文档库 最新最全的文档下载
当前位置:文档库 › ANSYS复合材料仿真分析及其在航空领域的应用

ANSYS复合材料仿真分析及其在航空领域的应用

ANSYS复合材料仿真分析及其在航空领域的应用
ANSYS复合材料仿真分析及其在航空领域的应用

ANSYS复合材料仿真分析及其在航空领域的应用

复合材料,是由两种或两种以上性质不同的材料组成。主要组分是增强材料和基体材料。复合材料不仅保持了增强材料和基体材料本身的优点,而且通过各相组分性能的互补和关联,获得优异的性能。复合材料具有比强度大、比刚度高、抗疲劳性能好、各向异性、以及材料性能可设计的特点,应用于航空领域中,可以获得显著的减重效益,并改善结构性能。目前,复合材料技术已成为影响飞机发展的关键技术之一,逐渐应用于飞机等结构的主承力构件中,西方先进战斗机上复合材料使用量已达结构总重量的25%以上。飞机结构中,复合材料最常见的结构形式有板壳、实体、夹层、杆梁等结构。板壳结构如机翼蒙皮,实体结构如结构连接件,夹层结构如某些薄翼型和楔型结构,杆梁结构如梁、肋、壁板。此外,采用缠绕工艺制造的筒身结构也可视为层合结构的一种形式。一.复合材料设计分析与有限元方法复合材料层合结构的设计,就是对铺层层数、铺层厚度及铺层角的设计。采用传统的等代设计(等刚度、等强度)、准网络设计等设计方法,复合材料的优异性能难以充分发挥。在复合材料结构分析中,已经广泛采用有限元数值仿真分析,其基本原理在本质上与各向同性材料相同,只是离散方法和本构矩阵不同。复合材

料有限元法中的离散化是双重的,包括了对结构的离散和每一铺层的离散。这样的离散可以使铺层的力学性能、铺层方向、铺层形式直接体现在刚度矩阵中。有限元分析软件,均把增强材料和基体复合在一起,讨论结构的宏观力学行为,因此可以忽略复合材料的多相性导致的微观力学行为,以每一铺层为分析单元。二.ANSYS复合材料仿真技术及其在航空领域应用复合材料具有各向异性、耦合效应、层间剪切等特殊性质,因此复合材料结构的精确仿真,已成为现代航空结构的迫切需求。许多CAE程序都可以进行复合材料的分析,但是大多程序并没有提供完备的功能,使复合材料的精确仿真难以完成。如有些程序不提供非线性分析能力,有些不提供层间剪切应力的求解能力,有些不提供考虑材料失效破坏继续计算能力等等。ANSYS作为一款著名的商业化大型通用有限元软件,广泛应用于航空航天领域,为飞机结构中的复合材料层合结构分析提供了完整精确的解决方案。1.复合材料的有限元模型建立针对飞机结构中的复合材料层合板、梁、实体以及加筋板等结构类型,ANSYS提供一种特殊的复合材料单元———层单元,以模拟各种复合材料,铺层数可达250层以上,并提供一系列技术模拟各种复杂层合结构。复合材料层单元支持非线性、振动特性、热应力、疲劳断裂等各种结构和热的分析功能和算法。2.复合材料的层合结构定义:■铺层结构:ANSYS对于每一铺层可先定义材料性质、铺层角、铺层厚度,然后通过由下到上的顺序逐层叠加组合为复合材料层合结构;也可以通过直接输入材料本构矩阵来定义复合材料性质。■板壳和梁单元截面形状:ANSYS利用截面形状工具可定义矩形、I型、槽型等各种形式;还可以定义各种函数曲线以模拟变厚度截面。3.特殊层合结构的模拟:?变厚度板壳铺层切断:将切断的某铺层厚度定义为零,即可模拟铺层切断前后的板壳实际形状。(图1上)?不同铺层板壳的节点协调:ANSYS板壳层单元的节点均可偏置到任意位置,使不同铺层数板壳的节点在中面或顶面、底面对齐。(图1下)?蜂窝/泡沫夹层结构:ANSYS通过板壳层单元来模拟夹层结构的特性,夹层面板和芯子可以是不同材料。(图2)?板-梁-实体组合结构:ANSYS将实体、板壳与梁等不同类型单元通过MPC技术相联系,各类单元的节点不需要重合并协调,便于飞机等复杂结构模型的处理。4.复合材料有限元模型的检查:复合材料结构模型建立后,可以将板壳和梁单元显示为实际形状,还可以通过图形显示和列表直观地观察铺层厚度、铺层角度和铺层组合形式,方便模型的检查及校对。(图3)5.复合材料层合结构分析ANSYS层单元支持各种静强度刚度、非线性、稳定性、疲劳断裂和振动特性等结构分析。完成分析后,可以图形显示或输出每个铺层及层间的应力和应变等结果(虽然一个单元包含许多铺层),根据这些结果可以判断结构是否失效破坏和满足设计要求。6.复合材料失效准则ANSYS已经预定义了三种复合材料破坏准则来评价复合材料结构安全性,包括最大应变/应力失效准则,蔡-吴(Tsai-Wu)准则。每种强度准则均可定义与温度相关,考虑不同温度下的材料性能。另外,用户也可自定义最多达六种的

失效准则,对特殊复合材料进行失效判断。7.复合材料结构层间剪切应力:复合材料层合结构的层间剪切应力,几乎完全依靠层间界面的树脂基体承载,很容易导致层合结构的分层破坏,是整个结构的薄弱环节。通常的有限元分析依据经典的层合板理论,各铺层按平面应力状态计算,不考虑层间应力,不够精确。ANSYS可以利用各铺层单元在厚度方向上的叠加来模拟层合结构,弥补了经典理论的不足,可以精确地求解层间应力。8.复合材料结构热应力分析:复合材料热膨胀系数的各向异性和铺层方向的不对称造成的耦合效应,使复合材料结构即使均匀升温也会在结构内部产生热应力。复合材料这一特性与普通均匀材料大为不同,因此复合材料结构的热应力分析必须引起重视。

