文档库 最新最全的文档下载
当前位置:文档库 › 铜基电子封装材料研究进展

铜基电子封装材料研究进展

铜基电子封装材料研究进展
铜基电子封装材料研究进展

第30卷第6期V ol.30No.6

临沂师范学院学报

Journal of Linyi Normal University

2008年12月

Dec.2008铜基电子封装材料研究进展

王常春1,朱世忠2,孟令江3

(1.临沂师范学院物理系,山东临沂276005;2.山东医学高等专科学校,山东临沂276002;

3.临沂市高新技术开发区罗西街道办事处,山东临沂276014)

摘要:介绍了国内外铜基电子封装材料的研究现状及最新发展动态,指出了目前我国新型铜基电子封装材料研究中所存在的问题及进一步完善的措施,预测了电子封装用铜基复合材料的发展趋势和应

用前景.未来的铜基电子封装材料将朝着高性能、低成本、轻量化和集成化的方向发展.

关键词:电子封装;铜基复合材料;热导率;热膨胀系数

中图分类号:TG148文献标识码:A文章编号:1009-6051(2008)06-0043-05

0引言

随着信息化时代的迅速发展,对现代电子元器件集成度和运行速度的要求越来越高,相应功耗也越来越大,这必然会导致电路发热量的提高,从而使工作温度不断上升[1?4].一般来说,在半导体器件中,温度每升高18℃,失效的可能性就增加2~3倍[5].另外,温度分布不均匀也会使电子元器件的噪音大大增加.为解决这些问题,开发低成本、低膨胀、高导热、易加工、可靠性高的电子封装材料已成为当务之急[6,7].

传统的电子封装材料(见表1[8])由于具有一些不可避免的问题,只能部分满足电子封装的发展要求.Invar、Kovar的加工性能良好,具有较低的热膨胀系数,但导热性能很差;Mo和W的热膨胀系数较低,导热性能远高于Invar和Kovar,而且强度和硬度很高,所以,Mo和W在电力半导体行业中得到了普遍的应用.但是,Mo和W价格昂贵、加工困难、可焊性差、密度大,而且导热性能比纯Cu

表1常用封装材料的性能指标[8]

材料热膨胀系数(20℃)/(×10?6·K?1)导热系数/(W·m?1·K?1)密度/(g·cm?3)

Si 4.1150 2.3

GaAs 5.839 5.3

Al2O3 6.520 3.9

AlN 4.5250 3.3

Al23230 2.7

Cu174008.9

Mo 5.014010.2

W 4.4516819.3

Kovar 5.9178.3

Invar 1.6108.1

W-10vol.%Cu 6.520917.0

Mo-10vol.%Cu7.018010.0

Cu/Invar/Cu 5.21608.4

收稿日期:2008-10-09

作者简介:王常春(1974–),男,山东沂南人,临沂师范学院副教授,博士.研究方向:金属基复合材料.

44临沂师范学院学报第30卷

要低得多,这就阻碍了其进一步应用.Cu和Al的导热导电性能很好,可是热膨胀系数过大,容易产生热应力问题.金属基复合材料(MMCs)兼备金属易加工、高导热、高导电的性能以及增强体轻质、低膨胀的性能,同时它还具有良好的尺寸稳定性、高的耐磨性和耐腐蚀性及性能的可设计性[9,10].这一系列优点使它成为替代传统电子封装材料的最佳选择.

到目前为止,颗粒及纤维增强铝基复合材料已在电子封装材料领域得到了广泛应用,其材料制备及加工工艺已日臻成熟,铝基复合材料产品的使用开发及理论研究也逐渐深入.然而,与铝基复合材料相比,有关铜基复合材料的理论研究与开发应用尚不成熟,迫切需要进行更多的探索和研究.铜基复合材料具有与铝基复合材料相似的性能,如优良的物理和力学性能以及适中的价格,可以作为导电、导热功能材料用于航空航天、微电子等领域.而且由于Cu的热膨胀系数比Al低,但导热率比Al高,因此选用Cu代替Al制备的铜基复合材料将是极具竞争力的候选材料之一.目前,高强度导电铜基复合材料在美国、日本、德国等发达国家开发研究异常活跃,并在某些方面取得突破性进展;我国也把目光投向铜基复合材料,并对其物理和力学性能进行了逐步的探索和研究.

1铜基电子封装材料的研究现状

1.1颗粒增强型铜基电子封装材料

颗粒增强型铜基复合材料所用的增强相粒子主要有W、Mo、SiCp等低膨胀系数粒子.在常规的颗粒增强型结构复合材料中,增强相的体积分数一般都很小,而对于电子封装用颗粒增强铜基复合材料而言,由于Cu本身的热膨胀系数较大,为了能够与Si、GaAs等芯片的基体相匹配,需要加入大量的低膨胀颗粒,才能得到热膨胀系数较低的电子封装材料.如在Mo/Cu复合材料中,Mo的质量分数为60%~85%,其热膨胀系数在(6.27~9.0)×10?6/K,热导率在150~220W/(m·K).在Mo/Cu复合材料出现前,人们对W/Cu电子材料的理论研究比较多,建立了各种各样的数学模型预测其热学性能.由于航空航天及军事领域对重量的要求,使得人们寻求一种密度更低的材料,Mo/Cu电子材料逐渐得到了人们的重视.与W/Cu相比,Mo/Cu的CTE值和TC值相差不大,但密度却比W/Cu低得多,这在航空航天领域有着明显的经济意义.与SiCp/Al相比,Mo/Cu复合材料密度较大,但是Mo/Cu复合材料具有一定的微波屏蔽功能,并且强度高、稳定可靠.Mo/Cu、W/Cu复合材料也存在着一些缺点:Cu-Mo 和Cu-W之间不相溶或润湿性极差,而且二者的熔点相差很大,给材料制备带来了一些困难;同时制备的W/Cu及Mo/Cu复合材料气密性不好,致密度较低,影响其封装性能[11,12].

SiCp因其高强度、高模量、低的热膨胀系数和低成本被广泛用作一种颗粒增强体,用于制备颗粒增强铜基复合材料.吉元等人[8]采用热等静压的方法制备了SiCp/Cu复合材料,并指出在SiCp/Cu 复合材料中,增强体的体积分数存在一个临界值(50%).当SiC颗粒体积分数低于临界值时,Cu基体中SiC颗粒是孤立分布的,由连续的Cu基体提供一个畅通的导热通道.当SiC颗粒体积分数高于临界值后,基体合金被SiC颗粒切断,呈断续状,导致材料的导热率明显降低.Shu等人[13]研究了SiCp/Cu复合材料的热膨胀行为指出,在一定的温度下,复合材料的CTE值随着颗粒尺寸的增加而增大.这可能是因为大颗粒较容易在基体中聚集较大的应力,在随后的加热和冷却过程中会释放出来,这样会产生较大的应变,即较大的CTE值.钟涛兴等人[14]也有类似的观点,他们认为,当SiCp体积分数一定时,颗粒的界面面积与应力成反比,颗粒的大小直接影响着应力的大小.为了获得较低的热膨胀系数,应选用粒度较小的颗粒.作者利用真空热压烧结方法结合化学镀铜工艺制备了SiCp体积分数为30%~50%的SiCp/Cu复合材料,但当SiCp体积分数为30%时,SiCp/Cu复合材料的热导率达到236.2W/(m·K)[15].

1.2纤维增强型铜基电子封装材料

这类复合材料以Cu为基体,增强纤维有B纤维、Al2O3、C纤维,而应用最多的是C纤维,这样为获得高热导率的电子封装材料提供了可能.已有学者将金刚石加入铜基体内制成了C/Cu复合材料,

第6期王常春,等:铜基电子封装材料研究进展45

试验表明金刚石加入的体积分数为55%左右时,复合材料具备很好的热物理性能,在25~200℃时的CTE为(5.48~6.5)×10?6K?1,热导率也在600W/(m·K)左右.该类复合材料的缺点是:由于C纤维具有极大的各向异性,造成了复合材料的各向异性,需要使C纤维网状、螺旋状、倾斜网状排列来解决这一问题,因此制造工艺较难,成本较高,只应用在军工、航空航天等重要领域,难以进行大规模生产[16].

