文档库 最新最全的文档下载
当前位置:文档库 › 白盒测试实例

白盒测试实例

白盒测试实例
白盒测试实例

白盒测试实例之一——需求说明

三角形的问题在很多软件测试的书籍中都出现过,问题虽小,五脏俱全,是个很不错的软件测试的教学例子。本文借助这个例子结合教学经验,从更高的视角来探讨需求分析、软件设计、软件开发与软件测试之间的关系与作用。

题目:根据下面给出的三角形的需求完成程序并完成测试:

一、输入条件:

1、条件1:a+b>c

2、条件2:a+c>b

3、条件3:b+c>a

4、条件4:0

5、条件5:0

6、条件6:0

7、条件7:a==b

8、条件8:a==c

9、条件9:b==c

10、条件10:a2+b2==c2

11、条件11:a2+ c2== b2

12、条件12:c2+b2== a2

二、输出结果:

1、不能组成三角形

2、等边三角形

3、等腰三角形

4、直角三角形

5、一般三角形

6、某些边不满足限制

白盒测试实例之二——答案

很多初学者一看到这个需求(详见白盒测试实例之一——需求说明收藏),都觉得很简单,然后立刻就开始动手写代码了,这并不是一个很好的习惯。如果你的第一直觉也是这样的,不妨耐心看到文章的最后。

大部分人的思路:

1、首先建立一个main函数,main函数第一件事是提示用户输入三角形的三边,然后获取用户的输入(假设用户的输入都是整数的情况),用C语言来写,这一步基本上不是问题(printf和scanf),但是要求用java来写的话,很多学生就马上遇到问题了,java5.0及之前的版本不容易获取用户的输入。

11. if(a==b && b==c && a==c) //这里可以省掉一个判断

12. {

13. printf("1是等边三角形");

14. }

15. else

16. {

17. if(a==b || b==c || a==c)

18. {

19. printf("2是等腰三角形");

20. }

21. else

22. {

23. if(a*a+b*b==c*c || a*a+c*c==b*b ||

b*b+c*c==a*a)

24. {

25. printf("3是直角三角形");

26. }

27. else

28. {

29. printf("4是一般三角形");

30. }

31. }

32. }

33. }

34. else

35. {

36. printf("5不能组成三角形");

37. }

38. }

39. else

40. {

41. printf("6某些边不满足限制");

42. }

43. }

点评:这样的思路做出来的程序只能通过手工方式来测试所有业务逻辑,而且这个程序只能是DOS界面版本了,要是想使用web或图形化界面来做输入,就得全部写过代码。

需求分析是后续工作的基石,如果分析思路有问题,后续工作可能就会走向不正确的方向,比如:代码重用性差、难于测试、难于扩展和难于维护等。反而,如果需求分析做的好,对设计、开发和测试来说,都可能是很大的帮助。

看到题目给出的条件达12个之多,粗粗一看,好像很复杂,但仔细分析之后,发现可以把它们分成4组来讨论:

1、条件1:a+b>c;条件2:a+c>b;条件3:b+c>a

这三个表达式有什么特点呢?实际上它们的逻辑是一样的:两个数之和大于第三个数。那么,前面程序的写法就存在逻辑重复的地方,应该把这个逻辑提取到一个函数中。

2、条件4:0

这三个表达式也是同一个逻辑:判断一个数的范围是否在(0, 200)区间内,也应该把这个逻辑提取到一个函数中,去掉重复的逻辑,提高代码的可重用性。

可重用性的好处:比如,现在用户的需求改为了三条边的取值范围要改为[100,400],那么,按前面的思路来说,需要改3个地方,而现在只需要在一个函数里改1个地方,这就是代码重用的好处。

3、条件7:a==b;条件8:a==c;条件9:b==c

这三个表达式的逻辑:判断两个数是否相等。也应该把它提取到一个函数中。

我们进一步来分析一下判断是否是等边三角形或等腰三角形的条件:

(1)前面程序的判断是从最直观的方式(a==b && b==c && a==c)(实际上只需要

两个表达式成立即可)三条边都相等来判定是等边三角形;(a==b || b==c || a==c)只有两条边相等来判定是等腰三角形。

(2)转变一下思路:给定三个整数,然后用一个函数来判断这三个整数有几个相等,返回相等的个数,如果返回值等于3,那么它是等边三角形,如果返回值是2,那么它是等腰三角形,否则,它是一般三角形(如果不是直角三角形的话)。

4、条件10:a2+b2==c2 条件11:a2+ c2== b2 条件12:c2+b2== a2

这三个条件的处理方式有两种:

(1)跟前面三组分析一样,把相同的逻辑提取到一个函数中,然后三次调用。

(2)根据直角三角形的特点:斜边是最长的,所以我们可以事先写一个函数来找到最长的边,然后把它赋值给c,这样处理之后,只需要一次调用判定(a2+b2==c2)的函数了。

程序设计对于软件的质量和软件实施过程的难易程度起着至关重要的作用。好的设计,即使聘用没什么经验的开发人员都很容易产生出高质量的代码出来;而差的设计,即使是经验很丰富的开发人员也很容易产生缺陷,特别是可重用性、可测试性、可维护性、可扩展性等方面的缺陷。

经过以上的分析,下面来看一下如何设计。在下图中,每个方框都使用一个函数来实现,为了跟用户界面分开,最顶上的函数不要写在main函数中。

把思路用流程图的方式表达出来,不用停留在脑袋里:

具体的函数的调用关系图:

复杂模块triangleType的流程图:

白盒测试实例之五——编码

7.

8. #include

9. #include

10.

11. /*

12. * 判断一个整数是否在(0, 200)区间内

13. * 返回值:true-否;false-是

14. */

15. bool isOutOfRange(int i);

16.

17. /*

18. * 判断三条边是否合法(即:判断三条边都在合法的范围内)

19. * 返回值:true-是;false-否

20. */

21. bool isLegal(int a, int b, int c);

22.

23. /*

24. * 判断两条边之和是否大于第三边

25. * 返回值:true-是;false-否

26. */

27. bool isSumBiger(int a, int b, int c);

28.

29. /*

30. * 判断三条边是否能够组成三角形

31. * 返回值:true-是;false-否

32. */

33. bool isTriangle(int a, int b, int c);

34.

35. /*

36. * 判断两条边是否相等

37. * 返回值:true-是;false-否

38. */

39. bool isEquals(int a, int b);

40.

41. /*

42. * 求三角形有几条边相等

43. * 返回值:相等边的数量

44. */

45. int howManyEquals(int a, int b, int c);

46.

