文档库 最新最全的文档下载
当前位置:文档库 › 氟硅酸钾容量法测定硅铁中硅含量

氟硅酸钾容量法测定硅铁中硅含量

氟硅酸钾容量法测定硅铁中硅含量
氟硅酸钾容量法测定硅铁中硅含量

氟硅酸钾容量法测定硅铁中硅含量

采用重量法测定硅储量,结果比较准确,但费时,对于大批量的样品测定,无论是使用器皿还是测定速度,都难以满足要求。2001年,国家检疫检验总局批准颁发的行业标准

SN/T1014?1-2001《氟硅酸钾容量法测定硅量》,简便、快捷、准确,而且同时能进行大批量样品测定,达到了重量法难以达到的目的。

在这一方法中,应注意溶样、过滤、洗涤、中和游离酸四个步骤的具体操作。

溶样时,氢氟酸应逐滴加入,边摇边加,使产生的反应热迅速扩散,同时严禁将氢氟酸滴在试样集中的地方,否则将产生浓的黄烟,局部温升超过600摄氏度,使硅形成SiF4挥发损失。

过滤和洗涤环节,要求洗涤次数和洗液用量尽量一致,洗液中虽因KC1的同离子效应防止水解,但因洗液量不一致,仍不可避免地出现因K2SiF6沉淀水解量不等而造成测定误差。

中和游离酸。应保持速度一致,中和终点颜色深度一致,防止过滴和游离酸因滤纸包容导致的中和不彻底。沸水水解时,应保持中性沸水用量一致,最终达到滴定颜色深度一致。

上述四个步骤,都将对测定结果带来影响,但操作熟练的化验人员测出的测定值重现性较好。因此,作为化验人员,应认真掌握每个步骤的操作要点,提高测定的准确性。

分析化学追求的目标就是快速、准确、操作方便,在条件许可的情况下提高优质分析仪器的使用普及率,尽量减少人为影响因素,检测水平一定会提高。

硅铁是一种多孔的不均匀体,同一锭模中的不同部位硅含量都有差别。锭模熔坑部合金锭会局部超厚,会出现黄带、疏松、粉化、夹渣等现象,都会使合金中局部硅含量偏低。用组合锭模从同一水口箱浇注的合金锭,其后半部合金比前半部合金的硅含量的测定与取样方式、取样部位关系密切。

部分合金产品会出现局部超厚现象。厚度达150mm以上时,其合金中层粉化层硅含量有的低于60%,而上表层厚度达20mm时,其合金硅含量有的将大于80%,两者相差甚远。因此,“GB2272-87标准”中严格规定,FeSi75系列硅铁锭厚度不得大于100mm,FeSi65锭厚度不得大于80mm,硅的偏析不得大于1%。

硅铁虽是无渣冶炼,但仍有少量渣随合金液一同流入合金液包,在挡渣不良的情况下,仍会有少量硅渣经浇铸进入合金锭表或锭内。自然块的发货验收中,不同的取样测定,其硅含量测定值将有较大波动,即使在综合硅品味很高的货批中,仍可取得硅不合格样品。所以,对于生产厂家来说,及时更换锭模,防止生产出局部超厚的合金产品,并要求将产品通过精选、精整出去局部有缺陷的不合格品再行销售,是保证产品质量的根本措施。对验收方来说,如何公正采取有代表性的样品,是减少供需双方产生质量异议的重要条件。

高碳铬铁取样化验方法:

大堆验证取样:批量不足10吨时,应从不同部位随机采取不少于10个小样;批量为10吨以上,不足30吨时,应从不同部位随机采取不少于20个小样;批量为30吨以上时,应从不同部位随机采取不少于30个小样。每个小样重量应大约相等,其块度不小于20*20mm。取样总量应不少于批量的0.03%。所取小样应全部破碎至10mm以下,用四分法缩分至1-2kg,混匀后分成两等份,一份制样作分析用,一份作保留样。

包装验证取样:每批应随机选取不少于10%的包装件。在每件中随机采取重量大约相等的一块小样,其块度不小于20*20mm,小样不得少于8个,最多30个。所去小样应全部破碎至10mm以下,用四分法缩分至1-2kg,混匀后分成两等份,一份制样作分析用,一份作保留样。

中低微碳铬铁的取样化验方法:

1.大堆验证取样:批量不足10吨时,应从不同部位随机采取10个铬铁块;批量为10吨以上,不足30吨时,应从不同部位随机采取20个铬铁块;批量为30吨以上时,应从不同部位随机采取30个铬铁块。铬铁块的大小以能钻样为准。在断面选钻取点,钻取点的边缘应离铬铁表面5mm以上。每块的钻取量应大约相等。批量不足10吨时,钻取样总量应不少于150g;批量为10吨以上时,钻取样总量应不少于300g。钻取的全部小样混匀后分成两等份,一份制样作分析用,一份作保留样。

2.包装验证取样:批量不足10吨时,应随机选取10件包装件;批量为10吨以上时,应随机选取10%的包装件,在每件中随机采取一个铬铁块,铬铁块的大小以能钻样为准。在断面选钻取点,钻取点的边缘应离铬铁表面5mm以上。每块的钻取量应大约相等。批量不足10吨时,钻取样总量应不少于150g;批量为10吨以上时,钻取样总量应不少于300g。混匀后分成两等份,一份制样作分析用,一份作保留样。

氟硅酸钾容量法测定硅铁中硅含量

氟硅酸钾容量法测定硅铁中硅含量 采用重量法测定硅储量,结果比较准确,但费时,对于大批量的样品测定,无论是使用器皿还是测定速度,都难以满足要求。2001年,国家检疫检验总局批准颁发的行业标准 SN/T1014?1-2001《氟硅酸钾容量法测定硅量》,简便、快捷、准确,而且同时能进行大批量样品测定,达到了重量法难以达到的目的。 在这一方法中,应注意溶样、过滤、洗涤、中和游离酸四个步骤的具体操作。 溶样时,氢氟酸应逐滴加入,边摇边加,使产生的反应热迅速扩散,同时严禁将氢氟酸滴在试样集中的地方,否则将产生浓的黄烟,局部温升超过600摄氏度,使硅形成SiF4挥发损失。 过滤和洗涤环节,要求洗涤次数和洗液用量尽量一致,洗液中虽因KC1的同离子效应防止水解,但因洗液量不一致,仍不可避免地出现因K2SiF6沉淀水解量不等而造成测定误差。 中和游离酸。应保持速度一致,中和终点颜色深度一致,防止过滴和游离酸因滤纸包容导致的中和不彻底。沸水水解时,应保持中性沸水用量一致,最终达到滴定颜色深度一致。 上述四个步骤,都将对测定结果带来影响,但操作熟练的化验人员测出的测定值重现性较好。因此,作为化验人员,应认真掌握每个步骤的操作要点,提高测定的准确性。 分析化学追求的目标就是快速、准确、操作方便,在条件许可的情况下提高优质分析仪器的使用普及率,尽量减少人为影响因素,检测水平一定会提高。 硅铁是一种多孔的不均匀体,同一锭模中的不同部位硅含量都有差别。锭模熔坑部合金锭会局部超厚,会出现黄带、疏松、粉化、夹渣等现象,都会使合金中局部硅含量偏低。用组合锭模从同一水口箱浇注的合金锭,其后半部合金比前半部合金的硅含量的测定与取样方式、取样部位关系密切。 部分合金产品会出现局部超厚现象。厚度达150mm以上时,其合金中层粉化层硅含量有的低于60%,而上表层厚度达20mm时,其合金硅含量有的将大于80%,两者相差甚远。因此,“GB2272-87标准”中严格规定,FeSi75系列硅铁锭厚度不得大于100mm,FeSi65锭厚度不得大于80mm,硅的偏析不得大于1%。