1.3铜基平面复合型电子封装材料

这类电子封装复合材料的结构是层叠式的,一般分为三层,中间层为低膨胀材料层,两边则为高导电导热的材料层,当然,也有两层或四层复合层板.生产工艺一般采用轧制复合或电镀复合再加工制备,这类材料在平面方向有很好的热导率和较低的膨胀系数,并且基本上不存在致密度问题.国外对平面复合型电子封装材料的研究进行得较早,20世纪80年代末,美国德州仪器公司在Invar 合金板上双面覆纯铜制成了Cu/Invar/Cu复合板(简称CIC),随后美国AMAX生产出Cu/Mo/Cu(简称CMC)复合材料[17].与Mo/Cu,W/Cu等粉末冶金方法生产的颗粒增强型电子封装材料相比,轧制复合方法生产平面复合型电子封装材料的效率高、生产成本低,并且可以生产大尺寸的封装材料,因此平面复合型电子封装材料非常有利于电子行业的生产,容易产生“规模效益”.国内关于平面复合型电子封装材料方面的研究开展得比较晚,马慧君等人[18]首先采用电镀法生产出0.15mm的17/66/17的CIC薄材,用于电路印刷板.杨扬和李正华等人[19]试验了爆炸复合法制备CMC电子封装材料的可行性,对爆炸复合CMC封装材料界面的结合机制进行了详细的研究,结果表明,用爆炸复合方法一次性制备Cu/Mo/Cu复合材料是可行的,恰当的工艺参数可制得无显微裂纹的复合材料.

2新型铜基电子封装材料存在的问题

2.1成本

目前所采用的能够满足性能要求的大多数封装材料成本都比较高.众所周知,在陶瓷封装中,AlN 具有优良的物理、机械性能,但价格昂贵、加工工艺复杂,不适合复杂结构件,铜基电子封装材料同样面临如此难题.据统计,电子封装的成本几乎己和芯片的成本相当,应用复合材料时,材料成本在总成本中的比例可达到63%[20].可以考虑从工艺和材料的选择两方面来进行改进.

2.1.1工艺制备铜基电子封装材料的主要工艺是浇铸渗透工艺和无压渗透法[21,22],可以制备出高质量的电子封装材料,但此法制备时耗电量较大,相对成本较高.据悉,日本某公司新近开发成功了一套生产陶瓷颗粒增强铜基复合材料的新工艺,生产成本低廉.主要是把与铝进行反应的铜粉末同陶瓷粉末混合成原料粉,填充入模腔内,熔融铝于不加压的条件下浸透入陶瓷中即可制成铜基复合材料.在生产流程中只要求加热炉设备,这比传统的工艺加压浸渗法和热压法,所消耗的电力节省了90%左右,生产成本大为降低.可见,通过进一步改进和完善工艺完全可以达到降低成本,进而大规模生产的目的.

2.1.2材料的选择众所周知,塑封材料价格低廉,重量较轻,具有绝缘性好、抗冲击性强等优点,但多数含铅,毒性较大,因而不得不选用成本高的其它材料替代.目前,无线基础设施半导体领域的杰尔系统宣布推出五款高性能的射频超模压塑封装晶体管,将使封装成本下降高达25%.还可以通过选择增强体的材料来降低成本.复合材料的成本主要在增强体的成本,例如连续碳化硅长纤维的价格达到10万~14万日元/kg.碳化硅、氮化硅等晶须的价格则降至5万~6万日元/kg.采用便宜的增强体制备复合材料无疑在价格上具有优势.因而,我们可以采用碳化硅晶须增强Cu基复合材料,通过控制体积分数获得具有良好性质的铜基复合材料做电子封装.

2.2性能

天然金刚石具有作为半导体器件封装所必需的多种优异性质.但天然金刚石或高温高压下合成的金刚石价格昂贵,通过表面工程技术低温低压下化学气相沉积(LPCVD)技术可以降低成本.利用

46临沂师范学院学报第30卷

LPCVD金刚石薄膜技术,可以将薄膜直接沉积在导热性好的铜、复合材料或单晶硅衬底上,甚至可以制成无支承的金刚石薄膜片,然后粘结到所需的铜基片上.这样,通过特殊工艺解决了高成本的问题.但与此同时,通过LPCVD技术产生的薄膜出现了与铜基体之间的线膨胀系数失配以及薄膜中的结晶和结构缺陷等问题[23].由此可见,电子封装材料的性能方面还有待于进一步完善.

2.2.1散热问题随着电子封装行业中集成度的高速发展,散热问题已成为各种封装材料急需解决的问题.如封装材料的铜基板可以简单地分为铜基及其表面氧化膜两层结构,由于两层材料热膨胀系数相差较大,因此在热载荷下层间出现严重的热适配问题,进而导致绝缘氧化膜突然断裂使基板失效.国内一些工作者已经做了初步的研究,通过电子散斑干涉技术对铜基封装材料的热变形进行了实时测量,并确定了氧化膜失效温度,给出了热失效过程中基板表面的变形场分布,并对微裂纹的形成及扩展过程进行了分析.另外,还对薄膜的线膨胀系数、弹性模量、失效应力等参数进行了测定,为铜基板的数值计算提供了依据[24].

2.2.2界面问题作为微电子封装材料的新一代产品,铜基复合材料具有高导热和低膨胀等优良特性.由于铜基复合材料的导热率会受到基体和增强相界面热阻的影响,所以会严重影响电子封装的可靠性.随着20世纪80年代中期扫描热显微镜(SThM)的发展,应用这种扫描热探针技术测试铜基复合材料界面热传导性能,已获得了材料表面的SThM形貌和热图,初步计算了基体―增强相界面的导热率,分析了界面导热率的变化,对比了材料界面微区导热率与宏观导热率及制备工艺的关系.通过测定得出SiCp/Cu复合材料的浸润界面的平均宽度为200nm,界面导热率可达105~110W/(m·K).关于界面问题,需要我们进一步完善的是,如何利用合理的材料制备工艺获得理想界面类型来提高材料的导热性,以及如何在不同工作温度状态下界面的良好结合.

3结束语

可以预见,随着信息技术继续向微型化、大容量和高可靠性方向发展,对电子封装材料的要求将会更加苛刻.总的来说,铜基电子封装材料的发展将会呈现以下几个特征:

(1)低密度.这是由于便携电子产品的流行,人们对减重问题越来越重视,减重对飞行器也有重要意义,因此,采用具有低膨胀特性而热导率却非常高、密度又小的材料作为增强相,如高模量C纤维、B纤维、石墨、AlN等.用这样的材料与Cu制成复合材料,可望在保持低膨胀特性的同时,获得很高的热导率和强度.

(2)高导热.由于多芯片封装技术有可能在未来几年内在封装领域中占据重要地位,而其封装密度将会不断增加,对封装材料的导热性会有更高的要求,因此开发新的高导热、低膨胀的封装材料势在必行,金刚石薄膜包覆铜基片封装材料的市场前景将非常广阔.

(3)一体化.由于电子器件的超薄和超微化,封装材料也必然向更薄、更小的方向发展,为了降低生产成本、提高封装的可靠性,预计封装材料将和基片、芯片等进行整体结合,多组件、多功能、模块化封装将是未来的发展方向,这就要求研究新的制备方法来顺应这一潮流.随着电子封装业的蓬勃发展,对封装材料也将提出更高的要求.诸如环保问题、二次利用问题以及如何利用合理工艺生产出低成本、高质量的产品问题等等[25].尽管新型电子封装材料的种类很多,但是笔者相信,由于电子封装用铜基复合材料具有其它材料无可比拟的性能和成本优势,必然具有广阔的应用天地.

参考文献:

[1]Zweben C.Metal-Matrix composites for electronic packaging[J].JOM,1992,44(7):15-23.

[2]Zhang L,Qu X H,He X B,et al.Thermo-physical and mechanical properties of high volume fraction SiCp-Cu composites

prepared by pressureless in?ltration[J].Materials Science and Engineering A,2008,489A:285-293.

[3]Lindroos V K.Recent advances in metal matrix composites[J].Mater.Process.Tech,1995,53:273-281.

第6期王常春,等:铜基电子封装材料研究进展47

[4]钟鼓,吴树森,万里.高SiCp或高Si含量电子封装材料研究进展[J].材料导报,2008,22(2):13-17.

[5]Bae J-W,Kim K,Park S-W,et al.Advanced under?ll for high thermal reliability[J].Journal of Applied Polymer Science,2002,

83(13):2617-2624.

[6]王志法,刘正春,姜国圣.W-Cu电子封装材料的气密性[J].中国有色金属学报,1999,9(2):324-326.

[7]吉洪亮,堵永国,张为军.W/Cu、Mo/Cu致密化技术[J].电工材料,2001,5(3):13-17.

[8]钟涛兴,吉元,李英,等.SiCp/Cu复合材料的热膨胀性和导热性[J].北京工业大学学报,1998,16(9):34-37.

[9]凤仪,应美芳,魏光霞,等.碳纤维不同分布的C/Cu复合材料的热膨胀系数[J].金属学报,1994,47(9):432-434.

