文档库 最新最全的文档下载
当前位置:文档库 › 二项式定理考点大全(详解)

二项式定理考点大全(详解)

二项式定理考点大全(详解)
二项式定理考点大全(详解)

二项式定理高考知识点总结

1.求103

)1

(x

x -展开式中的常数项

2.已知9)2(x x a -的展开式中3x 的系数为4

9,求常数a 的值

3.求84)21(x

x +展开式中系数最大的项;

4.若n x

x )21

(-+的展开式的常数项为-20.求n .

5求当25

(32)x x ++的展开式中x 的一次项的系数?

6.已知n x

x )21(4?+

的展开式前三项中的x 的系数成等差数列.

(1)求展开式中所有的x 的有理项; (2)求展开式中系数最大的项.

7. 已知二项式n x

x )2(2

-,(n ∈N *)的展开式中第5项的系数与第3项的系数的比是10:1,

(1)求展开式中各项的系数和

(2)求展开式中系数最大的项以及二项式系数最大的项

8.求6

998.0的近似值,使误差小于001.0;

9.求证:15151

-能被7整除。

10.求证:32n +

2-8n-9能被64整除.

11 求9192除以100的余数.

12 求证:C n 0+21C n 1+31C n 2+…+11+n C n n =1

1+n (2n+1-1).

13 计算c C C C n

n n

n n n n 3)1( (279313)

2

1

-++-+-; 14.求值:

15、已知数列{a n }(n 为正整数)是首项为a 1,公比为q 的等比数列。 (1)求和:;,3

342331320312231220

2

1C a C a C a C a C a C a C a -+-+-

(2)由(1)的结果归纳概括出关于正整数n 的一个结论,并加以证明; (3)设q ≠1,S n 是等比数列{an }的前n项和,求:

.

)1(134231201n

n n n n n n n C S C S C S C S C S +-++-+-

16.规定!

)1()1(m m x x x C m

x +--=

,其中x ∈R ,m 是正整数,且10=x C ,这是组合数m

n C (n 、

m 是正整数,且m ≤n )的一种推广. (1) 求3

15-C 的值;

(2) 设x >0,当x 为何值时,213)(x x

C C 取得最小值?

(3) 组合数的两个性质;

①m n n m n C C -=. ②m

n m n m n C C C 11+-=+.

?是否都能推广到m

x C (x∈R,m 是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.

1解:r r r

r r

r r x

C x

x C T 6

5510

3

1010

1)1()1()

(--+?-=-=

令06

5

5=-

r ,即6=r 。 所以常数项是210)1(6

106=-C

2 解:92

3

92999

1

2)1()2()(----+???-=-=r r r r r r r r r x a C x x a C T

392

3

=-r ,即8=r 依题意,得

4

9

2)1(894889=

??---a C ,解得1-=a 3 解:记第r 项系数为r T ,设第k 项系数最大,则有

???≥≥+-11k k

k k T T T T 又1

182.+--=r r r C T ,那么有

?????≥≥-+--+--+--k

k k k k k k k C C C C 2.2

.2.2

.811822

8118 即???????-≥?--?--≥--)!8(!!82)!

9)!.(1(!82)!10)!.(2(!8)!9)!.(1(!8K K K K K K K k ?????≥

--≥-∴K K K K 1922211 解得43≤≤k , ∴系数最大的项为第3项2

5

37x T =和第4项2

747x T =。 4 解:当x >0时,n x x )21

(-+

=n x

x 2)1(-

, 其通项为:1+r T =r r

n n x

x C )1()

(22-

-=r

n r n r x

C 222)1(--,令2n -2r =0,得:n =r ,∴展开式中的常数项为:n

n r C 2)1(-;

当x <0时,n x x )21

(-+

=n x

x 2)1(-+

-, 同理:展开式中的常数项为:n

n r C 2)1(-; 无论哪一种情况,常数项均为n

n r C 2)1(-. 令n

n r C 2)1(-=-20,得n =3.

5 解法①:2525(32)[(2)3]x x x x ++=++,2515(2)(3)r r r

r T C x x -+=+,当且仅当1

r =时,1r T +的展开式中才有x 的一次项,此时124

125(2)3r T T C x x +==+,所以x 得一次项为144

5423C C x

它的系数为144

5423240C C =。

解法②:

255505145051455

555555(32)(1)(2)()(22)x x x x C x C x C C x C x C ++=++=++???+++???+

故展开式中含x 的项为45544

55522240C xC C x x +=,故展开式中x 的系数为240.

6解:(1)展开式前三项的系数分别为

)1(81

)21(,221,1222

1-=?=?

=n n C n C C n n n . 由题设可知:)1(8

1

122-+=?n n n

解得:n=8或n=1(舍去).

当n=8时,r r r

r x x C T --+??=)2()(4881=r r r x

C 43

482--??.

