文档库 最新最全的文档下载
当前位置:文档库 › 实变函数sj2

实变函数sj2

实变函数sj2
实变函数sj2

实变函数 试卷B

一、解答下列各题 (40分)

1、狄莫更公式意义与作用:通过余集运算,把集合并与交运算进行转换。填写公式推广:

( ) = α C S A α, ( ) = C S α A α

2、集合列的极限 定义 设A 1、A 2 … A n …是任一集合列,若∞→n lim An = ∞

→n lim An ,称集列

{An}收敛,{An}的极限记为∞

→n lim An .其中: 上极限集合表示:∞

→n lim An ={x │ }

下极限集合表示:∞

→n lim An = {x │ }

3、无限集的特征性质:一个无限集可以与它的一个真子集对等。

这一性质常作为无限集的定义,它对于有限集来说是不能成立的,这是无限集与有限集之间的深刻差异。 举出两例。

4、Cantor 集,又称三分集,是一个构思非常巧妙的特殊点集。它具有许多重要特征,常常是集合论中构造特例的基础。列举它的三条性质。

5、R 开集的构造:R 中的开集是( )

6、列举集合的L 外测度为零的三个例子

7、给出函数f (x )的正部f + (x ) 与负部 f - (x )的定义。

f + (x ) = f - (x ) =

8、几乎处处成立的命题的定义: 设π是一个与集E 中的点x 有关的命题,如果存在E 的子集M ,有mM=0,在E \ M 上π恒成立,称π是E 上几乎处处成立的命题,记为π a.e 于E .举出两例。

二、解答下列各题 (20分)

1、作出实数集R 全体与无理数全体集T 之间一一对应.

解:

2、L-控制收敛定理: 若可测函数列{ f n(x)}满足条件:

(1)f n(x)的依测度收敛: f n(x) ? f (x),a.e. x ∈E ,

(2)存在E 上的非负可测函数F (x ),使得 | f n(x) | ≤F (x ), (n=1,2……)

则f n(x) (n=1,2……)及f (x)于E 可积,并且

?E dx x f )( = ∞→n lim ?E n dx x f )( 。

设m E <+∞,在下列括号内填写证明过程中所应用的性质,并证明等式(*)成立。 证明 :首先证明f (x)、n f (x)于E 的可积性。

因为f n (x)依测度收敛于f (x),

存在子列{f nk (x)}几乎处处收敛于f (x), ( )

由定理的已知条件,有|f nk (x)|≤F(x),

令k →∞,得 |f (x)|≤F(x) 在E 上几乎处处成立。

由F(x)的可积性,得f (x)、n f (x)于E 可积。

第二步,证明定理结论中的等式:

??=∞→E E n n dx x f dx x f )()(lim

即εε<-<->??>????dx f f dx x f dx x f N n N E n E E n |||)()(|,,,0有

m E <+∞。证明极限等式成立,即当证 0|)()(|=-?dx x f x f E k

(*) 由于|f n (x)- f (x)|≤|f n(x)|+ |f (x)| ≤2F (x )

对任意的ε>0,,存在δ>0,使当me<δ(e ?E)时,

?e dx x F )( <4

ε , ( ) δ确定后,取正数η,使η.mE <

2ε ,将E 分解为下列两个互不相交的集合的并: A n (η)=E(|fn-f|≥η), B n (η)= E —A n (η)

有m A n (η)→0, (n →∞), ( ) 因而存在n 0, 当n> n 0 时,m A n (η)< δ, 从而

?)()(ηAn dx x F <4ε , (n> n 0)

证明等式(*),有

|

?E n dx x f )(—?E

dx x f )(|≤

三、证明下列各题(40分)

1、有理数集Q是可数集。

2、设A是一个无穷集合,则必有 A*?A ,使 A*∽A,而 A\A*可数。

3、设A1、A2为R q中两个集合,A1?A2,又A1是可测集且mA1<+∞。若mA1=m*A2, 试证A2也是可测集。

4、设E?R , f(x)是E上a.e有限的可测函数,证明:存在定义在R上的一列连续函数{gn(x)} ,

lim gn(x) = f(x) a.e 于E

使得

n

实变函数习题解答(1)

第一章习题解答 1、证明 A (B C)=(A B) (A C) 证明:设x∈A (B C),则x∈A或x∈(B C),若x∈A,则x∈A B,且x∈A C,从而x∈(A B) (A C)。若x∈B C,则x∈B且x∈C,于是x∈A B且x∈A C,从而x∈(A B) (A C),因此 A (B C) ? (A B) (A C) (1) 设x∈(A B) (A C),若x∈A,则x∈A (B C),若x∈A,由x∈A B 且x∈A C知x∈B且x∈C,所以x∈B C,所以x∈A (B C),因此 (A B) (A C) ? A (B C) (2) 由(1)、(2)得,A (B C)=(A B) (A C) 。 2、证明 ①A-B=A-(A B)=(A B)-B ②A (B-C)=(A B)-(A C) ③(A-B)-C=A-(B C) ④A-(B-C)=(A-B) (A C) ⑤(A-B) (C-D)=(A C)-(B D) (A-B)=A B A-(A B)=A C(A B)=A (CA CB) =(A CA) (A CB)=φ (A CB)=A-B (A B)-B=(A B) CB=(A CB) (B CB) =(A CB) φ=A-B ②(A B)-(A C)=(A B) C(A C) =(A B) (CA CC)=(A B CA) (A B CC)=φ [A (B CC)]= A (B-C) ③(A-B)-C=(A CB) CC=A C(B C) =A-(B C) ④A-(B-C)=A C(B CC)=A (CB C) =(A CB) (A C)=(A-B) (A C) ⑤(A-B) (C-D)=(A CB) (C CD) =(A C) (CB CD)=(A C) C(B D) =(A C)-(B D)