氟硅酸钾

化学品中文名称:六氟硅酸钾 化学品英文名称:potassium fluorosilicate 中文名称2:氟硅酸钾 英文名称2:potassium silicofluoride 技术说明书编码:2543 CAS No.:16871-90-2 分子式:K2SiF6 分子量:220.29 有害物成分含量CAS No. 六氟硅酸钾≥99% 16871-90-2 健康危害:误服或吸入粉尘会中毒。粉尘能强烈刺激眼睛和呼吸系统。与酸反应,散发出刺激性和腐蚀性的氟化氢和四氟化硅气体。 燃爆危险:本品不燃,有毒。 皮肤接触:脱去污染的衣着,用大量流动清水冲洗。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:饮足量温水,催吐。就医。 危险特性:与酸反应,放出有毒的腐蚀性烟气。受高热分解放出有毒的气体。 有害燃烧产物:一氧化碳、二氧化碳。 灭火方法:尽可能将容器从火场移至空旷处。灭火剂:雾状水、泡沫、干粉、二氧化碳、砂土。 应急处理:隔离泄漏污染区,限制出入。建议应急处理人员戴防尘口罩,穿防毒服。不要直接接触泄漏物。小量泄漏:避免扬尘,小心扫起,收集运至废物处理场所处置。大量泄漏:收集回收或运至废物处理场所处置。 操作注意事项:密闭操作,局部排风。防止粉尘释放到车间空气中。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防尘口罩,戴化学安全防护眼镜,穿防毒物渗透工作服,戴乳胶手套。避免产生粉尘。避免与氧化剂、酸类接触。配备泄漏应急处理设备。倒空的容器可能残留有害物。储存注意事项:储存于阴凉、通风的库房。远离火种、热源。防止阳光直射。包装密封。应与氧化剂、酸类、食用化学品分开存放,切忌混储。储区应备有合适的材料收容泄漏物。 中国MAC(mg/m3):未制定标准 前苏联MAC(mg/m3):未制定标准 TLVTN:2.5mg(F)/m3 TLVWN:未制定标准 工程控制:密闭操作,局部排风。 呼吸系统防护:空气中粉尘浓度超标时,建议佩戴自吸过滤式防尘口罩。紧急事态抢救或撤离时,应该佩戴空气呼吸器。 眼睛防护:戴化学安全防护眼镜。 身体防护:穿防毒物渗透工作服。 手防护:戴乳胶手套。 其他防护:工作场所禁止吸烟、进食和饮水,饭前要洗手。工作完毕,淋浴更衣。保持良好的卫生习惯。主要成分:含量:≥99%。 外观与性状:白色细粉末或结晶,无臭、无味。 熔点(℃):分解 沸点(℃):无资料

氟硅酸钾容量法

一.原理: 二氧化硅滴定分析方法都是间接测定方法,氟硅酸钾容量法是应用最广泛的一种,确切的说应该是氟硅酸钾沉淀分离—酸碱碱滴定法。其原理是含硅的样品,经与苛性碱、碳酸钠等共融时 生成可溶性硅酸盐,可溶性硅酸盐在大量氯化钾及F-存在下定量生成氟硅酸钾(K2SiF6)沉淀。氟硅酸钾在沸水中分解析出氢氟酸(HF),以标准氢氧化钠溶液滴定。间接计算出二氧化硅的含量。主要反应: SiO2+2NaOH=Na2SiO3=+H2O (1) Na2SiO3=+2HCl=H2SiO3=+2NaC l (2) H2SiO3=+3H2F2=H2SiF6+3H2O (3) H2SiF6+2KCl=K2SiF6↓+2HC l (4) K2SiF6+3H2O = 4HF+H2SiO3+2KF (5) HF +NaOH = NaF+H2O (6) 上面(1)是表示含硅样品的分解,也可用HF分解样品。(2)分解后的试样中的硅酸盐在HCl 存在下转化为可溶性的H2SiO3(3)(4)H2SiO3在大量氯化钾及F-存在下生成K2SiF6沉淀(5)K2SiF6沉淀溶解生成HF(6)以氢氧化钠标准溶液滴定HF,间接测定硅含量。 虽然表面看起来这个过程就是样品溶解—生成K2SiF6—使K2SiF6溶解析出HF—以标准氢氧化钠溶液滴定—计算硅含量,并不复杂,实际应用时却必须注意一些关键的环节,才能得到准确的测定结果。 二.实践: ⒈试液的制备: 应用氟硅酸钾滴定法,首先必须使样品中的硅完全转化为可溶性的H2SiO3或SiF4 ⑴样品用碱(NaOH、KOH、Na2CO3、Na2O2)熔融,使硅完全转化为硅酸钠或硅酸钾。一般使用氢氧化钠熔融,具有温度低、速度较快,含氟较高的试样中的硅不致呈SiF4挥发损失,含铝、钛高的样品,应用氢氧化钾。实践过程中证明:如果能使用氢氧化钾熔融的样品尽量使用氢氧化钾,这是因为一方面用它可以提供更多的K+,另一方面制成的试液清澈便于观察。一般样品熔融不加过氧化钠,只有样品不能被氢氧化钾完全分解时,可在加氢氧化钾的同时加入少量过氧化钠助熔. 熔融的容器多用银、镍、铁等坩埚.其中使用镍坩埚的比较多,因为镍坩埚耐用,制备的溶液清澈混入的杂质较少.使用镍坩埚时,新的镍坩埚应先用无水乙醇擦去油污,放入马弗炉650℃灼烧30min取出于空气中冷却,形成一层很薄的氧化膜可更加耐腐蚀,延长使用寿命,熔融时应预先在电炉上加热将氢氧化钾中的水分赶尽,再入马弗炉600~650℃熔融5~10min或直至熔融完全。碱熔处理样品普遍用于测定各种样品的含硅量. 熔融物的浸取一般用40~50ml沸水20ml盐酸和10ml硝酸,一般控制体积≤80ml~≥50ml,体积太大会影响氟硅酸钾沉淀,如果单称样品0.1g测定,这样就可以了,若是样品碱熔后,酸化制成的一定体积试液,然后分液测定硅(二氧化硅含量高的样品如硅酸盐等碱熔酸化制成的一定体积试液,然后分液测定硅是不适宜的,因为含硅量高样品在浸取、酸化、稀释到一定体积的试液制备时酸度降低很多,很快会析出硅胶,从而影响测定结果。即使含量较低的样品,也应在试液制备好后立即分液,否则放置时间过长也会有硅胶析出造成结果误差),则分取的部分试液中应补加20ml盐酸和10ml 硝酸。 ⑵用氟酸处理样品:用氟酸处理样品,一般还要加硝酸共同分解样品,对于硅系列的铁合金,由于硅 及其它主要成分呈单质状态存在,与氟酸加硝酸溶解反应剧烈往往还要冷却,否则会有样品的散失.对 于硅呈化合物状态存在的样品,还需要在加氟酸和硝酸后加热,如果不加热样品分解不完全,但加热温 度超过70℃SiF4↑会挥发损失,在聚四氟乙烯烧杯中低温蒸发至最后一定剩余10~15ml体积,这样使样品分解完全硅不会损失.1947年Munter做一实验, 低温蒸发至最后氟酸体积大于1ml,氟硅酸就可以存在在溶液中,氟酸处理含硅样品时,低温蒸发至一定程度时,就会生成氟硅酸、氟酸和水的恒沸三元体系,恒沸点是116℃恒沸混合物的组成为:硅氟酸36%氟酸10%水54%,1ml恒沸混合物含Si66mg换算为硅氟酸(H2SiF6)约0.5g.有人用氟酸处理样品测定矿石的含硅量也取得了满意的测定结果。. ⒉生成氟硅酸钾沉淀的最佳条件::杂质干扰最少是该方法的前题,由氟硅酸钾生成的反应看 到:SiO32-+2K++6F-+6H+=K2SiF6↓+3H2O欲使该反应进行到底,得到完全的氟硅酸钾沉淀,K+、F-、H+的浓度要有足够。