据题意,4-

r 4

3

必为整数,从而可知r 必为4的倍数, 而0≤r ≤8,∴r =0,4,8.

故x 的有理项为:4

1x T =,x T 8355=

,2

9256

1x T =. (2)设第r +1项的系数1+r t 最大,显然1+r t >0, 故有

r

r t t 1

+≥1且12++r r t t ≤1.

∵r r t t 1+=r r

C C r r r r 292

21188-=??+---,

r

r

29-≥1,得r ≤3. ∵12++r r t t =r r C C r

r r r -+=??---+8)1(22

28118, 由

r

r -+8)

1(2≤1,得r ≥2.

∴r =2或r =3,所求项分别为2

537x T =和4

747x T =.

7 解:(1)∵第5项的系数与第3项的系数的比是10:1,

∴1

10

)2()2(2

2

4

4=

-?-?C

C n

n ,解得n =8 令x=1得到展开式中各项的系数和为(1-2)8=1

(2) 展开式中第r项, 第r+1项,第r+2项的系数绝对值分别为

r n r C --?218

,r r C 28?,11

82++?r r C ,

若第r+1项的系数绝对值最大,则必须满足:

r n r C

--?218

≤r r

C 28? 并且11

82++?r r C ≤r r

C 28?,解得5≤r ≤6;

所以系数最大的项为T 7=1792111x ?

;二项式系数最大的项为T 5=11206

1x ? 8分析:因为6

998.0=6

)002.01(-,故可以用二项式定理展开计算。

解:6

998.0=6

)002.01(-=6

2

1

)002.0(...)002.0.(15)002.0.(61-++-+-+

001.000006.0)002.0(15)002.0.(2

22

6

3<=-?=-=

C T , 且第3项以后的绝对值都小于001.0,

∴从第3项起,以后的项都可以忽略不计。

∴6998.0=6

)002.01(-)002.0(61-?+≈=988.0012.01=- 9证明:15151

-

=1)249(51

-+

=

12.2.49.....2.49.2.49.4951

51

515050

512492

51501

51510

51-+++++C C C C C

=49P+1251-(*

∈N P )

又 1)2(12

17351

-=-

=(7+1)17

1-

=

17.....7.7.7.17

1716

1715

2

17161

17170

17-+++++C C C C C

=7Q (Q *

∈N )

)(77715151Q P Q P +=+=-∴

15151

-∴能被7整除。

1

:

?

能被64整除.

11 分析 转化为二项展开式来求.

解法一 9192=(100-9)92

=10092—C 192

·10091·9+C 2

92·1009

0·92— …—C 9192

·100·991

+992,

前面各项均能被100整除,只有末项992不能被100整除,于是求992

除以100的余数.

∵992=(10-1)92=1092—C 192·1091+C 292·1090—…+C 9092

·102

—C 9192

·10+(-1)92

=1092—C 192·109

1+C 2

92·1090—…+C 9092

·102—920+1 =(1092—C 192·1091+C 292·1090—…+C 9092

·102

—1000)+81 ∴被100除的余数为81,即9192除以100的余数为81. 解法二 ∵919

2=(90+1)

92

=C 0

92·9092+C 192

·909

1+ …+C 9092·902+C 9192

·90+1 由于前面各项均能被100整除,只有末尾两项不能被100整除, 由于C 9192·90+1=8281=8200+81 ∴被100除余81.

12分析 ∵2n+1

=C n 01++C n 11++C n 21++…+C n n 1++C n n 1

1

++ ∴右边=11+n (C n 11++C n 21++…+C n n 1++C n n 1

1++) 比较左、右两边和,只要证明k 1·C k n 1-=11+n C k n 1

+即可.

证明 k 1·C k n 1-=k

1·)!1()!1(!+--k n k n =)!1(!!+-k n k n =11+n ·)!1(!)!1(+-+k n k n =1

1+n C k n 1+

∴C n 0+21C n 1+31C n 2+…+11

+n C n n

=11+n (C n 11++C n 21++…+C n n 1++C n n 11++)=1

1+n (2n+1-1)

13解:原式=n

n n n n n n n C C C C C )2()31()3(....)3()3()3(3

33

22

11

-=-=-++-+-+-+ 14

分析:注意将此式还原成二项展开式的结构 ? 原式

=

15解:(1),)1(22

12

1112

231

220

21q a q a q a a C a C a C a -=+-=+-

.)1(3331312111334233132031q a q a q a q a a C a C a C a C a -=-+-=-+-

归纳概括的结论为:

若数列{an}是首项为a1,公比为q 的等比数列,则

n n

n n n n n n n q a C a C a C a C a C a )1()1(1134231201-=-++-+-+ ,n 为整数. 证明:n

n n n n n n n C a C a C a C a C a 134231201)1(+-++-+- n n n n n n n n C q a C q a C q a qC a C a 133********)1(-++-+-= .)1(])1([13322101n n n n n n n n n

q a C q C q C q qC C a -=-++-+-= (3)因为,111q

q a a S n

n --=

所以n

n n n n n n n C S C S C S C S C S 134231201)1(+-++-+-

n

n n n n n n C q

q a a C q q a a C q q a a C q q a a ---++--+-----=+1)1(1111

1123111211011 --++-+--=

])1([132101n

n n n n n n C C C C C q

a .)1(1

])1([113322101n n

n n n n n n n q q q a C q C q C q qC C q q a --=-++-+--

16.解:(1)680!

