文档库 最新最全的文档下载
当前位置:文档库 › 解三角形全章教案(整理)

解三角形全章教案(整理)

解三角形全章教案(整理)
解三角形全章教案(整理)

数学5 第一章 解三角形

第1课时

课题: §1.1.1

正弦定理

●教学目标

知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 ●教学重点

正弦定理的探索和证明及其基本应用。 ●教学难点

已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入

如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否

用一个等式把这种关系精确地表示出来? B C Ⅱ.讲授新课

[探索研究] (图1.1-1)

在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的

sin a

A =,

sin b

B =,又s i n 1c

C ==

,

A

则sin sin sin a

b

c

c A

B

C

=

=

= b c 从而在直角三角形ABC 中,

sin sin sin a

b

c

=

=

C a B

(图1.1-2)

思考:那么对于任意的三角形,以上关系式是否仍然成立?

(由学生讨论、分析)

可分为锐角三角形和钝角三角形两种情况:

如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a

b

A

B

=

, C

同理可得sin sin c

b

C B =

, b a

从而

sin sin a

b

A

B

=

sin c

C

=

A c B

(图1.1-3) 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

(证法二):过点A 作j AC ⊥

, C

由向量的加法可得 AB AC CB =+

则 ()j AB j AC CB ?=?+

B

∴j AB j AC j CB ?=?+?

j

()()0

0cos 900cos 90-=+- j AB A j CB C

∴sin sin =c A a C ,即

sin sin =

a c

A C

同理,过点C 作⊥

j BC ,可得

s i n s i n

=

b c

B C 从而

sin sin a

b

A

B

=

sin c

C

=

类似可推出,当?ABC 是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)

从上面的研探过程,可得以下定理

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即

sin sin a

b

A

B

=

sin c

C

=

[理解定理]

(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2)

sin sin a

b

A

B

=

sin c

C

=

等价于

sin sin a

b

A

B

=

sin sin c

b

C

B

=

sin a

A

=

sin c

C

从而知正弦定理的基本作用为:

①已知三角形的任意两角及其一边可以求其他边,如sin sin b A

a B

=

; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b

=。 一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。 [例题分析]

例1.在?ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形。 解:根据三角形内角和定理,

0180()=-+C A B

000180(32.081.8)=-+

066.2=; 根据正弦定理,

0sin 42.9sin81.880.1()sin32.0==≈a B b cm ;

根据正弦定理,

00

sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A

评述:对于解三角形中的复杂运算可使用计算器。

例2.在?ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。

解:根据正弦定理,

sin 28sin40sin 0.8999.20

==≈b A B a

因为00<B <0180,所以064≈B ,或0116.≈B ⑴ 当064≈B 时,

00

180()180(40

64)76

=-+≈-

+=C A B , 0

sin 20sin7630().sin40

==≈a C c cm ⑵ 当0116≈B 时,

00

180()180(40

116)24

=-+≈-

+=C A B , 0

sin 20sin2413().sin40==≈a C c cm

评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。

[补充练习]已知?ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c (答案:1:2:3)

Ⅳ.课时小结(由学生归纳总结) (1)定理的表示形式:

sin sin a

b

=

sin c

=

=

()0sin sin sin a b c

k k ++=>++;

或sin a k A =,sin b k B =,sin c k C =(0)k >

(2)正弦定理的应用范围:

①已知两角和任一边,求其它两边及一角; ②已知两边和其中一边对角,求另一边的对角。

第2课时

课题: §1.1.2

余弦定理

●教学目标

知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。 ●教学重点

余弦定理的发现和证明过程及其基本应用; ●教学难点

勾股定理在余弦定理的发现和证明过程中的作用。 ●教学过程

Ⅰ.课题导入 C

如图1.1-4,在?ABC 中,设BC=a,AC=b,AB=c,

已知a,b 和∠C ,求边c b a

c B

(图1.1-4)

Ⅱ.讲授新课 [探索研究]

用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。

由于涉及边长问题,从而可以考虑用向量来研究这个问题。 A

如图1.1-5,设CB a = ,CA b = ,AB c = ,那么c a b =- ,则 b c

(

)(

)

222

2 2c c c a b a b

a a

b b a b a b a b

=?=--=?+?-?=+-?

C a B 从而 2222cos c a b ab C =+- (图1.1-5)

同理可证 2222c o s a b c b c A =+-

2222cos b a c ac B =+-

于是得到以下定理

余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即 2222cos a b c bc A =+-

2222cos b a c ac B =+-

2222cos c a b ab C =+-

思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?

(由学生推出)从余弦定理,又可得到以下推论:

222

cos 2+-=

b c a A bc

222

cos 2+-=

a c

b B a

c 222

cos 2+-=

b a

c C ba

[理解定理]

从而知余弦定理及其推论的基本作用为:

①已知三角形的任意两边及它们的夹角就可以求出第三边; ②已知三角形的三条边就可以求出其它角。

思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?

(由学生总结)若?ABC 中,C=090,则cos 0=C ,这时222=+c a b 由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。 [例题分析]

例1.在?ABC 中,已知=a c 060=B ,求b 及A ⑴解:∵2222cos =+-b a c ac B

=222+-?cos 045

=2121)+- =8

∴=b

求A 可以利用余弦定理,也可以利用正弦定理:

⑵解法一:∵cos 2222221

,

22+-=b c a A bc

∴060.=A

解法二:∵sin 0sin sin45,=a A B b

>2.4 1.4 3.8,+=

21.8 3.6,?=

∴a <c ,即00<A <090,

∴060.=A

评述:解法二应注意确定A 的取值范围。

例2.在?ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形 解:由余弦定理的推论得:

cos 222

2+-=b c a A bc

222

87.8161.7134.6287.8161.7

+-=

??

0.5543,≈

05620'≈A ;

cos 222

2+-=c a b B ca

222

134.6161.787.82134.6161.7+-=

??

0.8398,≈ 03253'≈B ;

0000180()180(56203253)

''=-+≈-+C A B [补充练习]在?ABC 中,若222a b c bc =++,求角A (答案:A=1200)

Ⅳ.课时小结

(1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;

(2)余弦定理的应用范围:①.已知三边求三角;②.已知两边及它们的夹角,求第三边。

第3课时

课题: §1.1.3

解三角形的进一步讨论

●教学目标

知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。 ●教学重点

在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形; 三角形各种类型的判定方法;三角形面积定理的应用。 ●教学难点

正、余弦定理与三角形的有关性质的综合运用。 ●教学过程 Ⅰ.课题导入

思考:在?ABC 中,已知22a cm =,25b cm =,0133A =,解三角形。

Ⅱ.讲授新课 [探索研究]

例1.在?ABC 中,已知,

,a b A ,讨论三角形解的情况 分析:先由sin sin b A

B =可进一步求出B ; 则0180()

C A B =-+ 从而sin a C

c A

=

1.当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解。 2.当A 为锐角时,

如果a ≥b ,那么只有一解;

如果a b <,那么可以分下面三种情况来讨论: (1)若sin a b A >,则有两解; (2)若sin a b A =,则只有一解; (3)若sin a b A <,则无解。

(以上解答过程详见课本第9 10页)

评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A 为锐角且 sin b A a b <<时,有两解;其它情况时则只有一解或无解。 [随堂练习1]

(1)在?ABC 中,已知80a =,100b =,045A ∠=,试判断此三角形的解的情况。

(2)在?ABC 中,若1a =,1

2

c =

,040C ∠=,则符合题意的b 的值有_____个。 (3)在?ABC 中,a xcm =,2b cm =,045B ∠=,如果利用正弦定理解三角形有两解, 求x 的取值范围。

(答案:(1)有两解;(2)0;(3

)2x <<

例2.在?ABC 中,已知7a =,5b =,3c =,判断?ABC 的类型。 分析:由余弦定理可知

222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+???>+???<+??ABC 是锐角三角形

? (注意:是锐角A ?ABC 是锐角三角形?)