[10]牟科强,邝用庚.Mo-Cu材料的性能和应用[J].金属功能材料,2002,83(6):26-29.

[11]姜国圣,王志法,刘正春.高钨钨―铜复合材料的研究现状[J].稀有金属与硬质合金,1999,21(32):39-41.

[12]Kny E.Properties and application of binary pseudo-alloy of Cu and refractory metals[C]//Proceedings of the12th international

plan see seminar.Reutte,Plan see A G,1989.

[13]Shu K M,Tu G C.Fabrication and characterization of Cu-SiCp composites for electrical discharge machining applications[J].

Materials and Manufacturing Processes,2001,16(4):483-502.

[14]钟涛兴,吉元,李英,等.压渗SiCp/Al电子封装复合材料的研究[J].铸造技术,1997,(6):42-43.

[15]Wang C C,Min G H,Kang S B.Fabrication,microstructure and properties of SiCp/Cu heat sink materials[J].Rare Metals,

2006,25:232-236.

[16]崔春翔,赵晓宏,徐华一.碳纤维一铜复合材料研究[J].河北工业大学学报,2002,31(6):43-45.

[17]Hunt M.Electronic packaging[J].Materials Engineering,1991,108(1):24-25.

[18]马慧君,段云雷.高散热复合多层板的研制[J].电子工艺技术,1993,14(6):2-6.

[19]杨扬,李正华,程信林,等.Cu/Mo/Cu爆炸复合界面组织特征[J].稀有金属材料与工程,2001,30(5):339-341.

[20]孙跃军,仲伟深,时海芳,等.金属基复合材料的研究现状与发展[J].铸造技术,2004,25(3):158-160.

[21]胡明,费维栋,姚忠凯,等.非连续增强金属基复合材料的变形行为[J].宇航工业材料,2001,31(1):25-28.

[22]李劲风,张昭,张鉴清.金属基复合材料(MMCs)的原位制备[J].材料科学与工程,2002,20(3):453-456.

[23]黄强,顾明元.电子封装用金属基复合材料的研究现状[J].电子与封装,2001,3(2):22-25.

[24]杨邦朝,张经国.多芯片组装(MCM)技术及应用[M].成都:电子科技大学出版社,2001.

[25]杨培勇,郑子樵,蔡杨,等.Si-Al电子封装材料粉末冶金制备工艺研究[J].稀有金属,2004,28(1):160-165.

Progress of Research on Cu-based Electronic Packaging Materials

WANG Chang-chun1,ZHU Shi-zhong2,MENG Ling-jiang3

(1.Department of Physics,Linyi Normal University,Linyi Shandong276005,China;2.Shandong Medical College,Linyi

Shandong276002,China;3.Linyi High-tech Development Zone,Linyi Shandong276014,China)

Abstract:The characteristics,present status,application prospect and existing problems of copper-matrix com-posites for electronic packaging are described.The problems and their improving methods of new electronic packag-ing materials used in our country are discussed.And the developing tendency of copper matrix electronic packaging materials is forecasted.It is believed that high performance,low cost,light weight and integration will be the future characteristics of copper matrix electronic packaging materials.

Key words:electronic packaging;copper matrix composites;thermal conductivity;coe?cient of thermal ex-pansion

责任编辑:王永龙

电子封装技术发展现状及趋势

电子封装技术发展现状及趋势 摘要 电子封装技术是系统封装技术的重要内容,是系统封装技术的重要技术基础。它要求在最小影响电子芯片电气性能的同时对这些芯片提供保护、供电、冷却、并提供外部世界的电气与机械联系等。本文将从发展现状和未来发展趋势两个方面对当前电子封装技术加以阐述,使大家对封装技术的重要性及其意义有大致的了解。 引言 集成电路芯片一旦设计出来就包含了设计者所设计的一切功能,而不合适的封装会使其性能下降,除此之外,经过良好封装的集成电路芯片有许多好处,比如可对集成电路芯片加以保护、容易进行性能测试、容易传输、容易检修等。因此对各类集成电路芯片来说封装是必不可少的。现今集成电路晶圆的特征线宽进入微纳电子时代,芯片特征尺寸不断缩小,必然会促使集成电路的功能向着更高更强的方向发展,这就使得电子封装的设计和制造技术不断向前发展。近年来,封装技术已成为半导体行业关注的焦点之一,各种封装方法层出不穷,实现了更高层次的封装集成。本文正是要从封装角度来介绍当前电子技术发展现状及趋势。

正文 近年来,我国的封装产业在不断地发展。一方面,境外半导体制造商以及封装代工业纷纷将其封装产能转移至中国,拉动了封装产业规模的迅速扩大;另一方面,国内芯片制造规模的不断扩大,也极大地推动封装产业的高速成长。但虽然如此,IC的产业规模与市场规模之比始终未超过20%,依旧是主要依靠进口来满足国内需求。因此,只有掌握先进的技术,不断扩大产业规模,将国内IC产业国际化、品牌化,才能使我国的IC产业逐渐走到世界前列。 新型封装材料与技术推动封装发展,其重点直接放在削减生产供应链的成本方面,创新性封装设计和制作技术的研发倍受关注,WLP 设计与TSV技术以及多芯片和芯片堆叠领域的新技术、关键技术产业化开发呈井喷式增长态势,推动高密度封测产业以前所未有的速度向着更长远的目标发展。 大体上说,电子封装表现出以下几种发展趋势:(1)电子封装将由有封装向少封装和无封装方向发展;(2)芯片直接贴装(DAC)技术,特别是其中的倒装焊(FCB)技术将成为电子封装的主流形式;(3)三维(3D)封装技术将成为实现电子整机系统功能的有效途径;(4)无源元件将逐步走向集成化;(5)系统级封装(SOP或SIP)将成为新世纪重点发展的微电子封装技术。一种典型的SOP——单级集成模块(SLIM)正被大力研发;(6)圆片级封装(WLP)技术将高速发展;(7)微电子机械系统(MEMS)和微光机电系统(MOEMS)正方兴未艾,它们都是微电子技术的拓展与延伸,是集成电子技术与精密

电子封装的现状及发展趋势

电子封装的现状及发展趋势 现代电子信息技术飞速发展,电子产品向小型化、便携化、多功能化方向发展.电子封装材料和技术使电子器件最终成为有功能的产品.现已研发出多种新型封装材料、技术和工艺.电子封装正在与电子设计和制造一起,共同推动着信息化社会的发展 一.电子封装材料现状 近年来,封装材料的发展一直呈现快速增长的态势.电子封装材料用于承载电子元器件及其连接线路,并具有良好的电绝缘性.封装对芯片具有机械支撑和环境保护作用,对器件和电路的热性能和可靠性起着重要作用.理想的电子封装材料必须满足以下基本要求: 1)高热导率,低介电常数、低介电损耗,有较好的高频、高功率性能; 2)热膨胀系数(CTE)与Si或GaAs芯片匹配,避免芯片的热应力损坏;3)有足够的强度、刚度,对芯片起到支撑和保护的作用;4)成本尽可能低,满足大规模商业化应用的要求;5)密度尽可能小(主要指航空航天和移动通信设备),并具有电磁屏蔽和射频屏蔽的特性。电子封装材料主要包括基板、布线、框架、层间介质和密封材料. 1.1基板 高电阻率、高热导率和低介电常数是集成电路对封装用基片的最基本要求,同时还应与硅片具有良好的热匹配、易成型、高表面平整度、易金属化、易加工、低成本并具有一定的机械性能电子封装基片材料的种类很多,包括:陶瓷、环氧玻璃、金刚石、金属及金属基复合材料等.