3)17)(16)(15(315

-=---=-C . (4分)

(2)

)32(616)2)(1()(2213-+=--=x

x x x x x C C x x . (6分) ∵ x > 0 , 222≥+x

x .

当且仅当2=x 时,等号成立. ∴ 当2=x 时,213)

(x x

C C 取得最小值. (8分)

(3)性质①不能推广,例如当2=

x 时,12C 有定义,但1

22

-C 无意义; (10分)

性质②能推广,它的推广形式是m x m x m x C C C 11+-=+,x∈R , m 是正整数. (12分)

事实上,当m=1时,有1

1

011+=+=+x x x C x C C . 当m ≥2时.)!

1()2()1(!)1()1(1----++--=+-m m x x x m m x x x C C m x

m x

?

????

?++--+--=11)!

1()2()1(m

m x m m x x x !

)1)(2()1(m x m x x x ++--= m

x C 1+=.(14分)

(完整版)二项式定理典型例题解析

二项式定理 概 念 篇 【例1】求二项式(a -2b )4的展开式. 分析:直接利用二项式定理展开. 解:根据二项式定理得(a -2b )4=C 04a 4+C 14a 3(-2b )+C 24a 2(-2b )2+C 34a (-2b )3 +C 44(- 2b )4 =a 4-8a 3b +24a 2b 2-32ab 3+16b 4. 说明:运用二项式定理时要注意对号入座,本题易误把-2b 中的符号“-”忽略. 【例2】展开(2x - 223x )5 . 分析一:直接用二项式定理展开式. 解法一:(2x -223x )5=C 05(2x )5+C 15(2x )4(-223x )+C 25(2x )3(-223x )2+C 35(2x )2(-2 23x )3+ C 4 5 (2x )(-223x )4+C 55(-2 23x )5 =32x 5-120x 2+x 180-4135x +78405 x -10 32243x . 分析二:对较繁杂的式子,先化简再用二项式定理展开. 解法二:(2x -223x )5=105 332)34(x x =10321x [C 05(4x 3)5+C 15(4x 3)4(-3)+C 25(4x 3)3(-3)2+C 35(4x 3)2(-3)3+C 45(4x 3)(-3)4+ C 55(-3)5 ] = 10 321 x (1024x 15-3840x 12+5760x 9-4320x 6+1620x 3-243) =32x 5-120x 2+x 180-4135x +78405 x -10 32243x . 说明:记准、记熟二项式(a +b )n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便. 【例3】在(x -3)10的展开式中,x 6的系数是 . 解法一:根据二项式定理可知x 6的系数是C 4 10. 解法二:(x -3)10的展开式的通项是T r +1=C r 10x 10- r (-3)r . 令10-r =6,即r =4,由通项公式可知含x 6项为第5项,即T 4+1=C 410x 6(-3)4=9C 410x 6. ∴x 6的系数为9C 410. 上面的解法一与解法二显然不同,那么哪一个是正确的呢? 问题要求的是求含x 6这一项系数,而不是求含x 6的二项式系数,所以应是解法二正确. 如果问题改为求含x 6的二项式系数,解法一就正确了,也即是C 4 10. 说明:要注意区分二项式系数与指定某一项的系数的差异. 二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关,与二项

二项式定理赋值法求各项系数的和复习过程

二项式定理赋值法求各项系数的和 例2.已知7270127(12)x a a x a x a x -=++++L ,求: (1)127a a a +++L ; (2)1357a a a a +++; (3)017||||||a a a +++L . 解:(1)当1x =时,77(12)(12)1x -=-=-,展开式右边为 0127a a a a ++++L ∴0127a a a a ++++L 1=-, 当0x =时,01a =,∴127112a a a +++=--=-L , (2)令1x =, 0 127a a a a ++++L 1=- ① 令1x =-,7012345673a a a a a a a a -+-+-+-= ② ①-② 得:713572()13a a a a +++=--,∴ 1357a a a a +++=7 132+-. (3)由展开式知:1357,,,a a a a 均为负,0248,,,a a a a 均为正, ∴由(2)中①+② 得:702462()13a a a a +++=-+, ∴ 7 0246132 a a a a -++++=, ∴017||||||a a a +++=L 01234567a a a a a a a a -+-+-+- 702461357()()3a a a a a a a a =+++-+++= 例6. 设()()()()231111n x x x x ++++++++=L 2012n n a a x a x a x ++++L ,