47. /*

48. * 判断是否满足两边平方之和是否等于第三边的平方

49. *

50. */

51. bool isPowerSumEquals(int a, int b, int c);

52.

53. /*

54. * 判断第一个数是否比第二个数大

55. */

56. bool isGreaterThan(int a, int b);

57.

58. /*

59. * 判断是否是直角三角形

60. *

61. */

62. bool isRightRriangle(int a, int b, int c);

63.

64. /*

白盒测试实例之六——单元测试的步骤

所以,单元测试主要是关注本单元的内部逻辑,而不用关注整个业务的逻辑,因为会有别的模块去完成相关的功能

白盒测试实例之七——单元测试的尝试

6. */

7. #include "Triangle.h"

8. /*

9. * 测试isOutOfRange函数,使用边界值的方法(0,1,5,199,200)

10. *

11. */

12. void testIsOutOfRange_try()

13. {

14. if(isOutOfRange(0) == true)

15. {

16. printf("pass!\n");

17. }

18. else

19. {

20. printf("fail!\n");

21. }

22.

23. if(isOutOfRange(1) == false)

24. {

25. printf("pass!\n");

26. }

27. else

28. {

29. printf("fail!\n");

30. }

31.

32. }

33.

小知识:做单元测试的时候,一般不直接在main函数中写所有的测试代码,否则的话,main函数将会非常庞大。正确的做法:针对每个函数分别创建一个或若干个(函数比较复杂时)测试函数,测试函数的名称习惯以test开头。

写到这里发现重复的代码太多了,而且如果测试用例数量很多的话,对于测试结果的检查也将是很大的工作量。在测试有错误的时候,这样的单元测试结果也很难获得更多关于错误的信息。

解决问题的途径可以采用cppUnit单元测试框架。不过这里为了让学生能够对单元测试和单元测试框架有进一步的理解,我决定自己写一个类似cppUnit的简单的测试框架。

白盒测试实例之八——构建自己的单元测试框架(上)

4. void assertTrue(char *msg, bool actual)

5. {

6. if(actual)

7. {

8. printf(".");

9. }

10. else

11. {

12. printf("F");

13. }

14. }

15.

16. /*

17. * 判断预期结果和实际结果是否相符

18. */

19. void assertEquals(char *msg, int expect, int actual)

20. {

21. if(expect == actual)

22. {

23. printf(".");

24. }

25. else

26. {

27. printf("F");

28. }

29. }

小知识:XUnit系列的框架的习惯使用assert*的命名来定义判断函数,对于通过的测试习惯打印一个“.”号,而对于失败的测试习惯打印一个“F”。

2、测试结果需要人工去检查

对于测试结果不要使用printf方式打印被测试函数的返回结果值就可以避免这个问题。

3、对测试的总体信息也无从得知

除了问题1的解决办法里使用“.”表示测试通过和“F”表示测试失败可以提高对测试结果的信息的直观性之外,做单元测试的人还希望能够得到以下的信息:

(1)执行的测试用例总数、通过的数量和失败的数量

(2)测试执行的时间

(3)如果测试用例执行失败了,希望知道是哪个测试用例失败,从而去分析失败的原因。

白盒测试实例之九——构建自己的单元测试框架(下)

白盒测试实例之十——集成测试的概念

测一、桩模块和驱动模块(以C语言为例):

很多人对桩模块和驱动模块的概念会搞不清楚,下面先介绍这两个概念:模块结构实例图:

假设现在项目组把任务分给了7个人,每个人负责实现一个模块。你负责的是B模块,你很优秀,第一个完成了编码工作,现在需要开展单元测试工作,先分析结构图:

1、由于B模块不是最顶层模块,所以它一定不包含main函数(A模块包含main函数),也就不能独立运行。

2、B模块调用了D模块和E模块,而目前D模块和E模块都还没有开发好,那么想让B模块通过编译器的编译也是不可能的。

那么怎样才能测试B模块呢?需要做:

1、写两个模块Sd和Se分别代替D模块和E模块(函数名、返回值、传递的参数相同),这样B模块就可以通过编译了。Sd模块和Se模块就是桩模块。

2、写一个模块Da用来代替A模块,里面包含main函数,可以在main函数中调用B 模块,让B模块运行起来。Da模块就是驱动模块。

知识点:

桩模块的使命除了使得程序能够编译通过之外,还需要模拟返回被代替的模块的各种可能返回值(什么时候返回什么值需要根据测试用例的情况来决定)。

驱动模块的使命就是根据测试用例的设计去调用被测试模块,并且判断被测试模块的返回值是否与测试用例的预期结果相符。

二、集成测试策略:

1、非增式集成测试

各个单元模块经过单元测试之后,一次性组装成完整的系统。

优点:集成过程很简单。

缺点:出现集成问题时,查找问题比较麻烦,而且测试容易遗漏。

范例:

2、增式集成测试

(1)自顶向下

A、纵向优先

从最顶层开始测试,需要写桩模块。测试的顺序:从跟节点开始,每次顺着某枝干到该枝干的叶子节点添加一个节点到已测试好的子系统中,接着再加入另一枝干的节点,直到所有节点集成到系统中。

B、横向优先

跟纵向优先的区别在于:每次并不是顺着枝干走到叶子,而是逐一加入它的直属子节点。

纵向优先的范例:

(2)自底向上

每次从叶子节点开始测试,测试过的节点摘掉,然后把树上的叶子节点摘下来加入到已经测试好的子系统之中。优点:不需要写桩模块,但需要写驱动模块。

范例:

白盒测试用例设计方法

1白盒测试用例设计方法 1.1白盒测试简介 白盒测试又称结构测试、逻辑驱动测试或基于程序的测试,一般多发生在单元测试阶段。白盒测试方法主要包括逻辑覆盖法,基本路径法,程序插装等。 这里重点介绍一下常用的基本路径法,对于逻辑覆盖简单介绍一下覆盖准则。 1.2基本路径法 在程序控制流图的基础上,通过分析控制构造的环路复杂性,导出独立路径集合,从而设计测试用例,设计出的测试用例要保证在测试中程序的每一个可执行语句至少执行一次。 在介绍基本路径测试方法(又称独立路径测试)之前,先介绍流图符号: 图1 如图1所示,每一个圆,称为流图的节点,代表一个或多个语句,流程图中的处理方框序列和菱形决策框可映射为一个节点,流图中的箭头,称为边或连接,代表控制流,类似于流程图中的箭头。一条边必须终止于一个节点,即使该节点并不代表任何语句,例如,图2中两个处理方框交汇处是一个节点,边和节点限定的范围称为区域。 图2