钼蓝光度法测定硅铁中硅

文章编号:1000-7571(2005)02-0091-02 钼蓝光度法测定硅铁中硅 高 华,贺晓东 (中铝山西分公司技术开发部,山西河津 043304) 中图分类号:O657132 文献标识码:B 收稿日期:2003-12-16 利用强酸强热以促使原硅酸脱水凝聚,是测定高含量硅的主要方法。硅铁中的二氧化硅的质量分数达到70%以上,常规方法采用氢氟酸重量法,即用硝酸-氢氟酸分解试样,硅呈四氟化硅挥发除去,根据挥发失量计算硅含量[1-5],该方法准确度高,但操作过程繁杂、费时。本文采用测定二氧化硅常规方法———钼蓝光度法,在测定样品时,减少称样量,用差示光度法进行比色。方法简单、准确,测定结果与重量法相符,且大大缩短了分析时间。 1 实验部分 111 主要仪器和试剂 λ6紫外可见分光光度计(美国PE 公司)。钼酸铵溶液:100g/L ;草酸溶液:40g/L ;硫酸亚铁铵溶液:30g/L ,称取30g 硫酸亚铁铵于500mL 烧杯中,加150mL 水,缓缓加入150mL 硫酸(1+1),搅拌使其溶解,冷却后移入1L 容量 瓶中(此溶液不宜久放,最好不要超过10天,如浑浊过滤后使用)。 硅标准溶液:015mg/L ,准确称取015000g 二氧化硅(高纯)于铂坩埚中,加5g 无水碳酸钠,搅拌均匀,再复盖1g ,置于1000℃高温炉中,熔融5~10min ,取出冷却,置于聚四氟乙烯烧杯中加水溶解后,移入1L 容量瓶中定容,贮存于塑料瓶中备用。用时稀释成0105mg/L 。112 实验方法 称取010500g 试样于已熔融的3g 氢氧化钠银坩埚中,加入015g 过氧化钠,在700℃熔融15min 。取出,趁热将熔融物摇匀,用水浸取,洗 入盛有40mL 盐酸(1+1)及80mL 沸水的250 mL 容量瓶中,冷却至室温,用水定容,备用。 移取5mL 该试液于100mL 容量瓶中,加40 mL 盐酸(1+99),摇匀;加5mL 钼酸溶液,摇匀;放置15min ,加入10mL 草酸溶液,立即加入10mL 硫酸亚铁铵溶液,以水定容,混匀。用015cm 比色皿,于700nm 处,以已知的比分析组分稍稀的硅标准溶液作参比,测量吸光度。113 工作曲线的绘制 移取不同量的硅标准溶液于100mL 容量瓶中,按分析方法显色,测量吸光度,绘制工作曲线。 2 结果与讨论 211 溶液酸度 制备溶液的酸度应满足两个条件,一是无氢氧化物沉淀;二是防止硅酸凝聚。所以碱熔后用水浸取,并倒入大体积(120~150mL )的稀盐酸中,立即振荡,盐酸浓度控制为015~115mol/L ,溶液中二氧化硅的浓度小于017mol/L 就不会产生硅酸聚合现象。212 显色条件 生成硅钼杂多酸的酸度范围为0103~018mol/L 盐酸,室温发色以011~0125mol/L 为最适 宜。故加入40mL 盐酸(1+99)。显色剂的加入量在4~6mL 吸光度稳定,试验选用5mL 。213 稳定性 浓度较高的硅酸溶液是不稳定的,随着放置时间的增长,硅酸会凝聚而从溶液中析出。所以制备好的分析样品溶液,应立即发色,不可放置时间太长,以防硅酸聚合使结果偏低。214 显色温度 硅钼黄的生成速度及稳定性与温度有关,因 — 19—

氟硅酸钾法测定二氧化硅

氟硅酸钾法测定二氧化硅方法的原理、实践、应用详细讨论了氟硅酸钾沉淀生成的条件测定二氧化硅方法的原理干扰及消除、使用实践操作中常遇到的问题及解决、介绍两个应用操作规程 氟硅酸钾法测定二氧化硅方法的原理、实践、应用 :上世纪七十年代以前,常量硅的测定主要应用重量法,1862年Stolba、1926年Trev ere曾提出过氟硅酸钾使用于测定硅的滴定法,但都因为不稳定未能推广开来.上世纪七 十年代初,国内外提出了许多实用的方法,也有许多实验室提出了用于不同样品的操作规程,当时问题较多,七十年代中期氟硅酸钾滴定法国内日见成熟并且得到推广和普及.实 际使用中证明氟硅酸钾滴定法测定硅,是测定常量硅的快、准的方法之一,虽然它使用较多的乙醇,但从总的来看成本不会超过重量法,又能达到快速准确测定硅的目的,所以推 广的非常好非常快,这都是深入研究克服了许多缺点,才能有强有力的生命力。上个世纪.七十年代中后期它代替了大多数原来是由重量法测定的样品.成为测定常量二氧化硅广 泛使用的方法之一。 一.原理: 二氧化硅滴定分析方法都是间接测定方法,氟硅酸钾容量法是应用最广泛的一种,确切的说应该是氟硅酸钾沉淀分离—酸碱碱滴定法。其原理是含硅的样品,经与苛性碱、碳酸钠等共融时 生成可溶性硅酸盐,可溶性硅酸盐在大量氯化钾及F-存在下定量生成氟硅酸钾(K 2 S iF 6 )沉淀。氟硅酸钾在沸水中分解析出氢氟酸(HF),以标准氢氧化钠溶液滴定。间接计算出二氧化硅的含量。主要反应: SiO 2+2NaOH=Na 2 SiO 3= +H 2 O (1) Na 2SiO 3= +2HCl=H 2 SiO 3= +2NaCl (2) H 2SiO 3= +3H 2 F 2 =H 2 SiF 6 +3H 2 O (3) H 2SiF 6 +2KCl=K 2 SiF 6 ↓+2HCl (4) K 2SiF 6 +3H 2 O = 4HF+H 2 SiO 3 +2KF (5)