实变函数(复试)

实变函数1 预备知识 1.1 记号与基本点集理论 1.1.1.1 点集与函数 1.1.1.2 集合的有关记号:并、交、差、余 1.1.1.3 de Morgan律 1.1.1.4 集合的乘积 1.1.1.5 函数定义 1.1.1.6 函数的复合与四则运算 1.1.1.7 特征函数 1.1.1.8 等价关系 1.1.2 直线上可数集与不可数集 1.2.1.1 有限集 1.2.1.2 △可数集 1.2.1.3 △不可数集 1.2.1.4 有理数集合的可数性 1.1.3 IR中的拓扑性质 1.1.3.1 开集 1.1.3.2 △开集构成定理 1.1.3.3 闭集 1.1.3.4 连续函数 1.2 Rirmann积分的局限性 1.2.1 Riemann可积性简介 2 测度 2.1 零测集 2.1.1 定义 2.1.2 零测集的可数并为零测集 2.1.3 Cantor集 2.2 外测度 2.2.1 定义 2.2.2 零测集的外测度为0 2.2.3 空集的外测度 2.2.4 若B A?,则) A (* m m≤ (*B ) 2.2.5 区间的外测度 2.2.6 次可数可加性 2.2.7 平移不变性 2.3 Lebesgue可测集与Lebesgue测度 2.3.1 测试与可测集定义

2.3.2 零测集与区间可测 2.3.3 可测集的性质 2.3.4 σ域 2.4 Lebesgue测度的性质 2.4.1 单调性 2.4.2 开集的测试 2.4.3 渐张(缩)集列极限集的测度 2.4.4 有限可加性 2.5 Borel集 2.5.1 σ域的性质 2.5.2 Borel集的定义 2.5.3 Borel集类与Lebesgue可测集类的关系 3 可测函数 3.1 扩充实直线 3.1.1 ] R = , -∞ [∞ 3.2 定义 3.2.1 几乎处处 3.2.2 函数几乎处处相等的概念 3.2.3 可测函数定义 3.4 性质 3.4.1 可测函数的四则运算及复合 3.4.2 f+、f-、|f|及上下限函数的可测性 3.4.3 鲁津定理 4 积分 4.1 积分定义 4.1.1 简单函数的积分 4.1.2 非负可测函数的积分 4.1.3 非负函数积分的性质,单调性,可加性,线性 4.1.4 积分为0的条件 4.2 单调收敛定义 4.2.1 Fatou引理 4.2.2 Levi引理 4.3 可积函数 4.3.1 定义 4.3.2 积分的性质 4.3.3 L构成——线性空间 4.3.4 绝对不等式 4.3.5 由积分定义测试

实变函数证明题全套整合(期末深刻复习)

1、设',()..E R f x E a e ?是上有限的可测函数,证明:存在定义在'R 上的一列连续函数 {}n g ,使得lim ()()..n n g x f x a e →∞ =于E 。 证明:因为()f x 在E 上可测,由鲁津定理是,对任何正整数n ,存在E 的可测子集n E , 使得1 ()n m E E n -< , 同时存在定义在1R 上的连续函数()n g x ,使得当n x E ∈时,有()()n g x f x =所以对任意的0η>,成立[||]n n E f g E E η-≥?-由此可得 1[||]()n n mE f g n m E E n -≥≤-< ,因此lim [||]0n n mE f g n →∞-≥=即()()n g x f x ?, 由黎斯定理存在{}n g 的子列{}k n g ,使得lim ()()k n k g x f x →∞ =,..a e 于E 2、设()(,)f x -∞∞是上的连续函数,()g x 为[,]a b 上的可测函数,则(())f g x 是可测函数。 证明:记12(,),[,]E E a b =-∞+∞=,由于()f x 在1E 上连续,故对任意实数1,[]c E f c >是 直线上的开集,设11 [](,)n n n E f c αβ∞ =>=,其中(,)n n αβ是其构成区间(可能是有限 个 , n α可 能为 -∞ n β可有为 +∞ )因此 22221 1 [()][]([][])n n n n n n E f g c E g E g E g αβαβ∞ ∞ ==>= <<= ><因为g 在2E 上可 测,因此22[],[]n n E g E g αβ><都可测。故[()]E f g c >可测。 3、设()f x 是(,)-∞+∞上的实值连续函数,则对于任意常数a ,{|()}E x f x a =>是一开集,而{|()}E x f x a =≥总是一闭集。 证明:若00,()x E f x a ∈>则,因为()f x 是连续的,所以存在0δ>,使任意(,)x ∈-∞∞, 0||()x x f x a δ-<>就有, 即任意00U(,),,U(,),x x x E x E E δδ∈∈?就有所以是 开集若,n x E ∈且0(),()n n x x n f x a →→∞≥则,由于()f x 连续,0()lim ()n n f x f x a →∞ =≥, 即0x E ∈,因此E 是闭集。 4、(1)设2121 (0,),(0,),1,2, ,n n A A n n n -==求出集列{}n A 的上限集和下限集 证明:lim (0,)n n A →∞ =∞设(0,)x ∈∞,则存在N ,使x N <,因此n N >时,0x n <<,即