任何过程设计表示法都可被翻译成流图,下面显示了一段流程图以及相应的流图。 注意,程序设计中遇到复合条件时(逻辑or, and, nor 等),生成的流图变得更为复杂,如(c)流图所示。此时必须为语句IF a OR b 中的每一个a 和b 创建一个独立的节点。

(c)流图 独立路径是指程序中至少引进一个新的处理语句集合,采用流图的术语,即独立路径必须至少包含一条在定义路径之前不曾用到的边。例如图(b)中所示流图的一个独立路径集合为: 路径1:1-11 路径2:1-2-3-4-5-10-1-11 路径3:1-2-3-6-8-9-10-1-11 路径4:1-2-3-6-7-9-10-1-11 上面定义的路径1,2,3 和4 包含了(b)流图的一个基本集,如果能将测试设计为强迫运行这些路径,那么程序中的每一条语句将至少被执行一次,每一个条件执行时都将分别取true 和false(分支覆盖)。应该注意到基本集并不唯一,实际上,给定的过程设计可派生出任意数量的不同基本集。如何才能知道需要寻找多少条路径呢?可以通过如下三种方法之一来计算独立路径的上界: 1. V=E-N+2,E 是流图中边的数量,N 是流图节点数量。 2. V=P+1,P 是流图中判定节点的数量 3. V=R,R 是流图中区域的数量 例如,(b)流图可以采用上述任意一种算法来计算独立路径的数量 1. V=11 条边-9 个节点+2=4 2. V=3 个判定节点+1=4 3. 流图有4 个区域,所以V=4 由此为了覆盖所有程序语句,必须设计至少4 个测试用例使程序运行于这4 条路径。 在采用基本路径测试方法中,获取测试用例可参考以下方式:

第14章白盒测试技术

以下不属于软件编码规范评测内容的是()。 A. 源程序文档化 B.数据说明方法 C. 语句结构 D. 算法逻辑 一个程序的控制流图中有 5 个节点、 9 条边,在测试用例数最少的情况下,确保程序中每个可执行语句至少执行一次所需测试用例数的上限是()。 A. 2 B. 4 C.6 D.8 对于逻辑表达式(((a>0)&&(b>0))||c<5),需要()个测试用例才能完成条件组合覆盖。 A. 2 B. 4 C.8 D.16 对于逻辑表达式(((a>0)&&(b>0))||c<5),需要()个测试用例才能完成条件组合覆盖。 A. 2 B. 4 C.8 D.16 对于逻辑表达式( (b1&b2)||in),需要()个测试用例才能完成条件组合覆盖。 A.2 B.4 C.8 D.16 以下关于白盒测试的叙述中,不正确的是()。 A.满足判定覆盖一定满足语句覆盖 B.满足条件覆盖一定满足判定覆盖 C.满足判定条件覆盖一定满足条件覆盖 D.满足条件组合覆盖一定满足判定条件覆盖 对于逻辑表达式((a||(b&c))||(c&&d)),需要()个测试用例才能完成条件组合覆盖。 A.4 B.8 C.16 D.32 以下属于静态测试方法的是()。 A.代码审查 B.判定覆盖 C.路径覆盖 D.语句覆盖 以下几种白盒覆盖测试中,覆盖准则最强的是( ) 。 A.语句覆盖 B.判定覆盖

C.条件覆盖 D.条件组合覆盖 对于逻辑表达式((a||b)||(c&&d)),需要( ) 个测试用例才能完成条件组合覆盖。 A.2 B.4 C.8 D.16 以下属于动态测试方法的是 ( ) 。 A.代码审查 B.静态结构测试 C.路径覆盖 D.技术评审 白盒测试不能发现()。 A.代码路径中的错误 B.死循环 C.逻辑错误 D.功能错误 对于逻辑表达式((a&&b)||c),需要()个测试用例才能完成条件组合覆盖。 A.2 B.4 C.8 D.16 以下属于静态测试方法的是()。 A.分支覆盖率分析 B.复杂度分析 C.系统压力测试 D.路径覆盖分析 对于逻辑表达式(a&&(b|c)),需要()个测试用例才能完成条件组合覆盖 A.2 B.4 C.6 D.8 逻辑覆盖标准包括()。 ①判定覆盖②语句覆盖③条件判定覆盖④修正条件判定覆盖 A.①③ B.①②③ C.①②④ D.①②③④ 以下关于白盒测试的叙述中,不正确的是()。 A.白盒测试仅与程序的内部结构有关,完全可以不考虑程序的功能要求 B.逻辑覆盖法是一种常用的白盒测试方法 C.程序中存在很多判定和条件,不可能实现100%的条件覆盖 D.测试基于代码,无法确定设计正确与否

白盒测试方法

一、白盒测试概念 1、定义 白盒测试又称结构测试、透明盒测试、逻辑驱动测试、基于代码的测试。盒子指被测试的软件,白盒指盒子是可视的。白盒测试是一种测试用例设计方法,测试人员依据程序内部逻辑结构相关信息,设计或选择测试用例。白盒测试主要针对被测程序的源代码,主要用于软件验证,不考虑软件的功能实现,只验证内部动作是否按照设计说明书的规定进行。 2、目的 我们一方面注重软件功能需求的实现,另一方面还要注重程序逻辑细节,主要是因为软件自身的缺陷,具体如下: 1)逻辑错误和不正确假设与一条程序路径被运行的可能性成反比。日常处理往往被很好地了解,而“特殊情况”的处理则难于发现。 2)我们经常相信某逻辑路径不可能被执行,而事实上,它可能在正常的基础上被执行。程序的逻辑流有时是违反直觉的,只有路径测试才能发现这些错误。 3)代码中的笔误是随机且无法杜绝的。笔误出现在主流上和不明显的逻辑路径上的机率是一样的。很多被语法检查机制发现,但是其他的会在测试开始时才会被发现。 4)功能测试本身的局限性。如果程序实现了没有被描述的行为,功能测试是无法发现的,例如病毒,而白盒测试很容易发现它。 3、目标 采用白盒测试必须遵循以下几条原则,才能达到测试的目标: 1)保证一个模块中的所有独立路径至少被测试一次。 2)所有逻辑值均需测试真(true) 和假(false)两种情况。 3)检查程序的内部数据结构,保证其结构的有效性。 4)在上下边界及可操作范围内运行所有循环。 4、黑白灰区别 黑盒测试技术:也称功能测试或数据驱动测试,只关注规格说明中的功能,测试者在程序接口对软件界面和软件功能进行测试,它只检查实现了的功能是否按照“用户需求说明书”的规定正常使用,程序是否能适当地接收输入数据而产生正确的输出信息,并且保持外部信息(如数据库或文件)的完整性。主要用于软件确认测试,结合兼容、性能测试等方面,但黑盒测试不能保证已经实现的各个部分都被测试到。黑盒测试适用于各阶段测试。 白盒测试技术:只关注软件产品的测试,深入到代码一级的测试,它是知道产品内部结构,通过测试来检测产品内部动作是否按照“设计规格说明书”的规定正常进行,按照程