氟硅酸钾容量法测定二氧化硅

氟硅酸钾容量法测定二氧化硅 2009-11-19 12:52 1 方法提要 在有过量的氟、钾离子存在的强酸性溶液中,使硅酸形成氟硅酸钾(K2SiF6)沉淀。经过滤、洗涤及中和沉淀与滤纸上的残余酸后,加沸水使氟硅酸钾沉淀水解,生成定量的氢氟酸,然后以酚酞为指示剂,用氢氧化钠标准溶液进行滴定。 2 试剂 2.1 氢氧化钠(粒状或片状)。 2.2 氯化钾:研细后贮存备用。 2.3 硝酸(ρ1.42g/mL)。 2.4 盐酸(ρ1.19g/mL)。 2.5 盐酸(1+5)。 2.6 氟化钾溶液(150g/L):将15g氟化钾(KF?2H2O)置于塑料杯中,加50mL水溶解,加入20mL硝酸,以水稀释至100mL,在搅拌下加氯化钾至饱和,放置 30min,用快速滤纸过滤于塑料瓶中。 2.7 氯化钾溶液(50g/L)。 2.8 氯化钾-乙醇溶液(50g/L):将5g氯化钾溶于50mL水中,加50mL95%的乙醇,混匀。 2.9 酚酞指示剂溶液(10g/L):将1g酚酞溶于100mL95%的乙醇中,用氢氧化钠溶液调至中性。 2.10 氢氧化钠标准溶液的配制和标定方法 2.10.1 配制( =0.15mol/L)

将60g氢氧化钠溶于10L水中,充分混匀,贮存于带胶塞(装有钠石灰干燥管)的塑料桶中或硬质玻璃瓶内。 2.10.2 标定 称取约0.8g(精确至0.0001g)苯二钾酸氢钾于400mL烧杯中,加入约150mL新煮沸过的冷水(该冷水用氢氧化钠标准溶液中和至酚酞呈微红色),使其溶解。然后加入6滴,7滴酚酞指示剂(10g/L),以氢氧化钠标准溶液滴定至微红色。 氢氧化钠标准溶液的摩尔浓度,按式(3)计算: (3) 氢氧化钠标准溶液对二氧化硅的滴定度( ),按式(4)计算: (4) 式中: m5??苯二钾酸氢钾的质量,单位为克,g; 204.21??苯二钾酸氢钾的分子量; V??滴定时消耗氢氧化钠标准溶液的体积,单位为毫升,mL; TSiO2??1mL氢氧化钠标准溶液相当于二氧化硅的质量,单位为毫克每毫升,mg/mL; 15.02??1/4二氧化硅分子量。 其值按GB/T8170修约至小数点后四位数。 3 仪器 3.1 烘箱。

氟硅酸钾容量法测定硅

氟硅酸钾容量法测定硅 1.1 方法提要 试样用硝酸、氢氟酸溶解,加入氟化钾使氟硅酸钾沉淀,过滤洗涤后,将沉淀在沸水中水解,生成氢氟酸,用氢氧化钠标准溶液滴定。 1.2 试剂 1.2.1 硝酸 1.2.2 氢氟酸(GR) 1.2.3 5%氯化钾—乙醇溶液称5克氯化钾,溶于100毫升20%的乙醇溶液中。 1.2.4 氢氧化钠标准溶液0.2mol/L 1.2.5 麝香草酸酚兰—酚红的指示剂:各取0.1g溶于40ml 无水乙醇中,加水50ml。以0.2mol/L氢氧化钠溶液调节至紫色。稀至200ml体积,摇匀,塑料并保存。 1.3 分析步骤:准确称取,0.08××样(试样应通过120目筛网),于250ml塑料烧杯中,加入10mlH2O,润湿,加入10ml 浓HNO3,慢慢加入HF 5ml,待反应平静后,加热水室温水浴加热,不断摇动,使试样完全溶解至清澈透明后,取下放冷,加入10mlH2O使体积在40ml 左右加入10gKCl充分搅拌,加少许纸浆,放置1小时后定量滤纸过滤,沉淀用5%KCl—乙醇溶液洗涤烧杯3~4次,滤纸6~7,将沉淀宫同滤纸取下移入原塑料烧杯中,加入10ml乙醇,2ml指示剂,用0.2×××氢氧化钠标准中和至

紫色后,加入150ml 沸水,搅拌至水解完全,用0.2×××氢氧化钠标准溶液迅速滴定,至黄色变为紫红色终止。 1.4 分析结果的计算 ω(Si )/10-2=46744.010000702.0)(01???-?m v v c 式中:c —氢氧化钠标准溶液浓度(mol/l ) v 1—中和后滴定时消耗氢氧化钠标准溶液的体积 (ml ) v 0—空白中和后滴定时消耗氢氧化钠标准溶液的体 积(ml ) m —试样重(g ) 0.00702= 100014?Si 1.5 注意: 1.5.1 样品不易称的过多,否则氟硅酸钾沉淀水解不完全,结果易偏低。 1.5.2 在加入HF 时反应较激烈,应慢慢摇动,待反应平静后水浴加热。 1.5.3 水溶时不易盖表皿,否则结果偏高。 1.5.4 选择氢氟酸时,需要检验标签标出的SiF 6的含量是否属实,如含量过高,会导致空白过大,结果不易测准。 1.5.5 从水解到滴定的过程一定要快,终点不易拉的过长。 1.5.6 操作过程所用器皿一律为塑料制品。

