文档库 最新最全的文档下载
当前位置:文档库 › 透明密封防水纳米复合陶瓷涂料

透明密封防水纳米复合陶瓷涂料

透明密封防水纳米复合陶瓷涂料
透明密封防水纳米复合陶瓷涂料

透明密封防水纳米复合陶瓷涂料

产品特性及使用方法

产品型号:705(系列)

产品外观:(标准颜色)

透明(颜色可调,根据客户需求调)

适用基材:

碳钢、不锈钢、铸铁、钛合金、铝合金、铜合金、陶瓷、人造石、混泥土、陶瓷纤维、木材等。

备注:不同基材对应的涂料配方也不同。在一定范围内,可根据基材不同使用工况调节匹配。

适用温度

长期使用温度-50℃—200℃

备注:不同基材对应的产品会有所不同。良好的耐冷热冲击抗热震。

产品特性:

1、纳米涂料单组份,环保无毒害,施工方便,性能稳定。

2、涂层通过SGS检测以及美国FDA检测,食品级。

3、纳米涂料超强渗透,通过渗透、包覆、填充、密封、表面成膜,可稳定高效实现立体化

密封防水性能。

4、涂层硬度可达6—7H,耐磨耐用,耐酸碱,耐腐蚀,耐盐雾,抗老化,可用于户外或高

湿高热工况。

5、涂层与底材结合良好,结合强度大于4MPa。

6、纳米无机复合涂层,电绝缘性能良好,绝缘电阻大于200MΩ。

7、涂层本身不燃,涂层具有一定的阻燃性能。

8、涂层耐高温冷热冲击,抗热震良好。

产品存储:避光密封保存,5℃—30℃环境中,纳米涂料保质期6个月。开盖后建议1月内用完,效果更佳(纳米颗粒表面能高,活性高,易团聚。在分散剂以及表面处理的作用下,

在一定时间内纳米颗粒保持稳定)。

特别备注:

1、本纳米涂料为直接使用,不可添加其它任何组份(尤其是水),否则会严重影响该纳米

涂料功效甚至快速报废。

2、操作人员防护:跟普通涂料施工防护一样,涂布过程远离明火、电弧、电火花,具体参

照本产品的MSDS报告。

产品净重:标准包装:20 KG /桶;最小包装:5.0KG/桶。

产品图片:

广州亦纳新材料科技有限公司

使用方法:(以确保达到良好效果,建议按以下方式使用。)

1、涂布前准备

涂料准备:直接使用。用400目或以上过滤网过滤后备用。

基材清理:除油除脂除锈。工况恶劣或要求高的需要表面喷砂,喷砂Sa2.5级或以上,表面粗糙度40—50微米。普通耐磨防腐可不喷砂。

涂布工具:干净干燥,不可沾有水或者其它物质,否则会影响涂料功效甚至报废。

2、涂布方式

喷涂:普通喷涂,可喷涂2遍或以上,一遍实干即可喷涂下一遍。

刷涂:软硬中等的毛刷均匀涂布即可。可刷涂2遍或以上,一遍实干刷涂下一遍。

辊涂:均匀辊涂涂布即可,可辊涂2遍或以上,一遍实干辊涂下一遍。

浸涂:一般浸涂一遍即可。

3、涂布工具清洗处理及涂层处理

涂布工具清洗:用无水乙醇清洗后,清水清洗干净,压缩空气吹干存放即可。

涂层处理:涂层涂布完成后让涂层自然实干(25℃气温大约24小时),或130℃烘烤45分钟快速表干,涂层实干冷却后,重复以上工艺流程涂布第二遍或以上,

达到所需涂层厚度,常温放置1周完成涂层陶瓷化(固化),之后涂层即可

使用或后加工后使用。

备注:1、涂层涂布施工前确保基材的干燥干净,否则会导致涂层脱落或降低防水性能。

2、从原包装里倒出未使用完的纳米涂料,用400目左右的滤布过滤后单独存放,后

续还可以使用。

广纳纳米特有:

1、航空级纳米复合陶瓷技术工艺,功效更稳定。

2、独特成熟的纳米陶瓷分散工艺技术,分散更均匀稳定;纳米微观颗粒间结合界面处

理高效稳定,确保纳米复合陶瓷涂层与基材结合强度更好性能更优异稳定;纳米复

合陶瓷的配方复合,让纳米复合陶瓷涂层功能可控。

3、纳米复合陶瓷涂料,呈现良好的微纳结构(纳米复合陶瓷颗粒完好包裹微米复合陶

瓷颗粒,微米复合陶瓷颗粒间隙被纳米复合陶瓷颗粒填充,形成致密涂层。纳米复

合陶瓷颗粒渗透填充修复基材表面,更容易形成大量稳定的纳米复合陶瓷与基材的

中间相),确保涂层致密耐磨。

运用领域:1、管道、灯具、器皿、石墨。

2、洗手间或厨房高效防水、水池或隧道高效防水等。

3、水下部件表面(适应海水)、船舶、游艇等。

4、建筑装饰材料,家具饰品。

5、竹木增硬增强防腐。

A、盐雾超标准检测:

B、防锈蚀检测:

防锈实验方法:根据JIS-Z2371规定(盐雾测试方法)在35℃状态下喷雾3%NaCl溶

液350小时。

C、盐水喷雾超标准检测:

D、耐久性检测:

E、耐溶剂检测:

F、环保安全性能检测:

高硬耐磨防腐纳米复合陶瓷涂料

高硬耐磨防腐纳米复合陶瓷涂料 产品特性及使用方法 产品型号:701(系列) 产品外观:(标准颜色) 黑色、白色、灰黑色(颜色可调,根据客户需求调) 适用基材: 碳钢、不锈钢、铸铁、钛合金、铝合金、铜合金、陶瓷、人造石、陶瓷纤维、木材等。 备注:不同基材对应的涂料配方也不同。在一定范围内,可根据基材不同使用工况调节匹配。 适用温度 长期使用温度-50℃—200℃ 备注:不同基材对应的产品会有所不同。良好的耐冷热冲击抗热震。 产品特性: 1、纳米涂料单组份,环保无毒害,施工方便省涂料,性能稳定,重涂性能良好,维护方 便。 2、涂层高硬度,最高可达9H,致密耐磨,可耐泥沙磨损,表面光滑度可调,也可打磨 加工。 3、涂层有一定的自润滑功能,摩擦系数相对较低,越磨越光滑,耐磨性能良好。 4、涂层耐酸碱,耐腐蚀,耐盐雾,抗老化,可用于户外或高湿高热工况。 5、涂层与底材结合良好,结合强度4MPa左右。 6、纳米无机复合涂层,电绝缘性能良好,绝缘电阻大于200MΩ。 7、涂层(陶瓷化后)导热散热良好,热导率6W/M.K左右。 8、涂层本身不燃,具有良好的阻燃功效。 产品存储:避光密封保存,5℃—30℃环境中,纳米涂料保质期6个月。开盖后建议1月内用完,效果更佳(纳米颗粒表面能高,活性高,易团聚。在分散剂以及表面处理的作用下, 在一定时间内纳米颗粒保持稳定)。 特别备注: 1、本纳米涂料为直接使用,不可添加其它任何组份(尤其是水),否则会严重影响该纳米 涂料功效甚至快速报废。 2、操作人员防护:跟普通涂料施工防护一样,涂布过程远离明火、电弧、电火花,具体参 照本产品的MSDS报告。 产品净重:标准包装:20 KG /桶;最小包装:5.0KG/桶。 产品图片:

纳米陶瓷材料

Al2O3纳米陶瓷颗粒的研究 摘要:纳米陶瓷是一种新型纳米材料,是现代陶瓷技术发展的最新领域。本文介绍了纳米陶瓷的特性,概述了目前Al2O3纳米陶瓷颗粒制备技术的研究现状和所在的问题。 关键词:纳米材料,纳米陶瓷,制备技术 Abstract:Nanoceramics is a kind of novel materials in nano scale and new field of modern technological development of ceramics.The characteristics of nanoceramics was introduced in this article.Also,the development and problems of the fabrication methods for Al2O3 nanoceramic particles is summarized. Key words:nanomaterials,nanoceramics,fabrication methods 0引言 Al2O3陶瓷因为其耐高温耐腐蚀机械强度高等特点而在现代社会中具有极其广泛的应用,如航空、电力、化工、机械等众多领域。随着纳米材料在近些年的新兴,Al2O3纳米材料也逐渐成为众多材料科学家注意的研究对象。当组成物质的结构单元处于纳米级别 (Inm-lOOnm)时,由于其尺寸已经接近电子的相干长度,强相干所带来的自组织导致材料发生很大的变化。由于纳米尺度已经接近光的波长,再加上纳米颗粒巨大的比表面积,导致材料的表面效应、小尺寸效应和宏观量子隧道效应等较为显著。表现在材料的溶点,强度,导电性,延展性等方面会有显著的变化。而要制备纳米陶瓷,首先我们要制备