白盒测试实例

白盒测试实例之一——需求说明 三角形的问题在很多软件测试的书籍中都出现过,问题虽小,五脏俱全,是个很不错的软件测试的教学例子。本文借助这个例子结合教学经验,从更高的视角来探讨需求分析、软件设计、软件开发与软件测试之间的关系与作用。 题目:根据下面给出的三角形的需求完成程序并完成测试: 一、输入条件: 1、条件1:a+b>c 2、条件2:a+c>b 3、条件3:b+c>a 4、条件4:0

11. if(a==b && b==c && a==c) //这里可以省掉一个判断 12. { 13. printf("1是等边三角形"); 14. } 15. else 16. { 17. if(a==b || b==c || a==c) 18. { 19. printf("2是等腰三角形"); 20. } 21. else 22. { 23. if(a*a+b*b==c*c || a*a+c*c==b*b || b*b+c*c==a*a) 24. { 25. printf("3是直角三角形"); 26. } 27. else 28. { 29. printf("4是一般三角形"); 30. } 31. } 32. } 33. } 34. else 35. { 36. printf("5不能组成三角形"); 37. } 38. } 39. else 40. { 41. printf("6某些边不满足限制"); 42. } 43. } 点评:这样的思路做出来的程序只能通过手工方式来测试所有业务逻辑,而且这个程序只能是DOS界面版本了,要是想使用web或图形化界面来做输入,就得全部写过代码。

白盒测试实验报告-范例

实验报告书 实验一白盒测试 学生姓名:李庆忠 专业:计算机科学与技术学号:1341901317

白盒测试实验报告 一实验内容 1、系统地学习和理解白盒测试的基本概念、原理,掌握白盒测试的基本技术和方法; 2、举例进行白盒测试,使用语句覆盖、判定覆盖、条件覆盖、判定/条件覆盖、组合 覆盖、路径覆盖进行测试。 3、通过试验和应用,要逐步提高和运用白盒测试技术解决实际测试问题的能力; 4、熟悉C++编程环境下编写、调试单元代码的基本操作技术和方法; 5、完成实验并认真书写实验报告(要求给出完整的测试信息,如测试程序、测试用例, 测试报告等) 二实验原理 白盒测试原理:已知产品的内部工作过程,可以通过测试证明每种内部操作是否符合设计规格要求,所有内部成分是否已经过检查。它是把测试对象看作装在一个透明的白盒子里,也就是完全了解程序的结构和处理过程。这种方法按照程序内部的逻辑测试程序,检验程序中的每条通路是否都能按预定要求正确工作。其又称为结构测试。 流程图如下图所示 实验代码 #include"stdio.h"

int main() { int x,y,z; scanf("%d%d",&x,&y); if((x>0)&&(y>0)) { z=x+y+10; } else { z=x+y-10; } if(z<0) { z=0; printf("%d\n",z); } else { printf("%d\n",z); } return 0; } 语句覆盖是指选择足够的测试,使得程序中每个语句至少执行一次。如选择测试x=1,y=1和x=1,y=-1可覆盖所有语句。 判定覆盖是指选择足够的测试,使得程序中每一个判定至少获得一次“真”值和“假”值,从而使得程序的每个分支都通过一次(不是所有的逻辑路径)。选择测试x=1,y=1和x=1,y=-1可覆盖所有判定。 条件覆盖是指选择语句多数的测试,使得程序判定中的每个条件能获得各种不同的结果。选择测试x=1,y=1和x=-1,y=-1可覆盖所有条件。 判定/条件覆盖是指选择足够多的测试,使得程序判定中每个条件取得条件可能的值,并使每个判定取到各种可能的结果(每个分支都通过一次)。即满足条件覆盖,又满足判定覆盖。选择测试x=1,y=1和x=-1,y=-1可覆盖所有判定/条件。 条件组合覆盖是指选择足够的测试,使得每个判定中的条件的各种可能组合都至少出现一次(以判定为单位找条件组合)。 注:a,条件组合只针对同一个判断语句存在多个条件的情况,让这些条件的取值进行笛卡尔乘积组合。 b,不同的判断语句内的条件取值之间无需组合。 c,对于但条件的判断语句,只需要满足自己的所有取值即可。 选择测试用例x=1,y=1;x=1,y=-1,x=-1,y=1和x=-1,y=-1可覆盖所有条件组合。 路径覆盖是分析软件过程流的通用工具,有助分离逻辑路径,进行逻辑覆盖的测试,所用的流程图就是讨论软件结构复杂度时所用的流程图。

白盒测试用例练习题(1)

白盒测试用例练习 1.为以下所示的程序段设计一组测试用例,要求分别满足语句覆盖、判定覆盖、条件覆盖、判定/条件覆盖、组合覆盖和路径覆盖,并画出相应的程序流程图。 void DoWork (int x,int y,int z) { int k=0,j=0; if ( (x>3)&&(z<10) ) { k=x*y-1; j=sqrt(k); //语句块1 } if ( (x==4)||(y>5) ) { j=x*y+10; } //语句块2 j=j%3; //语句块3 } a Y c N b e Y N d x>3 and z<10 x=4 or y>5 j=j%3 j=x*y+10 k=x*y-1 j=sqrt(k) k=0 j=0