当012254n a a a a ++++=L 时,求n 的值 解:令1x =得: 230122222n n a a a a ++++=++++L L 2(21)25421n -==-, ∴2128,7n n ==, 点评:对于 101()()()n n n f x a x a a x a a -=-+-++L ,令1,x a -=即1x a =+可得各项系数的和012n a a a a ++++L 的值;令1,x a -=-即1x a =-,可得奇数项系数和与偶数项和的关系 例8.在10)32(y x -的展开式中,求: ①二项式系数的和; ②各项系数的和; ③奇数项的二项式系数和与偶数项的二项式系数和; ④奇数项系数和与偶数项系数和; ⑤x 的奇次项系数和与x 的偶次项系数和. 分析:因为二项式系数特指组合数r n C ,故在①,③中只需求组合数的和,而与二项式y x 32-中的系数无关. 解:设10102829110010)32(y a y x a y x a x a y x ++++=-Λ(*), 各项系数和即为1010a a a +++Λ,奇数项系数和为0210a a a +++L ,偶数项系数和为9531a a a a ++++Λ,x 的奇次项系数和为9531a a a a ++++Λ,x 的偶次项系数和10420a a a a ++++Λ. 由于(*)是恒等式,故可用“赋值法”求出相关的系数和. ①二项式系数和为1010101100102=+++C C C Λ.

高中数学《二项式定理》公开课优秀教学设计二

二项式定理(第1课时) 一、内容和内容解析 内容:二项式定理的发现与证明. 内容解析:本节是高中数学人教A版选修2-3第一章第3节的内容.二项式定理是多项式乘法的特例,是初中所学多项式乘法的延伸,此内容安排在组合计数模型之后,随机变量及其分布之前,既是组合计数模型的一个应用,也是为学习二项分布作准备.由于二项式定理的发现,可以通过从特殊到一般进行归纳概括,在归纳概括过程中还可以用到组合计数模型,因此,这部分内容对于培养学生数学抽象与数学建模素养有着不可忽略的价值.教学中应当引起充分重视. 二、目标和目标解析 目标: (1)能通过多项式乘法,归纳概括出二项式定理内容,并会用组合计数模型证明二项式定理. (2)能从数列的角度认识二项式的展开式及其通项的规律,并能通过特例体会二项式定理的简单应用. (3)通过二项式定理的发现过程培养学生的数学抽象素养,以及用二项式定理这个模型培养学生数学建模素养. 目标解析: (1)二项式展开式是依多项式乘法获得的特殊形式,因此从多项式乘法出发去发现二项式定理符合学生的认知规律.但归纳概括的结论,如果不加以严格的证明不符合数学的基本要求.因此,在归纳概括的过程中,用好组合模型不仅可以更自然地得到结论,还能为证明二项式定理提供方法. (2)由于二项展开式是一个复杂的多项式.如果不把其看成一个数列的和,引进数列的通项帮助理解与应用,学生很难短期内对定理有深入的认识.因此,通过一些特例,建立二项式展开式与数列及数列和的联系,是达成教学目标的一个重要途径.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在二项式定理的教学中,从特殊的二项式展开式的特征归纳概括一般二项式展开式的规律是进行数学抽象教学的很好机会;同时利用组合计数模型证明二项式定理,以及利

二项式定理 练习题 求展开式系数的常见类型

二项式定理 1.在()103x -的展开式中,6 x 的系数为 . 2.10()x -的展开式中64x y 项的系数是 . 3.92)21(x x -展开式中9x 的系数是 . 4.8)1(x x - 展开式中5x 的系数为 。 5.843)1()2 (x x x x ++-的展开式中整理后的常数项等于 . 6.在65 )1()1(x x ---的展开式中,含3x 的项的系数是 . 7.在x (1+x )6的展开式中,含x 3项的系数为 . 8.()()8 11x x -+的展开式中5x 的系数是 . 9.72)2)(1(-+x x 的展开式中3x 项的系数是 。 10.54)1()1(-+x x 的展开式中,4x 的系数为 . 11.在6 2)1(x x -+的展开式中5x 的系数为 . 12.5)212(++x x 的展开式中整理后的常数项为 . 13.求(x 2+3x -4)4的展开式中x 的系数.

14.(x 2+x +y )5的展开式中,x 5y 2的系数为 . 15.若 32()n x x -+的展开式中只有第6项的系数最大,则n= ,展开式中的常数项是 . 16.已知(124 x +)n 的展开式中前三项的二项式系数的和等于37,求展式中二项式系数最大的项的系数. 17.在(a +b )n 的二项展开式中,若奇数项的二项式系数的和为64,则二项式系数的最大值为________. 18.若2004200422102004...)21(x a x a x a a x ++++=-)(R x ∈,则展开式的系数和为________. 19.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,则a 1+a 2+…+a 7的值是________. 20.已知(1-2x +3x 2)7=a 0+a 1x +a 2x 2+…+a 13x 13+a 14x 14.求:(1)a 1+a 2+…+a 14; (2)a 1+a 3+a 5+…+a 13.

