文档库 最新最全的文档下载
当前位置:文档库 › 6.固溶体的结构和性能

6.固溶体的结构和性能

6.固溶体的结构和性能
6.固溶体的结构和性能

()五固溶体的结构

固溶体的结构发生了变化:

虽然固溶体仍保持着溶剂的晶格类型,但若与纯组元相比,结构还是发生了变化,有的变化还相当大,主要表现在以下凡个方面:晶格畸变;偏聚与有序;有序固溶体

()A晶格畸变

造成晶格畸变形成弹性应力场

由于溶质与溶剂的原子大小不同,因而在形成固溶体时,必然在溶质原子附近的局部范围内造成晶格畸变,并因此而形成一个弹性应力场。

晶格畸变的大小可由晶格常数的变化所反映

对置换固溶体来说,当溶质原子较溶剂原子大时,晶格常数增加;反之,当溶质原子较溶剂原子小时,则晶格常数减小。形成间隙固溶体时,晶格常数总是随着溶质原子的溶入而增大。

()B偏聚与有序

1.长期以来,人们认为溶质原于在固溶体中的分布是统计的、均匀的和无序的,

如图3-8a所示。

2.但经X射线精细研究表明,溶质原子在固溶体中的分布,总是在一定程度上

偏离完全无序状态,存在着分布的不均匀性

3.当同种原子间的结合力大于异种原子间的结合力时,溶质原子倾向于成群地

聚集在一起,形成许多偏聚区图3.8

4. 反之,当异种原子(即溶质原子和溶剂原子)间的结合力较大时,则溶质原

子的近邻皆为溶剂原子,溶质原子倾向于按一定的规则呈有序分布,这种有序分布通常只在短距离小范围内存在,称之为短程有序(图3-8c)

()C 有序固溶体

有序固溶体的概念

● 具有短程有序的固溶体,当低于某一温度时,可能使溶质和溶剂原子在整个

晶体中都按―定的顺序排列起束,即由短程有序转变为长程有序,这样的固溶体称为有序固溶体。

● 当溶质原子按适当比例并按一定顺序和一定方向,围绕着溶剂原子分布时,

这种固溶体就叫有序固溶体

有序固溶体有确定的化学成分可以用化学式来表示

● 例如在Au Cu -合金中,当两组元的原子数之比()Au Cu :即等于1:1()CuAu 和

3:1()Au Cu 3时,在缓慢冷却条件下,两种元素的原子在固溶体中将由无序排列转变为有序排列,铜、金原子在晶格中均占有确定的位置,如图3.9所示 ● 对CuAu 来说,铜原子和金原于按层排列于()001晶面上,一层晶面上全部是

铜原子,相邻的一层全部是金原子

● 由于铜原子较小,故使原来的面心立方晶格略变形为93.0=a

c 的四方晶格 ● 对Au Cu 3来说,金原子位于晶胞的顶角上,铜原子则占据面心位置 固溶体的有序化温度:

当有序固溶体加热至某一临界温度时,将转变为无序固溶体,而在缓慢冷却至这一温度时,又可转变为有序固溶体。这一转变过程称为有序化.发生有序化的临界温度称为固溶体的有序化温度。

无序变有序的性能突变:

当无序固溶体转变为有序固溶体时,性能发生突变:硬度及脆性显著增加,而塑性和电阻则明显降低。

有序固溶体的相本质:

由于溶质和溶剂原子在晶格中占据着确定的位置,因而发生有序化转变时有时会引起品格类型的改变。严格说来,有序固溶体实质上是介于固溶体和化合物之间的一种相,但更接近于金属化合物。

()五固溶体的性能

总的来说固溶强化:

随着溶质浓度的增加强度硬度升高塑性韧性下降

强化效果:

1.原子尺寸相差越大晶格畸变越大强化效果越好

2.间隙固溶体强化效果强于置换固溶体,因为造成的晶格畸变大

固溶体的硬度和屈服强度和抗拉强度

一般来说,固溶体的硬度、屈服强度和抗拉强度等总是比组成它的纯金属的平均值高,随着溶质原子浓度的增加,硬度和强度也随之提高。

固溶体的塑性韧性方面

在塑性韧性方面,如延伸率、断面收缩率和冲击功等,固溶体要比组成它的两个纯金属的平均值低,但比一般化合物要髙得多。

因此,综合起来看,固溶体比纯金属和化合物具有较为优越的综合机械性能,因此,各种金属材料总是以固溶体为其基体相。

6.固溶体的结构和性能

()五固溶体的结构 固溶体的结构发生了变化: 虽然固溶体仍保持着溶剂的晶格类型,但若与纯组元相比,结构还是发生了变化,有的变化还相当大,主要表现在以下凡个方面:晶格畸变;偏聚与有序;有序固溶体 ()A晶格畸变 造成晶格畸变形成弹性应力场 由于溶质与溶剂的原子大小不同,因而在形成固溶体时,必然在溶质原子附近的局部范围内造成晶格畸变,并因此而形成一个弹性应力场。 晶格畸变的大小可由晶格常数的变化所反映 对置换固溶体来说,当溶质原子较溶剂原子大时,晶格常数增加;反之,当溶质原子较溶剂原子小时,则晶格常数减小。形成间隙固溶体时,晶格常数总是随着溶质原子的溶入而增大。 ()B偏聚与有序 1.长期以来,人们认为溶质原于在固溶体中的分布是统计的、均匀的和无序的, 如图3-8a所示。 2.但经X射线精细研究表明,溶质原子在固溶体中的分布,总是在一定程度上 偏离完全无序状态,存在着分布的不均匀性 3.当同种原子间的结合力大于异种原子间的结合力时,溶质原子倾向于成群地 聚集在一起,形成许多偏聚区图3.8

4. 反之,当异种原子(即溶质原子和溶剂原子)间的结合力较大时,则溶质原 子的近邻皆为溶剂原子,溶质原子倾向于按一定的规则呈有序分布,这种有序分布通常只在短距离小范围内存在,称之为短程有序(图3-8c) ()C 有序固溶体 有序固溶体的概念 ● 具有短程有序的固溶体,当低于某一温度时,可能使溶质和溶剂原子在整个 晶体中都按―定的顺序排列起束,即由短程有序转变为长程有序,这样的固溶体称为有序固溶体。 ● 当溶质原子按适当比例并按一定顺序和一定方向,围绕着溶剂原子分布时, 这种固溶体就叫有序固溶体 有序固溶体有确定的化学成分可以用化学式来表示 ● 例如在Au Cu -合金中,当两组元的原子数之比()Au Cu :即等于1:1()CuAu 和 3:1()Au Cu 3时,在缓慢冷却条件下,两种元素的原子在固溶体中将由无序排列转变为有序排列,铜、金原子在晶格中均占有确定的位置,如图3.9所示 ● 对CuAu 来说,铜原子和金原于按层排列于()001晶面上,一层晶面上全部是 铜原子,相邻的一层全部是金原子 ● 由于铜原子较小,故使原来的面心立方晶格略变形为93.0=a c 的四方晶格 ● 对Au Cu 3来说,金原子位于晶胞的顶角上,铜原子则占据面心位置 固溶体的有序化温度: 当有序固溶体加热至某一临界温度时,将转变为无序固溶体,而在缓慢冷却至这一温度时,又可转变为有序固溶体。这一转变过程称为有序化.发生有序化的临界温度称为固溶体的有序化温度。