由这个流程图可以看出,该程序模块有4条不同的路径: P1:(a-c-e) P2:(a-c-d) P3:(a-b-e) P4:(a-b-d) 将里面的判定条件和过程记录如下: 判定条件M={x>3 and z<10} 判定条件N={x=4 or y>5} 1、语句覆盖 测试用例输入输出判定M的取值判定N的取值覆盖路径x=4,z=5,y=8 k=31,j=0 T T P1(a-c-e) 2、判定覆盖 p1和p4可以作为测试用例,其中p1作为取真的路径,p4作为取反的路径。 测试用例输入输出判定M的取值判定N的取值覆盖路径x=4,z=5,y=8 k=31,j=0 T T P1(a-c-e) x=2,z=11,y=5 k=0,j=0 F F P4(a-b-d) 也可以让测试用例测试路径P2和P3。相应的两组输入数据如下: 测试用例输入输出判定M的取值判定N的取值覆盖路径x=5,z=5,y=4 k=19,j=sqrt(19)%3 T F P2(a-c-d) x=4,z=11,y=6 k=0,j=1 F T P3(a-b-e) 3、条件覆盖 对于M:x>3取真时T1,取假时F1; z<10取真时T2,取假时F2; 对于N:x=4取真时T3,取假时F3; y>5取真时T4,取假时F4。 条件:x>3,z<10,x=4,y>5 条件:x<=3,z>=10,x!=4,y<=5 根据条件覆盖的基本思路,和这8个条件取值,组合测试用例如表所示: 测试用例输入输出取值条件具体取值条件覆盖路径x=4,z=5,y=8 k=31, j=0 T1,T2,T3,T4 x>3,z<10,x=4,y>5 P1(a-c-e) x=3,z=11,y=5 k=0, j=0 F1,F2,F3,F4 x<=3,z>=10,x!=4,y<=5 P4(a-b-d) 4、判定/条件覆盖 测试用例输入输出取值条件具体取值条件覆盖路径x=4,z=5,y=8 k=31, j=0 T1,T2,T3,T4 x>3,z<10,x=4,y>5 P1(a-c-e) x=3,z=11,y=5 k=0, j=0 F1,F2,F3,F4 x<=3,z>=10,x!=4,y<=5 P4(a-b-d)

白盒测试及用例设计

白盒测试 白盒测试(White-box Testing,又称逻辑驱动测试,结构测试) 是把测试对象看作一个打开的盒子。利用白盒测试法进行动态测试时,需要测试软件产品的内部结构和处理过程,不需测试软件产品的功能。白盒测试又称为结构测试和逻辑驱动测试。 白盒测试法的覆盖标准有逻辑覆盖、循环覆盖和基本路径测试。其中逻辑覆盖包括语句覆盖、判定覆盖、条件覆盖、判定/条件覆盖、条件组合覆盖和路径覆盖。 六种覆盖标准:语句覆盖、判定覆盖、条件覆盖、判定/条件覆盖、条件组合覆盖和路径覆盖发现错误的能力呈由弱至强的变化。语句覆盖每条语句至少执行一次。判定覆盖每个判定的每个分支至少执行一次。条件覆盖每个判定的每个条件应取到各种可能的值。判定/条件覆盖同时满足判定覆盖条件覆盖。条件组合覆盖每个判定中各条件的每一种组合至少出现一次。路径覆盖使程序中每一条可能的路径至少执行一次。 白盒测试也称结构测试或逻辑驱动测试,它是知道产品内部工作过程,可通过测试来检测产品内部动作是否按照规格说明书的规定正常进行,按照程序内部的结构测试程序,检验程序中的每条通路是否都有能按预定要求正确工作,而不顾它的功能,白盒测试的主要方法有逻辑驱动、基路测试等,主要用于软件验证。 "白盒"法全面了解程序内部逻辑结构、对所有逻辑路径进行测试。"白盒"法是穷举路径测试。在使用这一方案时,测试者必须检查程序的内部结构,从检查程序的逻辑着手,得出测试数据。贯穿程序的独立路径数是天文数字。但即使每条路径都测试了仍然可能有错误。第一,穷举路径测试决不能查出程序违反了设计规范,即程序本身是个错误的程序。第二,穷举路径测试不可能查出程序中因遗漏路径而出错。第三,穷举路径测试可能发现不了一些与数据相关的错误。

软件测试案例三角形白盒测试

一、核心程序代码 /** 判断三角形的类*/ public class TriangleTestMethod { /** 判断三角形的种类。参数a, b, c 分别为三角形的三边, * 返回的参数值为0 ,表示非三角形; * 为 1 ,表示普通三角形; * 为 2 ,表示等腰三角形; * 为 3 ,表示等边三角形。 */ public static int comfirm( int a, int b, int c) { if ((a + b > c) && (b + c > a) && (a + c > b)) { if ((a == b) && (b ==c)) // 判断为等边三角形 return 3; if ((a == b) || (b == c) || (a == c)) // return 2; else // 判断为普通三角形return 1; } else { // 为非三角形 return 0; } } } // 判断为三角形判断为等腰三角形

、程序流程图 三、测试用例

F6, F7, T8 Case28 a=4, b=3, c=3 2 T1, T2, T3, F4, T5, F6, T7, F8 2 Case29 a=3, b=4, c=5 1 T1, T2, T3, F4, F5, F6, F7, F8 1 Case30 a=3, b=4, c=3 2 T1, T2, T3, F4, F5, F6, F7, T8 2 备注 其他条件组合,无法到达结束 四、程序控制流图 -> a B a == b E F b == c Return 3 Ffet urn 2 Ret ur n 1 K 输入 期望输出 覆盖对象 测试结果 Case31 a=1,b=6,c=7 0 A->D 0 Case32 a=7, b=6, c=1 0 A->B->D 0 Case33 a=1,b=7,c=6 0 A->B->C->D D Return 0 G b == c Ret ur n 2 H 斗 J a == C

白盒测试和黑盒测试

白盒测试 白盒测试,又称结构测试、透明盒测试、逻辑驱动测试或基于代码的测试。白盒测试是一种测试用例设计方法,盒子指的是被测试的软件,白盒指的是盒子是可视的,你清楚盒子部的东西以及里面是如何运作的。"白盒"法全面了解程序部逻辑结构、对所有逻辑路径进行测试。"白盒"法是穷举路径测试。在使用这一方案时,测试者必须检查程序的部结构,从检查程序的逻辑着手,得出测试数据。贯穿程序的独立路径数是天文数字。 采用什么方法对软件进行测试呢?常用的软件测试方法有两大类:静态测试方法和动态测试方法。其中软件的静态测试不要求在计算机上实际执行所测程序,主要以一些人工的模拟技术对软件进行分析和测试;而软件的动态测试是通过输入一组预先按照一定的测试准则构造的实例数据来动态运行程序,而达到发现程序错误的过程。在动态分析技术中,最重要的技术是路径和分支测试。下面要介绍的六种覆盖测试方法属于动态分析方法。 中文名:白盒测试 外文名:white-box testing 别称:结构测试、透明盒测试 白盒测试测试方法 白盒测试的测试方法有代码检查法、静态结构分析法、静态质量度量法、逻辑覆盖法、基本路径测试法、域测试、符号测试、路径覆盖和程序变异。 白盒测试法的覆盖标准有逻辑覆盖、循环覆盖和基本路径测试。其中逻辑覆盖包括语句覆盖、判定覆盖、条件覆盖、判定/条件覆盖、条件组合覆盖和路径覆盖。六种覆盖标准发现错误的能力呈由弱到强的变化: 1.语句覆盖每条语句至少执行一次。 2.判定覆盖每个判定的每个分支至少执行一次。 3.条件覆盖每个判定的每个条件应取到各种可能的值。 4.判定/条件覆盖同时满足判定覆盖条件覆盖。 5.条件组合覆盖每个判定中各条件的每一种组合至少出现一次。 6.路径覆盖使程序中每一条可能的路径至少执行一次。 白盒测试要求