实变函数试题库(5)及参考答案

实变函数试题库及参考答案(5) 本科 一、填空题 1.设,A B 为集合,则___(\)A B B A A 2.设n E R ?,如果E 满足0 E E =(其中0 E 表示E 的内部),则E 是 3.设G 为直线上的开集,若开区间(,)a b 满足(,)a b G ?且,a G b G ??,则(,)a b 必为G 的 4.设{|2,}A x x n n ==为自然数,则A 的基数a (其中a 表示自然数集N 的基数) 5.设,A B 为可测集,B A ?且mB <+∞,则__(\)mA mB m A B - 6.设()f x 是可测集E 上的可测函数,则对任意实数,()a b a b <,都有[()]E x a f x b <<是 7.若()E R ?是可数集,则__0mE 8.设 {}()n f x 为可测集E 上的可测函数列,()f x 为E 上的可测函数,如果 .()() ()a e n f x f x x E →∈,则()()n f x f x ?x E ∈(是否成立) 二、选择题 1、设E 是1 R 中的可测集,()x ?是E 上的简单函数,则 ( ) (A )()x ?是E 上的连续函数 (B )()x ?是E 上的单调函数 (C )()x ?在E 上一定不L 可积 (D )()x ?是E 上的可测函数 2.下列集合关系成立的是( ) (A )()()()A B C A B A C = (B )(\)A B A =? (C )(\)B A A =? (D )A B A B ? 3. 若() n E R ?是闭集,则 ( ) (A )0 E E = (B )E E = (C )E E '? (D )E E '= 三、多项选择题(每题至少有两个以上的正确答案) 1.设{[0,1]}E =中的有理点 ,则( ) (A )E 是可数集 (B )E 是闭集 (C )0mE = (D )E 中的每一点均为E 的内点

复旦大学数学系专业必修课介绍

【实变函数】:主要讲Lebesgue测度和积分,比较难的一门课 最重要定理:Lebesgue控制收敛定理、Fubini定理 教材:自己印的讲义,不过可以参考夏道行的《实变函数论与泛函分析》上册,这本书内容太多,所以我们学的只是它的真子集= =。。 实变函数还是很重要的,最重要的是给你一种测度和积分的观念,让你知道积分是定义在测度上面的,有个测度就可以定义一种积分;此外对后续的概率论的课程也很重要 【复变函数】:主要讲复平面上的全纯函数,比实变简单= =。。 最重要定理:Cauchy积分公式,以及全纯函数的3个等价定义,至于是哪3个大家学的时候总结吧,书上没有明确写出来 教材:《复变函数论》张锦豪、邱维元著 我旦本科的复变讲得还是比较简单的,调和函数不讲,解析延拓也不讲,以至于上数理方程课的时候老师抱怨“你们复变老师怎么什么都不讲?”= =。。 【拓扑】:主要讲点集拓扑和基本群、覆盖空间 最重要定理:万有覆盖定理;请务必把这个定理的证明完整背下来,期末考试已经连续考了两年了= =。。

教材:自己印的讲义,以前的老教材,已经不出版了 拓扑还是很重要的,相当于现代数学的语言,如果以后想继续做数学一定要搞清楚 【数学模型】:水课,不像是数学课,不讲~~ 总结:大二的专业必修课分布是非常密集的,也很累,不过大家一定要坚持下去,到了大三下,基本就没什么特别耗精力的课了,大四就基本没什么课了 大三: 【泛函分析】:主要讲无限维线性空间以及其上的有界线性泛函和线性算子,和高代的区别就是一个有限维,一个是无限维;不过无限维的情况可比有限维复杂多了,也有意思多了 最重要定理:开映射定理、闭图像定理、共鸣定理;这几个定理是相互等价的 教材:自己印的,不过我们学的也是夏道行的《实变函数论与泛函分析》下册的真子集 泛函是非常重要的数学基础课程,也有一定难度,要花时间,最好寒假预习一下 【概率论】:主要就是讲概率论的;不过概率实际上是一个全有限测度,这也是为什么我说实变要好好学的原因之一,因为从精神上来讲,概率的全部结果,都可以用实分析的方法导出

实变函数第一章答案

习题1.1 1.证明下列集合等式. (1) ()()()C A B A C B A \\=; (2) ()()()C B C A C B A \\\ =; (3) ()()()C A B A C B A \\\=. 证明 (1) )()C \B (c C B A A = )()( c c C B A A B A = c C A B A )()( = )(\)(C A B A = . (2) c C B A A )(C \B)(= )()(c c C B C A = =)\()\(C A C A . (3) )(\C)\(B \c C B A A = c c C B A )( = )(C B A c = )()(C A B A c = )()\(C A B A =. 2.证明下列命题. (1) ()A B B A = \的充分必要条件是:A B ?; (2) ()A B B A =\ 的充分必要条件是:=B A ?; (3) ()()B B A B B A \\ =的充分必要条件是:=B ?. 证明 (1) A B A B B B A B B A B B A c c ==== )()()()\(的充要条 是:.A B ? (2) c c c c B A B B B A B B A B B A ===)()()(\)( 必要性. 设A B B A =\)( 成立,则A B A c = , 于是有c B A ?, 可得.?=B A 反之若,?≠B A 取B A x ∈, 则B x A x ∈∈且, 那么B x A x ?∈且与c B A ?矛盾.