纳米陶瓷涂层的典型应用领域

纳米陶瓷涂层的一些典型应用领域: 飞机发动机、燃气轮机零部件: 热障涂层(TBC)被广泛地应用在飞机发动机、涡轮机和汽轮机叶片上,保护高温合金基体免受高温氧化、腐蚀,起到隔热、提高发动机进口温度和发动机推重比作用的一种陶瓷涂层材料。8YSZ材料被用做热障涂层材料在军用发动机已应用几十年了,它的缺点是不能突破1200o C的使用温度,但现在军用发动机的使用温度已经超过1200o C,因此急需材料方面的突破。另外,地面燃气轮机的热障涂层材料基本受制于国外,也亟待国产化。国内外研究指出含锆酸盐的双陶瓷热障涂层被认为是未来发展长期使用温度高于1200o C的最有前景的涂层结构之一。用纳米结构锆酸盐粉体喂料制备的纳米结构双陶瓷型n-LZ/8YSZ热障涂层的隔热效果明显好于其它现有涂层,与相同厚度的传统微米结构单陶瓷型8YSZ 热障涂层相比,隔热效果提高了70%。而且,纳米结构的双陶瓷型涂层具有比其它两种涂层层更好的热震性能。 军舰船舶零部件: 纳米结构的热喷涂陶瓷涂层早已广泛应用于美国海军装备(包括军舰、潜艇、扫雷艇和航空母舰)上的数百种零部件。纳米结构陶瓷涂层的强度、韧性、耐磨性、耐蚀性、热震抗力等均比目前国内外商用陶瓷涂层材料中质量好、销量大的美科130涂层的性能显著提高。有着高出1倍的韧性,高出4-8倍的耐磨性,高出1-2倍的结合强度和抗热震性能和高出约10倍的疲劳性能。表1给出了纳米结构的热喷涂陶瓷涂层在美国海军舰船上的一些典型应用。 表1 一些美国海军舰船上应用的热喷涂纳米Al2O3/TiO2陶瓷涂层 零部件船上系统基体材料使用环境 水泵轴储水槽NiCu合金盐水 阀杆主柱塞阀不锈钢蒸汽 轴主加速器碳钢盐水 涡轮转子辅助蒸汽碳钢油 端轴主推进发动机青铜盐水 阀杆主馈泵控制不锈钢蒸汽 膨胀接头弹射蒸汽装置CuNi合金蒸汽 支杆潜艇舱门不锈钢盐水 流量泵燃料油碳钢燃料油 柴油机、工程机械零部件: 高性能纳米结构陶瓷涂层可以大幅度提高材料或零部件的硬度、韧性、耐磨性、抗腐蚀性和耐高温性能,因此可广泛应用于柴油发动机、工程机械等领域。如缸体、泵轴、机轴、曲轴、凸轮轴、轴瓦、连杆瓦、柱塞、阀杆、阀座、液压支杆、缸盖、活塞销、活塞和活塞环等零部件。如:纳米陶瓷涂层来大幅度提高曲轴的抗疲劳强度、硬度和耐磨性;纳米陶瓷涂层用于活塞无疑会是最具有高性价比的工艺技术;纳米陶瓷涂层将给与主轴瓦及连杆瓦以更高的强度、硬度和韧性,显著提高其耐磨性能,极大地减小曲轴的磨损、有效地防止烧瓦、抱瓦及烧