高中数学完整讲义——二项式定理6.二项式定理的应用3近似计算或估计

高中数学讲义 1 思维的发掘 能力的飞跃 1.二项式定理 ⑴二项式定理 () ()011222...n n n n n n n n n n a b C a C a b C a b C b n --*+=++++∈N 这个公式表示的定理叫做二项式定理. ⑵二项式系数、二项式的通项 011222...n n n n n n n n n C a C a b C a b C b --++++叫做()n a b +的二项展开式,其中的系数()0,1,2,...,r n C r n =叫 做二项式系数,式中的r n r r n C a b -叫做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r r r n T C a b -+=. ⑶二项式展开式的各项幂指数 二项式()n a b +的展开式项数为1n +项,各项的幂指数状况是 ①各项的次数都等于二项式的幂指数n . ②字母a 的按降幂排列,从第一项开始,次数由n 逐项减1直到零,字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . ⑷几点注意 ①通项1r n r r r n T C a b -+=是()n a b +的展开式的第1r +项,这里0,1,2,...,r n =. ②二项式()n a b +的1r +项和()n b a +的展开式的第1r +项r n r r n C b a -是有区别的,应用二项式定理时, 其中的a 和b 是不能随便交换的. ③注意二项式系数(r n C )与展开式中对应项的系数不一定相等,二项式系数一定为正,而项的系 数有时可为负. ④通项公式是()n a b +这个标准形式下而言的,如()n a b -的二项展开式的通项公式是 ()11r r n r r r n T C a b -+=-(只须把b -看成b 代入二项式定理)这与1r n r r r n T C a b -+=是不同的,在这里对应项的二项式系数是相等的都是r n C ,但项的系数一个是()1r r n C -,一个是r n C ,可看出,二项式系数与项的系 知识内容 近似计算或者估计

二项式定理典型例题

二项式定理典型例题-- 例1 在二项式n x x ?? ? ??+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=??? ??= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1123 12-+=+=n n n t t t , ∴8=n 通项公式为 1431681,82,1,021C +- +==r r r r r T r x T 为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为228889448541256 121C ,83521C ,x x T x x T x T =====-. 例2 求62)1(x x -+展开式中5x 的系数. 分析:62)1(x x -+不是二项式,我们可以通过22)1(1x x x x -+=-+或)(12x x -+把它看成二项式展开. 解:方法一:[]6 262)1()1(x x x x -+=-+ -+++-+=4 4256)1(15)1(6)1(x x x x x 其中含5x 的项为55145355566C 15C 6C x x x x =+-. 含5 x 项的系数为6. 例3 求证:(1)1212C C 2C -?=+++n n n n n n n ;

(2))12(1 1C 11C 31C 21C 1210 -+=++++++n n n n n n n n . 分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质 n n n n n n 2C C C C 210 =++++ . 解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--?=--=-? =k n k n n k n k n n k n k n k n k n k k ∴左边111101C C C ----+++=n n n n n n n =?=+++=-----11111012)C C C (n n n n n n n 右边. (2))! ()!1(!)!(!!11C 11k n k n k n k n k k k n --=-?+=+ 11C 1 1)!()!1()!1(11+++=-++?+=k n n k n k n n . ∴左边112111C 1 1C 11C 11++++++++++= n n n n n n n =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n 右边. 例4 展开5 2232??? ? ?-x x . 例5 若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ). A .11 B .33 C .55 D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开. 解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即 ∑=-?+=++=++100101010 10)(])[()(k k k k z y x C z y x z y x . 这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式k y x -+10)(展开, 不同的乘积k k k z y x C ?+-1010) ((10,,1,0 =k )展开后,都不会出现同类项. 下面,再分别考虑每一个乘积k k k z y x C ?+-1010)((10,,1,0 =k ). 其中每一个乘积展开后的项数由k y x -+10)(决定,

最新二项式定理练习题(含答案)

二项式定理 1 单选题 2 (x+1)4的展开式中x的系数为3 A.2 B. 4 C. 6 D.8 4 答案 5 B 6 解析 7 分析:根据题意,(x+1)4的展开式为T r+1=C 4 r x r;分析可得,r=1时,有x 8 的项,将r=1代入可得答案.9 解答:根据题意,(x+1)4的展开式为T r+1=C 4 r x r; 10 当r=1时,有T 2=C 4 1( x)1=4x; 11 故答案为:4. 12 故选B. 13 点评:本题考查二项式系数的性质,特别要注意对x系数的化简. 14 2 (x+2)6的展开式中x3的系数是 15 A.20 B.40 C.80 D. 160 16 答案 17 D 18 解析 19 分析:利用二项展开式的通项公式求出通项,令x的指数为3求出展开式中20 x3的系数. 21 解答:设含x3的为第r+1, 22 则Tr+1=C6rx6-r?2r, 23

