。 2.电容器放电过程中,极板上电量减少,电流增大,电场能逐渐转化为磁场能;电容器充电过程中,极板上电量增多,电流减小,磁场能逐渐转化为电场能。这种电场能和磁场能周期性相互转化的现象叫电磁振荡。 3.LC 振荡电路的振荡周期T =2πLC ,振荡频率f =1 2πLC 。

在LC 振荡电路中,如果能够及时地把能量补充到振荡电路中,以补偿能量损耗,就可以得到振幅不变的等幅振荡。 (2)阻尼振荡: 在LC 振荡电路中,由于电路有电阻,电路中有一部分能量会转化为内能,另外还有一部分能量以电磁波的形式辐射出去,使得振荡的能量减小。 [跟随名师·解疑难] 1.各物理量变化情况一览表: 工作过程 q E i B 能量转化 0→T 4 放电 q m →0 E m →0 0→i m 0→B m E 电→E 磁 T 4→T 2 充电 0→q m 0→E m i m →0 B m →0 E 磁→E 电 T 2 →3T 4 放电 q m →0 E m →0 0→i m 0→B m E 电→E 磁 3T 4→T 充电 0→q m 0→E m i m →0 B m →0 E 磁→E 电 2.振荡电流、极板带电荷量随时间的变化图像: (a)以逆时针方向电流为正 (b)图中q 为上极板的电荷量 图3-1-1 3.变化规律及对应关系: (1)同步同变关系:

高中物理必修第3册第十三章 电磁感应与电磁波试卷综合测试卷(word含答案)

高中物理必修第3册第十三章 电磁感应与电磁波试卷综合测试卷(word 含答 案) 一、第十三章 电磁感应与电磁波初步选择题易错题培优(难) 1.如图所示,三根相互平行的固定长直导线1L 、2L 和3L 垂直纸面如图放置,与坐标原点 分别位于边长为a 的正方形的四个点上, 1L 与2L 中的电流均为I ,方向均垂直于纸面向外, 3L 中的电流为2I ,方向垂直纸面向里(已知电流为I 的长直导线产生的磁场中,距导 线r 处的磁感应强度kI B r (其中k 为常数).某时刻有一质子(电量为e )正好沿与x 轴正方向成45°斜向上经过原点O ,速度大小为v ,则质子此时所受磁场力为( ) A .方向垂直纸面向里,大小为23kIve B .方向垂直纸面向外,大小为32kIve C .方向垂直纸面向里,大小为32kIve a D .方向垂直纸面向外,大小为232kIve a 【答案】B 【解析】 【详解】 根据安培定则,作出三根导线分别在O 点的磁场方向,如图: 由题意知,L 1在O 点产生的磁感应强度大小为B 1= kI a ,L 2在O 点产生的磁感应强度大小

为B2= 2 kI a ,L3在O点产生的磁感应强度大小为B3=2kI a ,先将B2正交分解,则沿x轴 负方向的分量为B2x= 2 kI a sin45°= 2 kI a ,同理沿y轴负方向的分量为 B2y= 2 kI a sin45°= 2 kI a ,故x轴方向的合磁感应强度为B x=B1+B2x= 3 2 kI a ,y轴方向的合磁感应强度为B y=B3?B2y= 3 2 kI a ,故最终的合磁感应强度的大小为22 32 2 x y kI B B B a ==, 方向为tanα=y x B B =1,则α=45°,如图: 故某时刻有一质子(电量为e)正好沿与x轴正方向成45°斜向上经过原点O,由左手定则 可知,洛伦兹力的方向为垂直纸面向外,大小为f=eBv= 32 2 kIve a ,故B正确; 故选B. 【点睛】 磁感应强度为矢量,合成时要用平行四边形定则,因此要正确根据安培定则判断导线周围磁场方向是解题的前提. 2.三根相互平行的通电长直导线放在等边三角形的三个顶点上,右图为其截面图,电流方向如图所示.若每根导线的电流均为I,每根直导线单独存在时,在三角形中心O点产生的磁感应强度大小都是B,则三根导线同时存在时O点的磁感应强度大小为() A.0 B.B C.2B D.B 【答案】C 【解析】 分析:三角形中心O点到三根导线的距离相等.根据安培定则判断三根导线在O点产生的磁感应强度的方向,根据平行四边形定则进行合成,求出三根导线同时存在时的磁感应强

2-电磁振荡的周期和频率

教学目标 知识目标 1、理解LC振荡电路的固有周期(频率)的决定因素. 2、会应用公式或定性分析有关问题,并能正确应用公式进行相关的计算. 能力目标 通过演示实验,亲自动手实验,培养观察思考,动手操作的实验能力. 情感目标 1、学会应用实验来研究问题的方法,培养探索精神. 2、通过对收音机原理了解,理解理论与实践的联系.教学建议 1、要启发学生认识到:LC回路的周期、频率由回路本身的特性,即本身的电容量和电感线圈的自感系数决定.所以把电路的周期、频率叫固有周期、固有频率. 2、LC回路的周期和频率公式课本是直接给出的,要让学生通过观察实验了解公式的内容,它所反映的物理量之间的关系,能用公式对有关问题进行简单分析和计算.式中各物理量的单位,有的学生容易出错,要提醒学生注意. 重点、难点和疑点及解决办法 1、重点 LC振荡电路的周期公式,频率公式是教材中的重点内容.通过实验现象观察,定性地得出了电感L大(小)、电容C大(小)、周期长(短)的结论. 2、疑点 为什么电容越大,电感越大,周期就越大?通过对电容充放电作用,线圈的自感作用对公式进行定性分析,以利于加深对公式的理解. 教法建议 1、教师通过演示实验法、类比法引入公式,通过例题分析应用与巩固。 2、学生通过观察,在教师启发下分析思考,自己做实验验证,例题思考讨论、归纳、总结,理解巩固、掌 握应用。电磁振荡的周期和频率的教学设计方案 课时安排:1课时 教具学具: 1、LC振荡回路示教板、准备两个以上电感不同的线圈(可拆变压器的220V线圈)、电容器. 2、大屏幕示波器(观察振荡电流周期变化情况)等. 3、每两个学生一只中波小收音机.