最新白盒测试实验报告-范例

广西科技大学计算机学院《软件测试技术》实验报告书 实验一白盒测试 学生姓名:xxxx 学号:xxxx 班级:xxxx 指导老师:xxxxx 专业:计算机学院软件工程 提交日期:2014年10月20日

白盒测试实验报告 一实验内容 1、系统地学习和理解白盒测试的基本概念、原理,掌握白盒测试的基本技术和方法; 2、举例进行白盒测试,使用语句覆盖、判定覆盖、条件覆盖、判定/条件覆盖、组合 覆盖、路径覆盖进行测试。 3、通过试验和应用,要逐步提高和运用白盒测试技术解决实际测试问题的能力; 4、熟悉C++编程环境下编写、调试单元代码的基本操作技术和方法; 5、完成实验并认真书写实验报告(要求给出完整的测试信息,如测试程序、测试用例, 测试报告等) 二实验原理 白盒测试原理:已知产品的内部工作过程,可以通过测试证明每种内部操作是否符合设计规格要求,所有内部成分是否已经过检查。它是把测试对象看作装在一个透明的白盒子里,也就是完全了解程序的结构和处理过程。这种方法按照程序内部的逻辑测试程序,检验程序中的每条通路是否都能按预定要求正确工作。其又称为结构测试。 对于该实验的例子给出其流程图如下图所示,我们来了解白盒测试的基本技术和方法。

语句覆盖是指选择足够的测试用例,使得程序中每个语句至少执行一次。如上例选择测试用例x=1,y=1和x=1,y=-1可覆盖所有语句。 判定覆盖是指选择足够的测试用例,使得程序中每一个判定至少获得一次“真”值和“假”值,从而使得程序的每个分支都通过一次(不是所有的逻辑路径)。选择测试用例x=1,y=1和x=1,y=-1可覆盖所有判定。 条件覆盖是指选择语句多数的测试用例,使得程序判定中的每个条件能获得各种不同的结果。选择测试用例x=1,y=1和x=-1,y=-1可覆盖所有条件。 判定/条件覆盖是指选择足够多的测试用例,使得程序判定中每个条件取得条件可能的值,并使每个判定取到各种可能的结果(每个分支都通过一次)。即满足条件覆盖,又满足判定覆盖。选择测试用例x=1,y=1和x=-1,y=-1可覆盖所有判定/条件。 条件组合覆盖是指选择足够的测试用例,使得每个判定中的条件的各种可能组合都至少出现一次(以判定为单位找条件组合)。 注:a,条件组合只针对同一个判断语句存在多个条件的情况,让这些条件的取值进行笛卡尔乘积组合。 b,不同的判断语句内的条件取值之间无需组合。 c,对于但条件的判断语句,只需要满足自己的所有取值即可。 选择测试用例x=1,y=1;x=1,y=-1,x=-1,y=1和x=-1,y=-1可覆盖所有条件组合。 路径覆盖是分析软件过程流的通用工具,有助分离逻辑路径,进行逻辑覆盖的测试,所用的流程图就是讨论软件结构复杂度时所用的流程图。 三实验方法

软件测试中如何编写单元测试用例(白盒测试)

软件测试中如何编写单元测试用例(白盒测试) 测试用例(T est Case)是为某个特殊目标而编制的一组测试输入、执行条件以及预期结果,以便测试某个程序路径或核实是否满足某个特定需求。 测试用例(T est Case)目前没有经典的定义。比较通常的说法是:指对一项特定的软件产品进行测试任务的描述,体现测试方案、方法、技术和策略。内容包括测试目标、测试环境、输入数据、测试步骤、预期结果、测试脚本等,并形成文档。 不同类别的软件,测试用例是不同的。不同于诸如系统、工具、控制、游戏软件,管理软件的用户需求更加不统一,变化更大、更快。笔者主要从事企业管理软件的测试。因此我们的做法是把测试数据和测试脚本从测试用例中划分出来。测试用例更趋于是针对软件产品的功能、业务规则和业务处理所设计的测试方案。对软件的每个特定功能或运行操作路径的测试构成了一个个测试用例。 随着中国软件业的日益壮大和逐步走向成熟,软件测试也在不断发展。从最初的由软件编程人员兼职测试到软件公司组建独立专职测试部门。测试工作也从简单测试演变为包括:编制测试计划、编写测试用例、准备测试数据、编写测试脚本、实施测试、测试评估等多项内容的正规测试。测试方式则由单纯手工测试发展为手工、自动兼之,并有向第三方专业测试公司发展的趋势。 要使最终用户对软件感到满意,最有力的举措就是对最终用户的期望加以明确阐述,以便对这些期望进行核实并确认其有效性。测试用例反映了要核实的需求。然而,核实这些需求可能通过不同的方式并由不同的测试员来实施。例如,执行软件以便验证它的功能和性能,这项操作可能由某个测试员采用自动测试技术来实现;计算机系统的关机步骤可通过手工测试和观察来完成;不过,市场占有率和销售数据(以及产品需求),只能通过评测产品和竞争销售数据来完成。 既然可能无法(或不必负责)核实所有的需求,那么是否能为测试挑选最适合或最关键的需求则关系到项目的成败。选中要核实的需求将是对成本、风险和对该需求进行核实的必要性这三者权衡考虑的结果。 确定测试用例之所以很重要,原因有以下几方面。 测试用例构成了设计和制定测试过程的基础。测试的“深度”与测试用例的数量成比例。由于每个测试用例反映不同的场景、条件或经由产品的事件流,因而,随着测试用例数量的增加,您对产品质量和测试流程也就越有信心。判断测试是否完全的一个主要评测方法是基于需求的覆盖,而这又是以确定、实施和/或执行的测试用例的数量为依据的。类似下面这样的说明:“95 % 的关键测试用例已得以执行和验证”,远比“我们已完成95 % 的测试”更有意义。测试工作量与测试用例的数量成比例。根据全面且细化的测试用例,可以更准确地估计测试周期各连续阶段的时间安排。测试设计和开发的类型以及所需的资源主要都受控于测试用例。测试用例通常根据它们所关联关系的测试类型或测试需求来分类,而且将随类型和需求进行相应地改变。最佳方案是为每个测试需求至少编制两个测试用例:·一个测试用例用于证明该需求已经满足,通常称作正面测试用例;·另一个测试用例反映某个无法接受、反常或意外的条件或数据,用于论证只有在所需条件下才能够满足该需求,这个测试用例称作负面测试用例。 前段时间公司进行有关测试的培训,集成测试,性能测试,压力测试说了很多。由于本人还处于Coder阶段,只是对单元测试有了些了解。写下来怕以后自己忘记了。都是些自己的看法,不一定准确,欢迎高手指教。 一、单元测试的概念 单元通俗的说就是指一个实现简单功能的函数。单元测试就是只用一组特定的输入(测试用