解:222753>+ ,即222a b c >+, ∴ABC 是钝角三角形?。

[随堂练习2]

(1)在?ABC 中,已知sin :sin :sin 1:2:3A B C =,判断?ABC 的类型。

(2)已知?ABC 满足条件cos cos a A b B =,判断?ABC 的类型。

(答案:(1)ABC 是钝角三角形?;(2)?ABC 是等腰或直角三角形)

例3.在?ABC 中,060A =,1b =,求sin sin sin a b c A B C ++++的值

分析:可利用三角形面积定理1

11sin sin sin 222

S ab C ac B bc A ===以及正弦定理

sin sin a

b

A

B

=

sin c

C

=

=

sin sin sin a b c

A B C

++++

解:由1sin 22

S bc A ==得2c =,

则2222cos a b c bc A =+-=3,即a

从而

sin sin sin a b c ++++2sin a

==

Ⅲ.课堂练习

(1)在?ABC 中,若55a =,16b =,且此三角形的面积S = C

(2)在?ABC 中,其三边分别为a 、b 、c ,且三角形的面积222

4

a b c S +-=,求角C

(答案:(1)060或0120;(2)045)

Ⅳ.课时小结

(1)在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形; (2)三角形各种类型的判定方法; (3)三角形面积定理的应用。

Ⅴ.课后作业

(1)在?ABC 中,已知4b =,10c =,030B =,试判断此三角形的解的情况。

(2)设x 、x+1、x+2是钝角三角形的三边长,求实数x 的取值范围。

(3)在?ABC 中,060A =,1a =,2b c +=,判断?ABC 的形状。

(4)三角形的两边分别为3cm ,5cm,它们所夹的角的余弦为方程25760x x --=的根, 求这个三角形的面积。

第4课时

课题: §2.2

解三角形应用举例

●教学目标

知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语 ●教学重点

实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 ●教学难点

根据题意建立数学模型,画出示意图 ●教学过程 Ⅰ.课题导入 1、[复习旧知]

复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形? Ⅱ.讲授新课

(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解

[例题讲解]

(2)例1、如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC=?51,∠ACB=?75。求A 、B 两点的距离(精确到0.1m)

启发提问1:?ABC 中,根据已知的边和对应角,运用哪个定理比较适当? 启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。

分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB 边。 解:根据正弦定理,得

ACB AB ∠sin =

ABC

AC ∠sin AB =

ABC ACB AC ∠∠sin sin

= ABC

ACB ∠∠sin sin 55

=

)

7551180sin(75sin 55?-?-?? = ?

?54sin 75sin 55

≈ 65.7(m)

答:A 、B 两点间的距离为65.7米

变式练习:两灯塔A 、B 与海洋观察站C 的距离都等于a km,灯塔A 在观察站C 的北偏东30?,灯塔B 在观察站C 南偏东60?,则A 、B 之间的距离为多少? 老师指导学生画图,建立数学模型。 解略:2a km

例2、如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法。

分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题。首先需要构造三角形,所以需要确定C 、D 两点。根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC 和BC ,再利用余弦定理可以计算出AB 的距离。

解:测量者可以在河岸边选定两点C 、D ,测得CD=a ,并且在C 、D 两点分别测得∠BCA=α,

∠ ACD=β,∠CDB=γ,∠BDA =δ,在?ADC 和?BDC 中,应用正弦定理得

AC = )](180sin[)sin(δγβδγ++-?+a =

)sin()sin(δγβδγ+++a BC =

)]

(180sin[sin γβαγ++-?a =

)

sin(sin γβαγ++a 计算出AC 和BC 后,再在?ABC 中,应用余弦定理计算出AB 两点间的距离 AB =

α

cos 222BC AC BC AC ?-+

分组讨论:还没有其它的方法呢?师生一起对不同方法进行对比、分析。

变式训练:若在河岸选取相距40米的C 、D 两点,测得∠BCA=60?,∠ACD=30?,

∠CDB=45?,∠BDA =60?

略解:将题中各已知量代入例2推出的公式,得AB=206

评注:可见,在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式。 Ⅳ.课时小结

解斜三角形应用题的一般步骤:

(1)分析:理解题意,分清已知与未知,画出示意图

(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型

(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解 (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.

课题: §2.2解三角形应用举例

●教学目标

知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题 ●教学重点

结合实际测量工具,解决生活中的测量高度问题 ●教学难点

能观察较复杂的图形,从中找到解决问题的关键条件 ●教学过程 Ⅰ.课题导入

提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题 Ⅱ.讲授新课 [范例讲解]

例3、AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高度AB 的方法。

分析:求AB 长的关键是先求AE ,在?ACE 中,如能求出C 点到建筑物顶部A 的距离CA ,再测出由C 点观察A 的仰角,就可以计算出AE 的长。

解:选择一条水平基线HG ,使H 、G 、B 三点在同一条直线上。由在H 、G 两点用测角仪器测得A 的仰角分别是α、β,CD = a ,测角仪器的高是h ,那么,在?ACD 中,根据正弦定理可得

AC =

)

sin(sin βαβ-a AB = AE + h = AC αsin + h

=

)

sin(sin sin βαβα-a + h

例4、如图,在山顶铁塔上B 处测得地面上一点A 的俯角α=5404'?,在塔底C 处测得A 处的俯角β=501'?。已知铁塔BC 部分的高为27.3 m,求出山高CD(精确到1 m)

师:根据已知条件,大家能设计出解题方案吗?(给时间给学生讨论思考)若在?ABD 中求CD ,则关键需要求出哪条边呢? 生:需求出BD 边。 师:那如何求BD 边呢?

生:可首先求出AB 边,再根据∠BAD=α求得。

解:在?ABC 中, ∠BCA=90?+β,∠ABC =90?-α,∠BAC=α- β,∠BAD =α.根据正弦定理,

)sin(βα-BC = )

90sin(β+?

AB

所以 AB =)

sin()90sin(βαβ-+?BC =)sin(cos βαβ

-BC

解Rt ?ABD 中,得 BD =ABsin ∠BAD=)

sin(sin cos βαα

β-BC

将测量数据代入上式,得

BD = )1500454sin(0454sin 150cos 3.27'-''

'?

??? =934sin 0454sin 150cos 3.27'

'

'???

≈177 (m)

CD =BD -BC≈177-27.3=150(m)

答:山的高度约为150米.

师:有没有别的解法呢?

例5、如图,一辆汽车在一条水平的公路上向正东行驶,到A 处时测得公路南侧远处一山顶D 在东偏南15?的方向上,行驶5km 后到达B 处,测得此山顶在东偏南25?的方向上,仰角为8?,求此山的高度CD.