工程材料与热处理第3章作业题参考答案

1.置换固溶体中,被置换的溶剂原子哪里去了 答:溶质把溶剂原子置换后,溶剂原子重新加入晶体排列中,处于晶格的格点位置。 2.间隙固溶体和间隙化合物在晶体结构与性能上的区别何在举例说明之。 答:间隙固溶体是溶质原子进入溶剂晶格的间隙中而形成的固溶体,间隙固溶体的晶体结构与溶剂组元的结构相同,形成间隙固溶体可以提高金属的强度和硬度,起到固溶强化的作用。如:铁素体F是碳在α-Fe中的间隙固溶体,晶体结构与α-Fe相同,为体心立方,碳的溶入使铁素体F强度高于纯铁。 间隙化合物的晶体结构与组元的结构不同,间隙化合物是由H、B、C、N等原子半径较小的非金属元素(以X表示)与过渡族金属元素(以M表示)结合,且半径比r X/r M>时形成的晶体结构很复杂的化合物,如Fe3C间隙化合物硬而脆,塑性差。 3.现有A、B两元素组成如图所示的二元匀晶相图,试分析以下几种说法是否正确为什么 (1)形成二元匀晶相图的A与B两个相元的晶格类型可以不同,但是原子大小一定相等。 (2)K合金结晶过程中,由于固相成分随固相线变化,故已结晶出来的固溶体中含B 量总是高于原液相中含B量. (3)固溶体合金按匀晶相图进行结晶时,由于不同温度下结晶出来的固溶体成分和剩余液相成分不相同,故在平衡态下固溶体的成分是不均匀的。 答:(1)错:Cu-Ni合金形成匀晶相图,但两者的原子大小相差不大。 (2)对:在同一温度下做温度线,分别与固相和液相线相交,过交点,做垂直线与成分线AB相交,可以看出与固相线交点处B含量高于另一点。 (3)错:虽然结晶出来成分不同,由于原子的扩散,平衡状态下固溶体的成分是均匀的。 4.共析部分的Mg-Cu相图如图所示:

第4章:固溶体

第4章,固溶体 (Solid Solution)
掺杂通常不改变(被掺杂)材料的结构类型。因 此掺杂即 “ 固溶 ” (固溶体 —— 原子水平均匀分散的 固态溶液。 掺杂有间隙掺杂(间隙固溶体)和取代掺杂(代 位固溶体),有原子掺杂(原子固溶体)和离子掺 杂(离子固溶体)。本章重点讨论形成固溶体的条 件及规律。 “固溶体”科学,尚处于“经验总结”的发展阶段。 因此,对于相关“结论”/“总结”,不能绝对化。

置换固溶体和间隙固溶体:
主体结构原子,
代位杂质原子,
填隙杂质原子。

固溶体形成热力学:
ΔGT , P = ΔH ? T ΔS
ΔH ,固溶体形成焓 (ΔH>0 或 ΔH <0 ) ΔS,固溶体形成熵 (ΔS > 0)。 恒温、恒压条件下: ΔGT , P ≤ 0
I) ΔH < 0 (exothermic process) ? ΔG < 0 II) ΔH > 0 (endothermic process)
ΔH > T Δ S ? ΔG > 0 ( N) ΔH < T ΔS ? ΔG < 0 ( Y)

第一节:原子置换固溶体(合金)
影响原子置换固溶体形成的主要因素: 尺寸、电负性、电子浓度、结构。

a) 尺寸因素——15%规律:
休谟–罗斯里 (Hume-Rothery) 总结合金形成规律 发现:当杂质原子尺寸与主体结构原子尺寸的差别小 于±15%时,有利于形成连续固溶体或具有相当高的 固溶度。
ΔD ( ΔR ) = Dhost - Dimpurity Dhost < 15%
“15%规律” 最早由总结一价金属间形成固溶体得出。 但后来发现,对于二价、三价以及过渡金属间形成固 溶体,甚至二次固溶体也基本适用(15%规律可靠性 > 90%)。

材料科学基础第三章答案

习题:第一章第二章第三章第四章第五章第六章第七章第八章第九章第十章第十一章答案:第一章第二章第三章第四章第五章第六章第七章第八章第九章第十章第十一章 3-2 略。 3-2试述位错的基本类型及其特点。 解:位错主要有两种:刃型位错和螺型位错。刃型位错特点:滑移方向与位错线垂直,符号⊥,有多余半片原子面。螺型位错特点:滑移方向与位错线平行,与位错线垂直的面不是平面,呈螺施状,称螺型位错。 3-3非化学计量化合物有何特点?为什么非化学计量化合物都是n型或p型半导体材料? 解:非化学计量化合物的特点:非化学计量化合物产生及缺陷浓度与气氛性质、压力有关;可以看作是高价化合物与低价化合物的固溶体;缺陷浓度与温度有关,这点可以从平衡常数看出;非化学计量化合物都是半导体。由于负离子缺位和间隙正离子使金属离子过剩产生金属离子过剩(n型)半导体,正离子缺位和间隙负离子使负离子过剩产生负离子过剩(p型)半导体。 3-4影响置换型固溶体和间隙型固溶体形成的因素有哪些? 解:影响形成置换型固溶体影响因素:(1)离子尺寸:15%规律:1.(R1-R2)/R1>15%不连续。 2.<15%连续。 3.>40%不能形成固熔体。(2)离子价:电价相同,形成连续固熔体。( 3)晶体结构因素:基质,杂质结构相同,形成连续固熔体。(4)场强因素。(5)电负性:差值小,形成固熔体。差值大形成化合物。 影响形成间隙型固溶体影响因素:(1)杂质质点大小:即添加的原子愈小,易形成固溶体,反之亦然。(2)晶体(基质)结构:离子尺寸是与晶体结构的关系密切相关的,在一定程度上来说,结构中间隙的大小起了决定性的作用。一般晶体中空隙愈大,结构愈疏松,易形成固溶体。(3)电价因素:外来杂质原子进人间隙时,必然引起晶体结构中电价的不平衡,这时可以通过生成空位,产生部分取代或离子的价态变化来保持电价平衡。 3-5试分析形成固溶体后对晶体性质的影响。 解:影响有:(1)稳定晶格,阻止某些晶型转变的发生;(2)活化晶格,形成固溶体后,晶格结构有一定畸变,处于高能量的活化状态,有利于进行化学反应;(3)固溶强化,溶质原子的溶入,使固溶体的强度、硬度升高;(4)形成固溶体后对材料物理性质的影响:固溶体的电学、热学、磁学等物理性质也随成分而连续变化,但一般都不是线性关系。固溶体的强度与硬度往往高于各组元,而塑性则较低, 3-6说明下列符号的含义:V Na,V Na',V Cl˙,(V Na'V Cl˙),Ca K˙,Ca Ca,Ca i˙˙解:钠原子空位;钠离子空位,带一个单位负电荷;氯离子空位,带一个单位正电荷;最邻近的Na+空位、Cl-空位形成的缔合中心;Ca2+占据K.位置,带一个单位正电荷;Ca原子位于Ca原子位置上;Ca2+处于晶格间隙位置。 3-7写出下列缺陷反应式:(l)NaCl溶入CaCl2中形成空位型固溶体;(2)CaCl2溶入NaCl中形成空位型固溶体;(3)NaCl形成肖特基缺陷;(4)Agl形成弗伦克尔缺陷(Ag+进入间隙)。