充分性. 假设?=B A 成立, 则c B A ?, 于是有A B A c = , 即.\)(A B B A = (3) 必要性. 假设B B A B B A \)()\( =, 即.\c C A B A B A == 若,?≠B 取,B x ∈ 则,c B x ? 于是,c B A x ? 但,B A x ∈ 与c C A B A =矛盾. 充分性. 假设?=B 成立, 显然B A B A \= 成立, 即B B A B B A \)()\( =. 3.证明定理1.1.6. 定理1.1.6 (1) 如果{}n A 是渐张集列, 即),1(1≥??+n A A n n 则{}n A 收敛且 ∞ =∞ →=1 ;lim n n n n A A (2) 如果{}n A 是渐缩集列, 即),1(1≥??+n A A n n 则{}n A 收敛且 ∞ =∞ →= 1 . lim n n n n A A 证明 (1) 设),1(1≥??+n A A n n 则对任意 ∞ =∈ 1 ,n n A x 存在N 使得,N A x ∈ 从而 ),(N n A x N ≥?∈ 所以,lim n n A x ∞ →∈ 则.lim 1 n n n n A A ∞→∞ =? 又因为 ∞ =∞ →∞ →??1 ,lim lim n n n n n n A A A 由此可见{}n A 收敛且 ∞ =∞ →= 1 ;lim n n n n A A (2) 当)1(1≥??+n A A n n 时, 对于, lim n n A x ∞ →∈存 )1(1≥?<+k n n k k 使得 ),1(≥?∈k A x k n 于是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0 n n A A x k ?∈ 可见.lim 1 ∞ =∞ →?n n n n A A 又因为,lim lim 1 n n n n n n A A A ∞ →∞ →∞ =?? 所以可知{}n A 收敛且 ∞ =∞ →=1 .lim n n n n A A 4.设f 是定义于集合E 上的实值函数,c 为任意实数,证明: (1) ??? ???+≥=>∞ =n c f E c f E n 1][1 ; (2) ?? ? ???+<=≤∞ =n c f E c f E n 1][1 ; (3) 若))(()(lim E x x f x f n n ∈?=∞ →,则对任意实数c 有 ?????? ->=????? ?->=≥∞→∞=∞ =∞ =∞ =k c f E k c f E c f E n n k n N n N k 1lim 1][111 . 证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+ ∈Z n 使得n c x f 1)(+ ≥成

实变函数论试题及答案

实变函数论测试题 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ == 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以 ∞ +=∈ 1 n m m A x ∞ =∞ =? 1n n m m A , 则可知n n A ∞ →lim ∞=∞ =? 1n n m m A 。设 ∞=∞ =∈1n n m m A x ,则有n ,使 ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →= ∞ =∞ =1n n m m A 。 2、设(){}2 2 2,1E x y x y =+<。求2E 在2 R 内的'2 E ,0 2E ,2E 。 解:(){}2 2 2,1E x y x y '=+≤, (){}222,1E x y x y =+< , (){}222,1E x y x y =+<。 3、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令 ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 4、试构造一个闭的疏朗的集合[0,1]E ?,12 m E =。 解:在[0,1]中去掉一个长度为1 6的开区间5 7 ( , )1212 ,接下来在剩下的两个闭区间 分别对称挖掉长度为11 6 3 ?的两个开区间,以此类推,一般进行到第n 次时, 一共去掉12-n 个各自长度为1 116 3 n -? 的开区间,剩下的n 2个闭区间,如此重复 下去,这样就可以得到一个闭的疏朗集,去掉的部分的测度为 11 11212166363 2 n n --+?++ ?+= 。

教学大纲_实变函数与泛函分析

《实变函数与泛函分析》教学大纲 课程编号:120233B 课程类型:□通识教育必修课□通识教育选修课 □专业必修课□专业选修课 □√学科基础课 总学时:48 讲课学时:48 实验(上机)学时:0 学分:3 适用对象:经济统计学 先修课程:数学分析、高等代数、空间解析几何 毕业要求: 1.应用专业知识,解决数据分析问题 2.可以建立统计模型,获得有效结论 3.掌握统计软件及常用数据库工具的使用 4.关注国际统计应用的新进展 5.基于数据结论,提出决策咨询建议 6.具有不断学习的意识 一、课程的教学目标 本课程以实变函数与泛函分析基本理论为基础,教学的目的是丰富学生的知识和培养学生解决实际问题的能力。本课程就其实质来说是方法性的,但对于应用学科的学生来说,作为授课的目的,则是知识性的,故在教学方法和内容的选择上来说,只能让学生了解那些体现实变函数与泛函分析基本特征的思想内容,冗难的证明过程应尽量避免。本课程基本目标为:能理解、掌握Lebesgue测度和Lebesgue积分,赋范空间和Hilbert空间一些基本概念、基本理论和基本方法。本课程的难点在于学生初次涉及众多的抽象概念,并且论