师:欲求出CD ,大家思考在哪个三角形中研究比较适合呢? 生:在?BCD 中

师:在?BCD 中,已知BD 或BC 都可求出CD,根据条件,易计算出哪条边的长? 生:BC 边

解:在?ABC 中, ∠A=15?,∠C= 25?-15?=10?,根据正弦定理,

A BC sin = C

AB sin , BC =C

A A

B sin sin =??10sin 15sin 5

≈ 7.4524(km)

CD=BC ?tan ∠DBC≈BC ?tan8?≈1047(m)

答:山的高度约为1047米 Ⅴ.课后作业

1、 为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30?,

测得塔基B 的俯角为45?,则塔AB 的高度为多少m ? 答案:20+

3

3

20(m)

课题: §2.2解三角形应用举例

●教学目标

知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题 ●教学重点

能根据正弦定理、余弦定理的特点找到已知条件和所求角的关系 ●教学难点

灵活运用正弦定理和余弦定理解关于角度的问题 ●教学过程 Ⅰ.课题导入 [范例讲解]

例6、如图,一艘海轮从A 出发,沿北偏东75?的方向航行67.5 n mile 后到达海岛B,然后从B 出发,沿北偏东32?的方向航行54.0 n mile 后达到海岛C.如果下次航行直接从A 出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1?,距离精确到0.01n mile)

学生看图思考并讲述解题思路

教师根据学生的回答归纳分析:首先根据三角形的内角和定理求出AC 边所对的角∠ABC ,即可用余弦定理算出AC 边,再根据正弦定理算出AC 边和AB 边的夹角∠CAB 。 解:在?ABC 中,∠ABC=180?- 75?+ 32?=137?,根据余弦定理,

AC=ABC BC AB BC AB ∠??-+cos 222 =????-+137cos 0.545.6720.545.6722 ≈113.15 根据正弦定理,

CAB BC ∠sin = ABC

AC ∠sin sin ∠CAB = AC

ABC BC ∠sin = 15.113137sin 0.54? ≈0.3255,

所以 ∠CAB =19.0?, 75?- ∠CAB =56.0?

答:此船应该沿北偏东56.1?的方向航行,需要航行113.15n mile

补充例1、在某点B 处测得建筑物AE 的顶端A 的仰角为θ,沿BE 方向前进30m ,至点C 处测得顶端A 的仰角为2θ,再继续前进103m 至D 点,测得顶端A 的仰角为4θ,求θ的大小和建筑物AE 的高。

师:请大家根据题意画出方位图。 生:上台板演方位图(上图)

教师先引导和鼓励学生积极思考解题方法,让学生动手练习,请三位同学用三种不同方法板演,然后教师补充讲评。

解法一:(用正弦定理求解)由已知可得在?ACD 中, AC=BC=30, AD=DC=103,

∠ADC =180?-4θ, ∴θ

2sin 310=

)

4180sin(30

θ-? 。

因为 sin4θ=2sin2θcos2θ

∴ c os2θ=

2

3

,得 2θ=30? ∴ θ=15?,

∴在Rt ?ADE 中,AE=ADsin60?=15

答:所求角θ为15?,建筑物高度为15m 解法二:(设方程来求解)设DE= x ,AE=h 在 Rt ?ACE 中,(103+ x)2 + h 2=302 在 Rt ?ADE 中,x 2+h 2=(103)2 两式相减,得x=53,h=15

∴在 Rt ?ACE 中,tan2θ=x

h +310=

3

3 ∴2θ=30?,θ=15?

答:所求角θ为15?,建筑物高度为15m

解法三:(用倍角公式求解)设建筑物高为AE=8,由题意,得

∠BAC=θ, ∠CAD=2θ,

AC = BC =30m , AD = CD =103m 在Rt ?ACE 中,sin2θ=30x

--------- ① 在Rt ?ADE 中,sin4θ=

3

104, --------- ②

②÷① 得 cos2θ=

2

3

,2θ=30?,θ=15?,AE=ADsin60?=15 答:所求角θ为15?,建筑物高度为15m

补充例2、某巡逻艇在A 处发现北偏东45?相距9海里的C 处有一艘走私船,正沿南偏东75?的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?

师:你能根据题意画出方位图?教师启发学生做图建立数学模型

分析:这道题的关键是计算出三角形的各边,即需要引入时间这个参变量。 解:如图,设该巡逻艇沿AB 方向经过x 小时后在B 处追上走私船,则CB=10x, AB=14x,AC=9,

∠ACB=?75+?45=?120

∴(14x) 2= 92+ (10x) 2 -2?9?10xcos ?120 ∴化简得32x 2-30x-27=0,即x=23

,或x=-16

9(舍去)

所以BC = 10x =15,AB =14x =21,

又因为sin ∠BAC =AB BC ?120sin =21

15

?

23=1435 ∴∠BAC =3831'?,或∠BAC =14174'?(钝角不合题意,舍去), ∴3831'?+?45=8331'?

答:巡逻艇应该沿北偏东8331'?方向去追,经过1.4小时才追赶上该走私船.

Ⅳ.课时小结

解三角形的应用题时,通常会遇到两种情况:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之。(2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解。

Ⅴ.课后作业

2、我舰在敌岛A南偏西?

50相距12海里的B处,发现敌舰正由岛沿北偏西?

10的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?(角度用反三角函数表示)

第7课时

课题: §2.2解三角形应用举例

●教学目标

知识与技能:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用

●教学重点

推导三角形的面积公式并解决简单的相关题目

●教学难点

利用正弦定理、余弦定理来求证简单的证明题

●教学过程

Ⅰ.课题导入

[创设情境]

师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。在

?ABC中,边BC、CA、AB上的高分别记为h a、h

b 、h

c

,那么它们如何用已知边和

角表示?

生:h a=bsin C=csin B

h

b

=csin A=asin C

h

c

=asin B=bsina A

师:根据以前学过的三角形面积公式S=

21

ah,应用以上求出的高的公式如h a =bsin C 代入,可以推导出下面的三角形面积公式,S=2

1

absin C ,大家能推出其它的几个公式吗?

生:同理可得,S=21bcsin A, S=2

1

acsinB

师:除了知道某条边和该边上的高可求出三角形的面积外,知道哪些条件也可求出三角形的

面积呢?

生:如能知道三角形的任意两边以及它们夹角的正弦即可求解 Ⅱ.讲授新课 [范例讲解]

例7、在?ABC 中,根据下列条件,求三角形的面积S (精确到0.1cm 2) (1)已知a=14.8cm,c=23.5cm,B=148.5?; (2)已知B=62.7?,C=65.8?,b=3.16cm;

(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm

分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。 解:(1)应用S=2

1

acsinB ,得 S=

2

1

?14.8?23.5?sin148.5?≈90.9(cm 2) (2)根据正弦定理,

B

b sin =

C

c sin c = B

C b sin sin

S =

21bcsin A = 21

b 2B

A C sin sin sin A = 180?-(

B + C)= 180?-(62.7?+ 65.8?)=51.5?

S = 2

1?3.162

??

??7.62sin 5.51sin 8.65sin ≈4.0(cm 2) (3)根据余弦定理的推论,得

cosB =ca

b a

c 22

22-+

=4

.417.3823.274.417.382

22??-+

≈0.7697 sinB =

B 2cos 1-≈27697.01-≈0.6384

应用S=2

1

acsinB ,得 S ≈

2

1

?41.4?38.7?0.6384≈511.4(cm 2) 例8、如图,在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm 2)?

师:你能把这一实际问题化归为一道数学题目吗?