软件测试白盒测试用例练习题

白盒测试用例练习 一、为以下所示的程序段设计一组测试用例,要求分别满足语句覆盖、判定覆盖、条件覆盖、判定/条件覆盖、组合覆盖和路径覆盖,并画出相应的程序流程图。 void DoWork (int x,int y,int z) { int k=0,j=0; if ( (x>3)&&(z<10) ) { k=x*y-1; j=sqrt(k); //语句块1 } if ( (x==4)||(y>5) ) { j=x*y+10; } //语句块2 j=j%3; //语句块3 }

由这个流程图可以看出,该程序模块有4条不同的路径: P1:(a-c-e) P2:(a-c-d) P3:(a-b-e) P4:(a-b-d) 将里面的判定条件和过程记录如下: 判定条件M={x>3 and z<10} 判定条件N={x=4 or y>5} 1、语句覆盖 2、判定覆盖 p1和p4可以作为测试用例,其中p1作为取真的路径,p4作为取反的路径。 也可以让测试用例测试路径P2和P3。相应的两组输入数据如下:

3、条件覆盖 对于M:x>3取真时T1,取假时F1; z<10取真时T2,取假时F2; 对于N:x=4取真时T3,取假时F3; y>5取真时T4,取假时F4。 条件:x>3,z<10,x=4,y>5 条件:x<=3,z>=10,x!=4,y<=5 根据条件覆盖的基本思路,和这8个条件取值,组合测试用例如表所示: 4、判定/条件覆盖

5、组合覆盖 条件组合 1)x>3,z<10 2)x>3,z>=10 3) x<=3,z<10 4)x<=3,z>=10 5)x=4,y>5 6)x=4,y<=5 7)x!=4,y>5 8)x!=4,y<=5 6、路径覆盖

软件测试-实验2-白盒测试案例分析

实验2 白盒测试 一、实验目的与要求 1、掌握白盒测试的语句覆盖和判定覆盖测试方法的原理及应用 2、掌握条件覆盖、条件组合覆盖的方法,提高应用能力 3、掌握路径法测试 二、实验设备 1、电脑PC 三、实验原理 白盒测试原理:已知产品的内部工作过程,可以通过测试证明每种内部操作是否符合设计规格要求,所有内部成分是否已经过检查。它是把测试对象看作装在一个透明的白盒子里,也就是完全了解程序的结构和处理过程。这种方法按照程序内部的逻辑测试程序,检验程序中的每条通路是否都能按预定要求正确工作,其又称为结构测试。 1、语句覆盖 语句覆盖指代码中的所有语句都至少执行一遍,用于检查测试用例是否有遗漏,如果检查到没有执行到的语句时要补充测试用例。无须细分每条判定表达式,该测试虽然覆盖了可执行语句,但是不能检查判断逻辑是否有问题。 2、判定覆盖 又称判断覆盖、分支覆盖,指设计足够的测试用例,使得程序中每个判断的取真分支和取假分支至少经历一次,即判断真假取值均曾被满足。 判定覆盖比语句覆盖强,但是对程序逻辑的覆盖度仍然不高,比如由多个逻辑条件组合而成的判定,仅判定整体结果而忽略了每个条件的取值情况。 3、条件覆盖、条件判定覆盖 条件覆盖指程序中每个判断中的每个条件的所有可能的取值至少要执行一次,但是条件覆盖不能保证判定覆盖,条件覆盖只能保证每个条件至少有一次为真,而不考虑所有的判定结果。 条件判定覆盖是条件覆盖和判定覆盖的组合,指设计足够的测试用例,使得判定中每个条件的所有可能的取值至少出现一次,并且每个判定取到的各种可能的结果也至少出现一次。条件判定覆盖弥补了条件和判定覆盖的不足,但是未考虑条件的组合情况。 4、条件组合覆盖 又称多条件覆盖,设计足够的测试用例,使得判定条件中每一个条件的可能组合至少出现一次。线性地增加了测试用例的数量。 5、基本路径法 在程序控制流图的基础上,通过分析控制构造的环路复杂性,导出基本可执行的路径集合,从而设计测试用例的方法。在基本路径测试中,设计出的测试用例要保证在测试中程序的每条可执行语句至少执行一次,在基本路径法中,需要使用程序的控制流图进行可视化表达。

常见的测试用例设计方法都有哪些

常见的测试用例设计方法都有哪些 常见的测试用例设计方法都有哪些? 请分别以具体的例子来说明这些方 法在测试用例设计工作中的应用。 1. 等价类划分常见的软件测试面试题划分等价类: 等价类是指某个输入域的子集合.在该子集合中,各个输入数据对于揭露程序中的错误都是等效的.并 合理地假定:测试某等价类的代表值就等于对这一类其它值的测试.因此,可以把全部输入数据合理划分为若干等价类,在每一个等价类中取一个数据作为测试的输入条件,就可以用少量代表性的测试数据.取得较好的测试结果.等价类划分可有两种不同的情况:有效等价类和无效等价类. 2. 边界值分析法边界值分析方法是对等价类划 分方法的补充。测试工作经验告诉我,大量的错误是发生在输入或输出范围的边界上,而不是发生在输入