硅铁分析

X 2射线K 值法测定硅铁中硅的含量 姚艳红3  阚玉和 王思宏 尹起范 (延边大学分析测试中心,延吉133002)  2001206230收稿;2001211202接受1 引 言硅铁是我国大宗出口产品之一,在炼钢铸铁、有色金属工业中用途极为广泛,是良好的脱氧剂、合金剂和添加剂。因此,对硅铁中硅含量的测定是十分重要的。目前硅铁中硅含量的测定方法主要有高氯酸脱水重量法、动物胶凝聚重量法、硅氟酸钾容量法、密度法、硅钼蓝光度法、硅钼蓝差示光度法,X 2射线荧光光度法、X 2射线间接法。采用X 2射线K 值法直接测定硅铁中硅的含量,还未见过报道。本文选用高纯度的硅为标样,碳酸钙为参比物质,测得的K 值为21027,并用此K 值测定了硅铁中硅的含量,结果满意。 2 实验部分 211 仪器和实验条件 日本理学电机株式会社D ΠM AX 23C 型X 2射线衍射仪,2kW 铜靶X 射线管,石墨单色器,清华大学改造的X 2射线衍射系统,联想奔月2000P ⅢΠ450型计算机。X 射线管电压:40kV ,管电流:20mA ;狭缝RS =0.3mm ;DS = 1°,SS =1°,步进扫描,扫描速度:015°Πmin ,取样间隔:0101°,扫描范围:(2θ角)28.2°~29.8°。在测定K 值或相定量测定 前,仪器必须在20kV ,5mA 条件下稳定1h ,电压和电流平稳上升,工作温度和湿度应保持恒定。 212 试样配制 按1∶1比例称取硅标样和参比物质碳酸钙各0.2000±0.0001g ,放入玛瑙研钵中,加入5m L 的无水乙醇,研磨10min 左右,使之充分混匀,然后一边研磨一边用吹风机将试样吹干,置于干燥器内30min ,使之干燥。按G B5225285的制样方法用铝样板制作衍射样,制好的衍射样应立即进行测量。 3 结果与讨论 311 K 值的原理 K 值法的基本公式为I j ΠI s =K j s X j ΠX s ;当X j =X s =0.5时,K j s =I j ΠI s ,式中:I j 为待测相j 的特征衍射峰强度;I s 为参比物质的特征衍射峰强度;X j 为待测相j 在被测物质中的百分含量;X s 为参比物质s 对被测物质j 的百分含量;K j s 为待测物质j 对参比物质s 的参比强度,又称K 值。定量分析时,先按1∶1重量比配制标样和参比物质的 组合样,然后根据公式测出K 值(K 值为常数)。在待测样品中添加已知量的参比物质,即可测出样品的百分含量。312 K 值的测定 按上述实验条件,重复5次测定硅标准样和参比物质组合样品,测得衍射峰强度的相对偏差≤0.5,若发现数据超差,应在查明原因后重测。将测得的硅标样的强度平均值和参比物质碳酸钙的强度平均值 I s 、 I j 代入公式中,即测得K 值。本方法配制了5组测定K 值的组合样品,按上述实验条件每组测10次,求得的K 值为21027。313 标样和参比物质 高纯硅标样:日本株式会社高纯度化学研究所生产的金属硅标样;参比物质的选择:对本实验室现有的廉价的参比物与硅的衍射峰相比较,分别选择碳酸钙(104)晶面和硅(111)晶面的衍射峰作为碳酸钙和硅的特征峰,碳酸钙的衍射图与粉末衍射(JCPDS )卡片中52586标准衍射峰完全一致。因此,选择了碳酸钙作参比物质。 314 样品的测量 将待测样品硅铁粉碎后,按1∶1的重量比,分别称取硅铁和碳酸钙,按212的方法制取样品,按211的实验条件测得硅铁(111)晶面和碳酸钙(104)晶面的衍射强度,按公式即可求得硅铁样品中金属硅的百分含量。但硅铁中还含有二硅铁,对于二硅铁中硅的百分含量,我们经过多年的实践和摸索,得出一经验公式和经验系数,其经验公式为二硅铁的百分含量W FeSi 2=100-1.2×W Si (W Si 为金属硅的重量百分含量,112为经验系数);硅铁中总硅的百分含量=W Si +0.501×W FeSi 2(0.501为经验系数)。 315 方法准确度实验 为验证方法的准确度,我们根据文献推荐的最佳方法,选用硅铁标样1#、2#,用K 值法和硅氟酸 钾容量法重复测定5次,结果如下:1#、2#硅铁标样中硅的含量平均值分别为70197、70168、75126、74176;硅铁标样中的真 实值分别为70175、74170。 总之,在多年的实践中,用此K 值法测定了近百个样品,既简单快速,又经济实用。本方法实验结果的最大绝对误差为±0.56%,最大相对误差为±0.75%。符合G B5225285国家标准中规定的相对误差绝对值小于5%的要求。第30卷2002年5月 分析化学(FE NXI H UAX UE ) 来稿摘登Chinese Journal of Analytical Chemistry 第5期639

氟硅酸钾容量法测定二氧化硅

氟硅酸钾容量法测定二氧化硅 [摘要]用氟硅酸钾容量法代替重量法,测定玻璃和原料中的二氧化硅,简便,能及时指导生产。 [关键词]氟硅酸钾容量法;二氧化硅测定 1、方法原理 试样经碱熔融,将不溶性二氧化硅转为可溶性的硅酸盐。在硝酸介质中与过量的钾离子、氟离子作用,定量地生成氟硅酸钾(K2SiF6)沉淀。沉淀在热水中水解,相应地生成等量氢氟酸。生成的氢氟酸用氢氧化钠标准溶液滴定,借以求出试样中的二氧化硅含量。 SIO32-+6F-+6H+→SiF62-+3H20 SiF6 2-+2K+ →K2SiF6↓ K2SiF6↓+3H20 → 2KF+H2SiO3+4HF HF+NaOH =NaF+H20 2、测定方法 准确称取0.1 g左右试样于镍坩埚中加2 g左右氢氧化钾,置低温电炉熔融,经常摇动坩埚,在600~650℃继续熔融15-20min,旋转坩埚,使熔融物均匀地附着在坩埚内壁,冷却,用热水浸取熔融物于300 ml塑料杯中。盖上表面皿。一次加入15 ml硝酸,再用少量盐酸(1:1)及水冲洗坩埚,熔融物于300 ml塑料杯中。盖上表面皿。控制体积在60 ml左右,冷却至室温,在搅拌下加入固体氯化钾至过饱和,加入10ml氟化钾,用塑料棒搅拌,放置7 min。用涂蜡的玻璃漏斗及快速定性滤纸过滤,用5%氯化钾水溶液洗涤塑料杯2-3次,洗涤滤纸一次,将滤纸及沉淀放回到原塑料杯中,沿杯壁加入10 ml的15%氯化钾一乙醇溶液及1 ml 酚酞指示剂。用0.15 N氢氧化钠标准溶液中和未洗净的残余酸,仔细搅拌滤纸,并擦洗杯壁直至试液呈微红色不消失。加入200—250 ml中和过的沸水,立即以0.15 N氢氧化钠标准溶液滴定至微红色。二氧化硅百分含量按下式计算: 式中:V——滴定时消耗氢氧化钠标准溶液的体积,ml G——试样重量,g TSiO2——氢氧化钠标准溶液对二氧化硅的滴定度,mg/m1 3、条件试样与讨论 3.1 温度对标定氢氧化钠浓度的影响

硅铁分析方法.

硅铁—硼含量的测定—蒸馏分离-姜黄素光度法 1 范围 本推荐方法用蒸馏分离-姜黄素光度法测定硅铁中硼的含量。 本方法适用于硅铁中质量分数大于0.001%的硼含量的测定。 2 原理 用硝酸、氢氟酸分解试料,在甘露醇保护下,冒硫酸-磷酸烟赶氟。硼与甲醇生成硼酸甲酯,经蒸馏与其他元素分离,馏出物加姜黄素生成有色络合物,在分光光度计上,于波长545nm处测量吸光度。计算出硼的质量分数。 3 试剂 3.1 氢氟酸,ρ1.15g/mL 3.2 甲醇 3.3 硝酸,1+1 3.4 硫酸-磷酸混合酸,1+1 3.5 盐酸,1+4 3.6 甘露醇溶液,10g/L 3.7 草酸溶液,100g/L 3.8 氢氧化钙悬浮液 称取3.7g氢氧化钙(优级纯),溶于500mL二次蒸馏水中,置于塑料瓶中保存,用时混匀。 3.9 姜黄素乙醇溶液 称取0.05g姜黄素溶于100mL乙醇中,过滤于塑料瓶中。 3.10 苯酚冰乙酸溶液 称取35g苯酚溶于100mL冰乙酸中。 3.11硼标准溶液 3.11.1硼贮备液,200.0μg/mL 称取0.1145g硼酸(优级纯),溶于水中,移入100mL容量瓶中,用水稀释至刻度,混匀。此溶液1mL 含200.0μg硼。 3.11.2硼标准溶液,10.0μg/mL 分取10.00mL硼贮备液(200.0μg/mL)于200mL容量瓶中,用水稀释至刻度,混匀。此溶液1mL含10.0μg 硼。 4仪器 硼石英蒸馏器。