生:本题可转化为已知三角形的三边,求角的问题,再利用三角形的面积公式求解。 由学生解答,老师巡视并对学生解答进行讲评小结。 解:设a=68m,b=88m,c=127m,根据余弦定理的推论,

cosB=ca

b a

c 22

22-+

=68

127288681272

22??-+≈0.7532

sinB=≈-27532.010.6578

应用S=

21

acsinB S ≈2

1

?68?127?0.6578≈2840.38(m 2)

答:这个区域的面积是2840.38m 2。 例3、在?ABC 中,求证:

(1);sin sin sin 2

22222C

B

A c b a +=+ (2)2a +2b +2c =2(bccosA+cacosB+abcosC )

分析:这是一道关于三角形边角关系恒等式的证明问题,观察式子左右两边的特点,联想到用正弦定理来证明

证明:(1)根据正弦定理,可设

A a sin =

B b sin = C

c sin = k

显然 k ≠0,所以

左边=C k B

k A k c b a 2

22222222sin sin sin +=+ =C

B

A 222sin sin sin +=右边

全等三角形全章教案集

C 1 B 1 C A B A 1 课题:§11.1 全等三角形 课型:新授 教学目标 (一) 知识技能: 1、了解全等形及全等三角形的概念。 2、理解掌握全等三角形的性质。 3、能够准确辩认全等三角形的对应元素。 (二) 过程与方法 : 1、在图形变换以用操作的过程中发展空间观念,培养几何直觉。 2、在观察发现生活中的全等形和实际操作中获得全等 三角形的体验。 (三) 情感态度与价值观: 在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。 教学重点: 全等三角形的性质. 教学难点:找全等三角形的对应边、对应角. 教学方法:讲授法,讨论法,情景导入法 教学准备:多媒体,三角板 预习导航:什么是全等三角形?如何找全等三角形的对应边和对应角? 全等三角形有哪些性质? 教学过程 (一) 提出问题,创设情境 出示投影片 :1.问题:你能 发现这两个图形有什么美妙 的关系吗? 这两个图形是完全重合的. 2.那同学们能举出现实生活中能够完全重合的图形的例子吗003F 生:同一张底片洗出的同大小照片是能够完全重合的。 形状与大小都完全相同的两个图形就是全等形. 3.学生自己动手(同桌两名同学配合) 取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样. 4.获取概念 让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、 对应边,以及有关的数学符号. 记作:△ABC ≌ △ A ’B ’C ’ 符号“ ≌ ”读作“全等于” D A

(注意强调书写时对应顶点字母写在对应的位置上) (二).新知探究 利用投影片演示 1.活动:将△ABC 沿直线BC 平移得△DEF ;将△ABC 沿BC 翻折180 得到△DBC ; 将△ABC 旋转180°得△AED . 2. 议一议:各图中的两个三角形全等吗? 启示:一个图形经过平移、翻折、旋转后,位置变化了,?但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的 一种策略. 3. 观察与思考: 寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢? (引导学生从全等三角形可以完全重合出发找等量关系) 得到全等三角形的性质:全等三角形的对应边相等. 全等三角形的对应角相等. (三)例题讲解 [例1]如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,?说出这两个三角形中相等的边和角. 1. 分析:△OCA ≌△OBD ,说明这两个三角形可以重合,?思考通过怎样变换可以使两三角 形重合? 将△OCA 翻折可以使△OCA 与△OBD 重合.因为C 和B 、A 和D 是对应顶点,?所以C 和B 重合,A 和D 重合. ∠C=∠B ;∠A=∠D ;∠AOC=∠DOB .AC=DB ;OA=OD ;OC=OB . 2. 总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法. [例2]如图,已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,?指出其他的对应边和对应角. 1. 分析:对应边和对应角只能从两个三角形中找,所以需将△ABE 和△ACD 从复杂的图形 中分离出来. 2小结:找对应边和对应角的常用方法有: D C A B O D C A B E 乙 D C A B 丙 D C A B E

解三角形全章教案(整理)

数学5 第一章 解三角形 第1课时 课题: §1.1.1 正弦定理 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? B C Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的 定 义 , 有 sin a A =, sin b B =,又s i n 1c C == , A 则sin sin sin a b c c A B C = = = b c 从而在直角三角形ABC 中, sin sin sin a b c = = C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B = , C 同理可得sin sin c b C B = , b a 从而 sin sin a b A B = sin c C = A c B

新版人教版八年级上册第十一章三角形导学案(全)

第十一章三角形 与三角形有关的线段 三角形的边 学习目标: 1、明确三角形的相关概念;能正确对三角形进行分类; 2、能利用三角形三边关系进行有关计算。 新课导学: 三角形的有关概念——阅读课本第1至3页,回答以下问题: (1)三角形概念:由不在同一直线上的条线段连接所组成的图形。 (2)三角形的表示法(如图1)三角形ABC可表示为:; (3)ΔABC的顶点分别为A、、; (3)ΔABC的内角分别为∠ABC,,; (4)ΔABC的三条边分别为AB,,;或a,、; (5)顶点A的对边是,顶点B的对边分别是,顶点C的对边分别是。 三角形的分类: (1)下图中,每个三角形的内角各有什么特点 (2)下图中,每个三角形的三边各有什么特点 (3)结合以上图形你认为三角形可以如何分类试一试 ①按角分类: ②按边分类: (4)在等腰三角形中,叫做腰,另外一边叫做,两腰的夹角叫做,叫做底角。 (5)等边三角形是特殊的等腰三角形,即底边和腰的等腰三角形。 3、三角形的三边关系

第1题 问题1:如图,现有三块地,问从A 地到B 地有几种走法,哪一种走法的距离最近请将你的设计方案填写在下表中: 路线 距离 比较 (3)阅读课本第3页,填写:三角形两边的和 (4)用式子表示:BC + AC AB (填上“> ”或“ < ” ) ① BC + AB AC (填上“> ”或“ < ” ) ② AB + AC BC (填上“> ”或“ < ” ) ③ 4、例题:用一条长为18cm 的细绳围成一个等腰三角形,如果腰长是底边的2倍,那么各边的长是多少 解:设底边长为xcm ,则腰长是 cm 因为三角形的周长为 cm 所以: 所以x= cm 答:三角形的三边分别是 、 、 课堂练习: A 组 1.①图中有 个三角形,分别为 ②△ABC 的三个顶点是 、 、 ; 三个内角是 、 、 ; 三条边是 、 、 ; 2、如图中有 个三角形,用符号表示 3.判断下列线段能否组成三角形: ①4,5,6 ( )②1,2,3 ( ) ③2,2,6 ( )④8,8,2 ( ) 4、等腰三角形一腰长为6,底边长为7,则另一腰为 ,周长为 。 5、等腰三角形一边长为6,一边长为7,则第三边是 ,周长为 。 E D A 第2题 B 地 A 地

北师大版必修5高中数学第二章解三角形的实际应用举例word教案1

§3 解三角形的实际应用举例 教学目标 1、掌握正弦定理、余弦定理,并能运用它们解斜三角形。 2、能够运用正弦定理、余弦定理进行三角形边与角的互化。 3、培养和提高分析、解决问题的能力。 教学重点难点 1、正弦定理与余弦定理及其综合应用。 2、利用正弦定理、余弦定理进行三角形边与角的互化。 教学过程 一、复习引入 1、正弦定理: 2sin sin sin a b c R A B C === 2、余弦定理:,cos 22 2 2 A bc c b a -+=?bc a c b A 2cos 2 22-+= C ab b a c cos 22 2 2 -+=,?ab c b a C 2cos 2 22-+= 二、例题讲解 引例:我军有A 、B 两个小岛相距10海里,敌军在C 岛,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,为提高炮弹命中率,须计算B 岛和C 岛间的距离,请你算算看。 解:0 60=A 0 75=B ∴0 45=C 由正弦定理知 045 sin 10 60sin =BC 6545 sin 60sin 100 ==?BC 海里 例1.如图,自动卸货汽车采用液压机构,设 计时需要 计算油泵顶杆BC 的长度(如图).已知车厢的最大仰角为60°,油泵顶点B 与车厢支点A 之间的距离为1.95m ,AB 与水平线之间的夹角为 /02060,AC 长为1.40m ,计算BC 的长(保留三个有效数字). 分析:这个问题就是在ABC ?中,已知AB=1.95m ,AC=1.4m, 750 600 C B A