1.1.1陶瓷 陶瓷是电子封装中常用的一种基片材料,具有较高的绝缘性能和优异的高频特性,同时线膨胀系数与电子元器件非常相近,化学性能非常稳定且热导率高随着美国、日本等发达国家相继研究并推出叠片多层陶瓷基片,陶瓷基片成为当今世界上广泛应用的几种高技术陶瓷之一目前已投人使用的高导热陶瓷基片材料有A12q,AIN,SIC和B或)等. 1.1.2环氧玻璃 环氧玻璃是进行引脚和塑料封装成本最低的一种,常用于单层、双层或多层印刷板,是一种由环氧树脂和玻璃纤维(基础材料)组成的复合材料.此种材料的力学性能良好,但导热性较差,电性能和线膨胀系数匹配一般.由于其价格低廉,因而在表面安装(SMT)中得到了广泛应用. 1.1.3金刚石 天然金刚石具有作为半导体器件封装所必需的优良的性能,如高热导率(200W八m·K),25oC)、低介电常数(5.5)、高电阻率(1016n·em)和击穿场强(1000kV/mm).从20世纪60年代起,在微电子界利用金刚石作为半导体器件封装基片,并将金刚石作为散热材料,应用于微波雪崩二极管、GeIMPATT(碰撞雪崩及渡越时间二极管)和激光器,提高了它们的输出功率.但是,受天然金刚石或高温高压下合成金刚石昂贵的价格和尺寸的限制,这种技术无法大规模推广. 1.1.4金属基复合材料

铜基电子封装材料研究进展

第30卷第6期V ol.30No.6 临沂师范学院学报 Journal of Linyi Normal University 2008年12月 Dec.2008铜基电子封装材料研究进展 王常春1,朱世忠2,孟令江3 (1.临沂师范学院物理系,山东临沂276005;2.山东医学高等专科学校,山东临沂276002; 3.临沂市高新技术开发区罗西街道办事处,山东临沂276014) 摘要:介绍了国内外铜基电子封装材料的研究现状及最新发展动态,指出了目前我国新型铜基电子封装材料研究中所存在的问题及进一步完善的措施,预测了电子封装用铜基复合材料的发展趋势和应 用前景.未来的铜基电子封装材料将朝着高性能、低成本、轻量化和集成化的方向发展. 关键词:电子封装;铜基复合材料;热导率;热膨胀系数 中图分类号:TG148文献标识码:A文章编号:1009-6051(2008)06-0043-05 0引言 随着信息化时代的迅速发展,对现代电子元器件集成度和运行速度的要求越来越高,相应功耗也越来越大,这必然会导致电路发热量的提高,从而使工作温度不断上升[1?4].一般来说,在半导体器件中,温度每升高18℃,失效的可能性就增加2~3倍[5].另外,温度分布不均匀也会使电子元器件的噪音大大增加.为解决这些问题,开发低成本、低膨胀、高导热、易加工、可靠性高的电子封装材料已成为当务之急[6,7]. 传统的电子封装材料(见表1[8])由于具有一些不可避免的问题,只能部分满足电子封装的发展要求.Invar、Kovar的加工性能良好,具有较低的热膨胀系数,但导热性能很差;Mo和W的热膨胀系数较低,导热性能远高于Invar和Kovar,而且强度和硬度很高,所以,Mo和W在电力半导体行业中得到了普遍的应用.但是,Mo和W价格昂贵、加工困难、可焊性差、密度大,而且导热性能比纯Cu 表1常用封装材料的性能指标[8] 材料热膨胀系数(20℃)/(×10?6·K?1)导热系数/(W·m?1·K?1)密度/(g·cm?3) Si 4.1150 2.3 GaAs 5.839 5.3 Al2O3 6.520 3.9 AlN 4.5250 3.3 Al23230 2.7 Cu174008.9 Mo 5.014010.2 W 4.4516819.3 Kovar 5.9178.3 Invar 1.6108.1 W-10vol.%Cu 6.520917.0 Mo-10vol.%Cu7.018010.0 Cu/Invar/Cu 5.21608.4 收稿日期:2008-10-09 作者简介:王常春(1974–),男,山东沂南人,临沂师范学院副教授,博士.研究方向:金属基复合材料.

集成电路ic封装种类、代号、含义

【引用】集成电路IC封装的种类、代号和含义 2011-03-24 15:10:32| 分类:维修电工| 标签:|字号大中小订阅 本文引用自厚德载道我心飞翔《集成电路IC封装的种类、代号和含义》 IC封装的种类,代号和含 1、BGA(ball grid array) 球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,是多引脚LSI 用的一种封装。封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为1.5mm 的360 引脚BGA 仅为31mm 见方;而引脚中心距为0.5mm 的304 引脚QFP 为40mm 见方。而且BGA 不用担心QFP 那样的引脚变形问题。该封装是美国Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有可能在个人计算机中普及。最初,BGA 的引脚(凸点)中心距为1.5mm,引脚数为225。现在也有一些LSI 厂家正在开发500 引脚的BGA。BGA 的问题是回流焊后的外观检查。现在尚不清楚是否有效的外观检查方法。有的认为,由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。美国Motorola 公司把用模压树脂密封的封装称为OMPAC,而把灌封方法密封的封装称为GPAC(见OMPAC 和GPAC)。 2、BQFP(quad flat PACkage with bumper) 带缓冲垫的四侧引脚扁平封装。QFP 封装之一,在封装本体的四个角设置突起(缓冲垫)以防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和ASIC 等电路中采用此封装。引脚中心距0.635mm,引脚数从84 到196 左右(见QFP)。 3、PGA(butt joint pin grid array) 表面贴装型PGA 的别称(见表面贴装型PGA)。 4、C-(ceramic) 表示陶瓷封装的记号。例如,CDIP 表示的是陶瓷DIP。是在实际中经常使用的记号。 5、Cerdip 用玻璃密封的陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。带有玻璃窗口的Cerdip 用于紫外线擦除型EPROM 以及内部带有EPROM 的微机电路等。引脚中心距2.54mm,引脚数从8 到42。在日本,此封装表示为DIP-G(G 即玻璃密封的意思)。 6、Cerquad 表面贴装型封装之一,即用下密封的陶瓷QFP,用于封装DSP 等的逻辑LSI 电路。带有窗口的Cerquad 用于封装EPROM 电路。散热性比塑料QFP 好,在自然空冷条件下可容许1.5~2W 的功率。但封装成本比塑料QFP 高3~5 倍。引脚中心距有1.27mm、0.8mm、0.65mm、0.5mm、0.4mm 等 多种规格。引脚数从32 到368。 7、CLCC(ceramic leaded Chip carrier) 带引脚的陶瓷芯片载体,表面贴装型封装之一,引脚从封装的四个侧面引出,呈丁字形。带有窗口的用于封装紫外线擦除型EPROM 以及带有EPROM 的微机电路等。 此封装也称为QFJ、QFJ-G(见QFJ)。 8、COB(Chip on board) 板上芯片封装,是裸芯片贴装技术之一,半导体芯片交接贴装在印刷线路板上,芯片与基板的电气连接用引线缝合方法实现,芯片与基板的电气连接用引线缝合方法实现,并用树脂覆盖以确保可靠性。虽然COB 是最简单的裸芯片贴装技术,但它的封装密度远不如TAB 和倒片焊技术。9、DFP(dual flat PACkage) 双侧引脚扁平封装。是SOP 的别称(见SOP)。以前曾有此称法,现在已基本 上不用。 10、DIC(dual in-line ceramic PACkage) 陶瓷DIP(含玻璃密封)的别称(见DIP). 11、DIL(dual in-line) DIP 的别称(见DIP)。欧洲半导体厂家多用此名称。 12、DIP(dual in-line PACkage) 双列直插式封装。插装型封装之一,引脚从封装两侧引出,封装材料有塑料和陶瓷两种。DIP 是最普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等。引脚中心距2.54mm,引脚数从6 到64。封装宽度通常为15.2mm。有的把宽度为7.52mm和10.16mm 的封装分别称为skinny DIP 和slim DIP(窄体型DIP)。但多数情况下并不加区分,只简单地统称为DIP。另外,用低熔点玻璃密封的陶瓷DIP 也称为Cerdip(见cerdip)。 13、DSO(dual small out-lint) 双侧引脚小外形封装。SOP 的别称(见SOP)。部分半导体厂家采用此名称。

封装材料行业基本概况

封装材料行业研究报告 研究员:高鸿飞一、行业定义 根据国民经济行业分类《国民经济行业分类GB/T 4754-2011》),引线框架和LED支架制造业属于为计算机、通信和其他电子设备制造业(行业代码:C39);根据中国证监会行业分类(《上市公司行业分类指引》),引线框架和LED支架制造业属于计算机、通信和其他电子设备制造业C396。 二、行业的监管体制 引线框架和LED支架制造业所属的行业主管部门是国家发展改革委员会、中国环境保护部及中国工业和信息化部。国家发改委主要负责本行业发展政策的制定;中国环境保护部负责环境污染防治的监督管理,制定环境污染防治管理制度、标准和技术规范并组织实施;中国工业和信息化部负责制定我国电子元器件行业的产业规划和产业政策,对行业的发展方向进行宏观调控。 引线框架和LED支架制造业的行业自律性组织是中国电子材料行业协会(以下简称“行业协会”),该协会是由从事电子材料生产、研制、开发、经营、应用、教学的单位及其他相关企、事业单位自愿结合组成的全国性的行业社会团体,为政府对电子材料行业实施行业管理提供帮助,同时也是政府部门和企业单位之间的桥梁纽带。行业协会主要在电子材料行业自律、技术培训、信息交流、国内外交流与合作等方面广泛开展工作,为行业的进步和发展起到了促进作用。行业协会下设集成电路分会、半导体分立器件分会、半导体封装分会、集成电路设计分会和半导体支撑业分会等5个分会。 三、封装材料行业基本概况 (1)引线框架概念及应用领域 引线框架是一种用来作为芯片载体的专用材料,借助于键合丝使芯片内部电

