文档库 最新最全的文档下载
当前位置:文档库 › 高考物理基础知识总结

高考物理基础知识总结

高考物理基础知识总结
高考物理基础知识总结

高考物理基础知识总结

一、质点的运动(1)------直线运动

1)匀变速直线运动

1.平均速度s v=

t

(定义式) 2.有用推论2022t v -v =as 3.中间时刻速度 02t t/2v +v v =v= 4.末速度v t =v o +at

5.中间位置速度s/2v

6.位移02122t/s=vt=v t+at =v t

7.加速度0t v -v a=t

以v o 为正方向,a 与v o 同向(加速)a >0;反向则a <0 8.实验用推论Δs=aT 2 Δs 为相邻连续相等时间(T )内位移之差

9.主要物理量及单位:初速(v o ):m/s 加速度(a ):m/s 2 末速度(v t ):m/s

时间(t ):秒(s) 位移(s ):米(m ) 路程:米 速度单位换算:1m/s=3.6Km/h

注:(1)平均速度是矢量;

(2)物体速度大,加速度不一定大; (3) 0t v -v a=t

只是量度式,不是决定式; (4)其它相关内容:质点/位移和路程/s--t 图/v--t 图/速度与速率/。

2) 自由落体

1.初速度v o =0

2.末速度v t =gt

3.下落高度12

2h=gt (从v o 位置向下计算) 4.推论v t 2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律;

(2)a=g =9.8≈10m/s 2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。

3) 竖直上抛

1.位移012

2s=v t-gt 2.末速度v t = v o - gt (g =9.8≈10m/s 2 ) 3.有用推论v t 2 -v o 2=-2gS 4.上升最大高度H m =v o 2/2g (抛出点算起)

5.往返时间02v t=g

(从抛出落回原位置的时间)

注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性;

(3)上升与下落过程具有对称性,如在同点速度等值反向等。

二、质点的运动(2)----曲线运动、万有引力

1)平抛运动 1.水平方向速度:v x =v o

2.竖直方向速度:v y =gt

3.水平方向位移:x =v o t

4.竖直方向位移:122y=gt

5.

运动时间(

通常又表示为6.

合速度

t v 合速度方向与水平夹角β:0

tan y

x v gt β==v v

7.合位移:位移方向与水平夹角α:0

tan 2y gt α==x v 8.水平方向加速度:a x =0;竖直方向加速度:a y =g

注:(1)平抛运动是匀变速曲线运动,加速度为g ,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2)运动时间由下落高度h (y )决定与水平抛出速度无关;

(3)θ与β的关系为tan β=2tan α;

(4)在平抛运动中时间t 是解题关键;

(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。 2)匀速圆周运动

1.线速度2s πr v==t T

2.角速度22φπω===πf t T

3.向心加速度22

224v πa==ωr=r r T

4.向心力2222

v 4πF =m =m ωr=m r=m ωv=F r T

向合 5.周期与频率:1T=f

6.角速度与线速度的关系:v =ωr

7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)

8.主要物理量及单位:弧长(s ):米(m);角度(Φ):弧度(rad );频率(f ):赫(Hz );周期(T ):秒(s );转速(n ):r/s ;半径(r ):米(m );线速度(v ):m/s ;角速度(ω):rad/s ;向心加速度:m/s 2。

注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

3)万有引力

1.开普勒第三定律:22

3T 4π=k =R GM

?? ???{R :轨道半径,T :周期,K :常量(与行星质量无关,取决于中心天体的质量)}

2.万有引力定律:2Mm F G r

=(G =6.67×10-11N ?m 2/kg 2,方向在它们的连线上) 3.天体上的重力和重力加速度:22Mm GM G =mg ; g=R R

{R :天体半径(m),M :天体质量(kg )} 4.卫星绕行速度、角速度、周期:

2ωM :中心天体质量}

5.第一(二、三)宇宙速度17.9v km/s ;211.2v =km/s ;31

6.7v =km/s

6.地球同步卫星()()22

2Mm

4πG =m r h T r +h 地地+{h ≈36000km ,h :距地球表面的高度,r 地:地球的半径}

注:(1)天体运动所需的向心力由万有引力提供,F 向=F 万;

(2)应用万有引力定律可估算天体的质量密度等;

(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s 。

三、力(常见的力、力的合成与分解)

1)常见的力

1.重力G =mg (方向竖直向下,g =9.8m/s 2≈10m/s 2,作用点在重心,适用于地球表面附近)

2.胡克定律F =kx {方向沿恢复形变方向,k :劲度系数(N/m),x :形变量(m)}

3.滑动摩擦力F =μF N {与物体相对运动方向相反,μ:摩擦因数,F N :正压力(N)}

4.静摩擦力0≤f 静≤f m (与物体相对运动趋势方向相反,f m 为最大静摩擦力)

5.万有引力122m m F=G

r

(G =6.67×10-11N ?m 2/kg 2,方向在它们的连线上) 6.静电力21

2q q F=k r (k =9.0×109N ?m 2/C 2,方向在它们的连线上) 7.电场力F =Eq (E :场强N/C ,q :电量C ,正电荷受的电场力与场强方向相同)

8.安培力F =BIL sin θ (θ为B 与L 的夹角,当L ⊥B 时:F =BIL ,B //L 时:F =0)

9.洛仑兹力f =qVB sin θ (θ为B 与v 的夹角,当v ⊥B 时:f =qvB ,v //B 时:f =0)

注:(1)劲度系数k 由弹簧自身决定;

(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;

(3)f m 略大于μF N ,一般视为f m ≈μF N ;

(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;

(5)物理量符号及单位B :磁感强度(T),L :有效长度(m),I :电流强度(A),v :带电粒子速度(m/s),q :带电粒子(带电体)电量(C);

(6)安培力与洛仑兹力方向均用左手定则判定。

2)力的合成与分解

1.同一直线上力的合成同向:F =F 1+F 2, 反向:F =F 1-F 2 (F 1>F 2)

2.互成角度力的合成:

(余弦定理) F 1⊥F 2时

:

3.合力大小范围:|F 1-F 2|≤F ≤|F 1+F 2|

4.力的正交分解:F x =F cos β,F y =F sin β(β为合力与x 轴之间的夹角tan y

x F β=F )

注:(1)力(矢量)的合成与分解遵循平行四边形定则;

(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

(4)F 1与F 2的值一定时,F 1与F 2的夹角(α角)越大,合力越小;

(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

四、动力学(运动和力)

1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

2.牛顿第二运动定律:F 合=ma 或F a=m 合

{a 由合外力决定,与合外力方向一致}

3.牛顿第三运动定律:F =-F ′{负号表示方向相反,F 、F ′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

4.共点力的平衡F 合=0,推广 {正交分解法、三力汇交原理}

5.超重:F N >G ,失重:F N

6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P66〕

注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

五、振动和波(机械振动与机械振动的传播)

1.简谐振动F =-kx {F :回复力,k :比例系数,x :振动物体离开平衡位置的位移,负号表示F 的方向与x 始终反向}

2.