求BC 的长,由于已知的两边和它们的夹角,所以可 根据余弦定理求出BC 。 解:由余弦定理,得 答:顶杠BC 长约为1.89m. 解斜三角形理论应用于实际问题应注意: 1、认真分析题意,弄清已知元素和未知元素。 2、要明确题目中一些名词、术语的意义。如视角,仰角,俯角,方位角等等。 3、动手画出示意图,利用几何图形的性质,将已知和未知集中到一个三角形中解决。 练1.如图,一艘船以32海里/时的速度向正北航行,在A 处看灯塔S 在船的北偏东0 20, 30分钟后航行到B 处,在B 处看灯塔S 在船的北偏东0 65方向上,求灯塔S 和B 处的距离.(保留到0.1) 解:16=AB 由正弦定理知 020 sin 45sin BS AB = 7.745 sin 20 sin 100 ≈= BS 海里 答:灯塔S 和B 处的距离约为7.7海里 例2.测量高度问题 如图,要测底部不能到达的烟囱的高AB ,从与烟囱底部在同一水平直线上的C ,D 两处, 测得烟囱的仰角分别是0 45=α和0 60=β, C、D间的距离是12m.已知测角仪器高1.5m. 求烟囱的高。 图中给出了怎样的一个几何图形?已知什么,求什么? 分析:因为B A AA AB 11+=,又m AA 5.11= 所以只要求出B A 1即可 解:在11D BC ?中, 0001112060180=-=∠C BD ,00011154560=-=∠BD C D C B A 1.40m 1.95m 6020/ 600 ?S B A 1150 450 650200 A 1α β D 1C 1D C B A

全等三角形全章教案(华东师大版)

19.1 命题与定理 一.教学目标: 1. 知识与技能:了解命题、定义的含义;对命题的概念有正确的理解。会区分命题的条件和结论。知道判断一个命题是假命题的方法。 2.过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识。 3、、情感、态度与价值观:初步感受公理化方法对数学发展和人类文明的价值。 二.教学要点:找出命题的条件(题设)和结论。三.教学重点:找出命题的条件(题设)和结论。 四.教学难点及突破措施:命题概念的理解。让学生多说,多讲,多练习。 五.教学时间:第九周第3节 六.教法设计:讲练结合 七.教学过程 一、复习引入教师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等。根据我们已学过的图形特性,试判断下列句子是否正确。1、如果两个角是对顶角,那么这两个角相等;2、两直线平行,同位角相等;3、同旁内角相等,两直线平行;4、平行四边形的对角线相等;5、直角都相等。 二、探究新知 (一)命题、真命题与假命题学生回答后,教师给出答案:根据已有的知识可以判断出句子1、2、5是正确的,句子3、4水错误的。像这样可以判断出它是正确的还是错误的句子叫做命题,正确的命题称为真命题,错误的命题称为假命题。教师:在数学中,许多命题是由题设(或已知条件)、结论两部分组成的。题设是已知事项;结论是由已知事项推出的事项,这样的命题常可写成“如果.......,那么.......”的形式。用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论。例如,在命题1中,“两个角是对顶角”是题设,“这两个角相等”就是结论。有的命题的题设与结论不十分明显,可以将它写成“如果.........,那么...........”的形式,就可以分清它的题设和结论了。例如,命题5可写成“如果两个角是直角,那么这两个角相等。” (二)实例讲解 1、教师提出问题1(例1):把命题“三个角都相等的三角形是等边三角形”改写成“如果.......,那么.......”的形式,并分别指出命题的题设和结论。学生回答后,教师总结:这个命题可以写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”。这个命题的题设是“一个三角形的三个角都相等”,结论是“这个三角形是等边三角形”。 2、教师提出问题2:把下列命题写成“如果.....,那么......”的形式,并说出它们的条件和结论,再判断它是真命题,还是假命题。(1)对顶角相等;(2)如果a> b,b> c, 那么a=c;(3)菱形的四条边都相等;(4)全等三角形的面积相等。学生小组交流后回答,学生回答后,教师给出答案。

高中数学必修5第一章解三角形全章教案整理

课题: §1.1.1正弦定理 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中, 角与边的等式关系。 从而在直角三角形ABC 中,sin sin sin a b c A B C == 思考:那么对于任意的三角形,以上关系式是否仍然成立? 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则 sin sin a b A B =, C 同理可得 sin sin c b C B =, b a 从而sin sin a b A B =sin c C = A c B 从上面的研探过程,可得以下定理 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 sin sin a b A B =sin c C = [理解定理] (1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2)sin sin a b A B =sin c C =等价于sin sin a b A B =,sin sin c b C B =,sin a A =sin c C 从而知正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B =; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b =。 一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。 例1.在?ABC 中,已知045A =,075B =,40a =cm ,解三角形。 例2.在?ABC 中,已知20=a cm ,202b =cm ,045A =,解三角形。

第12章全等三角形学案

12.1 全等三角形 导学案 学习目标:1.知道什么是全等形、全等三角形及全等三角形的对应元素; 2.知道全等三角形的性质,能用符号正确地表示两个三角形全等; 3.能熟练找出两个全等三角形的对应角、对应边. 学习重点:全等三角形的性质. 学习难点:找全等三角形的对应边、对应角. 学习过程: 一.获取概念: 阅读教材P31-32页内容,完成下列问题: (1)能够完全重合的两个图形叫做全等形,则______________________ 叫做全等三角形。 (2)全等三角形的对应顶点: 、对应角: 、对应边: 。 (3)“全等”符号: 读作“全等于” (4)全等三角形的性质: (5)如下图:这两个三角形是完全重合的,则△ABC △ A 1B 1C 1.,.点A 与 点A 1是对 应顶点;点B 与 点 是对应顶点;点C 与 点 是对应顶点. 对应角: 对应边: 。 C 1 1A B A 1 二 观察与思考: 1.将△ABC 沿直线BC 平移得△DEF (图甲);将△ABC 沿BC 翻折180°得到△DBC (图乙); 将△ABC 旋转180°得△AED (图丙). 甲 D C A B F E 乙 D C A B 丙 D C A B E 议一议:各图中的两个三角形全等吗? 即 ≌△DEF ,△ABC ≌ ,△ABC ≌ .(书写时对应顶点字母写在对应的位置上) 启示:一个图形经过平移、翻折、旋转后,位置变化了,?但 、 都没有改变,所以平移、翻折、旋转前后的图形 ,这也是我们通过运动的方法寻求全等的一种策略. 2 . 说出乙、丙图中两个全等三角形的对应元素。

三、当堂反馈 1、如图1,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,?则这两个三角形中相等的 边 。相等的角 。 D C A B O D C A B E D C A B E O 图1 图2 图3 图4 2如图2,已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,指出其它的对应角 对应边:AB AE BE 3.已知如图3,△ABC ≌△ADE ,试找出对应边 对应角 . 4.如图4,,DBE ABC ???AB 与DB ,AC 与DE 是对应边,已知: 30,43=∠=∠A B ,求BED ∠。 解: ∵∠ A+ ∠B+∠BCA=1800 ( ), 30,43=∠=∠A B ( ) ∴∠BCA= ∵,DBE ABC ???( ) ∴∠BED=∠BCA= ( ) 5.完成教材P32练习1、2 四、概括总结 找两个全等三角形的对应元素常用方法有: 1.两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法。 2.根据位置元素来找:有相等元素,它们就是对应元素,?然后再依据已知的对应元素找出其余的对应元素. 3.全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边. 4.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角. 五.课后反思