陶瓷涂料综述

国内陶瓷涂料研究进展综述 摘要: 随着涂料工业的发展,一些有机涂料已经不能满足人们的绿色环保、多功能化和优良性能的理念,而陶瓷涂料的发展开启了向高新涂料领域的进展和研究,进一步满足了人们对于提升涂料性能的愿景。本文主要基于目前现有的国内多种有关陶瓷涂料的研究成果,简明地阐述了各种陶瓷涂料的优良性能,以及其最新的研究发展,同时对这些陶瓷涂料的制备方法和机理进行了归纳,总结,并且进一步提出了一些有关陶瓷涂料的设想和改进。 关键词: 耐高温;陶瓷;瓷膜;涂料;涂膜;环保; 0前言: 陶瓷涂料属于功能涂料领域[1],是一种新型的水性无机涂料。它是以纳米无机化合物为主要成分,并且以水为分散质,涂装后通常经过低温加热方式固化,形成性能和陶瓷相似的涂膜。其原料蕴藏丰富,便于开采且价格低廉,进而使其成本也相对传统涂料较低。其中一些采用了硅烷偶联剂,氢氧化铝胶体制备的陶瓷涂料,具有耐高温、高硬度、不燃无烟、超耐候、环保无毒、色彩丰富、涂装简便等诸多优势。经过各种新型的改良和增进后,其各种优越的性能和廉价的成本也讲逐渐取代传统涂料。 而传统的有机涂料等,对环境的影响颇为巨大,不仅成品经常排放温室气体导致气候变暖,而且还释放有毒物质于空气中,导致人或动植物的疾病和死亡,其在生产的过程之中也耗能大,不满足我国低碳的理念,并产生各种工业污水或有毒气体。 本文试图对各种陶瓷涂料相关的文献资料进行归纳,分类并总结,从各种试剂的配比及制备方案中分析出陶瓷涂料的一些发展和改进,并进行一些相关的理论设想。 1陶瓷涂料概述 1.1成膜机理 一般由多种纳米级氧化物,通过改进的溶胶-凝胶[2]等反应,并且在低温下,以水为分散介质,水解固化行成类似陶瓷和玻璃的漆膜。 1.2原料来源 陶瓷涂料的原材料来自于极普通的、储量极为丰富的天然矿石和金属氧化物(如:石灰石、粘石英砂),而且生产工艺也不复杂,能耗相对较低。因而原材料资源十分丰富,这与完全依赖石油化学工业、并以石油为主要原料的有机涂料相比较,不仅具有很大的资源优势,而且更加符合低碳要求。 1.3应用领域

纳米陶瓷材料综述

纳米陶瓷材料综述 Summary of nano-ceramic material 摘要: 本文是一片比较全面的纳米陶瓷材料的综述文章。主要内容涵盖了陶瓷的发展,纳米陶瓷的发展,纳米陶瓷的结构与性能(力学性能、电学性能、超塑性等)、纳米陶瓷的应用(防护材料、耐高温材料、生物材料、压电材料、信息材料等)、纳米陶瓷的制备方法,包括纳米粉的制备,成型及烧结。此外还有纳米材料的发展展望。 关键词:纳米陶瓷结构与性能应用制备方法展望 Abstract: This paper is a comprehensive review article of the nano-ceramic material. The main content covers the development of the ceramic, the development of nano-ceramic nano-ceramic structure and properties (mechanical properties, electrical properties, superplasticity, etc.), the application of nano-ceramic (protective materials, high temperature materials, bio-materials, piezoelectric materials, information materials, etc.), nano-ceramic preparation methods, including nano-powders, molding and sintering. In addition to the development of nanomaterials Outlook. Keywords: nano-ceramic structure and performance preparation method Prospects 引言:著名的诺贝尔奖获得者Feynman在1959年就曾预言:“如果我们对物体微小规模上的排列加以某种控制的话,我们就能使物体得到大量异于寻常的特性,就会看到材料性能产生丰富的变化。”

纳米陶瓷玻璃隔热涂料

纳米陶瓷玻璃隔热涂料 HB-YT001 产品介绍:纳米陶瓷玻璃隔热涂料是采用纳米陶瓷粉体材料加工制备的一种涂料,所采用的纳米材料系本公司自主研发生产的特殊光学性能材料与目前市场通用的纳米ATO 材料对比提高在近红外的阻隔率,即在红外光区、紫外光区都达到95%以上的阻隔率、可见光区大于70%的透过率。在不影响玻璃采光的前提下,具有冬暖夏凉,实现节能的效果。 纳米陶瓷玻璃隔热涂料主要性能参数: 八大优点,信心保证 节能、环保 玻璃窗是建筑物中,隔热和保温最薄弱的环节。纳米陶瓷玻璃隔热涂料能使您的窗户增加隔热和保温性能从而有提高室内舒适性,同时降低制冷及供暖设备能耗,节能25-30%,减少碳排放。 阻隔红外线 太阳光中的近红外线包含了总太阳能量的54%左右。纳米陶瓷玻璃隔热涂料阻隔红外线透过玻璃与室内外热量的交换。红外线阻隔率最高能到达99%为隔热效果提供了有效的保证。 抗紫外线 太阳光中的紫外线是导致物品褪色的主要原因。地毯、家具、衣物、软装潢和一些高档饰品是一笔可观的开支,如果长期遭受阳光照射而褪色损坏很快就丧失其价值。纳米陶瓷玻璃隔热涂料阻隔了90-99%紫外线,使其褪色大大减小,室内的陈设得到最好的保护。 高透光性 不影响室内采光,大大节约室内的开灯时间。并能有效阻隔刺目强光,令室内外景观清晰,不影响建筑美观。 无拼接缝 施工方面采用刮涂、喷涂、淋涂专业技术,即使大块玻璃也不存在接缝现象,有效提升建筑整体美观。 阻燃性好 本品为不燃,是其他隔热产品所不具备。遇到火灾发生也不会产生有毒气体,不会在逃生中受到二次伤害。 涂层厚度 可见光 透过率 红外线阻隔率 紫外线阻隔率 室内外温差 遮蔽系数 表面硬度 (铅笔硬度) 节省电能 6-9um 65-85% 90-99% 90-99% 5-10℃ 0.45 ≥6 20-40%