单摆周期T=2l :摆长(m),g :当地重力加速度值,成立条件:摆角θ<10°;l >>r } 3.受迫振动频率特点:f =f 驱动力

4.发生共振条件:f 驱动力=f 固,振幅A 达到最大,共振的防止和应用〔见第二册P37〕

5.机械波、横波、纵波〔见第二册P45〕

6.波速s

λv==λf=t T

{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s ;20℃:344m/s ;30℃:349m/s ;(声波是纵波)

8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大

9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)

10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P61〕}

注:(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;

(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;

(4)干涉与衍射是波特有的;

(5)振动图象与波动图象;

(6)其它相关内容:超声波及其应用〔见第二册P62〕/振动中的能量转化〔见第二册P35〕。

六、冲量与动量(物体的受力与动量的变化)

1.动量:p =mv {p :动量(kg/s),m :质量(kg),v :速度(m/s),方向与速度方向相同}

3.冲量:I =Ft {I :冲量(N ?s),F :恒力(N),t :力的作用时间(s),方向由F 决定}

4.动量定理:I =Δp 或Ft =mv ’–mv {Δp :动量变化Δp =mv ’–mv ,是矢量式}

5.动量守恒定律:p 前总=p 后总或p =p ’′也可以是m 1v 1+m 2v 2=m 1v 1′+m 2v 2′

6.弹性碰撞:Δp =0;ΔE k =0 {即系统的动量和动能均守恒}

7.非弹性碰撞Δp =0;0<ΔE K <ΔE Km {ΔE K :损失的动能,ΔE Km :损失的最大动能}

8.完全非弹性碰撞Δp =0;ΔE K =ΔE Km {碰后连在一起成一整体}

9.物体m 1以v 1初速度与静止的物体m 2发生弹性正碰:

121121122

11m -m 2m v'=v ,v '=v m +m m +m

10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)

11.子弹m 水平速度v o 射入静止置于水平光滑地面的长木块M ,并嵌入其中一起运动时的机械能损失

()1122

22k 0E =fs =mv -m+M v ?相 {v :共同速度,f :阻力,s 相:子弹相对长木块的位移} 注:(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;

(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;

(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);

(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;

(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;

(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第二册P13〕。

七、功和能(功是能量转化的量度)

1.功:W =Fs cos α(定义式){W :功(J),F :恒力(N),s :位移(m),α:F 与s 间的夹角}

2.重力做功:W ab =mgh ab {m :物体的质量,g =9.8m/s 2≈10m/s 2,h ab :a 与b 高度差(h ab =h a -h b )}

3.电场力做功:W ab =qU ab {q :电量(C ),U ab :a 与b 之间电势差(V)即ab a b U =φ-φ}

4.电功:W =UIt (普适式) {U :电压(V ),I :电流(A),t :通电时间(s)}

5.功率:W P=t

(定义式) {P :功率[瓦(W)],W :t 时间内所做的功(J),t :做功所用时间(s)} 6.汽车牵引力的功率:P =Fv ;P=Fv {P :瞬时功率,P :平均功率}

7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(max P v =f

,P 为汽车发动机的额定功率)

8.电功率:P =UI (普适式) {U :电路电压(V),I :电路电流(A)}

9.焦耳定律:Q =I 2Rt {Q :电热(J),I :电流强度(A),R :电阻值(Ω),t :通电时间(s)}

10.纯电阻电路中U I=R ;2

2U P=UI==I R R ;2

2U Q=W=IUt=t=I Rt R

11.动能:12

2k E =mv {E k :动能(J),m :物体质量(kg),v :物体瞬时速度(m/s)} 12.重力势能:E P =mgh {E P :重力势能(J),g :重力加速度,h :竖直高度(m)(从零势能面起)}

13.电势能:A A ε=q φ {εA :带电体在A 点的电势能(J),q :电量(C),A φ:A 点的电势(V)(从零势能面起)}

14.动能定理(对物体做正功,物体的动能增加):

1122

2221W=mv -mv 或W =ΔE K

{W :外力对物体做的总功,ΔE K :动能变化1122

22k 21E =

mv -mv } 15.机械能守恒定律:ΔE =0或E K1+E P1=E K2+E P2也可以是1211222212mv +mgh =mv +mgh 16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)W G =-ΔE P

注:(1)功率大小表示做功快慢,做功多少表示能量转化多少;

(2)O °≤α<90° 做正功;90°<α≤180°做负功;α=90°不做功(力的方向与位移(速度)方向垂直时该力不做功);

(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少

(4)重力做功和电场力做功均与路径无关(见2、3两式);

(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;

(6)能的其它单位换算:1kWh(度)=3.6×106J ,1eV =1.60×10-19J ;

*(7)弹簧弹性势能212

p E =kx ,与劲度系数和形变量有关。 八、分子动理论、能量守恒定律

1.阿伏加德罗常数N A =6.02×1023/mol ;分子直径数量级10-10米

2.油膜法测分子直径d =V /S {V :单分子油膜的体积(m 3),S :油膜表面

积(m 2)}

3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则

的热运动;分子间存在相互作用力。

4.分子间的引力和斥力(1)r

(2)r =r 0,f 引=f 斥,F 分子力=0,E 分子势能=E min (最小值)

(3)r >r 0,f 引>f 斥,F 分子力表现为引力

(4)r >10r 0,f 引=f 斥≈0,F 分子力≈0,E 分子势能≈0

5.热力学第一定律W+Q =ΔU {(做功和热传递,这两种改变物体内

能的方式,在效果上是等效的),

W :外界对物体做的正功(J),Q :物体吸收的热量(J),ΔU :增加的内能

(J),涉及到第一类永动机不可造出〔见第二册P81〕}

6.热力学第二定律

克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其

它变化(热传导的方向性);

开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不

引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P84〕}

7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15℃(热力学零度)}

注:(1)布朗粒子不是分子运动,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;

(2)温度是分子平均动能的标志;

(3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;

(4)分子力做正功,分子势能减小,在r 0处F 引=F 斥且分子势能最小;

(5)气体膨胀,外界对气体做负功W <0;温度升高,内能增大ΔU >0;吸收热量,Q >0

(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;

(7)r 0为分子处于平衡状态时,分子间的距离;

(8)其它相关内容:能的转化和定恒定律〔见第二册P80〕。能源的开发与利用、环保〔见第二册P88〕。物体的内能、分子的动能、分子势能〔见第二册P77〕。

九、气体的性质

1.气体的状态参量:

温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志, 热力学温度与摄氏温度关系:T =t +273 {T :热力学温度(K),t :摄氏温度(℃)}

体积V :气体分子所能占据的空间,单位换算:1m 3=103L =106mL

压强p :单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm =1.013×105Pa =76cmHg(1Pa =1N/m 2)

2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大

3.*理想气体的状态方程:112212

PV PV =T T {PV =C T =恒量,T 为热力学温度(K)} 注:(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t 为摄氏温度(℃),而T 为热力学温度(K)。

十、电场

1.两种电荷、电荷守恒定律、元电荷(e =1.60×10-19C )

2.库仑定律212q q F=k r (在真空中)*2

12q q F=k εr (在介质中) {F :点电荷间的作用力(N) K:静电力常量K =9.0×109N·m 2/C 2 q 1、q 2:两点荷的电量(C) ε:介电常数 r :两点荷间的距离(m) 方向在它们的连线上,同种电荷互相排斥,异种电荷互相吸引。}

3.电场强度F E=q

(定义式、计算式) {E :电场强度(N/C) q :检验电荷的电量(C) E 是矢量} 4.真空点电荷形成的电场2Q E=k

r { r :点电荷到该位置的距离(m ) Q :点电荷的电量} 5.电场力F=qE {F :电场力(N) q :受到电场力的电荷的电量(C) E :电场强度(N/C)}

6.电势与电势差A A εφ=q A B A B U =φ-φ A B A B AB W εU ==q q

7.电场力做功W AB = qU AB {W AB :带电体由A 到B 时电场力所做的功(J) q :带电量(C) U AB :电场中A 、B 两点间的电势差(V) (电场力做功与路径无关)}

8.电势能A A ε=q φ { εA :带电体在A 点的电势能(J) q :电量(C) A φ:A 点的电势(V)}

9.电势能的变化ΔεAB =εB - εA {带电体在电场中从A 位置到B 位置时电势能的差值}

10.电场力做功与电势能变化ΔεAB = -W AB = -qU AB {电势能的增量等于电场力做功的负值)}

11.电容Q C=

U

(定义式,计算式) {C :电容(F) Q :电量(C) U :电压(两极板电势差)(V)} 12.匀强电场的场强U E=d {U :AB 两点间的电压(V) d :AB 两点在场强方向的距离(m)} 13.带电粒子在电场中的加速

(v o=0) W =ΔE K 122q U =m v 14.带电粒子沿垂直电场方向以速度v o 进入匀强电场时的偏转(不考虑重力作用的情况下)

类似于平 垂直电杨方向:匀速直线运动L=v o t (在带等量异种电荷的平行极板中:U E=

d ) 抛运动 平行电场方向:初速度为零的匀加速直线运动 122d=

at F q E a ==m m 15.光斑在荧光屏上的竖直偏移(如图):20tan 2qlU l l y'=L+=φL+mv d 2???? ? ????