电磁感应 电磁场和电磁波(附答案)

一 填空题 1. 把一个面积为S ,总电阻为R 的圆形金属环平放在水平面上,磁感应强度为B 的匀强磁场竖直向下,当把环翻转?180的过程中,流过环某一横截面的电量为 。 答:R BS 2。 2. 一半径为m 10.0=r 的闭合圆形线圈,其电阻Ω=10R ,均匀磁场B ρ 垂直于线圈平面。欲使线圈中有一稳定的感应电流A 01.0=i ,B 的变化率应为多少 1s T -?。 答:1s T 18.3-?。 3. 如图所示,把一根条形磁铁从同样高度插到线圈中同样的位置处,第一次动作快,线圈中产生的感应电动势为1ε;第二次慢,线圈中产生的感应电动势为2ε,则两电动势的大小关系是1ε 2ε 答:>。(也可填“大于”) 4. 如图所示,有一磁感强度T 1.0=B 的水平匀强磁场,垂直匀强磁场放置一很长的金属框架,框架上有一导体ab 保持与框架边垂直、由静止开始下滑。已知ab 长 m 1.0,质量为kg 001.0,电阻为Ω1.0,框架电阻不计,取2s m 10?=g ,导体ab 下落的最大速度 1s m -?。

答:1s m 10-?。 5. 金属杆ABC 处于磁感强度T 1.0=B 的匀强磁场中,磁场方向垂直纸面向里(如图所示)。已知BC AB =m 2.0=,当金属杆在图中标明的速度方向运动时,测得C A ,两点间的电势差是V 0.3,则可知B A ,两点间的电势差ab V V。 答:V 0.2。 6. 半径为r 的无限长密绕螺线管,单位长度上的匝数为n ,通以交变电流 t I I ωcos 0=,则围在管外的同轴圆形回路(半径为R )上的感生电动势为 。 答:t nI r ωωμsin π002。 7. 铁路的两条铁轨相距L ,火车以v 的速度前进,火车所在地处地磁场强度在竖直方向上的分量为B 。两条铁轨除与车轮接通外,彼此是绝缘的。两条铁轨的间的电势差U 为 。 答:BLv 。 8. 图中,半圆形线圈感应电动势的方向为 (填:顺时针方向或逆时针方向)。 答:逆时针方向。 9. 在一横截面积为0.2m 2的100匝圆形闭合线圈,电阻为0.2Ω。线圈处在匀强磁场中,磁场方向垂直线圈截面,其磁感应强度B 随时间t 的变化规律如图所示。线圈中感应电流的大小是 A 。

-电磁振荡的周期和频率

电磁振荡的周期和频率 一、教学目标 1.理解LC振荡电路的固有周期(或固有频率)的决定因素. 2.会应用公式定性分析讨论有关问题,并能正确应 用公式进行相关的计算. 3.通过演示实验(改变LC回路的电感L或电容C),观察振荡电流的周期、频率的变化情况,分析、归纳得到L大、C大周期长的结论,培养学生分析综合能力及理解能力. 二、重点、难点分析 1.LC振荡电路的周期公式、频率公式是教材的重点内容.通过实验现象的观察得到;电路中振荡电流的周期、浙率随着LC回路中的电感L或电容C的改变而改变,并定性地得到电感L大(小)、电容C大(小)周期长(短)的结论.如有条件可用秒表测量周期,进行简单测量、计算,用比例法进行估算T与L、C 值的关系,将会更有说服力. 2.分别从电容器的充放电作用和电感线圈的自感作用,对公式进 行定性分析.说明如何理解L大、C大周期长的结论.以利于加深对公式的理解,并有利于培养和提高学生的理解能力和分析能力. 3.应用公式或进行计算时,要强调公式中各个物理量 的单位; 各单位都要使用它们的国际单位制中的主单位. 三、教具 1.LC振荡回路示教板,准备两个以上电感不同的线圈(可拆变压器的2 20V 线圈)和电容器,如有条件可备用电压较高的直流电源(例如45V的干电池等),演示时阻尼振荡现象更明显. 2.大屏幕示波器(观察振荡电流周期变化情况)等. 四、主要教学过程 (-)引入新课 在以前研究弹簧振子、单摆在做简谐振动的过程中,已经知道振动的周期(或频率)只与其本身的条件有关,例如弹簧振子的周期只取决于轻弹簧的劲度系数足和振子的质量;单摆的周期只取于摆长l和当地的重力加速度g的大小,而与其它因素无关,那么LC回路中的振荡电流的周期(或频率)又是由什么因素决定的?电感L、电容C的大小对振荡的快慢有怎样的影响?与电容器带电量的多少(或电压的高低)有没有关系?下面就来研究这个问题. (二)主要教学过程设计 1.提出问题. (l)机械振动中,周期和频率的概念、意义是什么?单摆做简谐振动中,它的周期和频率由什么决定? 启发同学答出: (2)电磁振荡或振荡电流变化的快慢如何来描述?那么,电磁振荡的周期