输出范围的内部.因此针对各种边界情况设计测试用例,可以查出更多的错误. 使用边界值分析方法设计测试用例,首先应确定边界情况.通常输入和输出等价类的边界,就是应着重测试的边界情况.应当选取正好等于,刚刚大于或刚刚小于边界的值作为测试数据,而不是选取等价类中的典型值或任意值作为测试数据. 3. 错误推测法基于经验和直觉推测程序中所有可能存在的各种错误, 从而有针对性的设计测试用例的方法. 错误推测方法的基本思想: 列举出程序中所有可能有的错误和容易发生错误的特殊情况根据他们选择测试用例. 例如, 在单元测试时曾列出的许多在模块中常见的错误. 以前产品测试中曾经发现的错误等, 这些就是经验的总结。还有, 输入数据和输出数据为0 的情况。输入表格为空格或输入表格只有一行. 这些都是容易发生错误的情况。可选择这些情况下的例子作为测试用例. 4. 因果图方法前面介绍的等价类划分方法和边界值分析方法,都是着重考虑输入条件,但未考虑输入条件之间的联系, 相互组合等. 考虑输入条件之间的相互组合,可能会产生一些新的情况. 但要检查

白盒测试实验报告-范例(完整资料).doc

此文档下载后即可编辑 广西科技大学计算机学院 《软件测试技术》实验报告书 实验一白盒测试 学生姓名:xxxx 学号:xxxx 班级:xxxx 指导老师:xxxxx 专业:计算机学院软件工程 提交日期:2014年10月20日 白盒测试实验报告 一实验内容 1、系统地学习和理解白盒测试的基本概念、原理,掌握 白盒测试的基本技术和方法; 2、举例进行白盒测试,使用语句覆盖、判定覆盖、条件 覆盖、判定/条件覆盖、组合覆盖、路径覆盖进行测 试。

3、通过试验和应用,要逐步提高和运用白盒测试技术解 决实际测试问题的能力; 4、熟悉C++编程环境下编写、调试单元代码的基本操作技术和方法; 5、完成实验并认真书写实验报告(要求给出完整的测试 信息,如测试程序、测试用例,测试报告等) 二实验原理 白盒测试原理:已知产品的内部工作过程,可以通过测试证明每种内部操作是否符合设计规格要求,所有内部成分是否已经过检查。它是把测试对象看作装在一个透明的白盒子里,也就是完全了解程序的结构和处理过程。这种方法按照程序内部的逻辑测试程序,检验程序中的每条通路是否都能按预定要求正确工作。其又称为结构测试。 对于该实验的例子给出其流程图如下图所示,我们来了解白盒测试的基本技术和方法。

语句覆盖是指选择足够的测试用例,使得程序中每个语句至少执行一次。如上例选择测试用例x=1,y=1和x=1,y=-1可覆盖所有语句。 判定覆盖是指选择足够的测试用例,使得程序中每一个判定至少获得一次“真”值和“假”值,从而使得程序的每个分支都通过一次(不是所有的逻辑路径)。选择测试用例x=1,y=1和x=1,y=-1可覆盖所有判定。 条件覆盖是指选择语句多数的测试用例,使得程序判定中的每个条件能获得各种不同的结果。选择测试用例x=1,y=1和x=-1,y=-1可覆盖所有条件。 判定/条件覆盖是指选择足够多的测试用例,使得程序判定中每个条件取得条件可能的值,并使每个判定取到各种

实验三日期问题白盒测试用例设计-推荐下载

日期问题白盒测试用例的设计(实验时间2012.3.21) 一、实验目的 1.熟练掌握如何运用基路径测试方法进行测试用例设计。 二、实验内容 1、题目 前一日函数PreDate 是NextDate 的逆函数(代码实现见下),实现功能为:输入1800 年到2050 年之间的某个日期,函数返回这一天的前一天的日期。(此处不考虑无效输入) 请采用基路径方法对前一日函数进行测试用例设计。 代码:(被测函数为PreDate) #include"stdio.h" typedef struct MyDate{ int month; int day; int year; }MyDate; MyDate PreDate(MyDate date);int Leapyear(int year);void Print(MyDate date); MyDate PreDate(MyDate date) //输入日期有效性检查中其他模块实现,此处假设输入日期都是合法数据 { 1.MyDate yesterday; 2.yesterday.month = date.month; // initialization 3.yesterday.day = date.day; 4.yesterday.year = date.year; 5.int days_month[13]={0,31,0,31,30,31,30,31,31,30,31,30,31}; //初始化每月天数,其中2月不确定,初始化为0 6.if(date.day>1) 7.yesterday.day=date.day-1;else { 8.if(date.month==1) { 9.yesterday.year=date.year-1; 10.yesterday.month=12;11.yesterday.day=31;} 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

白盒测试技术

实验1:白盒测试用例设计 实验目的 1.理解白盒测试意义和目的 2. 掌握逻辑覆盖测试进行白盒测试测试 3.掌握独立路径测试方法。 实验内容 运用覆盖及路径测试方法,用白盒测试法为 JAVA 程序设计测试用例。 下面是一个洗牌、发牌程序的规格说明: 1.输入玩牌的张数,有52、48张; 2.如有52张牌,则输入玩牌人数,4或2人,输入人数后打出发牌结果;如果输入人数不对,则退出程序; 3.如有48张牌,则输入玩牌人数,3或4人,输入人数后打出发牌结果;如果输入人数不对,则退出程序; import java.util.*; import java.io.*; import javax.swing.*; public class cardTest { public static void main(String[] args) { String[] suit = { "黑桃", "红桃", "梅花", "方块"}; String[] rank = { "A", "2", "3", "4", "5", "6", "7", "8", "9", "10", "J", "Q", "K"}; ArrayList list = new ArrayList(); for (int i = 0; i < suit.length; i++) { for (int j = 0; j < rank.length; j++) { list.add(suit[i] + rank[j]);

} } for (int i = 0; i < list.size(); i++) { System.out.println(list.get(i) + " "); } Collections.shuffle(list); //将list中的元素重新随机排序 int cardnum = Integer.parseInt(JOptionPane.showInputDialog( "有多张牌?请输入整数52,48")); if (cardnum == 48) { list.remove("红桃2"); list.remove("方块2"); list.remove("梅花2"); list.remove("方块A"); int player1 = Integer.parseInt(JOptionPane.showInputDialog("请输入人数:3或4的整数")); if (player1 == 3) { for (int i = 0; i < 3; i++) { System.out.print("玩家" + i + ": "); for (int j = i * 16; j < (i + 1) * 16; j++) { System.out.print(list.get(j+1) + " "); } System.out.println(); } } else if(player1 == 4) { for (int i = 0; i < 4; i++) { System.out.print("玩家" + i + ": "); for (int j = i * 12; j < (i + 1) * 12; j++) { System.out.print(list.get(j) + " ");

相关文档
相关文档 最新文档