证的部分很多,教学中应密切结合数学分析中学到的相对来说比较直观的内容讲解,并督促学生下工夫理解。 二、教学基本要求 (一)教学内容及要求 《实变函数与泛函分析》在理解数学分析思想及基本知识和线性代数的基本知识后将其拓展到实数域上,进而讨论集合,欧氏空间,Lebesgtle测度,Lebesgue 可测函数,Lebesgue积分,测度空间,测度空间上的可测函数和积分,L^p空间,L^2空间,卷积与Fourier变换,Hilbert空间理论,Hilbert空间上的有界线性算子,Banach空间,Banach空间上的有界线算子,Banach空间上的连续线性泛函、共轭空间与共轭算子,Banach空间的收敛性与紧致性。 其中要求同学们: 1. 理解和掌握集合间的关系和集与映射间的关系,了解度量空间的相关概念和Lebesgue可测集的有关内容和性质。 2. 了解可测函数的概念,构造,以及函数列的收敛性质。 3. 了解Lebesgue积分的概念,掌握收敛定理。 4. 理解赋范线性空间和内积空间的相关知识点。 5. 理解线性算子理论和有界线性泛函理论,了解三个基本定理。 (二)教学方法和教学手段 在课堂教学中,以启发式教学为主进行课堂讲授,板书教学和多媒体教学结合。课堂上加强与学生的互动,引导学生探索讨论,激发学生的学习兴趣,调动学生的学习主动性,提高课堂学习效率。 (三)实践教学环节 本课程的实践教学环节以习题评析、实例讨论和应用研究为主,使学生能够理论联系实际,学以致用,从而逐步提高学生的知识运用能力和应用创新能力。 (四)学习要求 学生需要做好课前预习、课堂学习、课后复习、做作业等学习环节,以掌握本课程所学内容。 (五)考核方式 本课程采用闭卷考试的方式进行考核。考核成绩包括平时成绩与期末考试成

实变函数测试题1-参考答案

本试题参考答案由08统计班15号 李维提供 有问题联系 1、设 212(0,1/),(0,),0,1,2...,n n A n A n n -===n 求出集列{A }的上限集和下限集合。 2、证明:()f x 为[,]a b 上连续函数的充分必要条件是对任意实数c ,集{} ()E x f x c =≥和 {}1()E x f x c =≤都是闭集。 3、设n R E ?是任意可测集,则一定存在可测集 δ G 型集 G ,使得 E G ?,且 ()0=-E G m 4、设,n A B R ?,A B ?可测,且()m A B ?<+∞,若()**m A B m A m B ?=+, 则,A B 皆可测。 5、写出鲁津定理及其逆定理。并证明鲁津定理的逆定理。 6、设)(x f 是E 上的可测函数,G 为开集,F 为闭集,试问])(|[G x f x E ∈与 ])(|[F x f x E ∈是否是可测集,为什么? 7、设在Cantor 集0P 上定义函数()f x =0,而在0P 的余集中长为1 3n 的构成区间上定义为n (1,2,3,=L n ),试证()f x 可积分,并求出积分值。 8、设{}n f 为E 上非负可积函数列,若lim ()0,n E n f x dx →∞=? 则()0n f x ?。 9、设)(x f 是E 上. 有限的可测函数,+∞?ε,存在E 上. 有界的 可测函数)(x g ,使得 ε<>-]0|[|g f mE 。 10、求证 1 2 01 11 ln 1()∞ ==-+∑?p n x dx x x p n , (1)p >-。 解答: 1. 解:()∞=∞ →,0lim n n A ;设()∞∈,0x ,则存在N ,使x N <,因此n N >时,0x n <<, 即n A x 2∈,所以x 属于下标比N 大的一切偶指标集,从而x 属于无限多n A ,得n n A x ∞ →∈lim 又显然()∞?∞ →,0lim n n A ,所以()∞=∞ →,0lim n n A 。

实变函数试题库(4)及参考答案

实变函数试题库及参考答案(4) 本科 一、填空题 1.设,A B 为两个集合,则__c A B A B - . 2.设n E R ?,如果E 满足E E '?(其中E '表示E 的导集),则E 是 3.若开区间(,)αβ为直线上开集G 的一个构成区间,则(,)αβ满(i) )(b a ,G (ii),a G b G ?? 4.设A 为无限集.则A 的基数__A a (其中a 表示自然数集N 的基数) 5.设12,E E 为可测集,2mE <+∞,则1212(\)__m E E mE mE -. 6.设{}()n f x 为可测集E 上的可测函数列,且()(),n f x f x x E ?∈,则由______定理可知得,存在{}()n f x 的子列{}()k n f x ,使得.()() ()k a e n f x f x x E →∈. 7.设()f x 为可测集E (n R ?)上的可测函数,则()f x 在E 上的L 积分值存在且|()|f x 在E 上L 可积.(填“一定”“不一定”) 8.若()f x 是[,]a b 上的绝对连续函数,则()f x 是[,]a b 上的有 二、选择题 1.设(){},001E x x =≤≤,则( ) A 1mE = B 0mE = C E 是2R 中闭集 D E 是2R 中完备集 2.设()f x ,()g x 是E 上的可测函数,则( ) A 、()()E x f x g x ??≥??不一定是可测集 B 、()()E x f x g x ??≠??是可测集 C 、()()E x f x g x ??≤??是不可测集 D 、()() E x f x g x ??=??不一定是可测集 3.下列集合关系成立的是() A 、(\)A B B A B = B 、(\)A B B A = C 、(\)B A A A ? D 、\B A A ? 4. 若() n E R ?是开集,则 ( ) A 、E 的导集E ? B 、E 的开核E =C 、E E =D 、E 的导集E =