电磁振荡的周期和频率教案

电磁振荡的周期和频率 教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

18.2 电磁振荡的周期和频率 一、教学目标 1.理解LC 振荡电路的固有周期(频率)的决定因素 2.会用公式LC T π2=或LC f π21= 定性分析有关问题,并能正确应用公 式进行相关的计算 二、重点、难点分析 1.重点:LC 振荡电路的周期公式,频率公式是教材中的重点内容。通过实验现象观察,定性地得出电感L 大(小)、电容C 大(小)、周期长(短)的结论。 2.难点:为什么电容越大,电感越大,周期就越大?通过对电容充放电作用,线圈的自感作用对公式LC T π2=进行定性分析,以利于加深对公式的理解。 三、教具 1.LC 振荡回路示教板,准备两个以上电感不同的线圈(可拆变压器的220V 线圈),电容器 2.大屏幕示波器(观察振荡电流周期变化情况)等 四、教学方法:实验演示 五、学生活动设计 1.通过观察演示实验,总结出振荡电流周期与电感L 、电容C 值大小定性关系。 2.通过对小收音机的观察,分析收音机谐振电路的周期是如何调节的。 3.通过练习训练,巩固周期频率公式。 六、教学过程 (一)引入新课

通过上节课的学习,我们知道电磁振荡具有周期性,振荡电流的周期是由什么因素决定的呢?电感L、电容C的大小对振荡的快慢有怎样的影响?其它因素(q、i、U大小)与周期有没有关系?下面来研究这个问题。 (二)进行新课 1.电磁振荡的周期和频率 (1)周期:电磁振荡完成一次周期性变化所需的时间。 (2)频率:一秒钟内完成周期性变化的次数 (3)固有周期和固有频率:振荡电路里没有能量损失、发生无阻尼振荡时的周期和频率。 设问:电磁振荡的周期和频率与什么因素有关系?与LC回路中的电感L、电容C有何关系(定性) 演示实验 简介图1所示电路,多抽头带铁芯的线圈,L值较大(可用220V或二个110V可拆变压器线圈串联而成)2-3个电解电容器(100μF、500μF、1000μF)演示电流表(指针在表盘中央),二个电源(6V,45V)等 操作和观察观察什么?(电流表指针摆动的快慢)选用不同的L或C 值,发生电磁振荡时,电流表指针摆动的快慢程度(周期和频率)与L、C值的初步关系是什么? 启发同学根据实验现象,推理、分析得到①电容C不变时,电感L越大,振荡周期T就越长,频率越低。②当电感L不变时,电容C越大,振荡周期就越长,频率越低。

内蒙古赤峰二中物理第十三章 电磁感应与电磁波精选测试卷

内蒙古赤峰二中物理第十三章电磁感应与电磁波精选测试卷 一、第十三章电磁感应与电磁波初步选择题易错题培优(难) 1.取两个完全相同的长导线,用其中一根绕成如图(a)所示的螺线管,当该螺线管中通以电流强度为I的电流时,测得螺线管内中部的磁感应强度大小为B,若将另一根长导线对折后绕成如图(b)所示的螺线管,并通以电流强度也为I的电流时,则在螺线管内中部的磁感应强度大小为() A.0 B.0.5B C.B D .2 B 【答案】A 【解析】 试题分析:乙为双绕线圈,两股导线产生的磁场相互抵消,管内磁感应强度为零,故A正确. 考点:磁场的叠加 名师点睛:本题比较简单,考查了通电螺线管周围的磁场,弄清两图中电流以及导线的绕法的异同即可正确解答本题. 2.如图甲,一电流强度为I 的通电直导线在其中垂线上A点处的磁感应强度B∝,式中r 是A点到直导线的距离.在图乙中是一电流强度为I的通电圆环,O是圆环的圆心,圆环的半径为R,B是圆环轴线上的一点,OB间的距离是r0,请你猜测B点处的磁感应强度是( ) A. 2 2 R I B r ∝ B.()3 222 I B R r ∝ + C.() 2 3 222 R I B R r ∝ + D.() 2 3 222 r I B R r ∝ + 【答案】C

【解析】 因一电流强度为I 的通电直导线在其中垂线上A 点处的磁感应强度B ∝ I r ,设比例系数为 k ,得:B=K I r ,其中 I r 的单位A/m ;220R I r 的单位为A ,当r 0为零时,O 点的磁场强度变 为无穷大了,不符合实际,选项A 错误. () 3 2 220 I R r + 的单位为A/m 3,单位不相符,选项 B 错误, () 232 220 R I R r +的单位为A/m ,单位相符;当r 0为零时,也符合实际,选项C 正 确. () 2032 220 r I R r + 的单位为A/m ,单位相符;但当r 0为零时,O 点的磁场强度变为零了, 不符合实际,选项D 错误;故选C . 点睛:本题关键是结合量纲和特殊值进行判断,是解决物理问题的常见方法,同时要注意排除法的应用,有时能事半功倍. 3.三根通电长直导线垂直纸面平行固定,其截面构成一正三角形,O 为三角形的重心,通过三根直导线的电流分别用I 1、I 2、I 3表示,方向如图。现在O 点垂直纸面固定一根通有电流为I 0的直导线,当1230I I I I ===时,O 点处导线受到的安培力大小为F 。已知通电长直导线在某点产生的磁感应强度大小和电流成正比,则( ) A .当102303I I I I I ===、时,O 点处导线受到的安培力大小为4F B .当102303I I I I I ===、时,O 3F C .当201303I I I I I ===、时,O 3F D .当301203I I I I I ===、时,O 点处导线受到的安培力大小为2F 【答案】C 【解析】 【分析】 【详解】 根据安培定则画出123I I I 、、在O 点的磁感应强度123B B B 、、的示意图如图所示