解三角形(复习课)教学设计

解三角形(专题课)教学设计 一、教材分析 本节课是高中数学课本必修5第一章《解三角形》,而在本章中,学生应该在已有的知识基础上,通过对任意三角形的边角关系的探究,发现并掌握三角形中的边长与角度之间的关系数量关系,并认识到运用它们可以解决一些与测量和几何计算有关的实际问题。本章知识是初中解直角三角形的继续,通过本章内容的学习,学生能够系统地掌握解任意三角形的完整实施。可以从数量的角度认识三角形,使三角形成为研究几何问题的重要工具。是中学许多数学知识的交汇点,如向量、平面几何、三角函数、解析几何、立体几何等。 二、学情分析 学生已经学习并掌握了任意角及任意角的三角函数,诱导公式、三角恒等变换、正余弦定理等相关的知识。学习本节内容是对以上知识内容的综合应用,尤其是对正弦定理与余弦定理的熟练运用。通过解三角形的方法解决有关的实际问题,可以培养学生的数学应用意识,提高学生运用数学知识解决实际问题的能力,使学生逐渐形成数学的思维方式去解决问题、认识世界的意识。 三、教学目标 知识与技能:引导学生准确理解正弦定理、余弦定理、三角形面积公式,会对正余弦定理会进行简单的变形;引导学生通过观察,推导,比较等出一些结论,如射影定理,三角形边角之间的关系;会运用所学知识解三角形以及与三角形有关的实际问题。 过程与方法:引导学生通过观察,推导,比较,由特殊到一半归纳出正余弦定理以及三角形面积公式等结论。培养学生的创新意识,观察能力,总结归纳的逻辑思维能力。让学生通过学习能体会用向量作为数形结合的工具,将几何问题转化为代数问题的数学思想方法。 情感态度与价值观:面向全体学生,创造平等的教学氛围,进行高效课堂教学,激情教育,通过学生之间,师生之间的交流与讨论、合作与评价,调动学生的主动性和积极性,让学生体验学习数学的的乐趣,感受成功的喜悦,增强学生学好数学的信心,激发学生学习的兴趣。 四、教学重难点 重点:正弦定理、余弦定理的内容及基本应用。 难点:正弦定理、余弦定理的内容及基本应用;正余弦定理的变形应用;用所学知识解决解三角形问题的题型归纳总结。 五、课堂结构设计 根据教材的内容和编排的特点,为更好有效地突出重点,攻破难点,以学生的发展为本,遵照学生的认知规律,本节主要以教师为主导,学生为主体,交流讨论,互助学习为主线的指导思想,采用“6+1”高效课堂教学模式,在教师的启发引导下,学生通过独立自主思考探究、同学之间相互交流讨论合作学习为前提,以“熟练运用正余弦定理解三角形”为基本

相似三角形全章学案

27.1 图形的相似(第1课时)总 1 课时 一、教学目标:通过对事物的图形的观察、思考与分析,认识理解相似的图形。 二、重点难点:认识图形的相似、形成图形相似的概念。 三、学情分析:在现实世界中广泛存在着图形相似的现象,探究相似图形一些重要性质的过程,使学生更好的认识、描述形状相同的物体,体会相似图形在刻画现实世界中重要作用;在解决实际问题中,发展学生数学应用意识和合作交流能力。 四、自主探究 问题一: 1、相似图形的定义? 2、请举例说明我们生活中相似图形的实例。 问题二: 1、两个相似图形之间有什么关系? 2、思考 (1)放大镜下的图形和原来的图形相似吗? (2)人站在平面镜前看到的镜像及哈哈镜里看到的镜像,它们相似吗?为什么? 问题三:全等形与相似图形之间有什么关系? 五、尝试应用 1、下图中的哪组图形是相似图形() 2、观察图27-1-6中图形(a)—(g),其中哪些是与图形(1)、(2)、(3)相似的。

3、如图,在4×4的正方形网格上,有一△ABC 。现要求再画一△A’B’C’,使这两个三角形相似(非全等)。 六、补偿提高 1、(教材P37练习第2题变式题)观察下列各个图形,找出其中相似的图形。 2、如图所示,左侧上海名牌大众汽车的标志图案,与右侧A 、B 、C 、D 四个图形中相似的是( ) 3、下列是相似图形的有( ) A. 两个三角形 B. 两个正方形 C. 两个直角三角形 D. 两个矩形 4、如图,作出与方格纸中的图形相似的图形,使点A 与A ′对应,且所画的图形是原图形的2倍。 七、小结与作业 八、教学后记: 九、学生出勤: C B A

高中数学必修五解三角形教案

高中数学必修五解三角形教案 高中数学必修五解三角形教案篇一:高中数学必修5解三角形知识总结及练习 解三角形 一、知识点: 1、正弦定理:在???C中,a、b、c分别为角?、?、C的对边,R 为???C的外接圆的半径,则有abc???2R.(两类正弦定理解三角形的问题:1、已知sin?sin?sinC 两角和任意一边,求其他的两边及一角. 2、已知两角和其中一边的对角,求其他边角.) 2、正弦定理的变形公式:①a?2Rsin?,b?2Rsin?,c?2RsinC;②sin??等式中) ③a:b:c?sin?:sin?:sinC;abc,sin??,sinC?;(正弦定理的变形经常用在有三角函数的2R2R2R a?b?cabc???.sin??sin??sinCsin?sin?sinC 1113、三角形面积公式:S???C?bcsin??absinC?acsin? 222④ ?a2?b2?c2?2bccosA?2224.余弦定理:?b?a?c?2accos(本文来自:https://www.wendangku.net/doc/1412901695.html, 教师联盟网:高中数学必修五解三角形教案)B 或 ?c2?b2?a2?2bacosC??b2?c2?a2?cosA?2bc?a2?c2?b2? ?cosB?2ac?? b2?a2?c2

?cosC?2ab? (两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角.) 2225、设a、b、c是???C的角?、?、C的对边,则:①若a?b?c,则C?90?为 222222直角三角形;②若a?b?c,则C?90?为锐角三角形;③若a?b?c,则C?90?为 钝角三角形. 6.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式. 7.解题中利用?ABC中A?B?C??,以及由此推得的一些基本关系式进行三角变换的运算,如:sin(A?B)?sinC,cos(A?B)??cosC,tan(A?B)??tanC, sin A?BCA?BCA?BC?cos,cos?sin,tan?cot 222222 二、知识演练 1、ΔABC中,a=1,b=3, ∠A=30°,则∠B等于() A.60°B.60°或120°C.30°或150°D.120° 2、若(a+b+c)(b+c-a)=3bc,且sinA=2sinBcosC, 那么ΔABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形 3.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ).