■ANSYS的结构-热耦合分析,可以对复合材料在热环境下的热膨胀应力、结构固化成形过程中100℃~200℃的温差而引起的结构固化变形和残余应力进行分析。■ANSYS程序中的材料性质、强度准则均可以定义为随温度变化,以此来引入温度变化对结构物理性能的影响。三.复合材料结构屈曲失稳实例 1.工程背景:飞机的复合材料结构中,板加筋结构形式最为常见,如壁板、隔框、翼盒等。通常,飞机的复合材料加筋板的厚度较薄,因此结构分析不仅仅是判断材料的失效破坏和层间剪切破坏,还应该关注结构是否屈曲失稳而破坏。利用ANSYS对某复合材料加筋板(图4)的屈曲特性进行分析,并确定结构的极限承载能力。结构壁板和筋条的厚度很小,为典型的板-梁结构,选用ANSYS复合材料板壳单元,同时将单元节点偏置以协调铺层数的变化导致的板结构错层。2.复合材料结构屈曲失稳理论复合材料结构的屈曲分析可分为特征值屈曲和非线性屈曲。通常特征值屈曲所得出的结果偏大,不够安全,实际工程中应用较少。非线性屈曲分析可以考虑结构大变形、结构初始缺陷、复合材料失效等实际工况,从而获得更为

精确的屈曲临界载荷。特别是结构屈曲失稳之前,部分复合材料有可能已经失效破坏,结构的应力将重新分布并且刚度有所减弱。因此考虑复合材料失效后,结构屈曲荷载将有所降低并接近实际。3.屈曲分析结果首先进行特征值屈曲分析,屈曲临界荷载为808.0KN。但是,在考虑结构几何大变形、应力刚化等实际情况后,非线性屈曲的临界荷载降低为770.1KN。再引入复合材料结构失效对非线性屈曲的影响,因为结构部分失效导致应力重分布和刚度减弱,屈曲临界载荷更降低为656.2KN(图5)。计算结果与实验结果只相差5%。4.应用小结计算过程考虑了结构非线性及材料失效对屈曲临界荷载的影响,实际结果为656.2KN,与试验结果相差仅5%,结果比较精确。而特征值屈曲分析和不考虑材料失效影响的非线性屈曲临界载荷的计算,被证明是不够保守的,难以为复合材料结构屈曲的设计提供准确依据。四.结论飞机等航空结构中的复合材料结构仿真分析,越来越强调分析精度和贴近工程实际,如要求计算复合材料层间剪切效应、固化成形后的残余热应力、材料部分失效后的结构屈曲失稳等。ANSYS通过对复合材料的铺层定义材料、铺层角以及铺层厚度,来组成“层单元”,以模拟各类航空复合材料层合结构,可以精确地分析材

料的失效破坏、层间剪切效应。另外还可以满足飞机结构中复合材料的非线性屈曲失稳、振动特性分析、以及结构的热效应分析等更多仿真需求。

(注:素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与关注!)

复合材料在飞机上的应用

新视点 NEW VIEWPOINT 64航空制造技术2006年第3期 目前,复合材料在飞机上的应用已非常广泛,但在20世纪90年代初复合材料市场曾一度陷入低靡,究其原因是由于复合材料设计制造的复杂性造成了成本壁垒,人们开始认识到只有重视性能和成本的平衡,才能使复合材料展现辉煌。随着复合材料先进技术的成熟,使其性能最优和低成本成为可能,大大推动了复合材料在飞机上的广泛应用。本文在介绍国外复合材料在飞机上广泛应用的基础 上,对作为技术保障的数字化设计技术和先进制造技术进行了分析研究。从国外情况看,各种先进的飞机都与复合材料的应用密不可分,复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一。下面介绍复合材料在飞机上应用的发展趋势。 (1) 复合材料在飞机上的用量日益增多。 复合材料在飞机上 的应用评述 北京航空航天大学机械工程及自动化学院 张丽华 范玉青 复合材料用量通常用其所占飞机机体结构重量的百分比表示,纵观复合材料在民机上的发展情况发现,无论是波音公司还是空中客车公司,随着时间推移,复合材料的用量都呈增长趋势。最具代表意义的是空客公司的A380客机和波音公司最新推出的787客机。在A380上仅碳纤维复合材料的用量就达32t左右,占结构总重的15%,再加上其他种类的复合材料,估计其总用量可达25%左右。787 上初步估计复合材料用量可达50%,远远超过了A380。另外,复合材料 在军机和直升机上的用量也有同样的 增长趋势。(2) 应用部位由次承力结构向主承力结构过渡。 飞机上最初采用复合材料的部位有舱门、整流罩、安定面等次承力结 构,目前已广泛应用于机翼、机身等部位,向主承力结构过渡。从1982年开始用复合材料制造飞行操纵面(如A310-200飞机的升降舵和方向舵),空客公司在主承力结构上使用复合材 料已有20多年的经验。在A380上采用的碳纤维复合材料大型构件主要有中央翼盒、翼肋、机身上蒙皮壁板、机身后段、机身尾段、地板梁、后承压框、垂尾等,大量的主承力结构都采用了复合材料。787复合材料的应用则更让世人瞩目,其机身和机翼部位采用碳纤维增强层合板结构代替铝合金;发动机短舱、水平尾翼和垂直尾翼、舵面、翼尖等部位采用碳纤维增强夹芯板结构;机身与机翼衔接处的整流蒙皮采用玻璃纤维增强复合材料。与A380相比其用量更大,主承载部位的应用更加广泛,这将是世界上采用复合材料最多的大型商用喷气客机。 (3) 复合材料在复杂曲面构件上的应用越来越多。 飞机上复杂曲面零件很多,复合材料的应用也越来越多,比如A380机身19段、19.1段和球面后压力隔框等均为采用复合材料的具有复杂曲 复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一;复合材料构件的整体成型、共固化技术不断进展,复杂曲面构件不断扩大应用;复合材料的数字化设计,设计、制造一体化,以及基于三维模型铺层展开的专用设计/制造软件等技术的开发是先进复合材料发展的基本技术保障 复合材料在飞机上的应用