实变函数与泛函分析基础第三版

书籍目录: 第一篇实变函数 第一章集合 1 集合的表示 2 集合的运算 3 对等与基数 4 可数集合 5 不可数集合 第一章习题 第二章点集 1 度量空间,n维欧氏空间 2 聚点,内点,界点 3 开集,闭集,完备集 4 直线上的开集、闭集及完备集的构造 5 康托尔三分集 第二章习题 第三章测度论 1 外测度 2 可测集 3 可测集类 4 不可测集 .第三章习题 第四章可测函数 1 可测函数及其性质 2 叶果洛夫(EropoB)定理 3 可测函数的构造 4 依测度收敛 第四章习题 第五章积分论 1 黎曼积分的局限性,勒贝格积分简介 2 非负简单函数的勒贝格积分 3 非负可测函数的勒贝格积分 4 一般可测函数的勒贝格积分 5 黎曼积分和勒贝格积分 6 勒贝格积分的几何意义·富比尼(Fubini)定理第五章习题 第六章微分与不定积分 1 维它利(Vitali)定理 2 单调函数的可微性 3 有界变差函数 4 不定积分 5 勒贝格积分的分部积分和变量替换 6 斯蒂尔切斯(Stieltjes)积分 7 L-S测度与积分

第六章习题 第二篇泛函分析 第七章度量空间和赋范线性空间 1 度量空间的进一步例子 2 度量空间中的极限,稠密集,可分空间 3 连续映射” 4 柯西(CaHcLy)点列和完备度量空间 5 度量空间的完备化 6 压缩映射原理及其应用 7 线性空间 8 赋范线性空间和巴拿赫(Banach)空间第七章习题 第八章有界线性算子和连续线性泛函 1 有界线性算子和连续线性泛函 2 有界线性算子空间和共轭空间 3 广义函数 第八章习题 第九章内积空间和希尔伯特(Hilbert)空间 1 内积空间的基本概念 2 投影定理 3 希尔伯特空间中的规范正交系 4 希尔伯特空间上的连续线性泛函 5 自伴算子、酉算子和正常算子 第九章习题 第十章巴拿赫空间中的基本定理 l 泛函延拓定理 2 C[a,b)的共轭空间 3 共轭算子 4 纲定理和一致有界性定理 5 强收敛、弱收敛和一致收敛 6 逆算子定理 7 闭图像定理 第十章习题 第十一章线性算子的谱 1 谱的概念 2 有界线性算子谱的基本性质 3 紧集和全连续算子 4 自伴全连续算子的谱论 5 具对称核的积分方程 第十一章习题 附录一内测度,L测度的另一定义 附录二半序集和佐恩引理 附录三实变函数增补例题

实变函数(复习资料,带答案).doc

《实变函数》试卷一 一、单项选择题(3分×5=15分) 1、下列各式正确的是( ) (A )1lim n k n n k n A A ∞ ∞ →∞ ===??; (B )1lim n k n k n n A A ∞ ∞ ==→∞ =??; (C )1lim n k n n k n A A ∞ ∞ →∞ ===??; (D )1lim n k n k n n A A ∞ ∞ ==→∞ =??; 2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P =' (D) P P =ο 3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( )(A )若()()n f x f x ?, 则()()n f x f x → (B) {}sup ()n n f x 是可测函数(C ){}inf ()n n f x 是可测函数;(D )若 ()()n f x f x ?,则()f x 可测 5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))('x f 在],[b a 上L 可积 (D) ? -=b a a f b f dx x f )()()(' 二. 填空题(3分×5=15分) 1、()(())s s C A C B A A B ??--=_________ 2、设E 是[]0,1上有理点全体,则 ' E =______,o E =______,E =______. 3、设E 是n R 中点集,如果对任一点集T 都 _________________________________,则称E 是L 可测的 4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”) 5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为 [],a b 上的有界变差函数。 三、下列命题是否成立?若成立,则证明之;若不成立,则举反例说明.(5分×4=20分)1、设1E R ?,若E 是稠密集,则CE 是无处稠密集。 2、若0=mE ,则E 一定是可数集. 3、若|()|f x 是可测函数,则()f x 必是可测函数 4.设()f x 在可测集E 上可积分,若,()0x E f x ?∈>,则 ()0E f x >?