? 16.平行板电容器的电容4εS C=πkd

{S :两极板正对面积 d :两极板间的垂直距离} 注:(1)两个完全相同的带电金属小球接触时,

电量分配规律:原带异种电荷的先中和

后平分,原带同种电荷的总量平分;

(2)电场线从正电荷出发终止于负电荷,

电场线不相交,切线方向为场强向,电场

线密处场强大,顺着电场线电势越来越

低,电场线与等势线垂直;

(3)常见电场的电场线分布要求熟记,

(见下图、[教材P124]);

(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力

与电势能还与带电体带的电量多少和电荷正负有关;

(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附

近的电场线垂直于导体表面.导体内部合场强为零,导体内部没有净

电荷,净电荷只分布于导体外表面;

(6)电容单位换算1F=106μF=1012P F ;

(7)电子伏(eV)是能量的单位,1eV=1.60×10-19J ;

(8) 其它相关内容:静电屏蔽〔见第二册P126〕。示波管、示波器

及其应用〔见第二册P139〕等势面〔见下图及第二册P131〕。

孤立点电荷周围的电场 等量异种点电荷的电场 等量同种点电荷的电场

十一、恒定电流 1.电流强度:q I=

t

{I :电流强度(A ),q :在时间t 内通过导体横载面的电量(C ),t :时间(s )} 2.欧姆定律:U I=R

{I :导体电流强度(A),U :导体两端电压(V),R :导体阻值(Ω)} 3.电阻、电阻定律:L R=ρS

{ρ:电阻率(Ω?m),L :导体的长度(m),S :导体横截面积(m 2)} 4.闭合电路欧姆定律:E I=R+r 或E =Ir+IR 也可以是E =U 内+U 外 {I :电路中的总电流(A),E :电源电动势(V),R :外电路电阻(Ω),r :电源内阻(Ω)}

5.电功与电功率:W =UIt ,P =UI {W :电功(J),U :电压(V),I :电流(A),t :时间(s),P :电功率(W)}

6.焦耳定律:Q =I 2Rt {Q :电热(J),I :通过导体的电流(A),R :导体的电阻值(Ω),t :通电时间(s)}

7.纯电阻电路中:由于U I=R ,W =Q ,因此W =Q =UIt =I 2Rt =2

U t R

8.电源总动率、电源输出功率、电源效率:P =IE ,P 出=IU ,P η=

P 出{I :电路总电流(A),E :电源

电动势(V),U :路端电压(V),η:电源效率}

E

匀强电场

9.电路的串、并联: 串联电路(P 、U 与R 成正比), 并联电路(P 、I 与R 成反比)

电阻关系(串同并反) R 串=R 1+R 2+R 3+……+R n 121111n

=+++R R R R 并 电流关系 I 总=I 1=I 2=I 3 =……=I n I 并=I 1+I 2+I 3+……+I n

电压关系 U 总=U 1+U 2+U 3+……+U n U 总=U 1=U 2=U 3

功率分配(无论串、并联均相同) P 总=P 1+P 2+P 3+ ……+P n

10.欧姆表测电阻 (1)电路组成(如右图); (2)测量原理 两表笔短接后,调节R o 使电表指针满偏,得 0g g E I =r+R +R 接入被测电阻R x 后通过电表的电流为

0x g x x

E E I ==r+R +R +R R R 中+ 式中0g R =r+R +R 中为欧姆表内阻,也是表盘中央刻度值, 由于I x 与R x 对应,因此可指示被测电阻大小

(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off 挡。

(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。

11.伏安法测电阻

电流表内接法:图甲, 电压表示数:U =U R +U A

R x 的测量值 R A c x A zh R U +U U R ===R +R >R I I 电流表外接法:图乙,电流表示数:I =I R +I V

R x 的测量值 x V R c zh R V x V

R R U U R ===

x >>R A [或x R , 选用电路乙的条件R

x <

限流接法(图甲)

分压器接法(图乙)

甲 乙

电压调节范围小,电路简单,功耗小 电压调节范围大,电路复杂,功耗较大

便于调节电压的选择条件R >R L 便于调节电压的选择条件R

注:(1)单位换算:1A =103mA =106μA ;1kV =103V =106mA ;1M Ω=103k Ω=106Ω

(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;

(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;

(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;

(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为2

2E r

; (6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P153~157〕。 十二、磁场

1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位:(T),1T =1N/A ?m

2.安培力F =BIL ;(注:L ⊥B ) {B :磁感应强度(T),F :安培力(F),I :电流强度(A),L :导线长度(m)}

3.洛仑兹力f =qvB (注v ⊥B );质谱仪〔见第二册P181〕 {f :洛仑兹力(N),q :带电粒子电量(C),v :带电粒子速度(m/s)}

4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):

(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动v =v 0

(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下:

(a )F 向=f 洛=22mv =m ωr r 224π=m r=qvB T ;mv r=qB ;2πm T=qB

; (b )运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);

(c )解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。

注:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;

(2)磁感线的特点及其常见磁场的磁感线分布要掌握〔见图及第二册P170〕;

(3)其它相关内容:地磁场/磁电式电表原理〔见第二册P177〕.回旋加速器〔见第二册P182〕.磁性材料(见第二册P184)

十三、电磁感应

1.[感应电动势的大小计算公式] 1)E=n t

?Φ?(只能计算平均感应电动势){法拉第电磁感应定律,E :感应电动势(V),n :感应线圈匝数,ΔΦ/Δt :磁通量的变化率}

2)E =BLv (直导线沿垂直于磁感线方向做切割磁感线运动) {L :有效长度(m) ,v :速度(m/s)}

3)E m =nBS ω(交流发电机最大的感应电动势) {E m :感应电动势峰值} 4)12

2E=B ωL (导体一端固定以ω旋转切割) {ω:角速度(rad/s)} 2.磁通量Φ=BS {Φ:磁通量(Wb),B :匀强磁场的磁感应强度(T),S :垂直于磁场方向的面积(m 2)}

3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极} *

4.自感电动势I E =n =L t t

?Φ???自{L :自感系数(H)(线圈L 有铁芯比无铁芯时要大),ΔI :变化电流,?t :所用时间,ΔI /Δt :自感电流变化率(变化的快慢)}

注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P199〕;

(2)自感电流总是阻碍引起自感电动势的电流的变化;

(3)单位换算:1H =103mH =106μH 。

(4)其它相关内容:自感〔见第二册P204〕.日光灯〔见第二册P206〕。

十四、交变电流(正弦式交变电流)

1.电压瞬时值e =E m sin ωt 电流瞬时值i =I m sin ωt ;(ω=2πf )

2.电动势峰值E m =nBS ω=2BLv 电流峰值(纯电阻电路中):m m z

E I =R 3.正(余)

弦式交变电流有效值:

; 4.理想变压器原副线圈中的电压与电流及功率关系

1122U n =U n ; 2112

I n =I n ; P 入=P 出 5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失:P 损=2P R U ?? ???