航空航天复合材料技术发展现状

航空航天复合材料技术发展现状 2008-11-25 中国复合材料在线[收藏该文章] 材料的水平决定着一个领域乃至一个国家的科技发展的整体水平;航空、航天、空天三大领域都 对材料提出了极高的要求;材料科技制约着宇航事业的发展。 固体火箭发动机以其结构简单,机动、可靠、易于维护等一系列优点,广泛应用于武器系统及航 天领域。而先进复合材料的应用情况是衡量固体火箭发动机总体水平的重要指标之 一。在固体发动机研制及生产中尽量使用高性能复合材料已成为世界各国的重要发展目标, 目前已拓展到液体动力领域。科技发达国家在新材料研制中坚持需求牵引和技术创新相结合,做到了需求牵引带动材料技术发展,同时材料技术创新又推动了发动机水平提高的良性发展。 目前,航天动力领域先进复合材料技术总的发展方向是高性能、多功能、高可靠及低成本。 作为我国固体动力技术领域专业材料研究所,四十三所在固体火箭发动机各类结构、功能复合材料研究及成型技术方面具有雄厚的技术实力和研究水平,突破了我国固体火箭发动 机用复合材料壳体和喷管等部件研制生产中大量的应用基础技术和工艺技术难关,为我国的 固体火箭发动机事业作出了重要的贡献,同时牵引我国相关复合材料与工程专业总体水平的 提高。建所以来,先后承担并完成了通讯卫星东方红二号远地点发动机,气象卫星风云二号 远地点发动机,多种战略、战术导弹复合材料部件的研制及生产任务。目前,四十三所正在 研制多种航天动力先进复合材料部件,研制和生产了载人航天工程的逃逸系统发动机部件。 二、国内外技术发展现状分析 1、国外技术发展现状分析 1.1结构复合材料 国外发动机壳体材料采用先进的复合材料,主要方向是采用炭纤维缠绕壳体,使发动机质量比有较大提高。如美国“侏儒”小型地地洲际弹道导弹三级发动机(SICBM-1 、-2、- 3 )燃烧室壳体由IM-7炭纤维/HBRF-55A 环氧树脂缠绕制作,IM-7炭纤维拉伸强度为 5 300MPa , HBRF-55A 环氧树脂拉伸强度为84.6MPa,壳体容器特性系数(PV/Wc )>3 9KM ;美国的潜射导弹“三叉戟II (D5 )”第一级采用炭纤维壳体,质量比达0.944,壳 体特性系数43KM,其性能较凯芙拉/环氧提高30% 国外炭纤维的开发自八十年代以来,品种、性能有了较大幅度改观,主要体现在以下两个方 面:①性能不断提高,七、八十年代主要以3000MPa的炭纤维为主,九十年代初普遍使用 的IM7、IM8纤维强度达到5300MPa,九十年代末T1000纤维强度达到7000MPa,并已开始工程应用;②品种不断增多,以东丽公司为例,1983年产的炭纤维品种只有4种,至U 1995 年炭纤维品种达21种之多。不同种类、不同性能的炭纤维满足了不同的需要,为炭纤维复合材料的广泛应用提供了坚实的基础。 芳纶纤维是芳族有机纤维的总称,典型的有美国的Kevlar、俄罗斯的APMOC,均已在多 个型号上得到应用,如前苏联的SS24、SS25洲际导弹。俄罗斯的APMOC纤维生产及其应 用技术相当成熟,APMOC纤维强度比Kevlar高38%、模量高20%,纤维强度转化率已达到75%以上。PBO纤维是美国空军1970年开始作为飞机结构材料而着手研究的产品,具有刚

Ansys在复合材料结构优化设计中的应用

A一13玻璃钢学会第十六届玻璃钢/复合材料学术年会论文集2006年 Amys在复合材料结构优化设计中的应用 覃海艺,邓京兰 (武汉理工大学材料科学与工程学院,武汉430070) 摘要:优化设计方法在复合材料结构设计中起着十分重要的作用。本文详细介绍了Ansys两种优化设计方法.目标函数最优设计和拓扑优化设计的过程,并运用目标函数最优设计方法对复合材料夹层结构进行了最优结构层合设计和运用拓扑优化设计方'法对玻璃钢圆凳进行了最佳形状设计。结果证明Ansys优化设计方法在复合材料结构设计中的有效性。 关键词:Ansys;优化设计方法;目标函数最优设计;拓扑优化设计;复合材料 l前言 复合材料是由两种或多种性质不同的材料组成,具有比强度、比刚度高、耐疲劳性能好及材料与性能可设计强等特点,广泛应用于汽车、建筑、航空、卫生等领域。复合材料通过各相组分性能的互补和关联获得优异的性能,因此复合材料各组分之间及材料整体结构的合理布置,充分发挥复合材料的性能已成为设计的关键所在…。Ansys软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。优化设计是一种寻找确定最优设计方案的技术,Ansys强大的优化设计功能已广泛地应用于复合材料制品的结构设计心J。 2Ansys中的优化设计方法【3娟j 2.1目标函数最优设计 “最优设计”是指满足所有的设计要求,而且所需(如重量、面积、体积、应力、费用等)的方案最小,即目标函数值最小。也就是说,最优设计方案是一个最有效率的方案。在Ansys中设计方案的任何方面都是可以优化的,如尺寸(如厚度)、形状(如过渡圆角的大小)、支撑位置、制造费用、自然频率、材料特性等。实际上,所有可以参数化的Ansys选项都可以作优化设计。目标函数最优设计是通过改变设计变量(自变量)的数值,使状态变量(设计变量的函数,因变量)在满足一定条件时,目标函数(因设计变量的改变而有所改变)的值最小。 目标函数最优设计的一般步骤为①生成循环所用的分析文件,该文件须包括整个分析的过程,并满足以下条件:参数化建立模型(PREIy7),对模型进行初次求解(SOLUTION),对初次求解的结果提取并指定状态变量和目标函数(POSTl/POST26);②在Ansys数据库里建立与分析文件中变量相对应的参数,这一步是标准的做法,但不是必须的(BEGIN或OPT);③进入OPT优化处理器,指定要进行优化设计循环的分析文件(oPT);④声明优化变量:指定哪些参数是设计变量,哪些参数是状态变量,哪个参数是目标函数;⑤选择优化工具或优化算法:优化算法是使单个函数(目标函数)在控制条件下达到最小值的传统算法,包括零阶算法和一阶算法;⑥指定优化循环控制方式,每种优化方法和工具都有相应的循环控制参数,比如最大迭代次数等;⑦进行优化分析;⑧查看设计序列结果(OPT)和后处理(POSTl/POST26)。 2.2拓扑优化设计 拓扑优化是指形状优化,有时也称为外型优化。拓扑优化的目标是寻找承受单载荷或多作者简介:覃海艺(1980?),男,在读硕士。 49