实变函数试题库及参考答案

实变函数试题库及参考答案(1) 本科 一、填空题 1.设,A B 为集合,则()\A B B U A B U (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是 5.设1E 、2E 是可测集,则()12m E E U 12mE mE +(用描述集合间关系的符号填写) 6.设n E ??是可数集,则*m E 0 7.设()f x 是定义在可测集E 上的实函数,如果1a ?∈?,()E x f x a ??≥??是 ,则称()f x 在E 上可测 8.可测函数列的上极限也是 函数 9.设()()n f x f x ?,()()n g x g x ?,则()()n n f x g x +? 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题 1.下列集合关系成立的是( ) 2.若n R E ?是开集,则( ) 3.设(){}n f x 是E 上一列非负可测函数,则( ) 三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( ) A E 是不可数集 B E 是闭集 C E 中没有内点 D 1m E = 2.设n E ??是无限集,则( ) A E 可以和自身的某个真子集对等 B E a ≥(a 为自然数集的基数) 3.设()f x 是E 上的可测函数,则( ) A 函数()f x 在E 上可测 B ()f x 在E 的可测子集上可测 C ()f x 是有界的 D ()f x 是简单函数的极限

4.设()f x 是[],a b 上的有界函数,且黎曼可积,则( ) A ()f x 在[],a b 上可测 B ()f x 在[],a b 上L 可积 C ()f x 在[],a b 上几乎处处连续 D ()f x 在[],a b 上几乎处处等于某个连续函数 四、判断题 1. 可数个闭集的并是闭集. ( ) 2. 可数个可测集的并是可测集. ( ) 3. 相等的集合是对等的. ( ) 4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( ) 五、定义题 1. 简述无限集中有基数最小的集合,但没有最大的集合. 2. 简述点集的边界点,聚点和内点的关系. 3. 简单函数、可测函数与连续函数有什么关系? 4. [],a b 上单调函数与有界变差函数有什么关系? 六、计算题 1. 设()[]23 0,1\x x E f x x x E ?∈?=?∈??,其中E 为[]0,1中有理数集,求 ()[] 0,1f x dx ?. 2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121 ,,00,1\,,n n n x r r r f x x r r r ∈??=?∈??L L ,求()[] 0,1lim n n f x dx →∞?. 七、证明题 1.证明集合等式:(\)A B B A B =U U 2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE = 3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集 4.设()f x 是E 上的可测函数,则对任何常数0a >,有1 [|()|]|()|E mE x f x a f x dx a ≥≤ ? 5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞ =,则 实变函数试题库及参考答案(1) 本科 一、填空题

实变函数论考试试题及答案

实变函数论考试试题及答案 证明题:60分 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ ==UI 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以I ∞ +=∈ 1 n m m A x Y I ∞=∞ =?1n n m m A , 则可知n n A ∞ →lim YI ∞ =∞ =?1n n m m A 。设YI ∞ =∞ =∈1n n m m A x ,则有n ,使I ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →=YI ∞=∞ =1n n m m A 。 2、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令I ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 3、设在E 上()()n f x f x ?,且1()()n n f x f x +≤几乎处处成立,Λ,3,2,1=n , 则有{()}n f x .收敛于)(x f 。 证明 因为()()n f x f x ?,则存在{}{}i n n f f ?,使()i n f x 在E 上.收敛到()f x 。设 0E 是()i n f x 不收敛到()f x 的点集。1[]n n n E E f f +=>,则00,0n mE mE ==。因此 ()0n n n n m E mE ∞∞==≤=∑U 。在1 n n E E ∞ =-U 上,()i n f x 收敛到()f x , 且()n f x 是单调的。 因此()n f x 收敛到()f x (单调序列的子列收敛,则序列本身收敛到同一极限)。 即除去一个零集1n n E ∞ =U 外,()n f x 收敛于()f x ,就是()n f x . 收敛到()f x 。

《实变函数与泛函分析基础》目录简介

《实变函数与泛函分析基础》目录简介内容简介 本次修订是在第二版的基础上进行的,作者根据多年来的使用情况以及数学的近代发展,做了部分但是重要的修改。《实变函数与泛函分析基础(第3版)》共11章:实变函数部分包括集合、点集、测度论、可测函数、积分论、微分与不定积分;泛函分析则主要涉及赋范空间、有界线性算子、泛函、内积空间、泛函延拓、一致有界性以及线性算子的谱分析理论等内容。 这次修订继续保持简明易学的风格,力图摆脱纯形式推演的论述方式,着重介绍实变函数与泛函分析的基本思想方法,尽量将枯燥的数学学术形态呈现为学生易于接受的教育形态;同时,补充了一些现代化的内容,如“分形”的介绍。 《实变函数与泛函分析基础(第3版)》可作为高等院校数学类专业学生的教学用书,也可作为自学参考书。 目录 第一篇实变函数 第一章集合 1 集合的表示 2 集合的运算

3 对等与基数 4 可数集合 5 不可数集合 第一章习题 第二章点集 1 度量空间,n维欧氏空间 2 聚点,内点,界点 3 开集,闭集,完备集 4 直线上的开集、闭集及完备集的构造 5 康托尔三分集 第二章习题 第三章测度论 1 外测度 2 可测集 3 可测集类 4 不可测集 第三章习题 第四章可测函数 1 可测函数及其性质 2 叶果洛夫定理 3 可测函数的构造 4 依测度收敛

第四章习题 第五章积分论 1 黎曼积分的局限性,勒贝格积分简介 2 非负简单函数的勒贝格积分 3 非负可测函数的勒贝格积分 4 一般可测函数的勒贝格积分 5 黎曼积分和勒贝格积分 6 勒贝格积分的几何意义·富比尼定理 第五章习题 第六章微分与不定积分 1 维它利定理 2 单调函数的可微性 3 有界变差函数 4 不定积分 5 勒贝格积分的分部积分和变量替换 6 斯蒂尔切斯积分 7 L-S测度与积分 第六章习题 第二篇泛函分析 第七章度量空间和赋范线性空间 1 度量空间的进一步例子 2 度量空间中的极限,稠密集,可分空间