5 操作步骤 5.1 称样 称取约0.50g 粒度小于0.125mm 的试样,精确至0.0001g 。 5.2 空白试验 随同试料做空白试验。 5.3 试样处理 5.3.1 分解 将试料置于聚四氟乙烯烧杯中,加10mL 硝酸(1+1),2mL 甘露醇溶液(10g/L ),缓慢滴加5mL 氢氟酸,待剧烈作用停止后,加热溶解。加8mL 硫酸-磷酸混合酸(1+1),加热至冒烟,取下稍冷。用少量水冲洗杯壁。继续加热至冒烟,取下冷却。 5.3.2 蒸馏 将试液移至蒸馏瓶A 中,用少量水洗涤数次,总体积不超过13mL 。冷却。 加入20mL 甲醇。加6mL 氢氧化钙悬浮液及10mL 甲醇于蒸馏瓶B 中,加2mL 氢氧化钙悬浮液于U 型管中。连接好蒸馏器。 开启冷凝水,沸水浴加热蒸馏。当蒸馏瓶A 开始有馏出物至蒸馏瓶B 时,开始计算时间。20min 后,停止加热。冷却蒸馏瓶B 。将蒸馏瓶B 及U 型管中溶液移入50mL 容量瓶中,用3滴盐酸(1+4)U 型管及蒸馏瓶B 内附着物,用水洗净。洗涤液合并入容量瓶中,用水稀释至刻度,混匀。 5.3.3 显色 分取10.00 mL 试液于瓷蒸发皿中,在沸水浴上蒸干。取下冷却至室温,加20滴盐酸(1+4)溶解干涸物。加0.5mL 草酸溶液(100g/L ),1.5mL 姜黄素乙醇溶液(0.5g/L ),1.5mL 苯酚冰乙酸溶液,混匀。继续在水浴上蒸干,取下冷却。用25mL 丙酮分数次将显色干涸物溶于50mL 容量瓶中,用水稀释至刻度,混匀。用快速滤纸干过滤于小烧杯中。 5.4 测量 将部分滤液移入适宜吸收皿中,以水为参比,在分光光度计上于波长545nm 处测量吸光度。减去空白试验溶液的吸光度,从工作曲线上查出相应硼的质量。 5.5 工作曲线绘制 分取0、0.50、1.00、2.00、3.00、4.00mL 硼标准溶液(10.0μg/mL )分别置于蒸馏瓶A 中,分别补加5.0、4.5、4.0、3.0、2.0、1.0mL 水,8mL 硫酸-磷酸混合酸(1+1),混匀,冷却。以下按试料蒸馏、显色操作进行。以未加硼标准溶液的为参比,在波长545nm 处测量吸光度。以硼的质量为横坐标,吸光度为纵坐标,绘制工作曲线。 6 计算 按下式计算硼含量,以质量分数表示: w P /%=61110 ???V m V m ×100 式中:m 1—由工作曲线查出硼的质量,μg ; V 1—分取试液的体积,mL ; V —试液总的体积,mL ; m —试料的质量,g ;

氟硅酸钾法测定二氧化硅方法的原理、实践、应用介绍

氟硅酸钾法测定二氧化硅方法的原理、实践、应用 上世纪七十年代以前,常量硅的测定主要应用重量法,1862年Stolba、1926年Trevere曾提出过氟硅酸钾使用于测定硅的滴定法,但都因为不稳定未能推广开来.上世纪七十年代初,国内外提出了许多实用的方法,也有许多实验室提出了用于不同样品的操作规程,当时问题较多,七十年代中期氟硅酸钾滴定法国内日见成熟并且得到推广和普及.实际使用中证实氟硅酸钾滴定法测定硅,是测定常量硅的快、准的方法之一,虽然它使用较多的乙醇,但从总的来看成本不会超过重量法,又能达到快速准确测定硅的目的,所以推广的非常好非常快,这都是深入研究克服了许多缺点,才能有强有力的生命力。上个世纪.七十年代中后期它代替了大多数原来是由重量法测定的样品.成为测定常量二氧化硅广泛使用的方法之一。 一. 原理: 二氧化硅滴定分析方法都是间接测定方法,氟硅酸钾容量法是应用最广泛的一种,确切的说应该是氟硅酸钾沉淀分离—酸碱碱滴定法。其原理是含硅的样品,经与苛性碱、碳酸钠等共融时 生成可溶性硅酸盐,可溶性硅酸盐在大量氯化钾及F-存在下定量生成氟硅酸钾 (K 2SiF 6 )沉淀。氟硅酸钾在沸水中分解析出氢氟酸(HF),以标准氢氧化钠溶 液滴定。间接计算出二氧化硅的含量。主要反应: SiO 2+2NaOH=Na 2 SiO 3= +H 2 O (1) Na 2SiO 3= +2HCl=H 2 SiO 3= +2NaCl (2) H 2SiO 3= +3H 2 F 2 =H 2 SiF 6 3H 2 O (3) H 2SiF 6 2KCl=K 2 SiF 6 ↓+2HCl (4) K 2SiF 6 +3H 2 O = 4HF+H 2 SiO 3 +2KF (5) HF +NaOH = NaF+H 2 O (6) 上面(1)是表示含硅样品的分解,也可用HF分解样品。(2)分解后的试样中 的硅酸盐在HCl存在下转化为可溶性的H 2SiO 3 (3)(4)H 2 SiO 3 在大量氯化钾及 F-存在下生成K 2SiF 6 沉淀(5)K 2 SiF 6 沉淀溶解生成HF(6)以氢氧化钠标准溶液 滴定HF,间接测定硅含量。 虽然表面看起来这个过程就是样品溶解—生成K 2SiF 6 —使K 2 SiF 6 溶解析出HF—以 标准氢氧化钠溶液滴定—计算硅含量,并不复杂,实际应用时却必须注重一些要害的环节,才能得到准确的测定结果。 二.实践:

硅铁中硅量的测定.