;(P 损:输电线上损失的功率,P :输送电能的总功率,U :输送电压,R :输电线电阻)〔见第二册P224〕;

6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t :时间(s);n :线圈匝数;B :磁感强度(T);S :线圈的面积(m 2);U :(输出)电压(V);I :电流强度(A);P :功率(W)。

注:(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f 电=f 线;

(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;

(3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;

(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P 出决定P 入;

(5)其它相关内容:正弦交流电图象〔见第二册P215〕。电阻、电感和电容对交变电流的作用〔见第二册P219〕。

十五、电磁振荡和电磁波

1.LC

振荡电路2T=;f =1/T {f :频率(Hz),T :周期(s),L :电感量(H),C :电容量(F)}

2.电磁波在真空中传播的速度c =

3.00×108m/s ,c λ=cT=f

{λ:电磁波的波长(m),f :电磁波频率}

注:(1)在LC 振荡过程中,电容器电量最大时,振荡电流为零;电容器电量为零时,振荡电流最大;

(2)麦克斯韦电磁场理论:变化的电(磁)场产生磁(电)场;

(3)其它相关内容:电磁场〔见第二册P241〕.电磁波〔见第二册P242〕.无线电波的发射与接收〔见第二册P245〕.电视雷达〔见第二册P246〕。

十六、光的反射和折射(几何光学)

1.反射定律α=i {α;反射角,i:入射角}

2.绝对折射率(光从真空中到介质)sin sin c αn==v β

{光的色散,可见光中红光折射率小,n :折射率,c :真空中的光速,v :介质中的光速, α:入射角, β:折射角}

3.全反射:1)光从介质中进入真空或空气中时发生全反射的临界角C :sinC =1/n

2)全反射的条件:光密介质射入光疏介质;入射角等于或大于临界角

注:(1)平面镜反射成像规律:成等大正立的虚像,像与物沿平面镜对称;

(2)三棱镜折射成像规律:成虚像,出射光线向底边偏折,像的位置向顶角偏移;

(3)光导纤维是光的全反射的实际应用〔见第三册P11〕,放大镜是凸透镜,近视眼镜是凹透镜;

(4)熟记各种光学仪器的成像规律,利用反射(折射)规律、光路的可逆等作出光路图是解题关键;

(5)白光通过三棱镜发色散规律:紫光靠近底边出射见〔第三册P16〕。

十七、光的本性(光既有粒子性,又有波动性,称为光的波粒二象性)

1.两种学说:微粒说(牛顿)、波动说(惠更斯)〔见第三册P23〕

2.双缝干涉:中间为亮条纹;产生亮条纹的条件: s=n λ?;产生暗条纹的条件: ()2s=n+1λ?(n =0,1,2,3,……);条纹间距l x=λd

? { s ?:路程差(光程差);λ:光的波长;λ/2:光的半波长;d :两条狭缝间的距离;l :挡板与屏间的距离}

3.光的颜色由光的频率决定,光的频率由光源决定,与介质无关,光的传播速度与介质有关,光的颜色按频率从低到高的排列顺序是:红、橙、黄、绿、蓝、靛、紫(助记:紫光的频率大,波长小)

4.薄膜干涉:增透膜的厚度是绿光在薄膜中波长的1/4,即增透膜厚度d =λ/4〔见第三册P25〕

5.光的衍射:光在没有障碍物的均匀介质中是沿直线传播的,在障碍物的尺寸比光的波长大得多的情况下,光的衍射现象不明显可认为沿直线传播,反之,就不能认为光沿直线传播〔见第三册P27〕

6.光的偏振:光的偏振现象说明光是横波〔见第三册P32〕

7.光的电磁说:光的本质是一种电磁波。电磁波谱(按波长从大到小排列):无线电波、红外线、可见光、紫外线、伦琴射线、γ射线。红外线、紫外、线伦琴射线的发现和特性、产生机理、实际应用〔见第三册P29〕

8.光子说,一个光子的能量E =h ν {h :普朗克常量=6.63×10-34J.s ,ν:光的频率}

9.爱因斯坦光电效应方程:122m mv =h ν-W {

122m mv :光电子初动能,h ν:光子能量,W :金属的逸出功}

10.物质波:任何运动着的物体都有一种波与它对应,其波长为 h λ=p

{也叫德布罗意波。p :运动物体的动量(k g ·m/s );h :普朗克常量}

注:(1)要会区分光的干涉和衍射产生原理、条件、图样及应用,如双缝干涉、薄膜干涉、单缝衍射、圆孔衍射、圆屏衍射等;

H

O He N 1117842147+→+(2)其它相关内容:光的本性学说发展史/泊松亮斑/发射光谱/吸收光谱/光谱分析/原子特征谱线〔见第三册P48〕。光电效应的规律光子说〔见第三册P41〕。光电管及其应用/光的波粒二象性〔见第三册P45〕。激光〔见第三册P35〕。物质波〔见第三册P51〕。

十八、原子和原子核

1.α粒子散射试验结果:(a)大多数的α粒子不发生偏转;(b)少数α粒子发生了较大角度的偏转;(c)极少数α粒子出现大角度的偏转(甚至反弹回来)

2.原子核的大小:10-15~10-14m ,原子的半径约10-10m(原子的核式结构)

3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:h ν=E 初-E 末{能级跃迁}

4.原子核的组成:质子和中子(统称为核子), {A =质量数=质子数+中子数,Z =电荷数=质子数=核外电子数=原子序数〔见第三册P63〕}

5.天然放射现象:α射线(α粒子是氦原子核)、β射线(高速运动的电子流)、γ射线(波长极短的电磁波)、α衰变与β衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。γ射线是伴随α射线和β射线产生的〔见第三册P64〕

衰变方程:α衰变,238

234492902U Th He →+,β衰变,234234090911Th Pa e -→+。

6. 原子核的人工转变:

是指用人为的方法(如用He 42去轰击其它核)

而使一种元素的原子核转变成另一种元素的原子核,如上述中子和质子的发现中所发生的核反应。

质子的发现:

发现者:1919年 卢瑟福 α粒子轰击氮核

核反应方程: 中子的发现:

发现者:1932年 查德威克

1920年卢瑟福预言中子的存在

1930年用α轰击铍产生了(卢瑟福预言中的中子)不带电粒子

1932年约里奥·居里和伊丽芙·居里用上述粒子从石蜡(含大量 1

1 H )中打出了质子,但

他们当时不知道卢瑟福的预言,放弃了进一步研究。

核反应方程:n C H Be 101264294+→+

7.爱因斯坦的质能方程:E =mc 2{E :能量(J),m :质量(Kg),c :光在真空中的速度}

8.核能的计算ΔE =Δmc 2{当Δm 的单位用kg 时,ΔE 的单位为J ;当Δm 用原子质量单位u 时,算出的ΔE 单位为uc 2;1uc 2=931.5MeV }〔见第三册P72〕。

9.重核的裂变:

2351921411920365603U n Kr Ba n +→++ 10.轻核的聚变:23411120H H H n +→+

注:(1)常见的核反应方程(重核裂变、轻核聚变等核反应方程)要求掌握;

(2)熟记常见粒子的质量数和电荷数;

235 U + 1 n → 90 Sr + 136 Xe+10 1 n 92 0 38 54 0

(3)质量数和电荷数守恒,依据实验事实,是正确书写核反应方程的关键;