材料科学基础第三章

材料科学基础大作业——第3章凝固 2015年 月 日 班级: 姓名: 学号: 分数: 一、解释下列概念及术语: 1、结晶 2、过冷度 3、相起伏 4、均匀形核 5、晶粒度 6、形核率 7、形核功 8、枝晶偏析 9、成分过冷 10、临界形核半径 二、填空题 1. 过冷度的大小与金属的本性、纯度和冷却速度有关。金属不同,过冷度大小 同;金属的纯度越高,过冷度越 ;金属及其纯度确定后,过冷度大小主要取决于冷却速度,冷却速度越大,过冷度越 。 2. 金属和非金属,在结晶时均遵循相同的规律,即结晶过程是 和 的过程。 3. 根据热力学条件,金属发生结晶的驱动力为液态金属和固相金属的 之差。此差值与过冷度呈 比。 4.液态金属的晶胚能否形成晶核,主要取决于晶胚半径是否达到了临界形核半径的要求。此半径与过冷度呈 比。 5. 均匀形核时,过冷度△T 和理论结晶温度T m 之间的关系为 。形核功△G k 与过冷度△T 的平方呈 比,即过冷度越大,形核功越 。 6. 形核率可用12N N N ? =表示,其中N 1为受 影响的形核率因子,N 2为受 影响的形核率因子。 7. 工业生产中,液态金属的结晶总是以 形核方式进行,其所需过冷度一般不超过 ℃。 8. 决定晶体长大方式和长大速度的主要因素是晶核的 和其前沿液体中的 。 9. 光滑界面又称为 界面,粗糙界面又称为 界面,其杰克逊因子α值范围分别为 和 。 10.晶体长大方式主要为 长大机制、 长大机制和 长大机制。其中,大部分金属均以 长大机制进行。 11.在正的温度梯度下,光滑界面的界面形态呈 状;粗糙界面的界面形态为 界面。在负的温度梯度下,一般金属和半金属的界面都呈 状。杰克逊因子α值较高的物质保持 界面形态。 12、金属结晶后晶粒内部的成分不均匀现象叫 ;因初晶相与剩余液相比重不同而造成的偏析叫 。 三、判断题

材料结构与性能试题及答案

《材料结构与性能》试题2011级硕士研究生适用 一、名词解释(20分) 原子半径,电负性,相变增韧、Suzuki气团 原子半径:按照量子力学的观点,电子在核外运动没有固定的轨道,只是概率分布不同,因此对原子来说不存在固定的半径。根据原子间作用力的不同,原子半径一般可分为三种:共价半径、金属半径和范德瓦尔斯半径。通常把统和双原子分子中相邻两原子的核间距的一半,即共价键键长的一半,称作该原子的共价半径(r c);金属单质晶体中相邻原子核间距的一半称为金属半径(r M);范德瓦尔斯半径(r V)是晶体中靠范德瓦尔斯力吸引的两相邻原子核间距的一半,如稀有气体。 电负性:Parr等人精确理论定义电负性为化学势的负值,是体系外势场不变的条件下电子的总能量对总电子数的变化率。 相变增韧:相变增韧是由含ZrO2的陶瓷通过应力诱发四方相(t相)向单斜相(m相)转变而引起的韧性增加。当裂纹受到外力作用而扩展时,裂纹尖端形成的较大应力场将会诱发其周围亚稳t-ZrO2向稳定m-ZrO2转变,这种转变为马氏体转变,将产生近4%的体积膨胀和1%-7%的剪切应变,对裂纹周围的基体产生压应力,阻碍裂纹扩展。而且相变过程中也消耗能量,抑制裂纹扩展,提高材料断裂韧性。 Suzuki气团:晶体中的扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用的结果使溶质原子富集于层错区内,造成层错区内的溶质原子浓度与在基体中的浓度存在差别。这种不均匀分布的溶质原子具有阻碍位错运动的作用,也成为Suzuki气团。 二、简述位错与溶质原子间有哪些交互作用。(15分) 答:从交互做作用的性质来说,可分为弹性交互作用、静电交互作用和化学交互作用三类。 弹性交互作用:位错与溶质原子的交互作用主要来源于溶质原子与基体原子间由于体积不同引起的弹性畸变与位错间的弹性交互作用。形成Cottrell气团,甚至Snoek气团对晶体起到强化作用。弹性交互作用的另一种情况是溶质原子核基体的弹性模量不同而产生的交互作用。 化学交互作用:基体晶体中的扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用的结果使溶质原子富集于层错区内,造成层错区内的溶质原子浓度与在基体中的浓度存在差别,具有阻碍位错运动的作用。 静电交互作用:晶体中的位错使其周围原子偏离平衡位置,晶格体积发生弹性畸变,晶格畸变将导致自由电子的费米能改变,对于刃型位错来讲,滑移面上下部分晶格畸变量相反,导致滑移面两侧部分的费米能不相等,导致位错周围电子需重新分布,以抵消这种不平衡,从而形成电偶极,位错线如同一条电偶极线,在它周围存在附加电场,可与溶质原子发生静电交互作用。 三、简述点缺陷的特点和种类,与合金的性能有什么关系(15分) 答:点缺陷对晶体结构的干扰作用仅波及几个原子间距范围的缺陷。它的尺寸在所有方向上均很小。其中最基本的点缺陷是点阵空位和间隙原子。此外,还有杂质原子、离子晶体中的非化学计量缺陷和半导体材料中的电子缺陷等。 在较低温度下,点缺陷密度越大,对合金电阻率影响越大。另外,点缺陷与合金力学性能之间的关系主要表现为间隙原子的固溶强化作用。