全等三角形全章导学案及专题练习

鸡西市第十九中学学案

一、填空题 1._____ 的两个图形叫做全等形. 2.把两个全等的三角形重合到一起,_____叫做对应顶点;叫做对应边;_____叫做对应角.记两个三角形全等时,通常把表示_____的字母写在_____ 上. 3.全等三角形的对应边_____,对应角_____,这是全等三角形的重要性质. 4.如果ΔABC ≌ΔDEF ,则AB 的对应边是_____,AC 的对应边是_____,∠C 的对应角是_____,∠DEF 的对应角是_____. 图1-1 图1-2 图1-3 5.如图1-1所示,ΔABC ≌ΔDCB .(1)若∠D =74°∠DBC =38°,则∠A =_____,∠ABC =_____ (2)如果AC =DB ,请指出其他的对应边_____; (3)如果ΔAOB ≌ΔDOC ,请指出所有的对应边_____,对应角_____. 6.如图1-2,已知△ABE ≌△DCE ,AE =2 cm ,BE =1.5 cm ,∠A =25°,∠B =48°;那么DE =_____cm ,EC =_____cm ,∠C =_____°;∠D =_____°. 7.一个图形经过平移、翻折、旋转后,_____变化了,但__________都没有改变,即平移、翻折、旋转前后的图形 二、选择题 8.已知:如图1-3,ΔABD ≌CDB ,若AB ∥CD ,则AB 的对应边是 ( ) A .DB B .BC C .CD D .AD 9.下列命题中,真命题的个数是 ( ) ①全等三角形的周长相等 ②全等三角形的对应角相等 ③全等三角形的面积相等 ④面积相等的两个三角形全等 A .4 B .3 C .2 D .1 10.如图1-4,△ABC ≌△BAD ,A 和B 、C 和D 是对应顶点,如果AB =5,BD =6,AD =4,那么 BC 等于 ( ) A .6 B .5 C .4 D .无法确定 图1-4 图1-5 图1-6 11.如图1-5,△ABC ≌△AEF ,若∠ABC 和∠AEF 是对应角,则∠EAC 等于 ( ) A .∠ACB B .∠CAF C .∠BAF D .∠BAC 12.如图1-6,△ABC ≌ΔADE ,若∠B =80°,∠C =30°,∠DAC =35°,则∠EAC 的度数为 ( ) A .40° B .35° C .30° D .25° 三、解答题 13.已知:如图所示,以B 为中心,将Rt △EBC 绕B 点逆时针旋转90°得到△ABD ,若∠E =35°, 求∠ADB 的度数. 综合、运用、诊断 一、填空题 14.如图1-8,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 翻折180°形成的若∠1∶∠2∶∠3= 28∶5∶3,则∠α的度数为______. 图1-8 15.已知:如图1-9,△ABC ≌△DEF ,∠A =85°,∠B =60°,AB =8,EH =2. (1)求∠F 的度数与DH 的长;(2)求证:AB ∥DE . 图1-9 拓展、探究、思考 16.如图1-10,AB ⊥BC ,ΔABE ≌ΔECD .判断AE 与DE 的关系,并证明你的结论. 图1-10

(完整版)解三角形教案(精简版)

高一数学必修5第一章解三角形教学设计 ●教学过程 [理解定理] 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 sin sin a b A B =sin c C = (1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2)sin sin a b A B =sin c C =等价于sin sin a b A B =,sin sin c b C B =,sin a A =sin c C 从而知正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B =; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b = 。 一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。 [例题分析] 例题 .在ABC ?中,已知3=a , 2=b , B=450.求A 、C 和c. 解:004590B =++; 或sin a k A =,sin b k B =,sin c k C =(0)k > (2)正弦定理的应用范围: ①已知两角和任一边,求其它两边及一角; ②已知两边和其中一边对角,求另一边的对角。

第十一章三角形全章教学设计

三角形的边

检测练习一、如图,在三角形ABC中, (1)AB+BC AC AC+BC AB AB+AC BC (2)假设一只小虫从点B出发,沿三角形的边爬到点C, 有路线。路线最近,根据是:, 于是有:(得出的结 论)。 (3)下列下列长度的三条线段能否构成三角形,为什么? ①3、4、8 ②5、6、11 ③5、6、10 研读三、认真阅读课本认真看课本( P64例题,时间:5分钟) 要求:(1)、注意例题的格式和步骤,思考(2)中为什么要分情况讨论。 (2)、对这例题的解法你还有哪些不理解的? (3)、一边阅读例题一边完成检测练习三。 检测练习二 9、一个等腰三角形的周长为28cm.①已知腰长是底边长的3倍,求各边的长; ②已知其中一边的长为6cm,求其它两边的长.(要有完整的过程啊!) 解: (三)在研读的过程中,你认为有哪些不懂的问题? 四、归纳小结 (一)这节课我们学到了什么?(二)你认为应该注意什么问题? 五、强化训练 【A】组 1、下列说法正确的是 (1)等边三角形是等腰三角形 (2)三角形按边分类课分为等腰三角形、等边三角形、不等边三角形 (3)三角形的两边之差大于第三边 (4)三角形按角分类应分锐角三角形、直角三角形、钝角三角形 其中正确的是() A、1个 B、2个 C、3个 D、4个 2、一个不等边三角形有两边分别是 3、5另一边可能是() A、1 B、2 C、3 D、4 3、下列长度的各边能组成三角形的是() A、3cm、12cm、8cm B、6cm、8cm、15cm 、3cm、5cm D、6.3cm、6.3cm、12cm 【B】组 4、已知等腰三角形的一边长等于4,另一边长等于9,求这个三角形的周长。 5、已知三角形的一边长为5cm,另一边长为3cm.则第三边的长取值范围是多少? 【C】组(共小1-2题) 6、已知三角形的一边长为5cm,另一边长为3cm.则第三边的长取值范围是。 小方有两根长度分别为5cm、8cm的游戏棒,他想再找一根,使这三根游戏棒首尾相连能搭成一个三角形. (1)你能帮小方想出第三根游戏棒的长度吗?(长度为正整数) (2)想一想:如果已知两边,则构成三角形的第三边的条件是什么?

高中数学必修5《解三角形应用举例》教案

人教版必修5课题:《解三角形应用举例》 教材:人教版 教学目标: (1)学会使用测角仪和皮尺等测量工具,根据实际问题设计合适的方案来测量距离;(2)能够运用直角三角形的边与角的关系以及正弦、余弦定理等解三角形的知识,解决不可到达点的距离测量问题; (3)数学建模思想的体会与运用,知识与生活联系,解决生活中的实际问题,学以致用;(4)培养学生的小组合作交流与自主研究学习的能力; (5)指导学生学会评价分析与改进优化。 教学重点、难点: 分析测量问题的实际情景,从而找到合适的测量距离的方法。 教学方法与手段: 学生小组合作探究问题——设计解决问题的方案——交流学习——评价分析,采用问题启发教学、开放式交流讨论教学与师生合作研究等教学方式,使学生在探究式、开放式的教学思想与模式下学会学习、学会探究、学会与人合作、学会评价分析与改进优化,掌握运用课堂学科知识解决生活中的实际问题,做到学以致用。 教学内容设计: 一、情境导入 位于珠江新城的双子塔(西塔与东塔,西塔已竣工,东塔正在建)与海心塔是广州的标志性建筑,它们隔着珠江相望,并与中信广场形成广州的新中轴,其效果图如下图所示: 探究活动一:假设你处于海心塔所在的海心沙岛上,如何测量海心塔与西塔的距离?(假设海心塔与西塔的底部在同一水平线上) 测量工具为:测角仪与皮尺 首先通过示图,了解测角仪的原理与作用 测角仪常用于测量: (1)仰角与俯角(如图1);(2)方向角(如图2);(3)方位角(如图3)

图1 图2 图3 此问题在课前作为课后研究学习的资料让学生分小组合作研究,提出测量的设计方案。 二、学生设计方案交流 从学生提交的测量设计方案中选取优秀的几个方案,让学生在课堂上作简短的介绍,让同学们交流学习。 三、分析与解决问题 学生每介绍完一个设计的方案,教师要对该方案进行评价分析,指导设计组的学生进一步改进方案,并指导同学们从中学习方法、积累经验,进而总结思想方法。 交流方案一:(以张靖同学为组长来介绍) 如图4,线段CA 表示西塔,线段DB 表示海心塔 在海心塔的底部B 可测得CA 的仰角α,西塔CA 的高 度可通过电脑查得,记为h ,则由直角CAB ?得 海心塔与西塔的距离α tan h AB = 教师指导学生评价分析方案一 图4 优点:(1)简单、明了,图简单、测量简单、计算简单; (2)采用直角三角形,熟悉、方便; (3)从主视图的角度分析问题,采用线段表示物体,符合示意图的要求; (4)懂得利用电脑查询西塔的高度,多样化解决问题。 不足与改进:(1)测角仪器本身的高度没有考虑,会产生误差。改进如图5; 则两塔间的距离为 α tan d h AB -= (2)如果在AB 间有一幢较高的楼房挡住了视线,让测量者无法看到西塔的底部A ,而也不知两塔的底部在不在同一水平线上,则仰角α无法测量。改进如图6,把测量的地点改到能看到西塔底部的地方,或是岛上的其它点,或是在海心塔的顶部测俯角; 图5 图6 αcot 1h AE =,βcot 2h EB =, C A α B D h 仰角 A B C 俯角 水平线 方向角 测量点 北 西 东 南 α C A α B D h d C D α β A B E h 2 h 1