路引出端(键合点)通过内引线实现与外引线的电气连接,形成电气回路的关键结构件。在半导体中,引线框架主要起稳固芯片、传导信号、传输热量的作用,需要在强度、弯曲、导电性、导热性、耐热性、热匹配、耐腐蚀、步进性、共面形、应力释放等方面达到较高的标准。 (2)LED支架概念及应用领域 LED是“Light Emitting Diode”的缩写,中文译为“发光二极管”,是一种可以将电能转化为光能的半导体器件,不同材料的芯片可以发出红、橙、黄、绿、蓝、紫色等不同颜色的光。LED的核心是由p型半导体和n型半导体组成的芯片,而LED支架就是芯片的承载物,担负着机械保护,提高可靠性;加强散热,降低芯片结温、提高LED性能;光学控制,提高出光效率,优化光束分布;供电管理,包括交流/直流转变、电源控制等作用。 (3)半导体封装材料产业链结构 ①引线框架产业链结构 引线框架的上游行业主要是铜合金带加工企业和生产氰化银钾的化工企业,由于铜基材料具有导电、导热性能好,价格低以及和环氧模塑料密着性能好等优势,当前已成为主要的引线框架材料,其用量占引线框架材料的80%以上。 公司引线框架产业的下游行业是集成电路和分立器件封装测试行业。一般的封装工艺流程为:划片→装片→键合→塑封→去飞边→电镀→打印→切筋和成型→外观检查→成品测试→包装出货。引线框架主要是在装片步骤中,作为切割好晶片的基板,是封装过程中所需的重要基础材料。 公司引线框架产业处于产业链中游,随着电子信息技术的高速发展,对集成电路的性能要求越来越多样化,对集成电路封装测试行业的要求也越来越高。公司将会充分发挥创新优势,致力于研发多样化和高性能的引线框架。 ②LED支架产业链结构 LED支架的主要原材料为铜合金带、氰化银钾和PPA,铜合金带属于金属加工产品,氰化银钾属于化工产品,而PPA则是塑料制品,因此,公司的上游产业主要是金属加工企业、化工企业和塑料制品企业。 LED支架主要应用在电子和照明领域,主要产品有汽车信号灯、照明灯、家用电器、户外大型显示屏、仪器仪表等光电产品。LED支架主要是作为LED

2014年电子封装材料行业简析

2014年电子封装材料行业简析 一、行业管理 (2) 1、行业监管体制 (2) 2、行业的主要法律法规及政策 (3) (1)法律法规 (3) (2)国家相关政策 (3) 二、行业发展概况 (4) 1、电子材料产业体系初步形成 (4) 2、电子材料产业规模 (4) 3、我国电子材料产业总体发展水平与发达国家的差距 (5) 三、行业上下游之间的关联性 (5) 1、上下游行业之间的关联性 (5) 2、行业上游 (6) 3、行业下游 (6) 四、影响行业未来发展趋势的因素 (7) 1、有利因素 (7) (1)行业前景向好 (7) (2)产业政策支持 (7) 2、不利因素 (7) (1)自主创新能力有待提高 (7) (2)行业相关国家标准缺失 (8) 五、行业主要障碍 (8) 1、资金壁垒 (8) 2、品牌认可度 (9) 3、技术工艺和人才壁垒 (9)

一、行业管理 1、行业监管体制 电子元器件封装材料,包括环氧粉末包封料、塑封料及粉末涂料,该行业作为化工电子材料基本上遵循市场化的发展模式,各企业面向市场自主经营,政府职能部门进行产业宏观调控,行业协会进行自律规范。 行业宏观管理职能由国家发展与改革委员会、国家商务部承担,工业和信息化部负责制定产业政策,指导技术改造。国家通过不定期发布《产业结构调整指导目录(2011 年本)》、《当前优先发展的高技术产业化重点领域指南》等,对本行业的发展进行宏观调控。 行业引导和服务职能由中国电子材料行业协会、中国电子元件行业协会承担,主要负责产业及市场研究、对会员企业的公众服务、行业自律管理以及代表会员企业向政府部门提出产业发展建议等。

电子封装材料典型应用

电子封装材料典型应用 电子封装材料是用于承载电子元器件及其互连线,并具有良好电绝缘性能的基本材料,主要起机械支持、密封保护、信号传递、散失电子元件所产生的热量等作用,是高功率集成电路的重要组成部分。因此对于封装材料的性能要求有以下几点:具有良好的化学稳定性,导热性能好,热膨胀系数小,有较好的机械强度,便于加工,价格低廉,便于自动化生产等。然而,由于封装场合的多样化以及其所使用场合的差异性,原始的单一封装材料已经不能满足日益发展的集成电路的需要,进而出现了许多新型的封装材料,其中一些典型材料的种类及应用场合列举如下。 1、金属 金属材料早已开发成功并用于电子封装中,因其热导率和机械强度高、加工性能好,因此在封装行业得到了广泛的应用。表1为几种传统封装金属材料的一些基本特性。其中铝的热导率高、质量轻、价格低、易加工,是最常用的封装材料。但由于铝的线膨胀系数α 与Si的线膨胀系数(α1为4.1×10?6/K)和GaAs 1 的线膨胀系数(α1为5.8×10?6/K)相差较大,所以,器件工作时热循环所产生的较大热应力经常导致器件失效,铜材也存在类似的问题。Invar(镍铁合金)和Kovar(铁镍钴合金)系列合金具有非常低的线膨胀系数和良好的焊接性,但电阻很大,导热能力较差,只能作为小功率整流器的散热和连接材料。W和Mo具有与Si相近的线膨胀系数,且其导热性比Kovar合金好,故常用于半导体Si片的支撑材料。但由于W、Mo与Si的浸润性不好、可焊性差,常需要在表面镀上或涂覆特殊的Ag基合金或Ni,从而增加了工序,使材料可靠性变差,提高了成本,增加了污染。此外,W,Mo,Cu的密度较大,不宜作航空、航天材料;而且w,Mo价格昂贵,生产成本高,不适合大量使用。