《材料结构与性能》习题

《材料结构与性能》习题 第一章 1、一25cm长的圆杆,直径2.5mm,承受的轴向拉力4500N。如直径拉细成 2.4mm,问: 1)设拉伸变形后,圆杆的体积维持不变,求拉伸后的长度; 2)在此拉力下的真应力和真应变; 3)在此拉力下的名义应力和名义应变。 比较以上计算结果并讨论之。 2、举一晶系,存在S14。 3、求图1.27所示一均一材料试样上的A点处的应力场和应变场。 4、一陶瓷含体积百分比为95%的Al2O3(E=380GPa)和5%的玻璃相(E=84GPa),计算上限及下限弹性模量。如该陶瓷含有5%的气孔,估算其上限及下限弹性模量。 5、画两个曲线图,分别表示出应力弛豫与时间的关系和应变弛豫和时间的关系。并注出:t=0,t=∞以及t=τε(或τσ)时的纵坐标。

6、一Al2O3晶体圆柱(图1.28),直径3mm,受轴向拉力F ,如临界抗剪强度τc=130MPa,求沿图中所示之一固定滑移系统时,所需之必要的拉力值。同时计算在滑移面上的法向应力。 第二章 1、求融熔石英的结合强度,设估计的表面能为1.75J/m2;Si-O的平衡原子

间距为

1.6×10-8cm;弹性模量值从60到75GPa。 2、融熔石英玻璃的性能参数为:E=73GPa;γ=1.56J/m2;理论强度。如材料中存在最大长度为的内裂,且此内裂垂直于作用力的方向,计算由此而导致的强度折减系数。 3、证明材料断裂韧性的单边切口、三点弯曲梁法的计算公式: 与 是一回事。 4、一陶瓷三点弯曲试件,在受拉面上于跨度中间有一竖向切口如图2.41所示。如果E=380GPa,μ=0.24,求KⅠc值,设极限载荷达50㎏。计算此材料的断裂表面能。 5、一钢板受有长向拉应力350 MPa,如在材料中有一垂直于拉应力方向的中心穿透缺陷,长8mm(=2c)。此钢材的屈服强度为1400MPa,计算塑性区尺寸r0及其与裂缝半长c的比值。讨论用此试件来求KⅠc值的可能性。

工程材料与热处理 第3章作业题参考答案

1.置换固溶体中,被置换的溶剂原子哪里去了? 答:溶质把溶剂原子置换后,溶剂原子重新加入晶体排列中,处于晶格的格点位置。 2.间隙固溶体和间隙化合物在晶体结构与性能上的区别何在?举例说明之。 答:间隙固溶体是溶质原子进入溶剂晶格的间隙中而形成的固溶体,间隙固溶体的晶体结构与溶剂组元的结构相同,形成间隙固溶体可以提高金属的强度和硬度,起到固溶强化的作用。如:铁素体F是碳在α-Fe中的间隙固溶体,晶体结构与α-Fe相同,为体心立方,碳的溶入使铁素体F强度高于纯铁。 间隙化合物的晶体结构与组元的结构不同,间隙化合物是由H、B、C、N等原子半径较小的非金属元素(以X表示)与过渡族金属元素(以M表示)结合,且半径比r X/r M> 0.59时形成的晶体结构很复杂的化合物,如Fe3C间隙化合物硬而脆,塑性差。 3.现有A、B两元素组成如图所示的二元匀晶相图,试分析以下几种说法是否正确?为什 么? (1)形成二元匀晶相图的A与B两个相元的晶格类型可以不同,但是原子大小一定相等。 (2)K合金结晶过程中,由于固相成分随固相线变化,故已结晶出来的固溶体中含B 量总是高于原液相中含B量. (3)固溶体合金按匀晶相图进行结晶时,由于不同温度下结晶出来的固溶体成分和剩余液相成分不相同,故在平衡态下固溶体的成分是不均匀的。 答:(1)错:Cu-Ni合金形成匀晶相图,但两者的原子大小相差不大。 (2)对:在同一温度下做温度线,分别与固相和液相线相交,过交点,做垂直线与成分线AB相交,可以看出与固相线交点处B含量高于另一点。 (3)错:虽然结晶出来成分不同,由于原子的扩散,平衡状态下固溶体的成分是均匀的。 4.共析部分的Mg-Cu相图如图所示:

最新固溶体

固溶体

固溶体 所谓固溶体是指溶质原子溶入溶剂晶格中而仍保持溶剂类型的合金相。 这种相称为固溶体,这种组元称为溶剂,其它的组元即为溶质。工业上所使用的金属材料,绝大部分是以固溶体为基体的,有的甚至完全由固溶体所组成。例如,广泛用的碳钢和合金钢,均以固溶体为基体相,其含量占组织中的绝大部分。因此,对固溶体的研究有很重要的实际意义。 ● 固溶体的分类 按溶质原子在晶格中的位置不同可分为置换固溶体和间隙固溶体。 1、置换固溶体溶质原子占据溶剂晶格中的结点位置而形成的固溶体称置换固溶体。当溶剂和溶质原子直径相差不大,一般在15%以内时,易于形成置换固溶体。铜镍二元合金即形成置换固溶体,镍原子可在铜晶格的任意位置替代铜原子。 2、间隙固溶体溶质原子分布于溶剂晶格间隙而形成的固溶体称间隙固溶体。间隙固溶体的溶剂是直径较大的过渡族金属,而溶质是直径很小的碳、氢等非金属元素。其形成条件是溶质原子与溶剂原子直径之比必须小于0.59。如铁碳合金中,铁和碳所形成的固溶体――铁素体和奥氏体,皆为间隙固溶体。 ●按固溶度来分类:可分为有限固溶体和无限固溶体。无限固溶体只可能是转换固溶体。 ● 按溶质原子与溶剂原子的相对分布来分;可分为无序固溶体和有序固溶体 这两点各位有时间补充说明下 ● 固溶体的性能 当溶质元素含量很少时,固溶体性能与溶剂金属性能基本相同。但随溶质元素含量的增多,会使金属的强度和硬度升高,而塑性和韧性有所下降,这种现象称为固溶强化。置换固溶体和间隙固溶体都会产生固溶强化现象。 适当控制溶质含量,可明显提高强度和硬度,同时仍能保证足够高的塑性和韧性,所以说固溶体一般具有较好的综合力学性能。因此要求有综合力学性能的结构材料,几乎都以固溶体作为基本相。这就是固溶强化成为一种重要强化方法,在工业生产中得以广泛应用的原因。 第二节金属学及热处理基本知识 一、金属晶体结构的一般知识 众所周知,世界上的物质都是由化学元素组成的,这些化学元素按性质可分成两大类: 第一大类是金属,化学元素中有83种是金属元素。固态金属具有不透明、有光泽、有延展性、有良好的导电性和导热性等特性,并且随着温度的升高,金属的导电性降低,电阻率增大,这是金属独具的一个特点。常见的金属元素有铁、铝、铜、铬、镍、钨等。 第二大类是非金属,化学元素中有22种,非金属元素不具备金属元素的特征。而且与金属相反,随着温度的升高,非金属的电阻率减小,导电性提高。常见的非金属元素有碳、氧、氢、氮、硫、磷等。 我们所焊接的材料主要是金属,尤其是钢材,钢材的性能不仅取决于钢材的化学成分,而且取决于钢材的组织,为了了解钢材的组织及对性能的影响,我们必须先从晶体结构讲起。 (一)晶体的特点