(4)其它相关内容:氢原子的能级结构〔见第三册P49〕/氢原子的电子云〔见第三册P53〕/放射性同位数及其应用、放射性污染和防护〔见第三册P69〕/重核裂变、链式反应、链式反应的条件、核反应堆〔见第三册P73〕/轻核聚变、可控热核反应〔见第三册P77〕/人类对物质结构的认识。(完)图不完整,见谅。

高中物理重要知识点详细全总结(史上最全)

【精品文档,百度专属】完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 高 中 物 理 重 要 知 识 点 总 结 (史上最全)

高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静

(完整版)高中物理知识点清单(非常详细)

高中物理知识点清单 第一章 运动的描述 第一节 描述运动的基本概念 一、质点、参考系 1.质点:用来代替物体的有质量的点.它是一种理想化模型. 2.参考系:为了研究物体的运动而选定用来作为参考的物体.参考系可以任意选取.通常以地面或相对于地面不动的物体为参考系来研究物体的运动. 二、位移和速度 1.位移和路程 (1)位移:描述物体位置的变化,用从初位置指向末位置的有向线段表示,是矢量. (2)路程是物体运动路径的长度,是标量. 2.速度 (1)平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值,即v =x t ,是矢量. (2)瞬时速度:运动物体在某一时刻(或某一位置)的速度,是矢量. 3.速率和平均速率 (1)速率:瞬时速度的大小,是标量. (2)平均速率:路程与时间的比值,不一定等于平均速度的大小. 三、加速度 1.定义式:a =Δv Δt ;单位是m/s 2 . 2.物理意义:描述速度变化的快慢. 3.方向:与速度变化的方向相同. 考点一 对质点模型的理解 1.质点是一种理想化的物理模型,实际并不存在. 2.物体能否被看做质点是由所研究问题的性质决定的,并非依据物体自身大小来判断. 3.物体可被看做质点主要有三种情况: (1)多数情况下,平动的物体可看做质点. (2)当问题所涉及的空间位移远大于物体本身的大小时,可以看做质点. (3)有转动但转动可以忽略时,可把物体看做质点. 考点二 平均速度和瞬时速度 1.平均速度与瞬时速度的区别 平均速度与位移和时间有关,表示物体在某段位移或某段时间内的平均快慢程度;瞬时速度与位置或时刻有关,表示物体在某一位置或某一时刻的快慢程度. 2.平均速度与瞬时速度的联系 (1)瞬时速度是运动时间Δt →0时的平均速度. (2)对于匀速直线运动,瞬时速度与平均速度相等. 考点三 速度、速度变化量和加速度的关系

2020高考物理知识点汇总

2020高考物理知识点汇总 在高考物理复习中掌握重点知识点是物理学习方法中最有效的一种。掌握一些重要的 知识点学习起来就不会那么吃力,那么,下面由小编为整理有关2020高考物理知识 点总结的资料,供参考! 2020高考物理知识点总结:热力学 (一)改变物体内能的两种方式:做功和热传递 1.做功:其他形式的能与内能之间相互转化的过程,内能改变了多少用做功的数值来 量度,外力对物体做功,内能增加,物体克服外力做功,内能减少。 2.热传递:它是物体间内能转移的过程,内能改变了多少用传递的热量的数值来量度,物体吸收热量,物体的内能增加,放出热量,物体的内能减少,热传递的方式有:传导、对流、辐射,热传递的条件是物体间有温度差。 (二)热力学第一定律 1.内容:物体内能的增量等于外界对物体做的功W和物体吸收的热量Q的总和。 2.符号法则:外界对物体做功,W取正值,物体对外界做功,W取负值,吸收热 (三)能的转化和守恒定律 能量既不能凭空产生,也不能凭空消失,它只能从一种形式转化为另一种形式或从一 个物体转移到另一个物体。在转化和转移的过程中,能的总量不变,这就是能量守恒 定律。 (四)热力学第二定律 两种表述:(1)不可能使热量由低温物体传递到高温物体,而不引起其他变化。 (2)不可能从单一热源吸收热量,并把它全部用来做功,而不引起其他变化。 热力学第二定律揭示了涉及热现象的宏观过程都有方向性。 (3)热力学第二定律的微观实质是:与热现象有关的自发的宏观过程,总是朝着分子热 运动状态无序性增加的方向进行的。 (4)熵是用来描述物体的无序程度的物理量。物体内部分子热运动无序程度越高,物体 的熵就越大。 注:1.第一类永动机是永远无法实现的,它违背了能的转化和守恒定律。 2.第二类永动机也是无法实现的,它虽然不违背能的转化和守恒定律,但却违背了热 力学第二定律。

高考物理知识点大全(坤哥物理)

最新高考物理知识点大全(坤哥物理) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第一单元直线运动 (1) 第二单元相互作用 (4) 第三单元牛顿运动定律 (7) 第四单元曲线运动 (9) 第五单元万有引力 (12) 第六单元机械能 (14) 第七单元动量 (18) 第八单元力学实验 (24) 第九单元静电场 (30) 第十单元恒定电流 (34) 第十一单元电学实验 (36) 第十二单元磁场 (46) 第十三单元电磁感应 (49) 第十四单元交变电流 (51) 第十五单元近代物理 (53) 第十六单元选修3-3 (63) 第十七单元选修3-4 (73) 第十八单元常用的物理方法 (85) 第十九单元常用的数学方法 (92)

第一单元直线运动 1.匀变速直线运动: (1)平均速度(定义式)v=s s (2)有用推论s s 2-s 2=2as (3)中间时刻速度s s 2=(s s+s0) 2 (4)末速度v t=v0+at (5)中间位置速度s s 2=√s02+s s2 2 (6)位移s=v0t+1 2 at2 (7)加速度a=s s-s0 s (以v0为正方向,a与v0同向(加速)则a>0;反向则a<0) (8)实验用推论Δs=aT2(Δs为连续相邻相等时间T内位移之差) 易错提醒: (1)平均速度是矢量 (2)物体速度大,加速度不一定大 (3)a=s s-s0 s 只是量度式,不是决定式 2.自由落体运动 (1)初速度v0=0 (2)末速度v t=gt (3)下落高度h=1 2gt2(从v 位置向下计算) (4)推论s s 2=2gh 易错提醒: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律。 (2)a=g=9.8 m/s2≈10 m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 3.竖直上抛运动 (1)位移s=v0t-1 2 gt2 (2)末速度v t=v0-gt (3)有用推论s s 2-s 2=-2gs (4)上升最大高度H m=s02 2s (从抛出点算起)。 (5)往返时间t=2s0 s (从抛出落回原位置的时间)。

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 物 理 重 要 知 识 点 总 结 (史上最全) 高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是因为地球对物体的吸引而产生的. [注意]重力是因为地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,能够认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:因为发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素相关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存有压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向能够相同也能够相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件能够判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N实行计算,其中F N是物体的正压力,不一