电磁感应电磁波

电磁感应电磁波集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-

第十讲 电磁感应 电磁波 一、磁通量:面积S 垂直放入磁场B ,则B 与S 的乘积表示穿过这个面的磁通量 1、大小:BS =Φ (适用于垂直的情况) 单位:韦伯 Wb 垂直时磁通量最大,平行是磁通量等于零。 二、电磁感应现象:由磁场产生电流的现象。 1、产生感应电流的条件:只要穿过闭合电路的磁通量发生变化,电路中就有感应电流。 2、感应电动势:在电磁感应现象中,若电路不闭合,虽然没有感应电流, 但感应电动势仍存在。 3、电磁感应现象中,能量是守恒的。 二、法拉第电磁感应定律 1、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率 成正比。(实验定律) 2、表达式: t n E ??Φ= N 表示线圈匝数,t ??Φ磁通量变化率 三、导线切割磁感线时,感应电动势 表达式:E =BLv 适用于B 、L 、V 垂直情 况 感应电流方向:右手定则判定。 右手定则:伸开右手,让拇指与其余四指垂直,并且跟手掌在同一个平面内。 让磁感线垂直穿过掌心。拇指指向导体运动的方向,其余四指所指的 是感应电流的方向。 电磁波 一、 麦克斯韦的电磁场理论: 1、 变化的磁场在周围空间产生电场 2、 变化的电场在周围空间产生磁场 二、 电磁场:变化的磁场和变化的电场是相互联系着的,形成一个不可分离的统一体, 这就是电磁场。 三、 电磁波:电磁场由发生区域向远处的传播就是电磁波。 麦克斯韦:预言了电磁波的存在,赫兹证实了电磁波的存在 1、任何频率的电磁波在真空中的传播速度都是c=3×108m/s 2、电磁波的波速、波长、频率和周期的关系为:c=λf=λ/T 3、电磁波传递能量和信息。 四、电视和雷达(见课本)

高二物理 电磁振荡的周期和频率典型例题解析

电磁振荡的周期和频率·典型例题解析 【例1】在LC振荡电路中,某一时刻电容器两极板间的电场线方向和穿过线圈的磁感线方向如图19-2所示,这时有 [ ] A.电容器正在放电 B.电路中电流强度在减小 C.磁场能正在转化为电场能 D.线圈中产生的自感电动势正在增大 解析:根据安培定则可知LC回路的电流方向为顺时针,所以正在给电容器充电,因此电流强度逐渐减小,磁场能正在转化为电场能,由于电流强度的变化率在逐渐增大,所以产生的自感电动势正在增大,故答案为BCD 点拨:判定出此时LC回路所处的是充电状态,是解答本题的关键,其次能分析出在振荡过程中各物理量的变化规律. 【例2】如图19-3所示的LC振荡电路中振荡电流的周期为2×10-2s, 自振荡电流逆时针方向达最大值时开始计时,当t=3.4×10-2s时,电容器正 处于________状态(填“充电”、“放电”、“充电完毕”、“放电完毕”),这时电容器的上板带________电. 解答:由于t=3.4×10-2s=2×10-2s+1.4×10-2s=T+t′,所以T/2 <t′<3T/4,作出振荡电流的图象如图,由此可看出在T/2~3T/4时间内,电流方向是顺时针方向,且电流不断减小,电流减小,电容器极板上电量应增加,故电容器处在充电状态,且上板带正电. 点拨:分析在t>T时的振荡情况,可先由t=nT+t′变换,转而分析t′

时刻的振荡状态. 【例3】如图19-4所示,由A板上电量随时间变化图象可知 [ ] A.a、c两时刻电路中电流最大,方向相同 B.a、c两时刻电路中电流最大,方向相反 C.b、d两时刻电路中电流最大,方向相同 D.b、d两时刻电路中电流最大,方向相反 点拨:可由各时刻电容器A板的带电量变化情况,判断出与之对应的充放电状态,再由A板的带电性质从充放电状态判断出电流方向. 参考答案:D 【例4】电子钟是利用LC振荡电路来工作计时的,现发现电子钟每天要慢30s,造成这一现象的原因可能是 [ ] A.电池用久了 B.振荡电路中电容器的电容大了 C.振荡电路中线圈的电感大了 D.振荡电路中电容器的电容小了 点拨:电子钟慢了,是其振荡周期变大了,故应分析影响振荡周期的因素及其原因. 参考答案:BC 跟踪反馈 1.某时刻LC回路的状态如图19-5所示,则此时刻 [ ] A.振荡电流i正在减小 B.振荡电流i正在增大 C.电场能正在向磁场能转化 D.磁场能正在向电场能转化 2.如图19-6所示,初始C1带电,C2不带电,S接1时的振荡电流如图

第十三章电磁感应与电磁波初步

第十三章电磁感应与电磁波初步 1.磁场磁感线 练习与应用 1. 音箱中的扬声器、电话、磁盘、磁卡等生活中的许多器具都利用了磁体的磁性。请选择一个你最熟悉的器具,简述它是怎样利用磁体的磁性来工作的。 2. 日常生活中,磁的应用给我们带来方便。例如:在柜门上安装“门吸”能方便地把柜门关紧;把螺丝刀做成磁性刀头,可以像手一样抓住需要安装的铁螺钉,还能把掉在狭缝中的铁螺钉取出来。请你关注自己的生活,看看还有哪些地方如果应用磁性可以带来方便。写出你的创意,并画出你设计的示意图。 3. 磁的应用非常广泛,不同的人对磁应用的分类也许有不同的方法。请你对磁的应用分类,并每类举一个例子。 4. 通电直导线附近的小磁针如图13.1-13所示,标出导线中的电流方向。 5. 如图13.1-14,当导线环中沿逆时针方向通过电流时,说出小磁针最后静止时N 极的指向。 6. 通电螺线管内部与管口外相比,哪里的磁场比较强?你是根据什么判断的? 7. 为解释地球的磁性,19 世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I 引起的。在图13.1-15 中,正确表示安培假设中环形电流方向的是哪一个?请简述理由。