《材料结构与性能》习题教学文案

《材料结构与性能》 习题

《材料结构与性能》习题 第一章 1、一25cm长的圆杆,直径2.5mm,承受的轴向拉力4500N。如直径拉细成2.4mm,问: 1)设拉伸变形后,圆杆的体积维持不变,求拉伸后的长度; 2)在此拉力下的真应力和真应变; 3)在此拉力下的名义应力和名义应变。 比较以上计算结果并讨论之。 2、举一晶系,存在S14。 3、求图1.27所示一均一材料试样上的A点处的应力场和应变场。 4、一陶瓷含体积百分比为95%的Al2O3(E=380GPa)和5%的玻璃相(E=84GPa),计算上限及下限弹性模量。如该陶瓷含有5%的气孔,估算其上限及下限弹性模量。 5、画两个曲线图,分别表示出应力弛豫与时间的关系和应变弛豫和时间的关系。并注出:t=0,t=∞以及t=τε(或τσ)时的纵坐标。

6、一Al2O3晶体圆柱(图1.28),直径3mm,受轴向拉力F ,如临界抗剪强度τc=130MPa,求沿图中所示之一固定滑移系统时,所需之必要的拉力值。同时计算在滑移面上的法向应力。 第二章

1、求融熔石英的结合强度,设估计的表面能为1.75J/m2;Si-O的平衡原子间距为1.6×10-8cm;弹性模量值从60到75GPa。 2、融熔石英玻璃的性能参数为:E=73GPa;γ=1.56J/m2;理论强度。如材料中存在最大长度为的内裂,且此内裂垂直于作用力的方向,计算由此而导致的强度折减系数。 3、证明材料断裂韧性的单边切口、三点弯曲梁法的计算公式: 与 是一回事。 4、一陶瓷三点弯曲试件,在受拉面上于跨度中间有一竖向切口如图2.41所示。如果E=380GPa,μ=0.24,求KⅠc值,设极限载荷达50㎏。计算此材料的断裂表面能。 5、一钢板受有长向拉应力350 MPa,如在材料中有一垂直于拉应力方向的中心穿透缺陷,长8mm(=2c)。此钢材的屈服强度为1400MPa,计算塑性区尺寸r0及其与裂缝半长c的比值。讨论用此试件来求KⅠc值的可能性。

工程材料第三章答案

工程材料习题与辅导(第四版)朱张校姚可夫 3.2 习题参考答案 1. 解释名词热硬性、石墨化、孕育(变质)处理、球化处理、石墨化退火、固溶处理、时效 答: 热硬性: 热硬性是指钢在高温下保持高硬度的能力(亦称红硬性)。热硬性与钢的回火稳定性和特殊碳化物的弥散析出有关。 石墨化: 铸铁中碳原子析出并形成石墨的过程称为石墨化。 孕育(变质)处理: 在液体金属中加入孕育剂或变质剂,以细化晶粒和改善组织的处理工艺。 球化处理: 在铁水中加入球化剂,以获得球状石墨的处理工艺称为球化处理。 石墨化退火: 使白口铸铁中的渗碳体分解成为团絮状石墨的退火过程。 固溶处理: 把合金加热到单相固溶体区,进行保温使第二相充分溶解,然后快冷(通常用水冷却),得到单一的过饱和固溶体组织的热处理工艺。固溶处理可以使奥氏体不锈钢获得单相奥氏体组织,提高奥氏体不锈钢的耐蚀性。固溶处理也在有色金属合金中得到应用。有色金属合金(如铝合金)先进行固溶处理获得过饱和固溶体,然后再进行时效处理,析出细小、均匀、弥散分布的第二相,提高合金的强度和硬度。 时效: 固溶处理后得到的过饱和固溶体在室温下或低温加热时析出细小、均匀、弥散分布的第二相,合金硬度和强度明显升高的现象称为时效或时效硬化。 2. 填空题 (1) 20是(优质碳素结构)钢,可制造(冲压件、焊接件、渗碳零件,如齿轮、销) . (2) T12是(优质碳素工具)钢,可制造(锉刀、刮刀等刃具及量规、样套等量具) . (3) 按钢中合金元素含量,可将合金钢分为(低合金钢) 、(中合金钢)和(高合金钢)几类。 (4) Q345(16Mn)是(低合金结构)钢,可制造(桥梁、船舶、车辆、锅炉等工程结构) . (5) 20CrMnTi是(合金渗碳)钢,Cr、Mn的主要作用是(提高淬透性、提高经热处理后心部的强度和韧性) , Ti的主要作用是(阻止渗碳时奥氏体晶粒长大、增加渗碳层硬度、提高耐磨性) ,热处理工艺是(渗碳后直接淬火、再低温回火) . (6) 40Cr是(合金调质)钢,可制造(重要调质件如轴类件、连杆螺栓、进汽阀和重要齿轮等) . (7) 60Si2Mn是(合金弹簧)钢,可制造(汽车板簧) . (8) GCr15是(滚珠轴承)钢,1Cr17是(铁素体型不锈)钢,可制造(硝酸工厂设备以及食品工厂设备) . (9) 9SiCr是(低合金刃具)钢,可制造(板牙、丝锥、钻头、铰刀、齿轮铰刀、冷冲模、冷轧辊等) . (10) CrWMn是(冷作模具)钢,可制造(冷冲模、塑料模) . (11) Cr12MoV是(冷模具)钢,可制造(冷冲模、压印模、冷镦模等) . (12) 5CrMnMo是(热模具)钢,可制造(中型锻模) . (13) W18Cr4V是(高速)钢,碳质量分数是(0.70%以上) , W的主要作用是(保证高的热硬性) , Cr的主要作用是(提高淬透性) , V的主要作用是(形成颗粒细小、分布均匀的碳化物,提高钢的硬度和耐磨性,同时能阻止奥氏体晶粒长大,细化晶粒) 。热处理工艺是(1220~1280℃淬火+(550~570) ℃三次回火) ,最后组织是(回火马氏体、碳化物和少量残余奥氏体) . (14) 1Cr13是(马氏体型不锈)钢,可制造(抗弱腐蚀性介质、能承受冲击载荷的零件) . (15) 0Cr18Ni9Ti是(奥氏体型不锈)钢,Cr、Ni和Ti的作用分别是(提高钢基体的电极