高考物理基础知识总结

高考物理基础知识总结 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度s v= t (定义式) 2.有用推论2022t v -v =as 3.中间时刻速度 02t t/2v +v v =v= 4.末速度v t =v o +at 5.中间位置速度s/2v 6.位移02122t/s=vt=v t+at =v t 7.加速度0t v -v a=t 以v o 为正方向,a 与v o 同向(加速)a >0;反向则a <0 8.实验用推论Δs=aT 2 Δs 为相邻连续相等时间(T )内位移之差 9.主要物理量及单位:初速(v o ):m/s 加速度(a ):m/s 2 末速度(v t ):m/s 时间(t ):秒(s) 位移(s ):米(m ) 路程:米 速度单位换算:1m/s=3.6Km/h 注:(1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3) 0t v -v a=t 只是量度式,不是决定式; (4)其它相关内容:质点/位移和路程/s--t 图/v--t 图/速度与速率/。 2) 自由落体 1.初速度v o =0 2.末速度v t =gt 3.下落高度12 2h=gt (从v o 位置向下计算) 4.推论v t 2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律; (2)a=g =9.8≈10m/s 2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。 3) 竖直上抛 1.位移012 2s=v t-gt 2.末速度v t = v o - gt (g =9.8≈10m/s 2 ) 3.有用推论v t 2 -v o 2=-2gS 4.上升最大高度H m =v o 2/2g (抛出点算起) 5.往返时间02v t=g (从抛出落回原位置的时间)

高中物理知识点总结大全

高考总复习知识网络一览表物理

高中物理知识点总结大全 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FNr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

高考物理基础知识点.doc

高考物理基础知识点 高考物理基础知识点:气体的性质 1.气体的状态参量: 温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志 热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)} 体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL 压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压。 1atm=1.013 105Pa=76cmHg(1Pa=1N/m2) 2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大 3.理想气体的状态方程:p1V1/T1=p2V2/T2{PV/T=恒量,T 为热力学温度(K)} 注: (1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关; (2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。 高考物理基础知识点:功和能 1.功:W=Fscos (定义式){W:功(J),F:恒力(N),s:位移(m),:F、s间的夹角}

2.重力做功:Wab=mghab{m:物体的质量,g=9.8m/s2 10m/s2,hab:a与b高度差(hab=ha-hb)} 3.电场力做功:Wab=qUab{q:电量(C),Uab:a与b之间电势差(V)即Uab= a- b} 4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)} 5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)} 6.汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率} 7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f) 8.电功率:P=UI(普适式){U:电路电压(V),I:电路电流(A)} 9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值( ),t:通电时间(s)} 10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt 11.动能:Ek=mv2/2{Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)} 12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)} 13.电势能:EA=q A{EA:带电体在A点的电势能(J),q:电量(C),A:A点的电势(V)(从零势能面起)} 14.动能定理(对物体做正功,物体的动能增加):W合=mvt2/2-mvo2/2或W合= EK {W合:外力对物体做的总功,EK:动能变化

高中物理知识点汇总(带经典例题)

高中物理必修1 运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。 第一章运动的描述 专题一:描述物体运动的几个基本本概念 ◎知识梳理 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 2.参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 3.质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。’ 物体可视为质点主要是以下三种情形: (1)物体平动时; (2)物体的位移远远大于物体本身的限度时; (3)只研究物体的平动,而不考虑其转动效果时。 4.时刻和时间 (1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末”,“速度达2m/s时”都是指时刻。 (2)时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 5.位移和路程 (1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。6.速度 (1).速度:是描述物体运动方向和快慢的物理量。 (2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。 (3).平均速度:物体在某段时间的位移与所用时间的比值,是粗略描述运动快慢的。 ①平均速度是矢量,方向与位移方向相同。

高三物理高考精选知识点梳理

高三物理高考精选知识点梳理 学习高中物理知识点的时候需要讲究方法和技巧,更要学会对高中物理知识点进行归纳整理。下面就是我给大家带来的高三物理高考知识点,希望能帮助到大家! 高三物理高考知识点1 (1)极性分子之间 极性分子的正负电荷的重心不重合,分子的一端带正电荷,另一端带负电荷。当极性分子相互接近时,由于同极相斥,异极相吸,使分子在空间定向排列,相互吸引而更加接近,当接近到一定程度时,排斥力同吸引力达到相对平衡。极性分子之间按异极相邻的状态取向。 (2)极性分子与非极性分子之间 非极性分子的正负电荷重心是重合的,当非极性分子与极性分子相互接近时,由于极性分子电场的影响,使非极性分子的电子云发生“变形”,从而使原来的非极性分子产生极性。这样,非极性分子与极性分子之间也就产生了相互作用力。极性分子对非极性分子有诱导作用。 (3)非极性分子之间 非极性分子间不可能产生上述两种作用力,那又是怎样产生作用力的呢? 我们说非极性分子的正负电荷重心重合是从整体上讲的。但由于核外电子是绕核高速运动的,原子核也在不断振动之中,原子核外的电子对原子核的相对位置会经常出现瞬间的不对称,正负电荷重心经常出现瞬间的不重合,也就是说非极性分子经常产生瞬时极性,从而使非极性分子间也产生了相互吸引力。

从上述的分析可以看出,无论什么分子之间都存在着相互吸引力,即范德华力。范德华力从本质上看,是一种电性吸引力。 高三物理高考知识点2 1.电压瞬时值e=Emsinωt电流瞬时值i=Imsinωt;(ω=2πf) 2.电动势峰值Em=nBSω=2BLv电流峰值(纯电阻电路中)Im=Em/R总 3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2;I=Im/(2)1/2 4.理想变压器原副线圈中的电压与电流及功率关系 U1/U2=n1/n2;I1/I2=n2/n2;P入=P出 5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失:P 损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕; 6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T); S:线圈的面积(m2);U:(输出)电压(V);I:电流强度(A);P:功率(W)。 注: (1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线; (2)发电机中,线圈在中性面位置磁通量,感应电动势为零,过中性面电流方向就改变; (3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值; (4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,

2020高考物理知识点总结.docx

2020 高考物理知识点总结 1.简谐振动 F=-kx{F: 回复力, k: 比例系数, x: 位移,负号表示 F 的方向与 x 始终反向 } 2.单摆周期 T=2π(l/g)1/2{l: 摆长 (m),g: 当地重力加速度值,成 立条件 : 摆角θ<100;l>>r } 3.受迫振动频率特点: f=f 驱动力 4.发生共振条件 :f 驱动力 =f 固, A=max,共振的防止和应用〔见第一册 P175〕 5.机械波、横波、纵波〔见第二册 P2〕 7.声波的波速 ( 在空气中 )0 ℃: 332m/s;20 ℃:344m/s;30 ℃:349m/s;( 声波是纵波 ) 8.波发生明显衍射 ( 波绕过障碍物或孔继续传播 ) 条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同 ( 相差恒定、振幅相近、振动 方向相同 ) 10.多普勒效应 : 由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{ 相互接近,接收频率增大,反之,减小〔见第二册 P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统 本身 ; (2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰 与波谷相遇处 ; (3)波只是传播了振动,介质本身不随波发生迁移 , 是传递能量的一种方式 ;

(4)干涉与衍射是波特有的 ; (5)振动图象与波动图象 ; 1) 常见的力 1.重力 G=mg(方向竖直向下, g=9.8m/s2 ≈10m/s2,作用点在 重心,适用于地球表面附近 ) 2.胡克定律 F=kx{ 方向沿恢复形变方向, k:劲度系数 (N/m) , x:形变量 (m)} 3.滑动摩擦力 F=μFN{与物体相对运动方向相反,μ:摩擦因数,FN:正压力 (N) } 4.静摩擦力 0≤f静≤ fm( 与物体相对运动趋势方向相反, fm 为 最大静摩擦力 ) 5.万有引力 F=Gm1m2/r2(G= 6.67×10-11N?m2/kg2, 方向在它们 的连线上 ) 6.静电力 F=kQ1Q2/r2(k=9.0 ×109N?m2/C2,方向在它们的连线上 ) 7.电场力 F=Eq(E:场强 N/C,q:电量 C,正电荷受的电场力与 场强方向相同 ) 8.安培力 F=BILsin θ( θ为 B 与 L 的夹角,当 L⊥B时:F=BIL , B//L 时:F=0) 9.洛仑兹力 f=qVBsin θ( θ为 B 与 V 的夹角,当 V⊥B时: f=qVB,V//B 时:f=0) 注: (1)劲度系数 k 由弹簧自身决定 ; (2)摩擦因数μ 与压力大小及接触面积大小无关,由接触面材 料特性与表面状况等决定 ; (3)fm 略大于μFN,一般视为 fm≈μ FN;