2.磁感应强度磁通量 练习与应用 1. 有人根据B =IlF 提出:磁场中某点的磁感应强度B 与通电导线在磁场中所受的磁场力F 成正比,与电流I 和导线长度l 的乘积成反比。这种说法有什么问题? 2. 在匀强磁场中,一根长0.4 m 的通电导线中的电流为20 A,这条导线与磁场方向垂直时,所受的磁场力为0.015 N,求磁感应强度的大小。 3. 如图13.2-8,匀强磁场的磁感应强度B为0.2 T,方向沿x轴的正方向,且线段MN、DC相等,长度为0.4 m,线段NC、EF、MD、NE、CF相等,长度为0.3 m,通过面积SMNCD、SNEFC、SMEFD的磁通量Φ1、Φ2、Φ3 各是多少? 4. 在磁场中放置一条直导线,导线的方向与磁场方向垂直。先后在导线中通入不同的电流,导线所受的力也不一样。图13.2-9中的图像表现的是导线受力的大小F与通过导线的电流I 的关系。A、B各代表一组F、I 的数据。在甲、乙、丙、丁四幅图中,正确的是哪一幅或哪几幅?说明道理 3.电磁感应现象及应用 练习与应用 1. 图13.3-7 所示的匀强磁场中有一个矩形闭合导线框。在下列几种情况下,线框中是否产生感应电流?(1)保持线框平面始终与磁感线垂直,线框在磁场中上下运动(图13.3-7 甲)。 (2)保持线框平面始终与磁感线垂直,线框在磁场中左右运动(图13.3-7 乙)。 (3)线框绕轴线转动(图13.3-7 丙)。

第十三章 电磁感应与电磁波精选试卷测试卷(解析版)

第十三章 电磁感应与电磁波精选试卷测试卷(解析版) 一、第十三章 电磁感应与电磁波初步选择题易错题培优(难) 1.如图所示,匀强磁场中有一圆形闭合线圈,线圈平面与磁感线平行,能使线圈中产生感应电流的应是下述运动中的哪一种( ) A .线圈平面沿着与磁感线垂直的方向运动 B .线圈平面沿着与磁感线平行的方向运动 C .线圈绕着与磁场平行的直径ab 旋转 D .线圈绕着与磁场垂直的直径cd 旋转 【答案】D 【解析】 【分析】 【详解】 A .线圈平面沿着与磁感线垂直的方向运动时,磁通量始终为零,保持不变,线圈中没有感应电流产生;故A 错误. B .线圈平面沿着与磁感线平行的方向运动时,磁通量始终为零,保持不变,线圈中没有感应电流产生;故B 错误. C .线圈绕着与磁场平行的直径ab 旋转时,磁通量始终为零,保持不变,线圈中没有感应电流产生;故C 错误. D .线圈绕着与磁场垂直的直径cd 旋转时,磁通量从无到有发生变化,线圈中有感应电流产生;故D 正确. 故选D . 【点睛】 感应电流产生的条件有两个:一是线圈要闭合;二是磁通量发生变化. 2.三根通电长直导线垂直纸面平行固定,其截面构成一正三角形,O 为三角形的重心,通过三根直导线的电流分别用I 1、I 2、I 3表示,方向如图。现在O 点垂直纸面固定一根通有电流为I 0的直导线,当1230I I I I ===时,O 点处导线受到的安培力大小为F 。已知通电长直导线在某点产生的磁感应强度大小和电流成正比,则( )

A .当102303I I I I I ===、时,O 点处导线受到的安培力大小为4F B .当102303I I I I I ===、时,O 点处导线受到的安培力大小为3F C .当201303I I I I I ===、时,O 点处导线受到的安培力大小为3F D .当301203I I I I I ===、时,O 点处导线受到的安培力大小为2F 【答案】C 【解析】 【分析】 【详解】 根据安培定则画出123I I I 、、在O 点的磁感应强度123B B B 、、的示意图如图所示 当1230I I I I ===时,三根导线在O 点产生的磁感应强度大小相等,设为0B ,根据磁场叠加原理可知,此时O 点的磁感应强度为 02B B = 此时O 点处对应的导线的安培力 002F B I L = AB .由于通电长直导线在某点产生的磁感应强度大小和电流成正比,当 102303I I I I I ===、时,则有 103B B =,230B B B == 根据磁场叠加原理可知,此时O 点的磁感应强度为 04B B = 此时O 点处对应的导线的安培力 0042F B I L F '== 故AB 错误; C .当201303I I I I I ===、时,有 203B B =,130B B B ==