最新第三章 二元合金的相结构与结晶 - 答案

第三章 二元合金的相结构与结晶 (一)填空题 1 合金的定义是两种或两种以上的金属(或金属与非金属)熔合而成具有金属特性的物质。 2.合金中的组元是指 组成合金最基本的、独立的物质 。 3.固溶体的定义是 在固态条件下,一种组元“组分”溶解了其它组元而形成的单相晶态固体 4.Cr 、V 在γ-Fe 中将形成 置换 固溶体。C 、N 则形成 间隙 固溶体。 5.和间隙原子相比,置换原子的固溶强化效果要 差 些。 6.当固溶体合金结晶后出现枝晶偏析时,先结晶出的树枝主轴含有较多的高熔点组元。 7.共晶反应的特征是 由一定成分的恶液相同时结晶出成分一定的两个固相 ,其反应式为 L →a+β 8.匀晶反应的特征是 ,其反应式为 9.共析反应的特征是 ,其反应式为 10.合金固溶体按溶质原子溶入方式可以分为置换固溶体和间隙固溶体,按原子溶入量可以分为 有限固溶体 和 无限固溶体 11.合金的相结构有 固溶体 和 金属化合物 两种,前者具有较高的 塑性变形 性能,适合于做 基体 相;后者有较高的 高硬度 性能,适合于做 增强 相 12.看图4—1,请写出反应式和相区: ABC 包晶反应 B A C L γα?+ ;DEF 共晶反应 F D C L βγ+? ;GHI 共析反应 I G H βαγ+? ; ① L +α ;② γα+ ;③βα+ ;④ βγ+ ;⑤ L +γ ;⑥ β+L ; 13.相的定义是 ,组织的定义是 14.间隙固溶体的晶体结构与溶剂的晶格类型 相同,而间隙相的晶体结构与 溶剂组元晶体结构 不同。 15.根据图4—2填出: 水平线反应式 E C D βαγ+? ;有限固溶体 βα、 、 无限固溶体 γ 。 液相线 ,固相线 , 固溶线 CF 、 EG

金属学及热处理课后习题答案第三章

第三章 二元合金的相结构与结晶 3-1 在正温度梯度下,为什么纯金属凝固时不能呈树枝状生长,而固溶体合金却 能呈树枝状成长? 答: 原因: 在纯金属的凝固过程中,在正温度梯度下,固液界面呈平面状生长;当温度梯度为负时,则固液界面呈树枝状生长。 固溶体合金在正温度梯度下凝固时,固液界面能呈树枝状生长的原因是固溶体合金在凝固时,由于异分结晶现象,溶质组元必然会重新分布,导致在固液界面前沿形成溶质的浓度梯度,造成固液界面前沿一定范围内的液相其实际温度低于平衡结晶温度,出现了一个由于成分差别引起的过冷区域。所以,对于固溶体合金,结晶除了受固液界面温度梯度影响,更主要受成分过冷的影响,从而使固溶体合金在正温度梯度下也能按树枝状生长。 3-2 何谓合金平衡相图,相图能给出任一条件下合金的显微组织吗? 答: 合金平衡相图是指在平衡条件下合金系中合金的状态与温度、成分间关系的图解,又称为状态图或平衡图。由上述定义可以看出相图并不能给出任一条件下合金的显微组织,相图只能反映平衡条件下相的平衡。 3-3 有两个形状、尺寸均相同的Cu-Ni 合金铸件,其中一个铸件的W Ni =90%,另 一个铸件的W Ni =50%,铸后自然冷却。问凝固后哪一个铸件的偏析严重?为 什么?找出消除偏析的措施。 答: W Ni =50%铸件凝固后偏析严重。解答此题需找到Cu-Ni 合金的二元相图。 原因:固溶体合金结晶属于异分结晶,即所结晶出的固相化学成分与母相并不相同。由Cu-Ni 合金相图可以看出W Ni =50%铸件的固相线和液相线之间的距离大于 W Ni =90%铸件,也就是说W Ni =50%铸件溶质Ni 的k 0(溶质平衡分配系数)高,而且 在相图中可以发现Cu-Ni 合金铸件Ni 的k 0是大于1,所以k 0越大,则代表先结 晶出的固相成分与液相成分的差值越大,也就是偏析越严重。 消除措施: 可以采用均匀化退火的方法,将铸件加热至低于固相线100-200℃的温度,进行长时间保温,使偏析元素充分扩散,可达到成分均匀化的目的。 3-4 何谓成分过冷?成分过冷对固溶体结晶时晶体长大方式和铸锭组织有何影 响? 答: 成分过冷: 固溶体合金在结晶时,由于选分结晶现象,溶质组元必然会重新分布,导致在固液界面前沿形成溶质的浓度梯度,造成固液界面前沿一定范围内的液相其实际温度低于平衡结晶温度,出现了一个由于成分差别引起的过冷区域。过冷度为平衡结晶温度与实际温度之差,这个过冷度是由成分变化引起的,所以称之为成分过

第二章固溶体讲义.doc

第二章固溶体 一种组分(溶剂)内“溶解”了其它组分(溶质)而形成的单一、均匀的晶态固体称为固溶体。如果固溶体是由A物质溶解在B物质中形成的,一般将原组分B称为溶剂(或称主晶相、基质),把掺杂原子或杂质称为溶质。在固溶体中不同组分的结构基元之间是以原子尺度相互混合的,这种混合并不破坏溶剂原有的晶体结构。如以Al2O3晶体中溶入Cr2O3为例,A12O3为溶剂:Cr 3+溶解在A1 O3中以后,并不破坏Al2O3原有晶体结构。但少量Cr3+(约0.5wt%~2wt%)的溶入 2 ,由于Cr3+能产生受激辐射,就会使原来没有激光性能的白宝石(α-Al2O3)变为有激光性能的红宝石。 固溶体可以在晶体生长过程中生成,也可以从溶液或熔体中析晶时形成,还可以通过烧结过程由原子扩散而形成。 固溶体、机械混合物和化合物三者之间是有本质区别的。若单质晶体A、B形成固溶体,A和B 之间以原子尺度混合成为单相均匀晶态物质。机械混合物A、B是A和B以颗粒态混合,A和B分别保持本身原有的结构和性能,A、B混合物不是均匀的单相而是两相或多相。若A和B形成化合物AmBn,A:B≡m:n有固定的比例。 固溶体中由于杂质原子占据正常格点的位置,破坏了基质晶体中质点排列的有序性,引起晶体内周期性势场的畸变,这也是一种点缺陷范围的晶体结构缺陷。 固溶体在无机固体材料中所占比重很大,人们常常采用固溶原理来制造各种新型的无机材料。例如PbTiO3和PbZrO3生成的锆钛酸铅压电陶瓷Pb(Zr x Ti1- )O3,广泛应用于电子、无损检测、医疗等技术领域。又如Si3N4与A12O3之间形成Sialon固溶x 体应用于高温结构材料等。 (一)固溶体的分类 (1)按溶质原子在溶剂晶格中的位置划分 溶质原子进入晶体后,可以进入原来晶体中正常格点位置,生成取代(置换)型的固溶体,在无机固体材料中所形成的固溶体绝大多数都属这种类型。在金属氧化物中,主要发生在金属离子位置上的置换。例如:MgO-CoO;MgO-CaO;PbZrO3-PbTiO3;Al2O3-Cr2O3 等都属于此类。 MgO和CoO都是NaCl型结构,Mg2+半径是0.072nm,Co2+半径是0.074nm。这两种晶体结构相同,离子半径接近,MgO中的Mg2+位置可以任意量地被Co2+取代,生成无限互溶的置换型固溶体,图5-1和5-2为MgO-CoO相图及固溶体结构图。 图5-1 MgO-CoO系统相图图5-2 MgO-CoO系统固溶体结构