24 令6-r=3, 25 得r=3, 26 故展开式中x3的系数为C63?23=160. 27 故选D. 28 点评:本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工29 具 30 3在(1+数学公式)4的展开式中,x的系数为 31 A.4 B.6 C.8 D.10 答案 32 33 B 34 解析 35 分析:根据题意,数学公式的展开式为Tr+1=C4r(数学公式)r;分析可36 得,r=2时,有x的项,将x=2代入可得答案. 37 解答:根据题意,数学公式的展开式为Tr+1=C4r(数学公式)r; 当r=2时,有T3=C42(数学公式)2=6x; 38 39 故选B. 40 点评:本题考查二项式系数的性质,特别要注意对x系数的化简. 4(1+x)7的展开式中x2的系数是 41 42 A.21 B.28 C.35 D.42 43 答案 A 44 45 解析

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素

二项式定理专题复习教学内容

二项式定理知识点、题型与方法归纳 一.知识梳理 1.二项式定理:)()(*110N n b C b a C b a C a C b a n n n r r n r n n n n n n ∈+++++=+--ΛΛ.其中) ,,2,1,0(n r C r n Λ=叫二项式系数.式中的r r n r n b a C -叫二项展开式的通项,用1+r T 表示,即通项r r n r n r b a C T -+=1. 2.二项展开式形式上的特点: (1)项数为n +1; (2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n . (3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . (4)二项式的系数从C 0n ,C 1 n ,一直到C n - 1n ,C n n . 3.二项式系数的性质: (1)对称性:与首末两端“等距离”的两个二项式系数相等.即r n r n n C C -= (2)增减性与最大值:二项式系数C k n ,当k <n +1 2时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项1122n n n n C C -+=取得最大值. (3)各二项式系数和:C 0n +C 1n +C 2n +…+C r n +…+C n n =2n ; C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5 n +…=2 n - 1. 一个防范 运用二项式定理一定要牢记通项T r +1=C r n a n -r b r ,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C r n ,而后者是字母外的部分.前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负. 两种应用 (1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等. (2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等. 三条性质 (1)对称性;(2)增减性;(3)各项二项式系数的和; 二.题型示例 【题型一】求()n x y +展开特定项 例1:(1+3x )n (其中n ∈N *且n ≥6)的展开式中x 5与x 6的系数相等,则n =( ) B A.6 B.7 C.8 D.9

二项式定理典型例题

二项式定理典型例题-- 典型例题一 例1 在二项式n x x ??? ? ?+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=??? ??= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1123 12-+=+=n n n t t t , ∴8=n 通项公式为 1431681,82,1,021C +- +==r r r r r T r x T Λ为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为228889448541256 121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有 17页 系数和为n 3. 典型例题四 例4 (1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++x x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式. 解:(1)10 3)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项:

二项式定理典型例题

高考数学专题复习二项式定理练习题 1.在二项式(仮的展开式中,前三项的系数成等差数列, 求展开式中所有有理项. I 2仮丿 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公 式解决. 解:二项式的展开式的通项公式为: 前三项的r =01,2. 1 1 1 1 得系数为:1 =1,上 2 =。;一 =— n,t 3 = cn — = —ng-1 ), 2 2 4 8 1 由已知:2t 2 =匕 叫 3 n= 1 + — n(n —1), 8 ??? n =8 通项公式为 _ 16 J3r 1 --- TF=c8-rx 4 r =0,1,2" 8,Tr + 为有理项,故 16 —3r 是 4 的倍数, 2 /. r =0,4,8. 依次得到有理项为「= X 4 ,丁5 = C ; —4 X =— X ,T 9 = c 8 A x° =—— x 2 ? 2 8 2 256 说明:本题通过抓特定项满足的条件, 利用通项公式求出了 r 的取值,得到了有理项.类 似地,(J 2 +3 /3)100 的展开式中有多少项是有理项?可以通过抓通项中 系数和为3n . 2. (1)求(1 —x )3 (1+x )10 展开式中X 5 的系数;(2)求(x + 1 +2)6 展开式中的常数 项. X 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题, 视为两个二项展开式相乘; (2)可以经过代数式变形转化为二项式. 解:(1 ) (1-x )3 (1 +x )10 展开式中的X 5 可以看成下列几种方式得到,然后合并同类项: 用(1 —X )3 展开式中的常数项乘以 (1 +x )10 展开式中的 X 5 项,可以得到 C lo X 5 ;用 “c"严k 丿 2n J3r =c n 2^ x 4 r 的取值,得到共有 (1)可以