透明密封防水纳米复合陶瓷涂料

透明密封防水纳米复合陶瓷涂料 产品特性及使用方法 产品型号:705(系列) 产品外观:(标准颜色) 透明(颜色可调,根据客户需求调) 适用基材: 碳钢、不锈钢、铸铁、钛合金、铝合金、铜合金、陶瓷、人造石、混泥土、陶瓷纤维、木材等。 备注:不同基材对应的涂料配方也不同。在一定范围内,可根据基材不同使用工况调节匹配。 适用温度 长期使用温度-50℃—200℃ 备注:不同基材对应的产品会有所不同。良好的耐冷热冲击抗热震。 产品特性: 1、纳米涂料单组份,环保无毒害,施工方便,性能稳定。 2、涂层通过SGS检测以及美国FDA检测,食品级。 3、纳米涂料超强渗透,通过渗透、包覆、填充、密封、表面成膜,可稳定高效实现立体化 密封防水性能。 4、涂层硬度可达6—7H,耐磨耐用,耐酸碱,耐腐蚀,耐盐雾,抗老化,可用于户外或高 湿高热工况。 5、涂层与底材结合良好,结合强度大于4MPa。 6、纳米无机复合涂层,电绝缘性能良好,绝缘电阻大于200MΩ。 7、涂层本身不燃,涂层具有一定的阻燃性能。 8、涂层耐高温冷热冲击,抗热震良好。 产品存储:避光密封保存,5℃—30℃环境中,纳米涂料保质期6个月。开盖后建议1月内用完,效果更佳(纳米颗粒表面能高,活性高,易团聚。在分散剂以及表面处理的作用下, 在一定时间内纳米颗粒保持稳定)。 特别备注: 1、本纳米涂料为直接使用,不可添加其它任何组份(尤其是水),否则会严重影响该纳米 涂料功效甚至快速报废。 2、操作人员防护:跟普通涂料施工防护一样,涂布过程远离明火、电弧、电火花,具体参 照本产品的MSDS报告。 产品净重:标准包装:20 KG /桶;最小包装:5.0KG/桶。 产品图片:

纳米陶瓷及其主要性能简析

纳米陶瓷 及其主要性能简析 [摘要] 纳米陶瓷的超细晶粒、高浓度晶界以及晶界原子邻近状况决定了它们具有明显区别于普通陶瓷的特异性能。本文对纳米陶瓷的这些主要的特异性能进行了阐述。 [关键词] 纳米陶瓷、显微结构、晶界、扩散、烧结、强度、韧性、超塑性 [引言] 陶瓷材料作为材料的三大支柱之一 ,在日常生活及工业生产中起着举足轻重的作用。但是 ,由于传统陶瓷材料质地较脆 ,韧性、强度较差 ,因而使其应用受到了较大的限制。随着纳米技术的广泛应用 ,纳米陶瓷随之产生 ,希望以此来克服陶瓷材料的脆性 ,使陶瓷具有象金属一样的柔韧性和可加工性。英国著名材料专家 Cahn 在《自然》杂志上撰文说:纳米陶瓷是解决陶瓷脆性的战略途径。 一、纳米陶瓷及其结构简介 所谓纳米陶瓷是指在陶瓷材料的显微结构中,晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸等都是纳米水平的一类陶瓷。 我们知道陶瓷的烧结中粉料的粒度是重要的影响因素。粒度越小,粉粒的表面积越大,表面能越大,烧结的推动力越大;同时晶界所占体积越大,扩散越容易,因而烧结速度越快。当陶瓷中晶粒尺寸减小一个数量级,晶粒的表面积及晶界的体积亦以相应的倍数增加。如晶粒尺寸为nm 6~3,晶界的厚度为nm 2~1时,晶界的体积约占整个体积的%50。由于晶粒细化引起表面能的急剧增加。 纳米陶瓷由纳米量级的粉料烧结而成,是晶粒尺寸在nm 100~1之间的多晶陶瓷。所以结构中包含纳米量级的晶粒、晶界和缺陷。由于晶粒细化,晶界数量大幅度增加。当晶粒尺寸在nm 25以下,若晶界厚度为nm 1,则晶界处原子百分数达%50~%15,单位体积晶界的面积达32/600cm m ,晶界浓度达3 19/10cm 。 纳米陶瓷这样的特殊结构,使得其具有特殊的性能。 二、纳米陶瓷的主要性能及其简析 纳米陶瓷中纳米量级的晶粒、晶界和缺陷决定了它们具有区别于普通陶瓷的特殊性能,是纳米陶瓷性能优于普通陶瓷的根本原因所在。 1、 较低的烧结温度和较快的致密化速度