材料结构与性能思考题

《材料结构与性能》 第一章金属及合金的晶体结构 1.重要名词晶体非晶体单晶体多晶体晶粒晶界各向异性假等向性(伪各向同性)空间点阵阵点(结点)晶胞简单晶胞(初级晶胞)布拉菲点阵晶系晶面晶面指数晶向晶向指数密勒指数晶面族晶向族晶带晶带轴面间距配位数致密度点阵常数面心立方(A1)体心立方(A2) 密排六方(A3) 同素异构现象四面体间隙八面体间隙多晶型性(同素异构转变) 原子半径合金相固溶体间隙固溶体置换固溶体有限固溶体无限固溶体电子浓度无序分布偏聚短程有序短程有序参数维伽定律中间相金属间化合物正常价化合物电子化合物(Hume-Rothery相) 间隙相间隙化合物拓扑密堆相(TCP相) PHACOMP方法超结构(有序固溶体,超点阵)长程有序度参数反相畴(有序畴) 2.试述晶体的主要特征。 2]。3.画出立方晶系中的下列晶面和晶向:(100), (111), (110), (123), (130)), (121), (225), [112], [312], [11 画出六方晶系中的下列晶面:(0001), (1120), (1011)。 4.画出立方晶系(110)面上的[111]方向,(112)上的[111]方向。在其(111)面上有几个<110>方向? 5.计算面心立方、体心立方、密排六方点阵晶胞的晶胞内原子数、致密度。其中原子的配位数是多少?6.面心立方和密排六方点阵的原子都是最密排的,为什么它们形成了两种点阵? 7.画图计算面心立方和体心立方点阵的四面体、八面体间隙的半径r B与原子半径r A之比。 8.铜的面心立方点阵常数为3.608?,计算其(122)晶面间距。 9.立方晶系中晶面指数和晶向指数有什么关系? 10.写出立方晶系{112}晶面组的全部晶面和<123>晶向族的全部晶向。 11.已知点阵常数a=2 ?,b=6 ?, c=3 ?, 并已知晶面与三坐标轴的截距都是6 ?,求该晶面的指数。12.若γ-Fe晶胞中的八面体间隙都被C原子填满,试计算C原子的原子百分数和重量百分数。另外,这样的事情能否发生,为什么? 13.试画出面心立方点阵中(001), (011) 和(111)晶面的原子排列,并标出原子间距。 14.判断下列晶向是否属于相应的晶面或平行于该晶面:[112]与(111);[110]与(121);[210]与(101)。15.下列晶向是否是两个晶面的交线?(1)[112]与(111)及(110);(2)[101]与(111)及(111);(3)[101]与(111)及(111)。 16.银属面心立方点阵,若其原子半径为1.44 ?,求其晶格常数,并根据其原子量求其密度。 17.α-Fe→γ-Fe转变发生在910℃,该温度下其点阵常数分别为2.892 ?和3.633 ?,试求转变前后的体积变化。若转变前后原子半径未变化,体积变化又有多大? 18. Al和Ag均属面心立方点阵,已知r Ag= 1.441?, r Al=1.428?, 它们在固态下是否可能无限互溶,为什么?19.固溶体的溶解度主要取决于哪些因素? 20.碳原子在γ-Fe晶胞中存在于什么位置?碳原子溶入后其点阵常数如何变化?为什么?碳原子溶入α-Fe 中又如何? 21.计算含1-wt%C的γ-Fe中多少个晶胞中溶入一个碳原子? 22.中间相一般具有什么特点? 23.以黄铜为例说明什么是电子化合物及电子化合物的类型。 24.电子化合物为什么可以具有一定的成分范围?25.试述间隙固溶体、间隙相、间隙化合物的异同。26.试述短程有序和长程有序的关系。27.影响有序化的因素有哪些? 28.有序化对合金的性能有何影响?

材料结构与性能解答(全)