柔性电子封装技术研究进展与展望

107电子技术柔性电子封装技术研究进展与展望 袁 杰 (浙江宇视科技有限公司,杭州 310051) 摘 要:柔性电子封装技术作为电子制造工艺中的发展趋势,其凭借着独有的的柔性也即延展性,在多个战略领域的应用前景都非常可观。但是如今柔性电子技术的可弯曲及可延展特性对其封装技术提出了更高要求。以柔性电子封装技术为重点,阐述了柔性电子封装技术的发展趋势和研究进展,综述柔性电子制造中的特殊工艺制程,展望了包括以有限元结构分析夹杂对岛-桥结构延展性的影响等封装技术的发展趋势。 关键词:电子制造工艺;柔性电子;封装技术 DOI:10.16640/https://www.wendangku.net/doc/1215394482.html,ki.37-1222/t.2017.15.099 0 引言 如今柔性电子皮肤、柔性电子显示器等柔性电子技术正受到市场关注和青睐。所谓柔性电子封装技术主要是由柔性基板、交联导电体和电子器件组成。提高柔性器件的可延展性可以在有预应力的柔性基底上设计非共面电路布局。但是在实践过程中,电子制造工艺中的填充和覆盖封装材料、纳米级厚度金属薄膜的屈服强度都会影响器件的可延展性。本文重点讨论优化柔性电子器件结构、提高其延展性,以期对柔性电子器件的设计提供理论支撑。 1 柔性电子封装技术的发展趋势 随着科学技术和电子封装行业竞争日益激烈,电子封装获得空前的发展规模和前景, 电子封装的应用进展也越来越明朗化。过去的电子封装技术仅仅能够实现电子设备密封的效果。而因为其密封使用的材料为金属、玻璃及陶瓷,较容易受到温度、酸碱度这些影响因素而被动引起一些变化, 不利于电子封装的进行。为了能够起到保证电子设备的整体质量,新型环氧树脂材料应用的电子封装应运而生。随着力学、材料学等科学技术的发展,对电子封装材料的可延展性提出了新的要求和挑战,所谓可延展性是指使得电子封装器件无论面临着拉、压、弯、扭转等一系列可能出现的变形下仍然能维持自身良好性能,大大提高电子器件的易携带性和较高的环境适应性。 柔性电子封装技术在国内的市场地位仍处于起步阶段,还有很大的发展空间。其一般设计原理和运行机理是将具备柔性或可延展性的塑料或者薄金属这类基板上制作相应的电子器件。具体来说,可延展柔性电子技术并非用以取代目前的硅芯片技术,而是对硅基体结构的改进,是基于软质柔性基板上集成微结构的原理,以避免传统的非柔性硅基芯片材料所出现的厚、脆的缺点,在实现可延展性的同时还同时具有轻薄、抗震的效果,经济成本低,操作简便易行。 展望未来柔性电子封装技术的发展趋势,必将坚持以用户体验为设计起点,实现更加人性化的目的,例如柔性传感器、柔性电子眼、可穿戴电子衣、柔性电子纸、柔性电路板、人造肌肉、柔性心脏监测衣、柔性键盘和柔性电子显示器等。与传统电子器件相比,其独特的柔性和延展性使可延展柔性电子器件在通信和信息、生物医药、机械制造、航空航天和国防安全等领域具有非常广泛和良好的应用前景。 2 柔性电子封装技术的研究进展 (1)硬薄膜屈曲结构。硬薄膜屈曲结构是指借助转印技术使得硅等硬薄膜条在弹性软基底上形成周期性的正弦曲线来获得所应具备的柔性。美国的两位教授在此基础上作出了新的变革,他们建议采用基于软印刷术的转印方法来完成柔性电子器件的封装,并经过反复的实验证明了这项技术在实践中能够在柔性基底上产生硅带屈曲波,以实现对各类电子集成材料都能够实现集成到曲面上的效果。并且,这一效果在后期变形的过程中能够通过改变硅带屈曲波的波长和幅值的方式防止拉伸割断,产生较大的压缩性能,在内在机理上,其实是通过实现与基件平面方向纵向的运动过程与变形维度将内部本身的力量予以消解。在这一设计形式下的硅薄膜材料便能够符合五分之一的拉压应变。 (2)岛桥结构。柔性电子封装技术中的岛桥结构,其基本原理是将能够实现弯曲的多根导线串联起多个微电子结构,最终形成了岛桥结构,所以是非常生动形象的。这些导线的可弯曲性使得微电子结构所连接起来而形成岛桥结构增强电子器件的可延展性,提升柔性的程度。但是这一方式虽然在一定程度上取得了一些成效,但是岛桥结构而形成的集成密度较其他结构相对要小,难以应用于覆盖率相对高的应用。 (3)开放网格结构。开放网格结构就是将硅基半导体薄膜这一电子器件材料改进为开放网格式结构。这一结构柔性的提升和可延展性的实现,最根本的是薄膜材料本身在变形时的面内转动,这就好比人们使用剪刀时候的自身转动过程。所以说,开放式网格结构的形状上有其特殊性,也需要改进设计为类似于剪刀形状的细长外形,因此不一定包含柔性基底,因此对于很多结构并不适用。 3 对柔性电子封装技术的展望 (1)局部多层封装结构。由于目前的柔性电子封装技术中常见的非共面薄膜-基底结构在完成封装后会出现延展性降低,难以继续承受较强负荷,为此提供一种新思维,解决上述问题。即局部多层封装,它通过将该薄膜基底的上位部分的电子封装区域软化,同时对下位部分再进行适度硬化,提高整体柔性。但是值得在今后继续开展实验以验证这一结构在应用领域的有效性,这是由于局部多层封装结构还有一些技术漏洞,若下位封装弹性模量或厚度过大,而在受压拉伸的过程中薄膜反而会出现高阶屈曲继而催生更大的弯曲应力,适得其反。 (2)夹杂对岛-桥结构延展性的影响。通过建立有限元模型的方式,将夹杂区域看作是圆形的桥下区域,并且从夹杂刚度、位置和封装方式等维度进行立体化的分析,其结果显示为以下两点,一是在增大夹杂刚度时岛桥结构的最大等效应力相应增强,延展性降低;二是在夹杂位置上若集成掩埋深度提高,那么封装结构顶部的整体应变水平就越大,岛桥的延展性也会随之降低。除此之外今后还应当进一步探讨空洞现象对于岛-桥结构的柔性度的影响。 (3)粘弹性参数的变化。柔性电子封装技术中电子器件基底部分与所使用的封装材料其粘弹性特质,其在多种拉伸的速率下,粘弹性参数所反映的力学和结构延展性变化程度不同:一定的总拉伸量下加载速率越大、一定应变速率下基底与封装材料的瞬时模量越高,薄膜的应力、应变水平越高,薄膜下降高度越小,结构的极限延展量越小。并引入了一个表征延展性劣化的无量纲参数,给出了它随拉伸应变率变化的关系曲线;封装材料与基底材料在一定应变速率范围内的瞬时模量峰值之比越高,薄膜的最大主应变增强得越多而薄膜面下降的位移越小;松弛阶段桥顶应力值、高度均随松弛时间而“衰减”至与静态拉伸时状态。 4 结语 (下转第276页)

金属基电子封装材料进展

金属基电子封装材料进展 刘正春 王志法 姜国圣 (中南大学) 摘 要:对照几种传统的金属基电子封装材料,较详细地阐述了W Cu、M o Cu、SiC/Al等新型封装材料的性能特点、制造方法、应用背景以及存在的问题。介绍了金属基电子封装材料的最新发展动态,指出国际上近年来的研究与开发主要集中在净成型技术、新材料体系探索以及材料的集成化应用等方面。最后,文章对金属基电子封装材料的发展趋势进行了展望,作者认为,未来的金属基电子封装材料将朝着高性能、低成本、轻量化和集成化的方向发展。 关键词:电子封装;复合材料;膨胀系数;热导率 中图分类号:T F125.7,T G139 文献标识码:A 文章编号:1004—244X(2001)02—0049—06 金属基电子封装材料具有强度高、导电导热性能好等优点。因此,它们与陶瓷基、树脂基封装材料一样,一直是电子工程师所青睐的热沉和支承材料,广泛地应用于功率电子器件(如整流管、晶闸管、功率模块、激光二极管、微波管等)和微电子器件(如计算机C PU、DSP芯片)中,在微波通讯、自动控制、电源转换、航空航天等领域发挥着重要作用[1-6][9][13]。 作为一种理想的电子封装材料,必须满足这么几个基本要求[4]:一是材料的导热性能要好,能够将半导体芯片在工作时所产生的热量及时地散发出去;二是材料的热膨胀系数(C TE)要与Si或Ga As 等芯片相匹配,以避免芯片的热应力损坏;三是材料要有足够的强度和刚度,对芯片起到支承和保护的作用;四是材料的成本要尽可能低,以满足大规模商业化应用的要求。在某些特殊的场合,还要求材料的密度尽可能地小(主要是指航空航天设备和移动计算/通信设备),或者要求材料具有电磁屏蔽和射频屏蔽的特性。 1 传统的电子封装材料 传统的金属基电子封装材料,包括因瓦合金(Inv ar)、可伐合金(Kova r)、W、Mo、Al、Cu等,这些材料可以部分的满足上面所提到的要求,然而,它们仍然存在许多不尽人意之处。表1列出了几种常规电子材料的性能。 表1 Si、GaAs及几种传统封装材料的性能[4][7]材 料 C TE ppm/K 热导率 W/(m·K) 密度 /(g·cm-3) Si 4.1135 2.3 Ga As 5.839 5.3 Invar0.4118.1 Kovar 5.9178.3 W 4.417419.3 M o 5.014010.2 Cu17.74008.9 Al23221 2.7环氧树脂600.3 1.2 Inva r、Kov ar的加工性能良好,具有较低的热膨胀系数,但导热性能很差;M o和W的热膨胀系数较低,导热性能远高于Inva r和Kov ar,而且强度和硬度很高,所以,Mo和W在电力半导体行业得到了普遍的应用。但是,Mo和W价格昂贵,加工困难,可焊性差,密度大,况且导热性能比纯Cu要低得多,这就阻碍了其进一步应用。Cu和Al的导热导电性能很好,可是热膨胀系数过大,容易产生热应力问题。 2 新型电子封装材料 现代电子技术的飞速发展,使得电子元器件能够具有更高的集成度、更快的运行速度和更大的容 第24卷 第2期 2001年 3月 兵器材料科学与工程 ORDNANCE M ATERIAL SC IEN CE AND EN GIN EERING V o l.24 No.2  M ar. 2001 收稿日期:2000-06-02  资助项目:国家高新工程重点资助项目  作者简介:刘正春,中南大学材料科学与工程系,长沙,410083