6 硅铁中硅量的测定 氟硅酸钾沉淀---酸碱滴定法 范围 本方法适用硅质量分数在10%以上。 铝含量小于5%,钛含量小于0.3%,对硅测定无影响。 原理 试样以硝酸、氢氟酸分解,硅转化为硅氟酸,加入硝酸钾,使之转化为氟硅酸钾沉淀,过滤、洗净沉淀,溶解于沸水中,生成氢氟酸,用氢氧化钠标准溶液滴定游离的氢氟酸,由消耗氢氧化钠标准溶液的体积计算硅量。 主要反应如下: H2SiF6+2KNO3=K2SiF6+2HNO3 K2SiF6+4H2O+HSiO4+2KF+4HF HF+NaOH=NaF+H2O 试剂 3.1 氢氟酸 3.2 硝酸 3.3 硝酸钾饱和溶液 3.4 无水乙醇 3.5 硝酸钾洗涤液:称取100克硝酸钾溶于900毫升水中,再加入100毫升乙醇。加两滴酚酞指示剂,在加氢氧化钠溶液使溶液呈现粉红色。 3.6 酚酞指示剂 1% 3.7 氢氧化钠标准溶液 0.2585 称取0.5000克预先于105~110℃灼烧至恒量的基准邻苯二甲酸氢钾三份,分别置于300毫升的锥形瓶中,用40毫升中性水溶解,加三滴酚酞指示剂,用氢氧化钠标准溶液滴至粉红色为终点。 操作步骤 称取试样0.1000克随同试剂做空白试验,置于塑料杯中,加10毫升硝酸,5毫升氢氟酸,在室温下不断摇动溶解,加入20毫升硝酸钾饱和溶液,10毫升无水乙醇,少许纸浆,摇匀,在冷水浴中静置10分钟以上,使氟硅酸钾沉淀完全。用塑料漏斗过滤,用硝酸钾洗液洗净塑料杯,再用硝酸钾洗液洗净滤纸上的沉淀。然后将沉淀放入原杯中,加100~150毫升沸腾中性水,使滤纸散开。加5滴酚酞指示剂,以氢氧化钠标准液滴定至粉红色为终点。

分析结果的计算 Si%= C (V-VO)*0.007* 100 m 式中: C--- 氢氧化钠标准溶液的浓度,mol/l V---滴定所消耗氢氧化钠标准溶液的体积 VO—滴定试剂空白消耗氢氧化钠标准溶液的体积 m---试样量

湿法磷酸中氟硅酸含量的测定

湿法磷酸中氟硅酸含量的测定 一、测定方法:酸碱滴定法 二、测定原理:以甲基橙为指示剂,用氢氧化钠标准溶液滴定氟硅酸的含量。其反应式如下: H2SiF6+6NaOH=6NaF+4H2O+SiO2 三、试剂和溶液 (1)氢氧化钠标准滴定溶液:C(NaOH)=0.5mol/L(2)甲基橙指示液:10g/L 四、测定步骤:吸取试样5ml于盛有30ml水的250ml锥形瓶中,加10g/L甲基橙指示剂1滴,以0.5mol/L氢氧化钠标准溶液滴定至溶液由红色变为黄色为终点。同时用密度计量出氟硅酸试样的相对密度。 五、计算:H2SiF6%=(C×V×0.07205)×100/ρ×V1 式中 C—氢氧化钠标准滴定溶液,mol/L V—氢氧化钠标准溶液的体积,ml ρ—试样的相对密度, V1—吸取试样的体积,ml 0.07205—与1ml氢氧化钠标准溶液[C(NaOH)=1.000mol/L]相当的氟硅酸的摩尔质量,g 允许差:两次平行测定结果绝对差值不大于0.15%,取其算术平均值为测定结果。

湿法磷酸中氟硅酸含量的测定 一、测定方法:酸碱滴定法 二、测定原理:试样中的氟硅酸与硝酸钾在乙醇溶液中反应生成氟硅酸钾和硝酸 H2SiF6+2KNO3= K2SiF6↓+2HNO3 在室温条件下用氢氧化钠标准溶液滴定溶液先滴定反应中生成的硝酸和试样中的氢氟酸。 HNO3+ NaOH=Na NO3+ H2O HF+ NaOH=NaF+ H2O 然后加热至沸,再用氢氧化钠标准溶液滴定氟硅酸钾。根据煮沸后所消耗的氢氧化钠的用量,可计算氟硅酸的含量。 K2SiF6+ 4NaOH=2KF+ 4NaF+SiO2↓+ 2H2O 三、试剂和溶液 (1)氢氧化钠标准滴定溶液:C(NaOH)=0.5mol/L (2)硝酸钾饱和溶液 (3)不含二氧化碳的水:将蒸馏水注入烧瓶中,煮沸10分钟立即用装有碱石灰管的胶塞塞紧,放置冷却即得。 (4)中性乙醇:于1000ml无水乙醇中加入1.5ml酚酞指示液(10g/L),并用氢氧化钠标准溶液滴定至刚刚呈微红色。 四、测定步骤:准确称取2 g试样于盛有50ml无二氧化碳水的600ml烧杯中,加入硝酸钾饱和溶液10ml和中性乙醇25ml ,用0.5mol/L氢氧化钠标准溶液在室温下滴定至溶液呈桃红色为将到终点。将到终点的颜色应能保持5~10秒(不需记录滴定体积)。然后加入300ml无二氧化碳水并煮沸2分钟,在继续滴定至桃红色为终点,颜色能长久保持,记录消耗的氢氧化钠标准溶液的体积(ml)五、计算:H2SiF6%=(C×V2×0.03603)×100/m 式中 C—氢氧化钠标准滴定溶液,mol/L V2—煮沸后,滴定氢氧化钠标准溶液的体积,ml m—试样的质量,g 0.03603—与1ml氢氧化钠标准溶液[C(NaOH)=1.000mol/L]相当的氟硅酸的摩 尔质量,g/ mol 允许差:两次平行测定结果绝对差值不大于0.15%,取其算术平均值为测定结果。