飞机用复合材料的低成本制造设备及工艺

FORUM 论坛 航空制造技术年第期 飞机用复合材料的低成本制造 设备及工艺 中国航空工业发展研究中心 陈亚莉 本文分析了复合材料低成本制造工艺及设备。指出在 降低复合材料成本方面,制造技术有着广泛机遇,其关键是自动化设备。在低成本工艺方面,非热压罐技术潜力巨大,代表着未来的发展方向。 Low -Cost M anuf act ur i ng Equi pm ent and Pr ocess of Com posi t es f or A i r cr af t 波音787已开始交付用户,A 350的格局已定,A320和波音737将重新换发,F-35正进入20年生产初期。飞机将成为下一个10年制造的主角,且将不再是以金属为主要结构的装备。材料系统的选择以及结构设计业已确定,金属及复合材料之间的平衡也已肯定下来。在这种情况下,制造技术将进一步提高生产效率和降仍有待改进。例如花大量时间来置 入紧固件,由于紧固件类别不同,需要一方面看图纸,在蒙皮上做标记,然后再将紧固件置入蒙皮。 飞机复合材料结构正在开发一系列缩短周期、降低成本的先进技术。例如,从三维设计数据库中自动取出零件的几何尺寸数据是飞机制造商的优先项目。当飞机产量大或要求制造精度高时,需要自动化设备进入生产车间进行铺层、切削加工、钻孔及在生产线上进行检验。 铺层自动化 对于复合材料制造来说,自动化是关键。碳纤维可提供所需的性能改进,但产量必须提高,成本才能降低。波音787、A 350以及F -35投产时就必须提高生产率。随着从手工铺层到自动化铺层,碳纤维在模具上的铺层就成了关键性的推手。 低成本,即使材料及结构方面大的决策已定,在制造方面仍有充分的改进空间。 由于空客及波音已将下一代窄体飞机推迟到2020年以后,复合材料与金属材料之争已冷却下来,即使 这样,先进材料及制造技术的发展仍 有机遇,只是不同飞机的机遇不同罢了。 例如,对于A 320neo 和波音737MAX 这样的飞机,要改变材料的 机遇有限,而结构及技术仍将采用标准形式。但对于A 350-1000以及787-10仍有更多的机遇采用新的制造技术。目前仍处在设计中的波音777X 有可能做更多的变化,例如,采用碳纤维复合材料机翼。这些飞机 在结构及材料决定之后,仍有大量降低及减重以及工艺改进工作。又如,F-35仍在开发中,重点放在制造改进上, 大量的手工劳动以及质量问题 陈亚莉中国航空工业发展研究中心研究员。长期从事航空材料情报研究工作, 曾获先进国防科技情报工作者等称 号。 44 201219

复合材料在飞机上的应用

复合材料在飞机航空中的应用与发展 学校:西安航空职业技术学院 专业:金属材料与热处理技术 姓名:郭远 摘要 复合材料在飞机上的用量和应用部位已成为衡量飞机结构先进性的重要指标之一;复合材料构件的整体成型、共固化技术不断进展,复杂曲面构件不断扩大应用;复合材料的数字化设计,设计、制造一体化,以及基于三维模型铺层展开的专用设计/制造软件等技术的开发是先进复合材料发展的基本技术保障. 复合材料在飞机航空中的应用与发展 复合材料大量用于航空航天工业和汽车工业,特别是先进碳纤维复合材料用于飞机尤为值得注意。不久前,碳纤维复合材料只能在军用飞机用作主结构,但是,由于技术发展的进步,先进复合材料已开始在民航客机止也应用作主结构,如机身、机翼等。 一.飞机结构用复合材料的优势 现今新一代飞机的发展目标是“轻质化、长寿命、高可靠、高效能、高隐身、低成本”。而复合材料正具备了上面的几个条件,成为实现新一代飞机发展目标的重要途径。

复合材料具有质轻、高强、可设计、抗疲劳、易于实现结构/功能一体化等优点,因此,继铝、钛、钢之后迅速发展成为四大飞机结构材料之一。 复合材料在飞机结构上的应用首先带来的是显着的减重效益,复合材料尤其是碳纤维复合材料其密度仅为cm3左右,如等量代替铝合金,理论上可有42%的减重效果。 近年来随着复合材料技术的深入研究和应用实践的积累,人们清楚地认识到:复合材料在飞机结构上应用效益绝不仅仅是减重,而且给设计带来创新舞台,通过合理设计,还可提供诸如抗疲劳、抗振、耐腐蚀、耐久性和吸透波等其它传统材料无法实现的优异功能特性,可极大地提高其使用效能,降低维护成本,增加未来发展的潜力和空间。尤其与铝合金等传统材料相比,可明显减少使用维护要求,降低寿命周期成本,特别是当飞机进入老龄化阶段后效果更明显,据说B787较之B767机体维修成本会降低30%,这在很大程度上应归功于复合材料的大量应用。同时,大部分复合材料飞机构件可以整体成型,大幅度减少零件数目,减少紧固件数目,减轻结构质量,降低连接和装配成本,从而有效地降低了总成本,如F/A-18E/F零件数减少42%,减重158kg。复合材料整体成型技术还可消除缝隙、台阶和紧固件,无疑对提高军机的隐身性能也具有非常重要的贡献。 二.飞机结构用复合材料的发展过程 先进复合材料于上世纪60年代中期一问世,即首先用于飞行器结构上。30多年来先进复合材料在飞机结构上应用走过了一条由小到大、由次到主、由局部到整体、由结构到功能、由军机应用扩展到民机应用的发展道路。 1.复合材料在军用飞机上的发展过程

中国航空工业发展历程

已有半个多世纪发展历史的新中国航空工业,成功研制生产了上万架歼击机、强击机、轰炸机、歼击轰炸机、直升机、侦察机、教练机、无人驾驶飞机、支线客机和通用飞机,为国防现代化和经济建设做出了突出贡献。 中国航空工业管理部门也几经变化。 从最初设立的二机部四局、三机部、航空工业部、直到后来的航空航天部。1993年,航空航天部撤销,分别组建中国航空工业总公司和中国航天工业总公司。 为了增强企业活力和竞争力,加速国防现代化建设,1999年,中共中央、国务院、中央军委根据国际国内形势发展和国防科技工业现状,决定对国防科技工业管理体制进行重大改革。在核工业、航天、航空、船舶、兵器五大军工总公司的基础上,分立组建十大军工集团。中国航空工业总公司一分为二,分别组建了中国航空工业第一集团公司和中国航空工业第二集团公司。 两大航空工业集团自1999年7月1日成立以来,不断加大改革力度,更新观念,转变职能,使集团公司成为自主经营、自负盈亏的经济实体。在全体员工的积极努力下,两大集团组建以来,经济规模成倍增长,自主创新取得了一系列重大突破,一大批先进航空武器装备研制成功并投入批量生产,民用飞机和非航空产品研制也取得了一系列重大突破。 但是,随着中国飞机市场的需求急剧扩大,以及大飞机战略的实施,现行的航空工业体制已经有些不大适应。 国务院发展研究中心的专家分析说,中国的飞机研制水平与西方发达国家相比,还有一定的差距。要加快缩短差距,迎头赶上,必须集中航空工业所有的科研和制造资源,而现在的两大航空集团都是独立法人,互不隶属,资源相对分散,不仅不利于集中资源,而且还会产生重复建设的问题。 中航二集团有关部门负责人对记者说,目前,两大航空集团分别与国内外航空企业开展了许多合作项目。合并后,这些项目都可以统筹安排。两大航空集团在中国商飞公司的股份,以及在天津的空中客车飞机总装线项目的投资,合并后也将合二为一,增强了新公司的话语权。