高导热低介电电子封装材料研究进展及实验方案

电子封装塑封材料研究进展及实验规划 1. 环氧树脂基体 1.1环氧树脂概念 环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物,由于分子中含有活泼的环氧基团,使环氧树脂能够开环与多种固化剂发生交联反应而生成不溶不熔的三向网络结构的高聚物。 1.2环氧树脂的分类 根据分子结构的不同,环氧树脂大体可以分为五大类: a. 缩水甘油醚类环氧树脂 b.缩水甘油酯类环氧树脂 c.缩水甘油胺类环氧树脂 d.线型脂肪族类环氧树脂 e.脂环族类环氧树脂。 a. 缩水甘油醚类环氧树脂是由含活泼氢的酚类或醇类与环氧氯丙烷缩聚而 成。缩水甘油醚类环氧树脂根据含活泼氢基团的不同又分为二酚基丙烷型环氧树脂、酚醛多环氧树脂、其他多羟基酚类缩水甘油醚型环氧树脂、脂肪多元醇缩水甘油醚型环氧树脂。目前比较常用的缩水甘油醚类环氧树脂有双酚A型环氧树 脂(简称DGEBA树脂)、氢化双酚A型环氧树脂、线型酚醛型环氧树脂、脂肪族缩水甘油醚环氧树脂、四溴双酚A型环氧树脂。 b. 缩水甘油酯类环氧树脂是由有机酸或酸酐与环氧氯丙烷缩聚而成。常用的有邻苯二甲酸二缩水甘油酯、四氯邻苯二甲酸缩水甘油酯、六氯邻苯二甲酸缩水甘油酯。分子中含有苯环及酯键使得该类环氧树脂具有粘度小、工艺性好、反应活性大、相容性好、粘结强度高、电绝缘性好、耐候性好等优点。但是,以苯酐 为原料合成的环氧树脂产品存在略带黄色,存在无机氯含量及产品中可水解氯含量较高等缺点。 c. 缩水甘油胺类环氧树脂是由多元胺与环氧氯丙烷缩聚而成。此类环氧树脂的特点是多官能度、黏度低、活性高、环氧当量小、交联密度大、耐热性高、粘接力强、力学性能和耐腐蚀性好。 d. 线型脂肪族类环氧树脂是由脂环族烯烃的双键经环化而制得。此类环氧树脂固化物具有较高的压缩与拉伸强度、耐高温、耐电弧性、耐紫外光老化性、耐气候性等优良性能。 e. 脂环族类环氧树脂是含有两个脂环环氧基的低分子化合物。其本身不是聚 合物,但是与固化剂作用后能形成性能优异的三维体型结构聚合物。此类树脂分 子中不含苯环和羟基,依靠分子中的脂环与环氧基反应固化。脂环族环氧树脂的反应活性小于双酚A型环氧树脂,用酸酐固化时,二者反应活性相差不大,用胺类固化剂固化时,脂环族环氧树脂反应速度要慢得多。 1.3封装用环氧树脂 封装材料用环氧树脂要求具有快速固化、耐热、低应力、低吸湿性和低成本。此外还要求树脂品质高,其主要表现在:(1)色泽浅,液体树脂无色透明,固体树脂纯白色;(2)环氧当量变化幅度小;(3)纯度高,挥发物质杂质含量低,树脂中几乎没有离子性杂质,尤其是钠离子和氯离子;(4)相当低的水解性氯(有机氯

电子封装的现状及发展趋势

现代电子信息技术飞速发展,电子产品向小型化、便携化、多功能化方向发展.电子封装材料和技术使电子器件最终成为有功能的产品.现已研发出多种新型封装材料、技术和工艺.电子封装正在与电子设计和制造一起,共同推动着信息化社会的发展 一.电子封装材料现状 近年来,封装材料的发展一直呈现快速增长的态势.电子封装材料用于承载电子元器件及其连接线路,并具有良好的电绝缘性.封装对芯片具有机械支撑和环境保护作用,对器件和电路的热性能和可靠性起着重要作用.理想的电子封装材料必须满足以下基本要求: 1)高热导率,低介电常数、低介电损耗,有较好的高频、高功率性能; 2)热膨胀系数(CTE)与Si或GaAs芯片匹配,避免芯片的热应力损坏;3)有足够的强度、刚度,对芯片起到支撑和保护的作用; 4)成本尽可能低,满足大规模商业化应用的要求;5)密度尽可能小(主要指航空航天和移动通信设备),并具有电磁屏蔽和射频屏蔽的特性。电子封装材料主要包括基板、布线、框架、层间介质和密封材料. 基板 高电阻率、高热导率和低介电常数是集成电路对封装用基片的最基本要求,同时还应与硅片具有良好的热匹配、易成型、高表面平整度、易金属化、易加工、低成本并具有一定的机械性能电子封装基片材料的种类很多,包括:陶瓷、环氧玻璃、金刚石、金属及金属基复合材料等. 陶瓷

陶瓷是电子封装中常用的一种基片材料,具有较高的绝缘性能和优异的高频特性,同时线膨胀系数与电子元器件非常相近,化学性能非常稳定且热导率高随着美国、日本等发达国家相继研究并推出叠片多层陶瓷基片,陶瓷基片成为当今世界上广泛应用的几种高技术陶瓷之一目前已投人使用的高导热陶瓷基片材料有A12q,AIN,SIC和B或)等. 环氧玻璃 环氧玻璃是进行引脚和塑料封装成本最低的一种,常用于单层、双层或多层印刷板,是一种由环氧树脂和玻璃纤维(基础材料)组成的复合材料.此种材料的力学性能良好,但导热性较差,电性能和线膨胀系数匹配一般.由于其价格低廉,因而在表面安装(SMT)中得到了广泛应用. 金刚石 天然金刚石具有作为半导体器件封装所必需的优良的性能,如高热导率(200W八m·K),25oC)、低介电常数、高电阻率(1016n·em)和击穿场强(1000kV/mm).从20世纪60年代起,在微电子界利用金刚石作为半导体器件封装基片,并将金刚石作为散热材料,应用于微波雪崩二极管、GeIMPATT(碰撞雪崩及渡越时间二极管)和激光器,提高了它们的输出功率.但是,受天然金刚石或高温高压下合成金刚石昂贵的价格和尺寸的限制,这种技术无法大规模推广. 金属基复合材料 为了解决单一金属作为电子封装基片材料的缺点,人们研究和开

电子封装材料研究进展

微电子封装与其材料的研究进展 微电子集成电路中,高度密集的微小元件在工作中产生大量热量,由于芯片和封 装材料之间的热膨胀系数不匹配将引起热应力疲劳,封装材料的散热性能不佳也会导 致芯片过热,这二者已成为电力电子器件的主要失效形式[2]。 从根本上说,电子封装的性能、制作工艺、应用及发展等决定于构成封装的各类材料,包括半导体材料、封装基板材料、绝缘材料、导体材料、键合连接材料、封接 封装材料等。它涉及这些材料的可加工成型性,包括热膨胀系数、热导率、介电常数、电阻率等性能在内的材料物性,相容性及价格等等。 新世纪的微电子封装概念已从传统的面向器件转为面向系统,即在封装的信号传递、支持载体、热传导、芯片保护等传统功能的基础上进一步扩展,利用薄膜、厚膜 工艺以及嵌入工艺将系统的信号传输电路及大部分有源、无源元件进行集成,并与芯 片的高密度封装和元器件外贴工艺相结合,从而实现对系统的封装集成,达到最高密 度的封装。从器件的发展水平看,今后封装技术的发展趋势为: (1)单芯片向多芯片发展; (2)平面型封装向立体封装发展; (3)独立芯片封装向系统集成封装发展。 焊球阵列封装(BGA) BGA封装的I/O端子以圆形或柱状焊点按阵列形式分布在封装下面,BGA技术的优点是I/O引脚数虽然增加了,但引脚间距并没有减小反而增加了,从而提高了组装成 品率;虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,从而可以改善它的电热 性能;厚度和重量都较以前的封装技术有所减少;寄生参数减小,信号传输延迟小, 使用频率大大提高;组装可用共面焊接,可靠性高。③BGA的节距为1.5mm、 1.27mm、1.0mm、0.8mm、0.65mm和0.5mm,与现有的表面安装工艺和设备完全 相容,安装更可靠;④由于焊料熔化时的表面张力具有"自对准"效应,避免了传统封 装引线变形的损失,大大提高了组装成品率;⑤BGA引脚牢固,转运方便;⑥焊球引 出形式同样适用于多芯片组件和系统封装。 这种BGA的突出的优点:①电性能更好:BGA用焊球代替引线,引出路径短,减少了引脚延迟、电阻、电容和电感;②封装密度更高;由于焊球是整个平面排列, 因此对于同样面积,引脚数更高。 芯片尺寸封装(CSP)