二项式定理常见题型

二项式定理 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项增到n ,是升幂排列。各项的次数和 等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N * +=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和: 00112220120120011222021210 01230123()()1, (1)1,(1)n n n n n n n n n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----L L L L L L 令则①令则024135(1)(1),() 2 (1)(1),() 2 n n n n n n a a a a a a a a a a a a ----++-++++=+---+++=L L ②①②得奇数项的系数和①②得偶数项的系数和 ⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n n C 取得最大值。 如果二项式的幂指数n 是奇数时,则中间两项的二项式系数12n n C -,12n n C +同时取得最 大值。 ⑥系数的最大项:求()n a bx +展开式中最大的项,一般采用待定系数法。设展开式中各项系数分别 为121,,,n A A A +???,设第1r +项系数最大,应有112 r r r r A A A A +++≥??≥?,从而解出r 来。

二项式定理(基础+复习+习题+练习)

课题:二项式定理 考纲要求: 1.能用计数原理证明二项式定理 2.会用二项式定理解决与二项展开式有关的简单问题. 教材复习 1.二项式定理及其特例: ()101()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈, ()21(1)1n r r n n n x C x C x x +=++ ++ + 2.二项展开式的通项公式:r r n r n r b a C T -+=1210(n r ,,, = 3.常数项、有理项和系数最大的项: 求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性. 4.二项式系数表(杨辉三角) ()n a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式 系数表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和. 5.二项式系数的性质: ()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变量 的函数()f r ,定义域是{0,1,2,,}n ,例当6n =时,其图象是7个孤立的点(如图) 6.()1对称性. 与首末两端“等距离”的两个二项式系数相等(m n m n n C C -=).直线2 n r = 是图象的对称轴. ()2增减性与最大值: 当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项12n n C -,12n n C +取得最大值 ()3各二项式系数和:∵1(1)1n r r n n n x C x C x x +=++ ++ +, 令1x =,则012 2n r n n n n n n C C C C C =+++ ++ +

2018年高考二项式定理十大典型问题及例题

学科教师辅导讲义 1.二项式定理: 011 ()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=++ ++ +∈, 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数 (包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+- ++ +-∈ 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C +++++ +=, 变形式1221r n n n n n n C C C C ++ ++ +=-。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123 (1)(11)0n n n n n n n n C C C C C -+-++-=-=, 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++ ++???= ?= ④奇数项的系数和与偶数项的系数和:

(完整版)二项式定理学生讲义

二项式定理 【2013年高考会这样考】 1.二项式定理是高考重点考查内容之一.分值一般为5~9分.考查比较稳定,试题难度起伏不大;题目一般为选择、填空题. 2.高考主要考查二项展开式和通项的应用,具体会涉及到求特定的项或系数,以及二项式系数等问题,是高考的必考点之一。 【复习指导】 二项式定理的核心是其展开式的通项公式,复习时要熟练掌握这个公式,注意二项式定理在解决有关组合数问题中的应用. 基础梳理 1.二项式定理 (a +b )n =C 0 n a n +C 1 n a n -1 b +…+C r n a n -r b r +…+C n n b n (n ∈N * )这个公式所表示的定理叫二项式定理,右边的多项式叫(a +b )n 的 .其中的系数C r n (r =0,1,…,n )叫 系数. 式中的C r n a n -r b r 叫二项展开式的 ,用T r +1表示,即通项T r +1=C r n a n -r b r . 2.二项展开式形式上的特点 (1)项数为 . (2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为 _______ (3)字母a 按 排列,从第一项开始,次数由n 逐项减1直到零;字母b 按 排列,从第一项起,次数由零逐项增1直到n . (4)二项式的系数从C 0 n ,C 1 n ,一直到C n -1n ,C n n . 3.二项式系数的性质 (1)对称性:与首末两端“等距离”的两个二项式系数 .即C r n =C n -r n . (2)增减性与最大值:二项式系数C k n ,当k < n +1 2 时,二项式系数逐渐 .由对称性知它的后 半部分是逐渐减小的;当n 是偶数时,中间一项T 12 +n 二项式系数取得最大值;当n 是奇数时, 中间两项1 2 1 2 1n ,+++n T T 的二项式系数相等且最大。 (3)各二项式系数和:C 0 n +C 1 n +C 2 n +…+C r n +…+C n n =_____; C 0 n +C 2 n +C 4 n +…=C 1 n +C 3 n +C 5 n +…=________.