完整word版,实变函数练习及答案

实变函数练习及答案 一、选择题 1、以下集合,( )是不可数集合。 .A 所有系数为有理数的多项式集合; .B [0,1]中的无理数集合; .C 单调函数的不连续点所成集合; .D 以直线上互不相交的开区间为元素的集。 2、设E 是可测集,A 是不可测集,0mE =,则E A U 是( ) .A 可测集且测度为零; .B 可测集但测度未必为零; .C 不可测集; .D 以上都不对。 3、下列说法正确的是( ) .A ()f x 在[,]a b L —可积?()f x 在[,]a b L —可积; .B ()f x 在[,]a b R —可积?()f x 在[,]a b R —可积; .C ()f x 在[,]a b L —可积?()f x 在[,]a b R —可积; .D ()f x 在(],a +∞R —广义可积?()f x 在[,]a b L —可积 4、设{}n E 是一列可测集,12......,n E E E ???则有( ) .A 1( )lim n n n n m E mE ∞→∞ =>U ; .B 1()lim n n n n m E mE ∞→∞==U ; .C 1 ()lim n n n n m E mE ∞→∞==I ; .D 以上都不对。 5、()()\\\A B C A B C =U 成立的充分必要条件是( ) .A A B ?; .B B A ?; .C A C ?; .D C A ?。 6、设E 是闭区间[]0,1中的无理点集,则( ) .A 1mE =; .B 0mE =; .C E 是不可测集; .D E 是闭集。 7、设mE <+∞, (){}n f x 是E 上几乎处处有限的可测函数列,()f x 是E 上几乎处处有限的可测函数,则(){}n f x 几乎处处收敛于()f x 是(){}n f x 依测度收敛于()f x 的( )

第三版实变函数论课后答案

1. 证明:()B A A B -=U 的充要条件就是A B ?、 证明:若()B A A B -=U ,则()A B A A B ?-?U ,故A B ?成立、 反之,若A B ?,则()()B A A B A B B -?-?U U ,又x B ?∈,若x A ∈,则 ()x B A A ∈-U ,若x A ?,则()x B A B A A ∈-?-U 、总有()x B A A ∈-U 、故 ()B B A A ?-U ,从而有()B A A B -=U 。 证毕 2. 证明c A B A B -=I 、 证明:x A B ?∈-,从而,x A x B ∈?,故,c x A x B ∈∈,从而x A B ?∈-, 所以c A B A B -?I 、 另一方面,c x A B ?∈I ,必有,c x A x B ∈∈,故,x A x B ∈?,从而x A B ∈-, 所以 c A B A B ?-I 、 综合上两个包含式得c A B A B -=I 、 证毕 3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式与定理9、 证明:定理4中的(3):若A B λλ?(λ∈∧),则A B λλλλ∈∧ ∈∧ ?I I 、 证:若x A λλ∈∧ ∈I ,则对任意的λ∈∧,有x A λ∈,所以A B λλ?(? λ∈∧)成立 知x A B λλ∈?,故x B λλ∈∧ ∈I ,这说明A B λλλλ∈∧∈∧ ?I I 、 定理4中的(4):()()()A B A B λλλλλλλ∈∧ ∈∧ ∈∧ =U U U U U 、 证:若()x A B λλλ∈∧ ∈U U ,则有' λ∈∧,使 ''()()()x A B A B λλλλλλ∈∧∈∧ ∈?U U U U 、 反过来,若()()x A B λλλλ∈∧ ∈∧ ∈U U U 则x A λλ∈∧ ∈U 或者x B λλ∈∧ ∈U 、 不妨设x A λλ∈∧ ∈U ,则有' λ∈∧使'''()x A A B A B λλλλλλ∈∧ ∈??U U U 、 故()()()A B A B λλλλλλλ∈∧ ∈∧ ∈∧ ?U U U U U 、 综上所述有()()()A B A B λλλλλλλ∈∧ ∈∧ ∈∧ =U U U U U 、 定理6中第二式()c c A A λλλλ∈∧∈∧ =I U 、 证:() c x A λλ∈∧ ?∈I ,则x A λλ∈∧ ?I ,故存在' λ∈∧ ,'x A λ?所以 'c c x A A λλλ∈∧ ??U 从而有()c c A A λλλλ∈∧∈∧ ?I U 、 反过来,若c x A λλ∈∧ ∈U ,则' λ?∈∧使'c x A λ?,故'x A λ?, x A λλ∈∧ ∴?I ,从而()c x A λλ∈∧ ∈I ()c c A A λλλλ∈∧ ∈∧ ∴?I U 、 证毕 定理9:若集合序列12,,,,n A A A K K 单调上升,即1n n A A +?(相应地1n n A A +?)对一切n 都成立,则 1 lim n n n A ∞ →∞ ==U (相应地)1 lim n n n A ∞ →∞ ==I 、 证明:若1n n A A +?对n N ?∈成立,则i m i m A A ∞ ==I 、故从定理8知

相关文档
相关文档 最新文档