5.3电磁振荡与电磁波

§5、3电磁振荡与电磁波 5.3.1、电磁振荡 电路中电容器极板上的电荷和电路中的电流及它们相联系的电场和磁场作周期性变化的现象,叫做电磁振荡。在电磁振荡过程中所产生的强度和方向周期性变化的电流称为振荡电流。能产生振荡电流的电路叫振荡电路。最简单的振荡电路,是由一个电感线圈和一个电容器组成的LC 电路,如图5-3-1所示。 在电磁振荡中,如果没有能量损失,振荡应该永远持续下去,电路中振荡电流的振幅应该永远保持不变,这种振荡 叫做自由振荡或等幅振荡。但是,由于任何电路都有电阻,有一部分能量要转变成热,还有一部分能量要辐射到周围空间中去,这样振荡电路中的能量要逐渐减小,直到最后停止下来。这种振荡叫做阻尼振荡或减幅振荡。 电磁振荡完成一次周期性变化时需要的时间叫做周期。一秒钟内完成的周期性变化的次数叫做频率。 振荡电路中发生电磁振荡时,如果没有能量损失,也不受其它外界的影响,即电路中发生自由振荡时的周期和频率,叫做振荡电路的固有周期和固有频率。 LC 回路的周期T 和频率f 跟自感系数L 和电容C 的关系是:. LC f LC T ππ21 ,2==。 5.3.2、电磁场 任何变化的电场都要在周围空间产生磁场,任何变化的磁场都要在周围空间产生电场。变化的电场和磁场总是相互联系的,形成一个不可分割的统一的场,这就是电磁场。麦克斯韦理论是描述电磁场运动规律的理论。 L 图5-3-1

变化的磁场在周围空间激发的电场,其电场呈涡旋状,这种电场叫做涡旋电场。涡旋电场与静电场一样对电荷有力的作用;但涡旋电场又与静电场不同,它不是静电荷产生的,它的电场线是闭合的,在涡旋电场中移动电荷时电场力做的功与路径有关,因此不能引用“电势”、“电势能”等概念。 当导体作切割磁感线运动时,导体中的自由电子将受到洛仑兹力而在导体中定向移动,使这段导体两端分别积累正、负电荷,产生感应电动势,这种感应电动势又叫做动生电动势。它的计算公式为 θεsin Blv = 当穿过导体回路的磁通量发生变化时(保持回路面积不变),变化的磁场周围空间产生涡旋电场,导体中的自由电子在该电场的电场力作用下定向移动形成电流,这样产生的感应电动势又叫感生电动势。它的计算公式为 t B S ??=ε 5.3.3、电磁波 如果空间某处产生了振荡电场,在周围的空间就要产生振荡的磁场,这个振荡磁场又要在较远的空间产生新的振荡电场,接着又要在更远的空间产生新的振荡磁场,……,这样交替产生的电磁场由近及远地传播就是电磁波。 电磁波的电场和磁场的方向彼此垂直,并且跟传播方向垂直,所以电磁波是横波。 电磁波不同于机械波,机械波要靠介质传播,而电磁波它可以在真空中传播。电磁波在真空中的传播速度等于光在真空个的传播速度8 1000.3?=C 米/秒。 电磁波在一个周期的时间内传播的距离叫电磁波的波长。电磁波在真空中的波长为:.

电磁振荡和电磁波

电磁振荡和电磁波 一、教法建议 抛砖引玉 本章教材的核心内容是麦克斯韦的电磁理论,但由于考查重心以电磁振荡的过程和电磁波特性为主,所以教学时这方面内容应详讲重练,而其它则简单地阐述。 指点迷津 教材对电磁振荡产生过程的分析是从能量转换着眼,重点放在电路中电场能和磁场能的相互转化上。教学时可引导学生逐步分析教科书中图6-2甲、乙、丙、丁、戊所示的电磁振荡过程要使学生明确何时电场能转化为磁场能,何时磁场能转化为电场能;何时电场能最大,何时磁场能最大。电场能与磁场能间的转化条件是电感线圈的自感作用和电容器的充放电作用。要启发学生从电磁感应的角度搞清楚:为什么充好电的电容器开始放电时电路里的电流不能立刻达到最大值,电场能为什么不能转化为磁场能,为什么电容器放电完毕时电路里的电流还要继续流动。 电磁振荡产生的物理过程比较抽象,为了帮助学生理解可用单摆的摆动作类比,电容器充完电时相当于把摆球从平衡位置拉到最高点,电场能相当于摆球势能,磁场能相当于摆球动能。电容器在放电过程中电场能转化为磁场能,相当于摆球由最高点向平衡位置运动。摆球势能转化为动能。电容器放电完毕电场能全部转化为磁场能,相当于摆球到达平衡位置时摆球势能全部转化为动能。 如果想使学生建立起较完整的电磁振荡概念,就要使学生明确“电”不仅指电容器两极板上的电荷,也指该电荷产生的电场,“磁”不仅指电感线圈中的电流,也指该电流产生的磁场。电磁振荡是指这些电荷、电场、电流、磁场都随时间做周期性的正弦变化的现象,为了使学生分清振荡电流与前章所讲的交变电流的区别,要指出振荡电流是一种频率很高的交变电流,很难用交流发电机产生,一般用LC回路产生。可说明在演示实验中我们有意加大电感线圈的电感L和电容器的电容C使振荡电流周期变大(频率减小)以便观察,无线电技术中所应用的振荡电流频率约1兆赫左右或几十兆赫。 阻尼振荡和无阻尼振荡除了按教材内容介绍外,可与单摆的摆动进行对比说明,还可用示波器演示LC回路产生阻尼振荡时的情形,让同学观察振幅衰减的情况,并用示波器观察补充能量后产生的无阻尼振荡波形,看到振幅一定的情况,通过观察示波器的波形能对教科书中图6-3的图象留下深刻的印象。 教科书在解释什么叫振荡电路的固有周期和固有频率后,通过演示实验改变LC回路中的电感L或电容C,使同学看到电路的振荡周期、频率随之变化,由实验中得出电感L大(小)、电容C大(小)、周期长(短的结论,要启发学生体会到:LC回路的周期频率由电路本身的特性(L,C值)决定,所以把电路的周期、频率叫做固有周期、固有频率,教材没有做进一步的分析和证明,直接给出了周期公式和频率公式,这两个公式的证明在中学不易讲清楚。我们的目的是让学生通过实验现象的观察了解公式内容,能应用公式对有关总是进行简单的分析、计算。教材强调了公式中各个物理量的单位,这是有的学生容易出错的地方,课堂上可以让学生做一些简单的基本练习。 (1)电磁场和电磁波:从理论上说,是磁学的核心内容就是电磁场的概念和麦克斯韦的电磁场方程,但这些内容非常抽象,在中学阶段还没有很好的方法让学生接受,只能要求学生对电磁场的理论有一个初步的定性的了解,教材突出了电磁场理论中最核心的内容:变化的电场产生磁场,变化的磁场产生电场,变化的电场和磁场交替产生传播出去形成电磁波。 电磁场理论建立的历史过程是对我们有极大启发的激动人心的过程,适当介绍这一历史过程对学生有教育作用,在思想方法上也会受益。我们可简单介绍法拉第关于场的要领和法拉第的一些设想,介绍麦克斯韦的追求和电磁理论的提出、电磁波设想的提出,介绍赫兹对电磁波存在的实验验证。 电磁场理论的核心之一是:变化的磁场产生电场,教材从电磁感应用现象中随时间变化的磁场在线圈中产生感应电动势谈起,为了使学生容易接受,可做一个演示实验,实验装置如图6-1所示,当穿过螺线管的磁场随时间变化时,上面的线圈中产生感应电动势,引起感应电流使灯泡发光,我们可提出问题,线圈中产生感应电动势说明了什么?指出麦克斯韦认为变化的磁场在线圈中产生电场,正是这种电场在线圈中引起了感应电流,我们又提出问题:如果用不导电的塑料线绕制线圈、线圈中还会有电流、电场吗?(有电场,无电流)。再问:想像线圈不存在时线圈所在处的空间还有电