电子封装材料

高硅铝电子封装材料及课堂报告总结 摘要 关键词 Abstract Keyword 目录

第一章高硅铝电子封装材料 1.1应用背景 由于集成电路的集成度迅猛增加,导致了芯片发热量急剧上升,使得芯片寿命下降。温度每升高10℃,GaAs或Si微波电路寿命就缩短为原来的3倍[1,2]。这都是由于在微电子集成电路以及大功率整流器件中,材料之间热膨胀系数的不匹配而引起的热应力以及散热性能不佳而导致的热疲劳所引起的失效,解决该问题的重要手段即是进行合理的封装。 所谓封装是指支撑和保护半导体芯片和电子电路的基片、底板、外壳,同时还起着辅助散失电路工作中产生的热量的作用[1]。 用于封装的材料称为电子封装材料,作为理想的电子封装材料必须满足以下几个基本要求[3]: ①低的热膨胀系数,能与Si、GaAs芯片相匹配,以免工作时,两者热膨胀系数差异热应力而使芯片受损; ②导热性能好,能及时将半导体工作产生的大量热量散发出去,保护芯片不因温度过高而失效; ③气密性好,能抵御高温、高湿、腐蚀、辐射等有害环境对电子器件的影响; ④强度和刚度高,对芯片起到支撑和保护的作用; ⑤良好的加工成型和焊接性能,以便于加工成各种复杂的形状和封装; ⑥性能可靠,成本低廉; ⑦对于应用于航空航天领域及其他便携式电子器件中的电子封装材料的密度要求尽可能的小,以减轻器件的重量。 1.2国内外研究现状 目前所用的电子封装材料的种类很多,常用材料包括陶瓷、环氧玻璃、金刚石、金属及金属基复合材料等。国内外金属基电子封装材料和主要性能指标如表1-1。 表1-1常用电子封装材料主要性能指标[1,4] 材料密度(ρ) g/cm3 导热率(K) Watts/m·k 热膨胀系数 (CTE) ×106/K 比导热率 W·cm3/m·K·g Si 2.3 135 4.1 5.8 GaAs 5.3 39 5.8 10.3 Al2O3 3.9 20 6.5 6.8 BeO 3.9 290 7.6 74.4 AlN 3.3 200 4.5 60.6

新型电子封装材料的研究现状及展望

第23卷第3期 佳木斯大学学报(自然科学版) Vol.23No.3 2005 年07月 Journal of Jiamusi University(Natural Science Edition) July 2005文章编号:1008-1402(2005)03-0460-05 新型电子封装材料的研究现状及展望 郑小红1, 胡 明1, 周国柱2 (1.佳木斯大学,黑龙江佳木斯154007;2.佳木斯电业局,黑龙江佳木斯154002) 摘 要: 综合论述了各类新型电子封装材料的优势及不足之处,同时指出了目前我国新型电子封装材料所存在的问题及进一步完善的措施,并预测了电子封装用金属基复合材料的应用前景. 关键词: 电子封装;金属基复合材料;热膨胀系数;界面 中图分类号: TB331 文献标识码: A 0 引 言 电子封装材料是用于承载电子元器件及其相互联线,起机械支持,密封环境保护,散失电子元件的热量等作用,并具有良好电绝缘性的基体材料,是集成电路的密封体.随着信息时代的到来,20世纪90年代封装业进入一个“爆炸式”的发展时期[1,2,3].现代科学技术的发展,对电子封装材料提出了更全面的要求,致使以往的传统材料己不能满足更高的性能要求,研制开发新型的电子封装材料己成为各国竞相追求的目标. 1 新型电子封装材料的优势 电子封装的种类很多.从结构形式分,可以分为气密封装和实体封装.气密封装是指封装腔体内在管芯周围有一定气氛的空间并与外界相隔离;实体封装则指管芯周围与封装腔体形成整个实体.从封装材料上分,则有金属封装、塑料封装、陶瓷封装、玻壳封装、玻璃实体封装、金属基复合材料封装等.这些封装各具特点,并受到了广泛的关注. 1.1 金属封装材料 金属封装材料具有较高的机械强度、散热性能优良等优点,并且对电磁有一定屏蔽功能,在功率器件中得到广泛应用.传统的金属封装材料主要有:Cu,Al,Kovar合金,Invar合金及W,Mo合金等.大多数金属封装都属于实体封装,但实体封装对封装材料要求较高,必须致密、抗潮,与管芯材料粘附和热匹配良好,而且在高温、低气压下不应产生有害气氛. 理想的金属封装材料要求具有高的热导率(TC值)和低的热膨胀系数(CTE值)及密度(ρ值).Cu,Al 或Al合金都具有良好的热传导率,质量较轻,成本低、强度高等优点,易于形成绝缘抗侵蚀薄膜,因而使用广泛.Al金属基板是以其表面的阳极氧化膜作为其绝缘层,但是因为Al与其氧化膜的热膨胀系数相差很大,当金属基板受热时,氧化膜容易开裂,影响封装的可靠性[4].此外,Cu,Al及合金的CTE值太大(Al的CTE为23.6×10-6℃,Cu的CTE为17.8×10-6℃),容易引发循环热应力. Cu Mo合金和Cu W合金具有较高的热导率及相匹配的CTE,但Mo,W的价格较高,加工、焊接性能差而密度却又是Al的好几倍,不适合对重量有要求的应用领域,限制了其应用.而Kovar合金虽然具有很低的CTE,在数值上与芯片材料Ga As的CTE较接近,而且Kovar合金的加工性能也较好.如利用机械加工Kovar合金制作的热沉和壳为一体的外壳,膨胀系数小,制作方便,但散热性不好[5].正是因为其导热系数太低,密度也很低,使其难以广泛应用. 收稿日期:2005-04-05 基金项目:黑龙江省自然科学基金资助项目(E2004—16) 作者简介:郑小红(1976—),女,黑龙江伊春人,佳木斯大学材料科学与工程学院教师,佳木斯大学在读硕士研究生.

电子封装技术专业就业方向与就业前景

电子封装技术专业就业方向与就业前景 1、电子封装技术专业简介 电子封装技术以高端电子产品制造为对象,由电子元器件再加工和连接组合以构成系统、整机及合适工作环境的设计制造过程,是现代高密度、高功率、小体积、高频率电子产品自动化生产制造的一项关键技术;本专业要求学生掌握电子器件的设计与制造、微细加工技术、电子封装与组装技术、电子封装材料、电子封装测试的基本理论和基本技能,具备封装工艺和封装材料的设计与开发以及封装质量控制的基本能力。 2、电子封装技术专业就业方向 电子封装技术专业毕业后可在通信设备、计算机、网络设备、军事电子设备、视讯设备等的器件和系统制造厂家和研究机构从事科学研究、技术开发、设计、生产及经营管理等工作。 从事行业: 毕业后主要在仪器仪表、机械、建筑等行业工作,大致如下: 1、电子技术/半导体/集成电路 2、新能源 3、互联网/电子商务 4、通信/电信/网络设备 5、计算机软件 6、仪器仪表/工业自动化

7、贸易/进出口 8、其他行业 从事岗位: 毕业后主要从事电气工程师、电气设计师、技术员等工作,大致如下: 1、硬件工程师 2、电子工程师 3、pcblayout工程师 4、研发工程师 5、工艺工程师 6、pcb设计工程师 7、layout工程师 工作城市: 毕业后,深圳、上海、北京等城市就业机会比较多,大致如下: 1、深圳 2、上海 3、北京 4、广州 5、东莞 6、成都 7、苏州 8、杭州 3、电子封装技术专业就业前景怎么样

电子封装技术专业目前国内开设院校较少,有华中科技大学、哈尔滨工业大学、江苏科技大学、北京理工大学、西安电子科技大学、桂林电子科技大学、厦门理工学院等开设该本科专业。大部分院校的电子封装技术专业开设在材料科学与工程学院,小部分院校开设在机电工程学院。 电子封装技术专业为适应我国民用电子行业和国防电子科技快速发展对电子封装专业人才的需求。电子封装技术专业毕业生具有扎实的、深入的高等数理基础和专业理论基础;外语水平高,听、说、读、写能力强;具有较强的知识更新能力、创新能力和综合设计能力;具有一定的学科前沿知识和良好的从事科学研究工作的能力;毕业后可在通信、电子、计算机、航空航天、集成电路、半导体器件、微电子与光电子、自动化等领域的企事业单位从事电子产品设计、制造、工艺、测试、研发、管理和经营销售等方面工作,也可攻读工学、工程硕士、博士学位。

相关文档
相关文档 最新文档