硅铁合金中硅含量检测方法比较

硅铁合金中硅含量检测方法比较 发布时间:2011.06.11新闻来源: 目前,我国已成为世界铁合金第一生产大国,但在硅铁合金中硅含量的检测方法上,国内除少数大型铁合金企业购有先进的分析仪器外,大多数中小型铁合金企业仍采用化学分析方法,有的企业还停留在用过比重分析测定硅含量的水平,其测定结果难免会偏离硅的实际含量,导致铁合金生产厂家和用户企业之间的质量异议不断发生。本文重点介绍了几种不同的化学分析测硅方法、操作中应注意的事项,及其对硅测定值的影响,希望能对钢铁企业的铁合金验质工作起到一些帮助。 硅的测定方法有多种。用以测定硅铁合金中硅测定的化学分析方法主要有重量法和氟硅酸钾容量法。现代仪器分析中,用以准确测定硅铁中硅的含量的仪器有X-荧光光度仪和能谱仪。电感耦合等离子光度分析仪也可用以间接测得硅的含量。 重量法测定硅铁中硅含量在重量法测定硅含量中,又具体分为三种方法,即: 1、现在国家标准GB4333?1-1984,《高氯酸脱水重量法测定硅量》; 2、盐酸脱水重量法测定硅量,见《工厂分析化验手册》第139页所列“质量法”; 3、挥硅减量重量法。 高氯酸脱水重量法和盐酸脱水重量法。前者是现行国家标准,后者是经典测硅方法。操作偏离方法规定,特别是脱水程度掌握尺度不一时,硅的测定值就会相差较大。 挥硅减量重量法适用于杂质含量低的高含硅物质测定,例如石英、高纯硅石、结晶硅等物料中硅的测定,或者是重量法中灼烧后的二氧化硅中的杂质含量较多,再采用挥硅以其减量计算物料中硅的含量。这一测定方法相对较容易,测定值相对较稳定。 在使用挥硅减量法测定硅铁中硅的过程中,因挥硅后的残留物中90%为Fe2O3,其次是 Al2O3、CaO等,计算过程中一般按Fe2O3中含Fe70%折算成金属元素,而Al2O3的折算系数为0.529,因此试样中每含1%的铝,则实际多则算成金属元素的量为(1÷0.529×0.70)-1.0=0.32,即最后计算出硅的含量就比实际低0.32%。因此,含Al量越高的样品,利用挥硅测量法测定的硅值就相应越低。样品实际含硅量在75.50左右时,就有可能得出Si<75.0的测定结果。 笔者前几年曾到一些用户单位处理质量异议,其中一用户委托当地地矿化验室用质量法测定硅铁中硅含量,与生产厂产品质量检测硅的结果相差2%以上。笔者随行带的硅铁标样,委托测硅结果比标样硅含量值低2.20%。为此双方商定,如果不完全按国家标准进行,一次脱水必须炒灼至枯黄粉盐状,再行用酸溶解盐类。结果连同标样,用重量法再次测定,其结果值比标样实际硅含量低0.23%,已在允许误差范围内。氟硅酸钾容量法测定硅铁中硅含量 采用重量法测定硅储量,结果比较准确,但费时,对于大批量的样品测定,无论是使用器皿还是测定速度,都难以满足要求。2001年,国家检疫检验总局批准颁发的行业标准SN/T1014?1-2001《氟硅酸钾容量法测定硅量》,简便、快捷、准确,而且同时能进行大批量样品测定,达到了重量法难以达到的目的。 在这一方法中,应注意溶样、过滤、洗涤、中和游离酸四个步骤的具体操作。 溶样时,氢氟酸应逐滴加入,边摇边加,使产生的反应热迅速扩散,同时严禁将氢氟酸滴在试样集中的地方,否则将产生浓的黄烟,局部温升超过600摄氏度,使硅形成SiF4挥发损失。

硅铁中硅的快速分析

硅铁中硅的快速分析 第i9巷第3期 l997年6月 山东冶金 ShandongYejin V oj.J9,NO3 June1997 硅铁中硅的快速分析 张文丽 ●’-’,- -一 (泰山钢铁总公司质橙处) Ff’£} 摘要舟绍了以塑料烧杯代替铂垒皿.用硝酸,氧氟酸溶解试棹.以硅钼蓝光度法快速测定硅铁中硅 鋈,重现性琏五莲芝窟量关键词鳘,楚t型n粤 QuickAnaly~sofSiin$|liconensen ZhangWenli (TheQualkyMan孵eⅢ咖tDepartmentshaⅡIron丑ndSteelGenera~(hm_啪)

AI~tractThispaper1ntmd吣themethodfqumkdetem~hnatlemelemetttinsc.nei皇enused0fdKeon molybdenumblu~,photometry,takhngDl自ncupt0replacepl~inumdishandudngofnitricacidand hydrollu~ricacjd们hs~mple. K~ordIⅡe翻.njtdctbydmfluc~c.t;d哪B钻 l前言 硅铁中硅的分析,一般采用的方法有重量法或容量法,井都需在钼金贵重器皿中溶解样 品,操作繁琐,周期长,测定一个试样需用8~12h.本方法采用硝酸,氨氟酸溶样.在70~80C 水浴上加热试样很快分懈,以硼酸配位氟离子,单分子硅酸在C(H)一0.1~0.5mol/1酸度 时与钳酸铵生成黄色的硅钼杂多酸,以革酸破坏磷砷杂多酸,以硫酸亚铁铵还原为”硅钼蓝”, 侧量吸光度. —~ 2试验方法 2.1试剂 氲氟酸:4o;硝酸(d=1.42);脲素溶液;5;硼酸溶液:5{钼酸铵溶液:5;硫硝混合 酸:lI溶液中含硫酸(d=1.84)50ml,硝酸(d—l.42)8ml}硫酸亚铁铵溶液:2,

氟硅酸钾容量法测定二氧化硅注意事项

氟硅酸钾容量法测定二氧化硅容易出现的 问题 一、试样在分析天平上定量称取后,倒入银坩埚后容易成团,会造成高温熔样时,试样分解不完全,导致测定结果偏低。 二、试样加碱后,放入高温炉的温度过高,已达或接近控制温度,或盖上银坩埚盖时未留缝,均容易喷样,导致结果偏低。 三、在测定二氧化硅的试样溶液中加入的氯化钾固体的量不够,生成氟硅酸钾沉淀不完全,导致测定结果偏低。 四、在测定二氧化硅的试样溶液中加入氯化钾固体时,如溶液的温度高,会溶解过多氯化钾。以致在溶液静置时析出的氯化钾固体太多,增加沉淀过滤的难度,延长了过滤时间,可能导致部分氟硅酸钾沉淀水解,结果偏低。 五、在测定二氧化硅的试样溶液中,加入浓硝酸,氟化钾溶液并加氯化钾固体饱和后,放置时间不够,导致氟硅酸钾沉淀不完全,使结果偏低。 六、做漏斗水柱的技术不熟练,过滤时漏斗不能形成水柱,过滤、洗涤速度太慢,可能导致部分氟硅酸钾沉淀水解,结果偏低。 七、过滤、洗涤氟硅酸钾沉淀时,因为粗心大意,错用蒸馏水作洗液,导致沉淀部分水解,结果偏低。用氯化钾洗液(50g/l)洗涤次数和用量控制不好,导致沉淀部分水解,结果偏低。 八、中和残余酸时,速度太慢,导致沉淀部分水解或完全水解,结果偏低甚至测定失败。

九、残余酸未能中和完全,还有部分留在滤纸中,导致结果偏高。 十、用于水解的蒸馏水偏酸性,不中和,导致结果偏高。 十一、用于水解的蒸馏水未沸腾,或沸腾之后又冷却或体积太少滴定时,不利于氟硅酸钾沉淀的水解,易导致结果偏低。 十二、滴定时,终点掌握不好,颜色太浅或太红,导致结果偏低或偏高。 十三、天平使用不过关,称样不准确,以及不能正确使用容量瓶、移液管、滴定管,都会对测定的准确性带来很大影响。 针对以上氟硅酸钾容量法测定二氧化硅时容易出现的问题,可以相应采用以下办法来解决: 一、在分析天平上准确称取试样,并把其完全倒至银坩埚后,需轻轻震击银坩埚底部,使试样分散,便于试样能充分与氢氧化钠接触而容易反应完全,或采用银坩埚在熔样中途摇动一次的办法。 二、把银坩埚放入高温炉进行熔样一般从低温开始,让温度逐渐升高,初始温度不能高于500℃,银坩埚盖要留小缝隙,可以防止喷样。 三、加入氯化钾固体之前需经过水浴冷却至室温后,方可加入固体氯化钾,并注意不断搅拌,直至加入的固体氯化钾不再溶化,且保证此时氯化钾固体平铺于杯底的面积约为2cm直径范围,之后放置时间10-15分钟,这样氟硅酸钾沉淀才能完全生成,且过量的氯化钾不会影响沉淀的过滤。 四、过滤前,使漏斗颈成水柱的关键在于滤纸的折放、赶气泡和

相关文档