人教版高中物理必修一知识点大全

人教版高中物理必修一 知识点大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中物理学习材料 (灿若寒星**整理制作) 必修一知识点大全 1.参考系 ⑴定义:在描述一个物体的运动时,选来作为标准的假定不动的物体,叫做参考系。 ⑵对同一运动,取不同的参考系,观察的结果可能不同。 ⑶运动学中的同一公式中涉及的各物理量应以同一参考系为标准,如果没有特别指明,都是取地面为参考系。 2.质点 ⑴定义:质点是指有质量而不考虑大小和形状的物体。 ⑵质点是物理学中一个理想化模型,能否将物体看作质点,取决于所研究的具体问题,而不是取决于这一物体的大小、形状及质量,只有当所研究物体的大小和形状对所研究的问题没有影响或影响很小,可以将其形状和大小忽略时,才能将物体看作质点。 ⑴物体可视为质点的主要三种情形: ①物体只作平动时; ②物体的位移远远大于物体本身的尺度时; ③只研究物体的平动,而不考虑其转动效果时。 3.时间与时刻 ⑴时刻:指某一瞬时,在时间轴上表示为某一点。

⑵时间:指两个时刻之间的间隔,在时间轴上表示为两点间线段的长度。 ⑶时刻与物体运动过程中的某一位置相对应,时间与物体运动过程中的位移(或路程)相对应。 4.位移和路程 ⑴位移:表示物体位置的变化,是一个矢量,物体的位移是指从初位置到末位置的有向线段,其大小就是此线段的长度,方向从初位置指向末位置。 ⑵路程:路程等于运动轨迹的长度,是一个标量。 当物体做单向直线运动时,位移的大小等于路程。 5.速度、平均速度、瞬时速度 ⑴速度:是表示质点运动快慢的物理量,在匀速直线运动中它等于位移与发生这段位移所用时间的比值,速度是矢量,它的方向就是物体运动的方向。 ⑵平均速度:物体所发生的位移跟发生这一位移所用时间的比值叫这段时间内的平均速度,即t v x =,平均速度是矢量,其方向就是相应位移的方向。 ⑶瞬时速度:运动物体经过某一时刻(或某一位置)的速度,其方向就是物体经过某有一位置时的运动方向。 6.加速度 ⑴加速度是描述物体速度变化快慢的的物理量,是一个矢量,方向与速度变化的方向相同。 ⑵做匀速直线运动的物体,速度的变化量与发生这一变化所需时间的比值叫加速度,即t v v t v a 0-=??= ⑶对加速度的理解要点:

最新高考物理知识点大全

第一单元直线运动 (1) 第二单元相互作用 (4) 第三单元牛顿运动定律 (7) 第四单元曲线运动 (9) 第五单元万有引力 (12) 第六单元机械能 (14) 第七单元动量 (18) 第八单元力学实验 (24) 第九单元静电场 (30) 第十单元恒定电流 (34) 第十一单元电学实验 (36) 第十二单元磁场 (46) 第十三单元电磁感应 (49) 第十四单元交变电流 (51) 第十五单元近代物理 (53) 第十六单元选修3-3 (63) 第十七单元选修3-4 (73) 第十八单元常用的物理方法 (85) 第十九单元常用的数学方法 (92)

第一单元直线运动 1.匀变速直线运动: (1)平均速度(定义式)v=s t (2)有用推论v t 2-v02=2as (3)中间时刻速度v t 2=(v t+v0) 2 (4)末速度v t=v0+at (5)中间位置速度v s 2=√v02+v t2 2 (6)位移s=v0t+1 2 at2 (7)加速度a=v t-v0 t (以v0为正方向,a与v0同向(加速)则a>0;反向则a<0) (8)实验用推论Δs=aT2(Δs为连续相邻相等时间T内位移之差) 易错提醒: (1)平均速度是矢量 (2)物体速度大,加速度不一定大 (3)a=v t-v0 t 只是量度式,不是决定式 2.自由落体运动 (1)初速度v0=0 (2)末速度v t=gt (3)下落高度h=1 2 gt2(从v0位置向下计算) (4)推论v t 2=2gh 易错提醒: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律。

(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 3.竖直上抛运动 gt2 (1)位移s=v0t-1 2 (2)末速度v t=v0-gt (3)有用推论v 2-v02=-2gs t (4)上升最大高度H m=v02 (从抛出点算起)。 2g (从抛出落回原位置的时间)。 (5)往返时间t=2v0 g 易错提醒: (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。 (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性。 (3)上升与下落过程具有对称性,如在同一点速度等值反向等。 1.误认为a与Δv成正比,与时间t成反比 (1)表达式a=Δv 是加速度的定义式,而不是加速度的决定式。 t 是不变的。 (2)物体的加速度a由F和m决定,对于同一个匀加速运动,Δv越大则时间t越长,而Δv t 2.将加速度的正负错误地理解为物体做加速直线运动还是做减速直线运动的判断依据 (1)加速度的正负与正方向的规定有关。 (2)物体做加速直线运动还是做减速直线运动,判断的依据是加速度的方向和速度方向是相同还是相反。 (3)当加速度与速度同方向,如v0>0,a>0时,物体做加速运动;当加速度与速度反方向,如v0>0,a<0时,物体做减速运动。 3.刹车类问题中,对运动过程不清,盲目套用公式 (1)对刹车的过程要清楚。当速度减为零后,汽车会静止不动,不会反向加速,要结合现实生活中的刹车过程分析。

最新最全高中物理所有知识点总结(精华)

高考物理基本知识点总结 一. 教学内容: 知识点总结 1. 摩擦力方向:与相对运动方向相反,或与相对运动趋势方向相反 静摩擦力:0 注意:若到最高点速度从零开始增加,杆对球的作用力先减小后变大。 = 相同,,轮上边缘各点v 相同,v A =v B 3. 传动装置中,特点是:同轴上各点C A 4. 同步地球卫星特点是:①,② ①卫星的运行周期与地球的自转周期相同,角速度也相同; ②卫星轨道平面必定与地球赤道平面重合,卫星定点在赤道上空36000km 处,运行速度 3.1km/s。 m1m2 2 r F=G ,卡文迪许扭秤实验。 5. 万有引力定律:万有引力常量首先由什么实验测出: g' =GM/r 2 6. 重力加速度随高度变化关系: GM 说明:r为某位置到星体中心的距离。某星体表面的重力加速 度。 g 02 R

2 g' g R R ——某星体半径 h 为某位置到星体表面的距离 2 (R h) 7. 地球表面物体受重力加速度随纬度变化关系:在赤道上重力加速度较小,在两极,重力加速度较大。 2 2 GM r GM GMm mv r GMm mv r 2 2 2 g' = r r r 、v = 、 、 8. 人造地球卫星环绕运动的环绕速度、周期、向心加速度 = m ω 2R =m ( 2π /T ) 2 R GM r gR gR 2 = GM r =R ,为第一宇宙速度 v 1= = 当 r 增大, v 变小;当 应用:地球同步通讯卫星、知道宇宙速度的概念 9. 平抛运动特点: ①水平方向 ②竖直方向 ③合运动 ④应用:闪光照 ⑤建立空间关系即两个矢量三角形的分解:速度分解、位移分解 S ,求 v T gT 2 相位 v y 0 t x v 0 t v x v 0 1 2 2 y gt v y gt 1 4 2 2 2 2 4 2 2 S v 0 t g t v t v g t gt 2v 0 1 2 gt v 0 tg tg tg tg ⑥在任何两个时刻的速度变化量为△ v =g △ t ,△ p = mgt x 2 处,在电场中也有应用 ⑦v 的反向延长线交于 x 轴上的 10. 从倾角为 α的斜面 上 A 点以速度 v 0 平抛的小球,落到了斜面上的 B 点,求: S AB