ANSYS复合材料仿真分析及其在航空领域的应用

ANSYS复合材料仿真分析及其在航空领域的应用 复合材料,是由两种或两种以上性质不同的材料组成。主要组分是增强材料和基体材料。复合材料不仅保持了增强材料和基体材料本身的优点,而且通过各相组分性能的互补和关联,获得优异的性能。复合材料具有比强度大、比刚度高、抗疲劳性能好、各向异性、以及材料性能可设计的特点,应用于航空领域中,可以获得显著的减重效益,并改善结构性能。目前,复合材料技术已成为影响飞机发展的关键技术之一,逐渐应用于飞机等结构的主承力构件中,西方先进战斗机上复合材料使用量已达结构总重量的25%以上。飞机结构中,复合材料最常见的结构形式有板壳、实体、夹层、杆梁等结构。板壳结构如机翼蒙皮,实体结构如结构连接件,夹层结构如某些薄翼型和楔型结构,杆梁结构如梁、肋、壁板。此外,采用缠绕工艺制造的筒身结构也可视为层合结构的一种形式。一.复合材料设计分析与有限元方法复合材料层合结构的设计,就是对铺层层数、铺层厚度及铺层角的设计。采用传统的等代设计(等刚度、等强度)、准网络设计等设计方法,复合材料的优异性能难以充分发挥。在复合材料结构分析中,已经广泛采用有限元数值仿真分析,其基本原理在本质上与各向同性材料相同,只是离散方法和本构矩阵不同。复合材 料有限元法中的离散化是双重的,包括了对结构的离散和每一铺层的离散。这样的离散可以使铺层的力学性能、铺层方向、铺层形式直接体现在刚度矩阵中。有限元分析软件,均把增强材料和基体复合在一起,讨论结构的宏观力学行为,因此可以忽略复合材料的多相性导致的微观力学行为,以每一铺层为分析单元。二.ANSYS复合材料仿真技术及其在航空领域应用复合材料具有各向异性、耦合效应、层间剪切等特殊性质,因此复合材料结构的精确仿真,已成为现代航空结构的迫切需求。许多CAE程序都可以进行复合材料的分析,但是大多程序并没有提供完备的功能,使复合材料的精确仿真难以完成。如有些程序不提供非线性分析能力,有些不提供层间剪切应力的求解能力,有些不提供考虑材料失效破坏继续计算能力等等。ANSYS作为一款著名的商业化大型通用有限元软件,广泛应用于航空航天领域,为飞机结构中的复合材料层合结构分析提供了完整精确的解决方案。1.复合材料的有限元模型建立针对飞机结构中的复合材料层合板、梁、实体以及加筋板等结构类型,ANSYS提供一种特殊的复合材料单元———层单元,以模拟各种复合材料,铺层数可达250层以上,并提供一系列技术模拟各种复杂层合结构。复合材料层单元支持非线性、振动特性、热应力、疲劳断裂等各种结构和热的分析功能和算法。2.复合材料的层合结构定义:■铺层结构:ANSYS对于每一铺层可先定义材料性质、铺层角、铺层厚度,然后通过由下到上的顺序逐层叠加组合为复合材料层合结构;也可以通过直接输入材料本构矩阵来定义复合材料性质。■板壳和梁单元截面形状:ANSYS利用截面形状工具可定义矩形、I型、槽型等各种形式;还可以定义各种函数曲线以模拟变厚度截面。3.特殊层合结构的模拟:?变厚度板壳铺层切断:将切断的某铺层厚度定义为零,即可模拟铺层切断前后的板壳实际形状。(图1上)?不同铺层板壳的节点协调:ANSYS板壳层单元的节点均可偏置到任意位置,使不同铺层数板壳的节点在中面或顶面、底面对齐。(图1下)?蜂窝/泡沫夹层结构:ANSYS通过板壳层单元来模拟夹层结构的特性,夹层面板和芯子可以是不同材料。(图2)?板-梁-实体组合结构:ANSYS将实体、板壳与梁等不同类型单元通过MPC技术相联系,各类单元的节点不需要重合并协调,便于飞机等复杂结构模型的处理。4.复合材料有限元模型的检查:复合材料结构模型建立后,可以将板壳和梁单元显示为实际形状,还可以通过图形显示和列表直观地观察铺层厚度、铺层角度和铺层组合形式,方便模型的检查及校对。(图3)5.复合材料层合结构分析ANSYS层单元支持各种静强度刚度、非线性、稳定性、疲劳断裂和振动特性等结构分析。完成分析后,可以图形显示或输出每个铺层及层间的应力和应变等结果(虽然一个单元包含许多铺层),根据这些结果可以判断结构是否失效破坏和满足设计要求。6.复合材料失效准则ANSYS已经预定义了三种复合材料破坏准则来评价复合材料结构安全性,包括最大应变/应力失效准则,蔡-吴(Tsai-Wu)准则。每种强度准则均可定义与温度相关,考虑不同温度下的材料性能。另外,用户也可自定义最多达六种的