初中数学《全等三角形》主题单元教学设计以及思维导图

全等三角形 适用年级八年级 所需时间课内8课时,课外2课时。 主题单元学习概述 从知识的特点上来讲,关于全等三角形的相关知识注重学生通过动手实践发现规律,注重培养学生的思维能力,注重数学与现实的联系;从心理学上讲,八年级学生的认知正从具体运算阶段向形式运算阶段转化,适当的动手操作活动以及问题丰富的现实背景可以帮助他们能更好地掌握相关知识。 《全等三角形》的内容,主要包括全等三角形的概念、全等三角形的性质、全等三角形的判定、角平分线的性质。全等三角形是研究图形的重要工具,只有灵活运用它们,才能学好相关知识。本章开始,使学生理解证明的过程,学会用综合法证明的格式。这是本章的重点,也是难点。对角平线的性质与判

定中也不提出互逆定理。这样不致于一下给同学们过多的概念,而加大学生负担。本章中注重让学生经历三角形全等条件的探索过程,更注重对学生能力的培养与联系实际的能力。 我将采用以下的教法与学法:1、引导学生通过动手操作,探究规律;2、注重推理能力的培养,提高理性思维水平;3、联系生产生活实际,增加学习动力; 发展学生的思维能力,沟通知识与现实的联系。 主题单元规划思维导图 主题单元学习目标(

知识与技能: 1.掌握全等三角形的概念和性质,能够准确的辨认全等三角形中的对应元素。 2. 探索三角形全等的判定方法,并能灵活、综合运用。 3. 会作角的平分线,掌握角的平分线的性质并会利用它进行证明。 过程与方法: 1.经历三角形全等的探索过程,将两个三角形的六个要素随意组合针对每种情况做出分析与验证,得出三个定理,然后将其迁移到直角三角形的判定中来。 2.经历应用全等三角形及解角平分线的有关知识去解决简单的实际问题的全过程。 3.通过开放的设计题来发展思维,培养学生的创造力。 情感态度与价值观: 1.培养学习数学的兴趣,初步建立数学化归和建模的思想,积极参与探索,体验成功的喜悦。 2.通过体验抽象的数学来源于生活,同时又服务于生活。增强了学习数学的兴趣及对生活的热爱

高中数学必修解三角形教案

高中数学必修解三角形 教案 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

第2章 解三角形 正弦定理 教学要求:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题. 教学重点:正弦定理的探索和证明及其基本应用. 教学难点:已知两边和其中一边的对角解三角形时判断解的个数. 教学过程: 一、复习准备: 1. 讨论:在直角三角形中,边角关系有哪些?(三角形内角和定理、勾股定理、锐角三角函数)如何解直角三角形?那么斜三角形怎么办? 2. 由已知的边和角求出未知的边和角,称为解三角形. 已学习过任意三角形的哪些边角关系?(内角和、大边对大角) 是否可以把边、角关系准确量化? →引入课题:正弦定理 二、讲授新课: 1. 教学正弦定理的推导: ①特殊情况:直角三角形中的正弦定理: sin A =c a sin B =c b sin C =1 即c = sin sin sin a b c A B C == . ② 能否推广到斜三角形? (先研究锐角三角形,再探究钝角三角形) 当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,有sin sin CD a B b A ==,则sin sin a b A B =. 同理,sin sin a c A C = (思考如何作高?),从而 sin sin sin a b c A B C == . ③*其它证法:证明一:(等积法)在任意斜△ABC 当中S △ ABC = 111 sin sin sin 222 ab C ac B bc A ==.

初中数学 第三章 三角形 全章导学案

第四章 三角形 4.1 认识三角形(1) 学习目标:1、通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力; 2、能证明出“三角形内角和等于180°”,能发现“直角三角形的两个锐角互余”; 3、按角将三角形分成三类。 学习重难点:三角形内角和定理推理和应用。 学习设计: (一) 预习准备 (1)预习书62-65页 (2)思考①三角形的角之间的关系①三角形的分类 (3)预习作业 三角形中角的关系:(1)三角形的三个内角之和是 ;(2)直角三角形的两个锐角 三角形的分类:按角分为三类: 三角形; 三角形和 三角形。 (二) 学习过程 例1 证明三角形的内角和为180° 例2 在①ABC 中,(1)0 82,42,C A B ∠=∠=∠则= (2)5,A B C C ∠+∠=∠∠那么= (3)在①ABC 中,C ∠的外角是120°,B ∠的度数是A ∠度数的一半,求①ABC 的三个内角的度数

变式训练:在①ABC 中(1)00 78,25,B A C ∠=∠=∠则= (2)若C ∠=55°,010B A ∠-∠=,那么A ∠= ,B ∠= 例3 已知①ABC 中,::1:2:3A B C ∠∠∠=,试判断此三角形是什么形状? 变式训练:已知①ABC 中,0 90,2,A B B C ∠-∠=∠=∠试判断此三角形是什么形状? 例4 如图,在①ABC 中,090ACB ∠=,CD ①AB 于点D , 1,2?A B ∠∠∠∠与有何关系与呢 例5 如图,已知0 60,30,20,A B C BOC ∠=∠=∠=∠求的度数。 2 1D C B A O C B A

解三角形应用举例最新衡水中学自用精品教学设计

解三角形应用举例 主标题:解三角形应用举例 副标题:为学生详细的分析解三角形应用举例的高考考点、命题方向以及规律总结。 关键词:距离测量,高度测量,仰角,俯角,方位角,方向角 难度:3 重要程度:5 考点剖析: 能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题. 命题方向: 1.测量距离问题是高考的常考内容,既有选择、填空题,也有解答题,难度适中,属中档题. 2.高考对此类问题的考查常有以下两个命题角度: (1)测量问题; (2)行程问题. 规律总结: 1个步骤——解三角形应用题的一般步骤 2种情形——解三角形应用题的两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 2个注意点——解三角形应用题应注意的问题 (1)画出示意图后要注意寻找一些特殊三角形,如等边三角形、直角三角形、等腰三角形等,这样可以优化解题过程. (2)解三角形时,为避免误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.

知识梳理 1.距离的测量 背景可测元素图形目标及解法 两点均可到达a,b,α 求AB:AB= a2+b2-2ab cos α 只有一点可到达b,α,β 求AB:(1)α+β+B=π; (2) AB sin β= b sin B 两点都不可到达a,α,β, γ,θ 求AB:(1)△ACD中,用 正弦定理求AC; (2)△BCD中,用正弦定理 求BC; (3)△ABC中,用余弦定理 求AB 2.高度的测量 背景可测元素图形目标及解法 底部可 到达 a,α求AB:AB=a tan_α 底部不可到达a,α,β 求AB:(1)在△ACD中用正弦 定理求AD;(2)AB=AD sin_β 3.实际问题中常见的角 (1)仰角和俯角 在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角(如图1).

相关文档
相关文档 最新文档