lc振荡电路频率怎么计算_lc振荡电路频率计算(计算公式)

lc振荡电路频率怎么计算_lc振荡电路频率计算(计算公式)lc振荡电路LC振荡电路,是指用电感L、电容C组成选频网络的振荡电路,用于产生高频正弦波信号,常见的LC正弦波振荡电路有变压器反馈式LC振荡电路、电感三点式LC振荡电路和电容三点式LC振荡电路。LC振荡电路的辐射功率是和振荡频率的四次方成正比的,要让LC振荡电路向外辐射足够强的电磁波,必须提高振荡频率,并且使电路具有开放的形式。 LC振荡电路运用了电容跟电感的储能特性,让电磁两种能量交替转化,也就是说电能跟磁能都会有一个最大最小值,也就有了振荡。不过这只是理想情况,实际上所有电子元件都会有损耗,能量在电容跟电感之间互相转化的过程中要么被损耗,要么泄漏出外部,能量会不断减小,所以实际上的LC振荡电路都需要一个放大元件,要么是三极管,要么是集成运放等数电LC,利用这个放大元件,通过各种信号反馈方法使得这个不断被消耗的振荡信号被反馈放大,从而最终输出一个幅值跟频率比较稳定的信号。频率计算公式为f=1/[2(LC)], 其中f为频率,单位为赫兹(Hz);L为电感,单位为亨利(H);C为电容,单位为法拉(F)。 工作原理开机瞬间产生的电扰动经三极管V组成的放大器放大,然后由LC选频回路从众多的频率中选出谐振频率f0。并通过线圈L1和L2之间的互感耦合把信号反馈至三极管基极。设基极的瞬间电压极性为正。经倒相集电压瞬时极性为负,按变压器同名端的符号可以看出,L2的上端电压极性为负,反馈回基极的电压极性为正,满足相位平衡条件,偏离f0的其它频率的信号因为附加相移而不满足相位平衡条件,只要三极管电流放大系数B和L1与L2的匝数比合适,满足振幅条件,就能产生频率f0的振荡信号。 LC振荡电路物理模型的满足条件①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。 ②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存

电磁感应 电磁场和电磁波(附答案)讲课稿

电磁感应电磁场和电磁波(附答案)

一 填空题 1. 把一个面积为S ,总电阻为R 的圆形金属环平放在水平面上,磁感应强度为B 的匀强磁场竖直向下,当把环翻转?180的过程中,流过环某一横截面的电量为 。 答:R BS 2。 2. 一半径为m 10.0=r 的闭合圆形线圈,其电阻Ω=10R ,均匀磁场B 垂直于线圈平面。欲使线圈中有一稳定的感应电流A 01.0=i ,B 的变化率应为多少 1s T -?。 答:1s T 18.3-?。 3. 如图所示,把一根条形磁铁从同样高度插到线圈中同样的位置处,第一次动作快,线圈中产生的感应电动势为1ε;第二次慢,线圈中产生的感应电动势为2ε,则两电动势的大小关系 是1ε 2ε 答:>。(也可填“大于”) 4. 如图所示,有一磁感强度T 1.0=B 的水平匀强磁场,垂直匀强磁场放置一很长的金属框架,框架上有一导体ab 保持与框架边垂直、由静止开始下滑。已知ab 长m 1.0,质量为kg 001.0,