1、离子键及其形成的离子晶体陶瓷材料的特征。 答:当一个原子放出最外层的一个或几个电子成为正离子,而另一个原子接受这些电子而成为负离子,结果正负离子由于库仑力的作用而相互靠近。靠近到一定程度时两闭合壳层的电子云因发生重叠而产生斥力。这种斥力与吸引力达到平衡的时候就形成了离子键。此时原子的电中性得到维持,每一个原子都达到稳定的满壳层的电子结构,其总能量达到最低,系统处于最稳定状态。因此,离子键是由正负离子间的库仑引力构成。由离子键构成的晶体称为离子晶体。离子晶体一般由电离能较小的金属原子和电子亲和力较大的非金属原子构成。离子晶体的结构与特性由离子尺寸、离子间堆积方式、配位数及离子的极化等因素有关。 离子键、离子晶体及由具有离子键结构的陶瓷的特性有: A、离子晶体具有较高的配位数,在离子尺寸因素合适的条件下可形成最密排的结构; B、离子键没有方向性 C、离子键结合强度随电荷的增加而增大,且熔点升高,离子键型陶瓷高强度、高硬度、高熔点; D、离子晶体中很难产生自由运动的电子,低温下的电导率低,绝缘性能优良; E、在熔融状态或液态,阳离子、阴离子在电场的作用下可以运动,故高温下具有良好的离子导电性。 F、吸收红外波、透过可见波长的光,即可制得透明陶瓷。 2、共价键及其形成的陶瓷材料具有的特征。 答:当两个或多个原子共享其公有电子,各自达到稳定的、满壳层的状态时就形成共价键。由于共价电子的共享,原子形成共价键的数目就受到了电子结构的限制,因此共价键具有饱和性。由于共价键的方向性,使共价晶体不密堆排列。这对陶瓷的性能有很大影响,特别是密度和热膨胀性,典型的共价键陶瓷的热膨胀系数相当低,由于个别原子的热膨胀量被结构中的自由空间消化掉了。 共价键及共价晶体具有以下特点: A、共价键具有高的方向性和饱和性; B、共价键为非密排结构; C、典型的共价键晶体具有高强度、高硬度、高熔点的特性。 D、具有较低的热膨胀系数; E、共价键由具有相似电负性的原子所形成。 3、层状结构材料的各向异性。 答:层状结构中范德华力起着重要的作用,陶瓷的层状结构间有较强的若键存在使得层与层之间连接在一起。蒙脱石和石墨的结构层内键合类型不同于层间键合类型,因此材料显示出较高的各向异性。所有的这些层状结构的层与层之间很容易滑移,粘土矿物中的这种层状结构使它在有水的情况下容易发生塑性变形。 4、影响陶瓷材料密度的因素。 答:密度是指单位体积的质量,陶瓷材料的密度有四种表示方式,分别是:结晶学密度、理论密度、体积密度、相对密度。前三种在制作过程中没有形成气孔,在结构内的原子间只有间隙。陶瓷材料的密度主要取决于元素的尺寸,元素的质量和结构堆积的紧密程度。相对原子质量大的元素构成的陶瓷材料显示出较高的密度,如碳化钨、氧化铪等。金属键合和离子键合陶瓷中的原子形成紧密堆积,会使其密度比共价键键合陶瓷(较开放的结构)的密度更

第三章 二元合金的相结构与结晶 - 答案

第三章 二元合金的相结构与结晶 (一)填空题 1 合金的定义是两种或两种以上的金属(或金属与非金属)熔合而成具有金属特性的物质。 2.合金中的组元是指 组成合金最基本的、独立的物质 。 3.固溶体的定义是 在固态条件下,一种组元“组分”溶解了其它组元而形成的单相晶态固体 4.Cr 、V 在γ-Fe 中将形成 置换 固溶体。C 、N 则形成 间隙 固溶体。 5.和间隙原子相比,置换原子的固溶强化效果要 差 些。 6.当固溶体合金结晶后出现枝晶偏析时,先结晶出的树枝主轴含有较多的高熔点组元。 7.共晶反应的特征是 由一定成分的恶液相同时结晶出成分一定的两个固相 ,其反应式为 L →a+β 8.匀晶反应的特征是 ,其反应式为 9.共析反应的特征是 ,其反应式为 10.合金固溶体按溶质原子溶入方式可以分为置换固溶体和间隙固溶体,按原子溶入量可以分为 有限固溶体 和 无限固溶体 11.合金的相结构有 固溶体 和 金属化合物 两种,前者具有较高的 塑性变形 性能,适合于做 基体 相;后者有较高的 高硬度 性能,适合于做 增强 相 12.看图4—1,请写出反应式和相区: ABC 包晶反应 B A C L γα?+ ;DEF 共晶反应 F D C L βγ+? ;GHI 共析反应 I G H βαγ+? ; ① L +α ;② γα+ ;③βα+ ;④ βγ+ ;⑤ L +γ ;⑥ β+L ; 13.相的定义是 ,组织的定义是 14.间隙固溶体的晶体结构与溶剂的晶格类型 相同,而间隙相的晶体结构与 溶剂组元晶体结构 不同。 15.根据图4—2填出: 水平线反应式 E C D βαγ+? ;有限固溶体 βα、 、 无限固溶体 γ 。 液相线 ,固相线 , 固溶线 CF 、 EG

第3章答案

第三章答案 3-2 略。 3-2试述位错的基本类型及其特点。 解:位错主要有两种:刃型位错和螺型位错。刃型位错特点:滑移方向与位错线垂直,符号⊥,有多余半片原子面。螺型位错特点:滑移方向与位错线平行,与位错线垂直的面不是平面,呈螺施状,称螺型位错。 3-3非化学计量化合物有何特点?为什么非化学计量化合物都是n型或p型半导体材料? 解:非化学计量化合物的特点:非化学计量化合物产生及缺陷浓度与气氛性质、压力有关;可以看作是高价化合物与低价化合物的固溶体;缺陷浓度与温度有关,这点可以从平衡常数看出;非化学计量化合物都是半导体。由于负离子缺位和间隙正离子使金属离子过剩产生金属离子过剩(n型)半导体,正离子缺位和间隙负离子使负离子过剩产生负离子过剩(p型)半导体。 3-4影响置换型固溶体和间隙型固溶体形成的因素有哪些? 解:影响形成置换型固溶体影响因素:(1)离子尺寸:15%规律:1.(R1-R2)/R1>15%不连续。2.<15%连续。3.>40%不能形成固熔体。(2)离子价:电价相同,形成连续固熔体。(3)晶体结构因素:基质,杂质结构相同,形成连续固熔体。(4)场强因素。(5)电负性:差值小,形成固熔体。差值大形成化合物。 影响形成间隙型固溶体影响因素:(1)杂质质点大小:即添加的原子愈小,易形成固溶体,反之亦然。(2)晶体(基质)结构:离子尺寸是与晶体结构的关系密切相关的,在一定程度上来说,结构中间隙的大小起了决定性的作用。一般晶体中空隙愈大,结构愈疏松,易形成固溶体。(3)电价因素:外来杂质原子进人间隙时,必然引起晶体结构中电价的不平衡,这时可以通过生成空位,产生部分取代或离子的价态变化来保持电价平衡。 3-5试分析形成固溶体后对晶体性质的影响。 解:影响有:(1)稳定晶格,阻止某些晶型转变的发生;(2)活化晶格,形成固溶体后,晶格结构有一定畸变,处于高能量的活化状态,有利于进行化学反应;(3)固溶强化,溶质原子的溶入,使固溶体的强度、硬度升高;(4)形成固溶体后对材料物理性质的影响:固溶体的电学、热学、磁学等物理性质也随成分而连续变化,但一般都不是线性关系。固溶体的强度与硬度往往高于各组元,而塑性则较低, 3-6说明下列符号的含义:V Na,V Na',V Cl˙,(V Na'V Cl˙),Ca K˙,Ca Ca,Ca i˙˙ 解:钠原子空位;钠离子空位,带一个单位负电荷;氯离子空位,带一个单位正电荷;最邻近的Na+空位、Cl-空位形成的缔合中心;Ca2+占据K.位置,带一个单位正电荷;Ca原子位于Ca原子位置上;Ca2+处于晶格间隙位置。

相关文档