航空航天领域先进复合材料制造技术进展

专题研究 Feature 72 纺织导报 China Textile Leader · 2018 产业用纺织品专刊 参考文献 [1] 李俊宁,胡子君,孙陈诚,等. 高超声速飞行器隔热材料技术 研究进展[J]. 宇航材料工艺,2011,41(6):10-13. [2] GRITSEVICH I V, DOMBROVSKII L A, NENAROKOMOV A V. Heat transfer by radiation in vacuum shield insulation of spacecrafts [J]. Thermal Processes in Engineering, 2013, 5(1): 12-21. [3] 沈学霖,朱光明,杨鹏飞. 航空航天用隔热材料的研究进展[J]. 高分子材料科学与工程,2016,32(10):164-169. [4] KIM J, LEE J H, SONG T H. Vacuum insulation properties of phe-nolic foam[J]. International Journal of Heat and Mass Transfer, 2012, 55(19-20): 5343-5349. [5] BHEEKHUN N, ABU TALIB A R, HASSAN M R. Aerogels in aerospace: An overview[J]. Advances in Materials Science and En-gineering, 2013, 406065. [6] WANG X, DING B, SUN G, et al. Electro-spinning/netting: A stra-tegy for the fabrication of three-dimensional polymer nano-fiber/nets[J]. Progress in Materials Science, 2013, 58(8): 1173-1243.[7] SI Y, YU J, TANG X, et al. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality[J]. Nature Com-munications, 2014, 5: 5802. [8] GBEWONYO S, CARPENTER A W, GAUSE C B, et al. Low th-ermal conductivity carbon fibrous composite nanomaterial enab-led by multi-scale porous structure[J]. Materials & Design, 2017, 134: 218-225. [9] ZHENG H, SHAN H, BAI Y, et al. Assembly of silica aerogels wi-thin silica nanofibers: Towards a super-insulating flexible hybrid aerogel membrane[J]. RSC Advances, 2015, 5(111): 91813-91820. [10] SHAN H, WANG X, SHI F, et al. Hierarchical porous structured SiO 2/SnO 2 nanofibrous membrane with superb flexibility for mole-cular filtration[J]. Acs Applied Materials & Interfaces, 2017, 9(22): 18966-18976. [11] KOBAYASHI Y, SAITO T, ISOGAI A. Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators[J]. Angew Chem-Int Edit, 2014, 53(39): 10394-10397. [12] SI Y, WANG X, DOU L, et al. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity[J]. Science Advances, 2018, 4(4): eaas8925. 机梯度隔热、舱室隔热保暖等领域。 纳米纤维材料虽然具有良好的隔热性能和弹性,但其拉伸、剪切性能仍需大幅提升以满足实际应用需求。同时,现有纳米纤维气凝胶的孔径较大,导致其热对流效应明显,特别是在高温环境下,因此需在保证其力学性能未大幅下降的前提下进一步减小纳米纤维气凝胶的孔径,提升材料的隔热性能,最终实现其在航空航天热防护领域的特效应用。 图 1 民用飞机结构复合材料用量的变化 1970年 1980年 1990年 2000年 2010年 空客A350:52% 波音787:50%空客A380:25%空客A340:13%波音777:11%波音757:4%波音767:4% 复合材料用量/% 尾翼应用复合材料 外翼、机身应用复合材料 A350 A380 A340中央翼应用复合材料 次承力结构应用复合材料 50403020100 波音787 波音777 波音757/767 复合材料自20世纪60年代问世以来迅速发展,由于具有高比刚度、高比强度、性能可设计、抗疲劳性和耐腐蚀性等优点,越来越广泛地应用于各类航空航天飞行器,大大地促进了飞行器的轻量化、高性能化、结构功能一体化。同时,复合材料的应用部位已由飞机的非承力部件及次承力部件发展到主承力部件,并向大型化、整体化方向发展,先进复合材料的用量成为航空器先进性的重要标志。本文重点阐述航空航天领域最为广泛应用的碳纤维增强树脂基先进复合材料的应用概况、制造技术及未来发展方向。 1 先进复合材料在航空航天领域的应用概况 先进复合材料在航空航天领域的应用始于军用飞 机,是为满足其对高机动性、超音速巡航及隐身等要求而不惜成本开始采用的。近年来由于结构轻量化的要求,民用飞机在复合材料用量方面也呈现增长的趋势。图 1 为商用飞机中复合材料用量占结构重量比例的增加趋势。以1990年研制的波音777为例,在其机体结构中,复合材料仅占11%,而且主要用于飞机辅件,如尾翼和操纵面等。到了2009年波音787首飞时,复合材料的使用出现了质的飞跃,其用量已占到结构重量的50%(图 2),而空客A350的复合材料用量更是达到了52%(图 3),不仅复合材料占比激增,而且复合材料大量应用于 碳纤维复合材料层压板碳纤维夹芯复合材料玻璃纤维复合材料铝 铝/钢/钛复合材料 其他5% 钢10% 钛15%铝20% 复合材料50% 图 2 波音787的复合材料用量

航空复合材料项目立项申请报告 (1)

航空复合材料项目立项申请报告 规划设计/投资方案/产业运营

航空复合材料项目立项申请报告 碳纤复合材料最大的优点是轻质、高强,航空航天高端应用是其主要发展方向,用碳纤复合材料制造飞机的结构件,同铝合金相比,减重效果可达20-40%,体现出巨大的节能效益。 该航空复合材料项目计划总投资10580.16万元,其中:固定资产投资7957.92万元,占项目总投资的75.22%;流动资金2622.24万元,占项目总投资的24.78%。 达产年营业收入22100.00万元,总成本费用17586.14万元,税金及附加196.99万元,利润总额4513.86万元,利税总额5333.45万元,税后净利润3385.39万元,达产年纳税总额1948.05万元;达产年投资利润率42.66%,投资利税率50.41%,投资回报率32.00%,全部投资回收期4.63年,提供就业职位418个。 坚持“三同时”原则,项目承办单位承办的项目,认真贯彻执行国家建设项目有关消防、安全、卫生、劳动保护和环境保护管理规定、规范,积极做到:同时设计、同时施工、同时投入运行,确保各种有害物达标排放,尽量减少环境污染,提高综合利用水平。 ......

航空复合材料项目立项申请报告目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

复合材料在航空中的应用

《飞行器设计与工程专业技术讲座(三)》结课报 告 班级: 学号: 姓名:

日期:2016年10 月09 日

复合材料在航空中的应用 前言 现代高科技的发展离不开复合材料,复合材料[1]对现代科学技术的发展,有着十分重要的作用。复合材料的研究深度和应用广度及其生产发展的速度和规模,已成为衡量一个国家科学技术先进水平的重要标志之一。进入21 世纪以来,全球复合材料市场快速增长,亚洲尤其中国市场增长较快。2003~2008 年间中国年均增速为15%,印度为9.5%,而欧洲和北美年均增幅仅为4%。 一.复合材料的简介 复合材料,是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观(微观)上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材 料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石 棉纤维、晶须、金属丝和硬质细粒等。 复合材料使用的历史可以追溯到古代。从古至今沿用的稻草或麦秸增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20 世纪40 年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50 年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70 年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金 属基体复合,构成各具特色的复合材料。 二.在航空中常用的复合材料 60 年代,为满足航空航天等尖端技术所用材料的需要,先后研制和生产了以高性能纤维(如碳纤维、硼纤维、芳纶纤维、碳化硅纤维等)为增强材料的复合材料,其比强度大于4×10 厘米(cm),比模量大于4×10cm。为了与第一代玻璃纤维增强树脂复合材料相区别,将这 种复合材料称为先进复合材料。按基体材料不同,先进复合材料分为树脂基、金属基和陶瓷基复合材料。其使用温度分别达250~350℃、350~1200℃和1200℃以上。先进复合材料除作为结构材料外,还可用作功能材料,如梯度复合材料(材料的化学和结晶学组成、结构、空隙等在空间连续梯变的功能复合材料)、机敏复合材料(具有感觉、处理和执行功能,能适应环境变化的功能复合材料)、仿生复合材料、隐身复合材料等。 目前航空航天领域应用较广的复合材料航空主要包括树脂基复合材料、金属基复合材料、碳基复合材料和陶瓷基复合材料。 1.树脂基复合材料树脂基复合材料有玻璃/酚醛、高硅氧/酚醛、石英/酚醛、碳/酚醛、涤纶/酚醛材料和以不同树脂为基体的低密度烧蚀材料。其中玻璃/酚醛、高硅氧/酚醛和石英/酚醛材料属于碳化--熔化型烧蚀村料,适用于中等焓值和中等热流密度的工作环境再入飞行器和中等推力的固体火箭发动机防热材料;碳/酚醛材料属于碳化--升华型烧蚀材料,适用于能发 挥升华效应的较高焓值和较高热流密度的工作环境,可用于更远距离再入飞行器和高性能固体火箭发动机喷管等;涤纶/酚醛材料和低密度烧蚀材料适用于高焓、低热流和较长时间再入的航天飞行器如返回式卫星和飞船等。树脂基介电--防热材料有高硅氧/聚四氟乙烯材料, 它属于升华--熔化型烧蚀材料,烧蚀过程中不生成碳,具有良好的透波性能,烧蚀性能与高硅氧/酚醛相匹配,用作航天器天线窗口材料。 先进树脂基复合材料是以高性能纤维为增强体、高性能树脂为基体的复合材料。与传统 的钢、铝合金结构材料相比,它的密度约为钢的1/5,铝合金的1/2,且比强度与比模量远高于 后

中国航空工业集团公司调研报告

中国航空工业集团公司(简称“中航工 业”)是由中央管理的国有特大型企业,是 国家授权投资的机构,于2008年11月6日 由原中国航空工业第一、第二集团公司重组 整合而成立。集团公司设有航空装备、运输 机、发动机、直升机、机载设备与系统、通 用飞机、航空研究、飞行试验、贸易物流、 资产管理、工程规划建设、汽车等产业板块,下辖200余家成员单位、有20多家上市公司,员工约40万人。2009年7月8日,美国《财富》杂志公布世界500强企业最新排名,中航工业首次申报并成功入选,排名第426位,成为首家进入世界500强的中国航空制造企业和中国军工企业。2011年中航工业第三次入围《财富》世界500强企业,排名310位。截至2011年6月,中航工业资产规模为5000亿元。 中航工业系列发展歼击机、歼击轰炸机、轰 炸机、运输机、教练机、侦察机、直升机、强击 机、通用飞机、无人机等飞行器,全面研发涡桨、 涡轴、涡喷、涡扇等系列发动机和空空、空面、 地空导弹,强力塑造歼十、飞豹、枭龙、猎鹰、 山鹰等飞机品牌和太行、秦岭、昆仑等发动机品 牌,为中国军队提供先进航空武器装备。

中国航空工业集团公司将寓军于民、军民融合作为重要发展原则,以新理念、新思路、新举措大力发展军民用运输机产业,研制生产多种机型。中国航空工业集团公司秉承“航空报国、强军富民”的宗旨,践行“敬业诚信、创新超越”的理念,提出了“两融、三新、五化、万亿”的发展战略。 中国航空工业集团公司党组书记、总经理为林左鸣,党组副书记、副总经理为谭瑞松,党组成员、副总经理、总会计师为顾惠忠。 中国航空工业集团公司第六三七研究所(山东济南)中国航空工业集团公司第六三七研究所始建于1970年,是一个集科研、试制、批量生产为一体,设计、材料、工艺、测试设备完整配套的科研、生产实体,可承担国内外各种类型雷达天线罩的研发及批量生产,是国内唯一的电磁窗专业化研究所。研究所地处山东省济南市,有便利的交通和运输条件。 研究所拥有一支高水平、多学科、跨专业的技术研发队伍,其中享受国务院授予政府特殊津贴的专家十余人,副高级及以上专业技术职务人员占专业技术人员总数的三分之一,专业技术人员占员工总数的三分之二。 研究所拥有先进的雷达天线罩电性能大型压缩场及外场测试系统、复合材料生产净化厂房,拥有先进的电厚度测量与校正设备、大型热压罐、预浸料制造设备、数控缠绕设备等先进仪器。 研究所拥有功能强大的电磁性能设计分析、强度与可靠性分析的

ANSYS结构分析指 复合材料

ANSYS结构分析指南第五章复合材料 5.1 复合材料的相关概念 复合材料作为结构应用已有相当长的历史。在现代,复合材料构件已被大量应用于飞行器结构、汽车、体育器材及许多消费产品中。 复合材料由一种以上具有不同结构性质的材料构成,它的主要优点是具有很高的比刚度(刚度与重量之比)。在工程应用中,典型复合材料有纤维和叠层型材料,如玻璃纤维、玻璃环氧树脂、石墨环氧树脂、硼环氧树脂等。 ANSYS程序中提供一种特殊单元--层单元来模拟复合材料。利用这些单元就可以作任意的结构分析了(包括非线性如大挠度和应力刚化等问题)。对于热、磁、电场分析,目前尚未提供层单元。 5.2 建立复合材料模型 与铁或钢等各向同性材料相比,建立复合材料的模型要复杂一些。由于各层材料性能为任意正交各向异性,材料性能与材料主轴取向有关,在定义各层材料的材料性能和方向时要特别注意。本节主要探讨如下问题: 选择合适的单元类型; 定义材料层; 确定失效准则; 应遵循的建模和后处理规则。 5.2.1 选择合适的单元类型 用于建立复合材料模型的单元类型有SHELL99、SHELL91、SHELL181、SOLID46和SOLID191 五种单元。但 ANSYS/Professional 只能使用 SHELL99 和 SHELL46 单元。具体应选择哪一类单元要根据具体应用和所需计算结果类型等来确定。所有的层单元允许失效准则计算。 1、SHELL99--线性层状结构壳单元 SHELL99 是一种八节点三维壳单元,每个节点有六个自由度。该单元主要适用于薄到中等厚度的板和壳结构,一般要求宽厚比应大于10。对于宽厚比小于10的结构,则应考虑选用 SOLID46 来建立模型。SHELL99 允许有多达 250 层的等厚材料层,或者 125 层厚度在单元面内呈现双线性变化的不等材料层。如果材料层大于 250,用户可通过输入自己的材料矩阵形式来建立模型。还可以通过一个选项将单元节点偏置到结构的表层或底层。 2、SHELL91--非线性层状结构壳单元 SHELL91 与 SHELL99 有些类似,只是它允许复合材料最多只有 100 层,而且用户不能输入自己的材料性能矩阵。但是,SHELL91 支持塑性、大应变行为