电阻为Ω1.0,框架电阻不计,取2s m 10?=g ,导体ab 下落的最大速度 1s m -?。 答:1s m 10-?。 5. 金属杆ABC 处于磁感强度T 1.0=B 的匀强磁场中,磁场方向垂直纸面向里(如图所示)。已知BC AB =m 2.0=,当金属杆在图中标明的速度方向运动时,测得C A ,两点间的电势差是V 0.3,则可知B A ,两点间的电势差ab V V。 答:V 0.2。 6. 半径为r 的无限长密绕螺线管,单位长度上的匝数为n ,通以交变电流t I I ωcos 0=,则围在管外的同轴圆形回路(半径为R )上的感生电动势为 。 答:t nI r ωωμsin π002。

电磁振荡的周期和频率练习题

电磁振荡的周期和频率 班级___________ ___________ 学号___________ 分数___________ 1、一个LC 振荡电路能与波长为l 的电磁波发生谐振.为了使它能与波长为3l的电磁波发生谐振,保持电容器的电容不变,线圈的自感系数应是原来的[ ] 2、下列说法中,不符合历史事实的有[ ] A.最早发现电流磁效应的科学家是奥斯特 B.最早揭示磁现象电本质的科学家是安培 C.最早发现电磁感应现象的科学家是法拉第 D.最早用实验证实电磁波存在的科学家是麦克斯韦 3、无线电发射机的LC振荡电路的电感L固定,当电容器的电容为C时,它产生的振荡电流的周期为T;当电容器的电容调为9C时,它产生的振荡电流的频率变为[ ] 4、如图所示,LC振荡电路固有周期为T,从K闭合时开始计时,经T时,有 A. 电容器电场最强,场强方向向上; B. 电感线圈磁场最强,电流方向由a→b; C. 电感线圈磁场最强,电流方向由b→a; D. 电感线圈磁场最强,电流刚好为零. 5、下面关于调谐的说法中正确的是[ ] A.调谐就是电谐振 B.调谐是接收电路中产生电谐振现象的过程 C.调谐是电磁波发射中不可缺少的一个过程 D.调谐是调制的逆过程 6、一台接收机,其LC调谐电路中可变电容器最大电容为270PF,最小电容为30PF,当可变电容器的动片由定片中逐渐旋出时,它所接收的电磁波频率[ ] A.逐渐升高,最高频率为最低频率的9倍 B.逐渐降低,最高频率为最低频率的9倍 C.逐渐降低,最高频率为最低频率的3倍 D.逐渐升高,最高频率为最低频率的3倍 7、在收音机中,检波二极管的作用是[ ] A.放大音频电流 B.把音频交流电变为稳恒直流电 C.用音频电流去调制高频等幅振荡电流 D.把调幅高频电流变为单向脉动直流 8、在物理学史上,最先建立完整的电磁场理论并预言电磁波存在的科学家是[ ] A.赫兹B.爱因斯坦C.麦克斯韦D.法拉第 9、若收音机的调谐是用改变电感的方法来完成的,已知中波频率围为535─1605kHz,即最高频率是最低频率的三倍,那么收听最高频率电台时的电感是收听最低频率时的[ ]

高中物理必修第3册第十三章 电磁感应与电磁波测试卷练习(Word版 含答案)

高中物理必修第3册第十三章 电磁感应与电磁波测试卷练习(Word 版 含答 案) 一、第十三章 电磁感应与电磁波初步选择题易错题培优(难) 1.如图所示,三根相互平行的固定长直导线1L 、2L 和3L 垂直纸面如图放置,与坐标原点分别位于边长为a 的正方形的四个点上, 1L 与2L 中的电流均为I ,方向均垂直于纸面向外, 3L 中的电流为2I ,方向垂直纸面向里(已知电流为I 的长直导线产生的磁场中,距导 线r 处的磁感应强度kI B r (其中k 为常数).某时刻有一质子(电量为e )正好沿与x 轴正方向成45°斜向上经过原点O ,速度大小为v ,则质子此时所受磁场力为( ) A .方向垂直纸面向里,大小为 23kIve B .方向垂直纸面向外,大小为 32kIve C .方向垂直纸面向里,大小为 32kIve a D .方向垂直纸面向外,大小为 232kIve a 【答案】B 【解析】 【详解】 根据安培定则,作出三根导线分别在O 点的磁场方向,如图: 由题意知,L 1在O 点产生的磁感应强度大小为B 1= kI a ,L 2在O 点产生的磁感应强度大小

为B2= 2 kI a ,L3在O点产生的磁感应强度大小为B3=2kI a ,先将B2正交分解,则沿x轴 负方向的分量为B2x= 2 kI a sin45°= 2 kI a ,同理沿y轴负方向的分量为 B2y= 2 kI a sin45°= 2 kI a ,故x轴方向的合磁感应强度为B x=B1+B2x= 3 2 kI a ,y轴方向的合磁感应强度为B y=B3?B2y= 3 2 kI a ,故最终的合磁感应强度的大小为22 32 2 x y kI B B B a ==, 方向为tanα=y x B B =1,则α=45°,如图: 故某时刻有一质子(电量为e)正好沿与x轴正方向成45°斜向上经过原点O,由左手定则 可知,洛伦兹力的方向为垂直纸面向外,大小为f=eBv= 32 2 kIve a ,故B正确; 故选B. 【点睛】 磁感应强度为矢量,合成时要用平行四边形定则,因此要正确根据安培定则判断导线周围磁场方向是解题的前提. 2.如图所示为六根与水平面平行的导线的横截面示意图,导线分布在正六边形的六个角, 导线所通电流方向已在图中标出。已知每条导线在O点磁感应强度大小为 B,则正六边形中心O处磁感应强度的大小和方向() A.大小为零 B.大小 2B,方向沿x轴负方向 C.大小 4B,方向沿x轴正方向 D.大小 4B,方向沿y轴正方向

相关文档
相关文档 最新文档