(完整版)二项式定理典型例题

1. 在二项式n x x ??? ? ? +4 21的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公 式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=?? ? ??= 前三项的.2,1,0=r 得系数为:)1(8 141C ,2121C ,123121-=====n n t n t t n n , 由已知:)1(8 1 12312-+=+=n n n t t t , ∴8=n 通项公式为 14 3168 1,82,1,02 1C +- +==r r r r r T r x T Λ为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为22 888944 8 541256 121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类 似地,100 3)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有 系数和为n 3. 2.(1)求10 3 )1()1(x x +-展开式中5x 的系数;(2)求6)21 (++ x x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式. 解:(1)10 3)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项: 用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,可以得到5 510C x ;用 3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;

高中数学二项式定理全章复习

第十一讲 二项式定理 课程类型:□复习 □预习 □习题 针对学员基础:□基础 □中等 □优秀 1.二项式定理的定义; 2.二项式定理的通项公式; 3.二项式定理的应用. 1.能用计数原理证明二项式定理(重点); 2.能记住二项式定理和二项展开式的通项公式(重点); 3.能解决与二项式定理有关的简单问题(重点、难点). 【知识与方法】 一.二项式定理的定义 在44443 444421个 n n b a b a b a b a )())(()(+???++=+中,每个括号都能拿出a 或b ,所以每个括号有2种选择,n 个括号 就是n 2种情况.22-n b a 这一项,表达的意思是_________________________;所以,22-n b a 共有________个.

(a +b )n 的二项展开式本来共有_______项,合并之后共有_______项,其中各项的系数______________叫做二项式系数. 二.二项展开式的通项 (a +b )n 的二项展开式的通项公式为__________.. 注意:1.r n r C T 与1+的关系,例如第5项,应该是4n C ; 2.二项式的展开式是按照前项降幂排列,例如10)1(+x 与10)1(x +中的第4项是不同的; 3.a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等 于n ; 4.注意正确区分二项式系数与项的系数. 三.二项式系数的基本性质 四.展开式的二项式系数和 1.(a +b )n 展开式的各二项式系数和:C 0n +C 1n +C 2n +…+C n n =_______. 2.偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 0 n +C 2 n +C 4 n +…=C 1 n +C 3 n +C 5 n +…=_______. 五.展开式的系数和 若f (x )=a 0+a 1x +a 2x 2 +…+a n x n ,则 f (x )展开式中各项系数之和为_______,奇数项系数之和为a 0+ a 2+a 4+…= 2 ) 1()1(-+f f ,偶数项系数之和为a 1+a 3+a 5+…=________________. 【例题与变式】 题型一 通项公式及其应用 类型一 二项式定理的原理应用 【例1】(2015·全国卷Ⅰ)(x 2 +x +y )5 的展开式中,x 5y 2 的系数为( ) A .10 B .20 C .30 D .60 【例2】(2018?滨州二模)52)32(--x x 的展开式中,x 的系数为________. 【变式1】(2018?濮阳一模)82017 )11(++ x x 的展开式中,x 3 的系数为________. 【变式2】(2018?龙岩模拟)已知二项式4)21 1(x x -+ ,则展开式的常数项为( ) A .-1 B .1 C .-47 D .49 类型二 单括号型 【例4】(2018?内江三模)4)2 (x x -展开式中的常数项为( )

二项式定理练习题.doc

10.3二项式定理 【考纲要求】 1、能用计数原理证明二项式定理. 2、会用二项式定理解决与二项展开式有关的简单问题. 【基础知识】 1、二项式定理:n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+---ΛΛ222110)( 二项式的展开式有1n +项,而不是n 项。 2、二项式通项公式:r r n r n r b a C T -+=1 (0,1,2,,r n =???) (1)它表示的是二项式的展开式的第1r +项,而不是第r 项 (2)其中r n C 叫二项式展开式第1r +项的二项式系数,而二项式展开式第1r +项的 系数是字母幂前的常数。 (3)注意0,1,2,,r n =??? 3、二项式展开式的二项式系数的性质 (1)对称性:在二项展开式中,与首末两项“等距离”的两项的二项式系数相等。即 m n C =m n n C - (2)增减性和最大值:在二项式的展开式中,二项式系数先增后减,且在中间取得最大值, 如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等且最大。 (3)所有二项式系数的和等于2n ,即n n n n n n n n n n C C C C C C 212210=++++++--ΛΛ 奇数项的二项式系数和与偶数项的二项式系数和相等,即 15314202-=+++=+++n n n n n n n C C C C C C ΛΛΛΛ 4.二项展开式的系数0123,,,,n a a a a a ???的性质: 对于2012()n n f x a a x a x a x =++++g g g 0123(1)n a a a a a f ++++???+=, 0123(1)(1)n n a a a a a f -+-+???+-=- 5、证明组合恒等式常用赋值法。 【例题精讲】 例1 若,,......)21(2004200422102004R x x a x a x a a x ∈++++=-求(10a a +)+(20a a +)+……+(20040a a +) 解:对于式子:,,......)21(2004200422102004R x x a x a x a a x ∈++++=- 令x=0,便得到:0a =1

相关文档
相关文档 最新文档