先进树脂基复合材料制造技术综述

先进树脂基复合材料制造技术综述单位:西北工业大学机电学院作者:阎龙史耀耀段继豪 树脂基复合材料以其比强度和比刚度高、可设计性强、抗疲劳断裂性能好、耐腐蚀、结构尺寸稳定性好以及便于大面积整体成型的独特优点在飞机上得到了大量应用,可实现飞机结构相应减重25%~30%[1-2]。此外,通过复合材料结构/ 材料/ 工艺综合研究和材料/ 工艺/ 设计/ 电子/ 气动等学科交叉,深层次开发复合材料结构与功能可设计性潜力,可进一步提高飞机的综合性能。早在20世纪80 年代,人们就预测到2000 年飞机的绝大部分结构将采用复合材料,甚至出现全复合材料飞机。然而,到目前为止,这一预言尚未实现,其主要原因是复合材料构件的成本还远远高于铝合金构件,高成本阻碍了复合材料技术在航空航天等领域的更广泛应用[1]。因此,在已有主要材料体系基础上开发先进的低成本制造技术成为当今复合材料界的共识。目前可降低复合材料制造成本的主要技术途径有:复合材料低温固化技术、复合材料RTM 成型技术、自动缠绕与铺放技术、复合材料电子束固化技术、复合材料结构修理技术[1]。 复合材料低温固化技术 复合材料低温固化技术通常指固化温度小于100℃,可以在自由状态下进行高温后处理的复合材料相关制造技术[1]。发展复合材料构件的低温固化技术,可以大大降低由昂贵模具、高能耗设备以及高性能工艺辅料等带来的高费用。此外,低温固化复合材料构件的尺寸精度高,固化残余应力低,适于制备大型和形状复杂的复合材料构件,也可用于复合材料工装材料以及复合材料结构件的修补等。复合材料低温固化技术是低成本制造技术的重要组成部分。 复合材料低温固化技术的研究始于20 世纪70 年代,ACG 公司于1975 首先发展了第一个低温固化树脂体系LTM10。到20 世纪80 年代中期,低温固化复合材料开始应用于工装领域。20 世纪90 年代早期,低温固化复合材料首次用于航空结构件,如1985 年洛克希德·马丁公司采用LTM45 低温固化体系制备了UAV构件;1986 年NASA 和McDonel-Douglas 公司使用LTM10 体系/ 真空袋成型技术制造了X36 无人战斗机和UAV 的外蒙皮。国内关于低温固化复合材料研究的起步较晚,北京航空材料研究所成功研制出70℃固化,80~100℃使用的LT-01 碳纤维增强复合材料树脂体系,并用于制造大型运输机复合材料腹鳍。表1 所示为碳纤维增强LT-01 复合材料体系力学性能[1]。

航空航天先进复合材料

航空航天先进复合材料现状 2014-08-10 Lb23742 摘要:回顾了树脂基复合材料的发展史;综述了先进复合材料工业上通常使用环氧树脂的品种、性能和特性;复合材料使用的增强纤维;国防、军工及航空航天用树脂基复合材料;用于固体发动机壳体的树脂基体;用于固体发动机喷管的耐热树脂基体;火箭发动机壳体用韧性环氧树脂基体;树脂基结构复合材料;防弹结构复合材料;先进战斗机用复合材料;树脂基体;航天器用外热防护涂层材料;飞机结构受力构件用的高性能环氧树脂复合材料;碳纤维增强树脂基复合材料在航空航天中的其它应用;民用大飞机复合材料;国产大飞机的软肋还是技术问题;复合材料之惑。 关键词:树脂基体;复合材料;国防;军工;航空航天;结构复合材料 0 前言 复合材料与金属、高聚物、陶瓷并称为四大材料。今天,一个国家或地区的复合材料工业水平,已成为衡量其科技与经济实力的标志之一。先进复合材料是国家安全和国民经济具有竞争优势的源泉。到2020年,只有复合材料才有潜力获得20-25%的性能提升。 环氧树脂是优良的反应固化型性树脂。在纤维增强复合材料领域中,环氧树脂大显身手。它与高性能纤维:PAN基碳纤维、芳纶纤维、聚乙烯纤维、玄武岩纤维、S或E玻璃纤维复合,便成为不可替代的重要的基体材料和结构材料,广泛运用在电子电力、航天航空、运动器材、建筑补强、压力管雄、化工防腐等六个领域。本文重点论述航空航天先进树脂基体复合材料的国内外现状及中国的技术软肋问题 1 树脂基复合材料的发展史 树脂基复合材料(Resin Matrix Composite)也称纤维增强塑料(Fiber Reinforced Plastics),是技术比较成熟且应用最为广泛的一类复合材料。这种材料是用短切的或连续纤维及其织物增强热固性或热塑性树脂基体,经复合而成。以玻璃纤维作为增强相的树脂基复合材料在世界范围内已形成了产业,在我国不科学地俗称为玻璃钢。 树脂基复合材料于1932年在美国出现,1940年以手糊成型制成了玻璃纤维增强聚酯的军用飞机的雷达罩,其后不久,美国莱特空军发展中心设计制造了一架以玻璃纤维增强树脂为机身和机翼的飞机,并于1944年3月在莱特-帕特空军基地试飞成功。1946年纤维缠绕成型技术在美国出现,为纤维缠绕压力容器的制造提供了技术贮备。1949年研究成功玻璃纤维预混料并制出了表面光洁,尺寸、形状准确的复合材料模压件。1950年真空袋和压力袋成型工艺研究成功,并制成直升飞机的螺旋桨。60年代在美国利用纤维缠绕技术,制造出北极星、土星等大型固体火箭发动机的壳体,为航天技术开辟了轻质高强结构的最佳途径。在此期间,玻璃纤维-聚酯树脂喷射成型技术得到了应用,使手糊工艺的质量和生产效率大为提高。1961年片状模塑料(Sheet Molding Compound, 简称SMC)在法国问世,利用这种技术可制出大幅面表面光洁,尺寸、形状稳定的制品,如汽车、

相关文档
相关文档 最新文档