(完整word版)高中物理总复习基础知识汇总

高中物理总复习基础知识要点 第一部分力学 一、力和物体的平衡: 1.力 ⑴力是物体对物体的作用:①成对出现,力不能离开物体而独立存在;②力能改变物体的运动状态(产生加速度)和引起形变;③力是矢量,力的大小、方向、作用点是力的三要素。 ⑵力的分类:①按力的性质分类。②按力的效果分类(可以几个力的合力)。 ⑶力的图示:①由作用点开始画,②沿力的方向画直线。③选定标度,并按大小结合标度分段。④在末端画箭头并标出力的符号。 2.重力 ⑴产生:①由于地球吸引而产生(但不等于万有引力)。②方向竖直向下。③作用点在重心。 ⑵大小:①G=mg,在地球上不同地点g不同。②重力的大小可用弹簧秤测出。 ⑶重心:①质量分布均匀的有规则形状物体的重心,在它的几何中心。②质量分布不均匀或不规则形状物体的重心,除与物体的形状有关外,还与质量的分布有关。③重心可用悬挂法测定。④物体的重心不一定在物体上。 3.弹力 ⑴产生:①物体直接接触且产生弹性形变时产生。②压力或支持力的方向垂直于支持面而指向被压或被支持的物体;③绳的拉力方向沿着绳而指向绳收缩的方向。 有接触的物体间不一定有弹力,弹力是否存在可用假设法判断,即假设弹力存在,通过分析物体的合力和运动状态判断。 ⑵胡克定律:在弹性限度内,F=KX,X-是弹簧的伸长量或缩短量。 4.摩擦力 ⑴静摩擦力:①物接触、相互挤压(即存在弹力)、有相对运动趋势且相对静止时产生。 ②方向与接触面相切,且与相对运动趋势方向相反。③除最大静摩擦力外,静摩擦力没有一定的计算式,只能根据物体的运动状态按力的平衡或F=ma方法求。 判断它的方向可采用“假设法”,即如无静摩擦力时物体发生怎样的相对运动。 ⑵滑动摩擦力:①物接触、相互挤压且在粗糙面上有相对运动时产生。②方向与接触面相切且与相对运动方向相反(不一定与物的运动方向相反)②大小f=μF N。(F N不一定等于重力)。 滑动摩擦力阻碍物体间的相对运动,但不一定阻碍物体的运动。 摩擦力既可能起动力作用,也可能起阻力作用。 5.力的合成与分解 ⑴合成与分解:①合力与分力的效果相同,可以根据需要互相替代。①力的合成和分解遵循平行四边形法则,平行四边形法则对任何矢量的合成都适用,力的合成与分解也可用正交分解法。③两固定力只能合成一个合力,一个力可分解成无数对分力,但力的分解要根据实际情况决定。 ⑵合力与分力关系:①两分力与合力F1+F2≥F≥F1-F2,但合力不一定大于某一分

高中物理知识点汇总

高考物理基本知识点汇总 一. 教学内容: 知识点总结 1. 摩擦力方向:与相对运动方向相反,或与相对运动趋势方向相反 静摩擦力:0gR 注意:若到最高点速度从零开始增加,杆对球的作用力先减小后变大。 3. 传动装置中,特点是:同轴上各点ω相同,A ω=C ω,轮上边缘各点v 相同,v A =v B 4. 同步地球卫星特点是:①_______________,②______________ ①卫星的运行周期与地球的自转周期相同,角速度也相同; ②卫星轨道平面必定与地球赤道平面重合,卫星定点在赤道上空36000km 处,运行速度3.1km/s 。 5. 万有引力定律:万有引力常量首先由什么实验测出:F =G 2 2 1r m m ,卡文迪许扭秤实验。 6. 重力加速度随高度变化关系: 'g =GM/r 2

说明:为某位置到星体中心的距离。某星体表面的重力加速度。 r g G M R 02 = g g R R h R h ' () = +2 2 ——某星体半径为某位置到星体表面的距离 7. 地球表面物体受重力加速度随纬度变化关系:在赤道上重力加速度较小,在两极,重力加速度较大。 8. 人造地球卫星环绕运动的环绕速度、周期、向心加速度'g =2 r GM 、r mv r GMm 2 2 = 、v = r GM 、 r mv r GMm 2 2 = =m ω2R =m (2π/T )2R 当r 增大,v 变小;当r =R ,为第一宇宙速度v 1=r GM =gR gR 2 =GM 应用:地球同步通讯卫星、知道宇宙速度的概念 9. 平抛运动特点: ①水平方向______________ ②竖直方向____________________ ③合运动______________________ ④应用:闪光照 ⑤建立空间关系即两个矢量三角形的分解:速度分解、位移分解 相位,求?y t x y t gT v S T v x v t v v y gt v gt S v t g t v v g t tg gt v tg gt v tg tg == =====+=+== =2 0002 02 2 24 0222 00 1214 21 2αθα θ ⑥在任何两个时刻的速度变化量为△v =g △t ,△p =mgt ⑦v 的反向延长线交于x 轴上的x 2处,在电场中也有应用 10. 从倾角为α的斜面上A 点以速度v 0平抛的小球,落到了斜面上的B 点,求:S AB

最新高考物理知识点归纳

最新高考物理知识点归纳 高考物理是让很多考生感觉困惑的一科,知识点精炼,需要理解的有很多,下面由小编为整理有关高考物理知识点归纳的资料,希望对大家有所帮助! 高考物理电场知识点 1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kQq与r平方比。 2.电荷周围有电场,F比q定义场强。KQ比r2点电荷,U比d是匀强电场。 电场强度是矢量,正电荷受力定方向。描绘电场用场线,疏密表示弱和强。 场能性质是电势,场线方向电势降。场力做功是qU ,动能定理不能忘。 4.电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。 高考恒定电流知识点 1.电荷定向移动时,电流等于q比 t。自由电荷是内因,两端电压是条件。 正荷流向定方向,串电流表来计量。电源外部正流负,从负到正经内部。 2.电阻定律三因素,温度不变才得出,控制变量来论述,r l比s 等电阻。 电流做功U I t , 电热I平方R t 。电功率,W比t,电压乘电流也是。 3.基本电路联串并,分压分流要分明。复杂电路动脑筋,等效电路是关键。 4.闭合电路部分路,外电路和内电路,遵循定律属欧姆。 路端电压内压降,和就等电动势,除于总阻电流是。 高考理综物理实验方法总结 1、控制变量法 在实验中或实际问题中,常有多个因素在变化,造成规律不易表现出来,这时可以先控制一些物理量不变,依次研究某一个因素的影响和利用。 如气体的性质,压强、体积和温度通常是同时变化的,我们可以分别控制一个状态参量不变,寻找另外两个参量的关系,最后再进行统一。欧姆定律、牛顿第二定律等都是用这种方法研究的。 高考理综物理实验方法总结2、等效替代法 某些物理量不直观或不易测量,可以用较直观、较易测量而且又有等效效果的量代替,从而简化问题。

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

相关文档
相关文档 最新文档