新型纳米吸波涂层材料的研究进展

新型纳米吸波涂层材料的研究进展 : 1引言 随着现代军事技术的迅猛发展,世界各国的防御体系被敌方探测、跟踪和攻击的可能性越来越大,军事目标的生存能力和武器系统的突防能力受到了严重威胁。隐身技术作为提高武器系统生存、突防,尤其是纵深打击能力的有效手段,已经成为集陆、海、空、天、电、磁六维一体的立体化现代战争中最重要、最有效的突防战术技术手段,并受到世界各国的高度重视。现代化战争对吸波材料的吸波性能要求越来越高,一般传统的吸波材料很难满足需要。由于结构和组成的特殊性,使得纳米吸波涂料成为隐身技术的新亮点。纳米材料是指三维尺寸中至少有一维为纳米尺寸的材料,如薄膜、纤维、超细粒子、多层膜、粒子膜及纳米微晶材料等,一

般是由尺寸在1~100nm的物质组成的微粉体系。 2纳米吸波涂层的吸波原理和结构特性 吸波材料的吸波实质是吸收或衰减入射的电磁 波,并通过材料的介质损耗使电磁波能量转变成热能或其它形式的能量而耗散掉。吸波材料一般由基体材料与吸收介质复合而成。吸波材料可以分为电损耗型和磁损耗型2类。电损耗型材料主要靠介质的电子极化、离子极化、分子极化或界面极化来吸收、衰减电磁波。磁损耗型材料主要是靠磁滞损耗、畴壁共振和后效损耗等磁激化机制来引起电磁波的吸收和衰减。由于纳米晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,使纳米材料有许多不同

于一般粗晶材料的性能。纳米微粒具有小尺寸效应、表面与界面效应、量子尺寸效应、介电效应和宏观量子隧道效应等。纳米材料之所以具有非常优良的吸波性能,主要是以下原因:首先,纳米材料具有高浓度晶界,晶界面原子的比表面积大、悬空键多、界面极化强,容易产生多重散射,在电磁场辐射作用下,由于纳米粒子的表面效应造成原子、电子运动的加剧而磁化,使电磁能更加有效地转化为热能,产生了强烈的吸波效应;其次,量子尺寸效应的存在使纳米粒子的电子能级发生分裂,分裂的能级间隔正处于微波的能级范围,从而成为纳米材料新的吸波通道;此外纳米离子具有较大的饱和磁感、高的磁滞损耗和矫顽力,使得纳米材料具有涡流损耗高、居里点及使用温度高、吸波频率宽等性能。纳米材料的这种结构特征使得纳米吸波材料具有吸收频带宽、兼容性好、质量轻和厚度薄等特点,易满足雷达吸波材料薄、轻、宽、强的要求,是一种非常有发展前景的高性能、多功能吸收剂。

高温反射隔热纳米复合陶瓷涂料

高温反射隔热纳米复合陶瓷涂料 产品特性及使用方法 产品型号:302(系列) 产品外观:(标准颜色) 白色(颜色可调,根据客户需求调) 适用基材: 碳钢、不锈钢、铸铁、铝合金、钛合金、高温合金钢、耐火隔热砖、隔热纤维、玻璃、陶瓷、高温浇注料、高温混泥土均可。 说明:不同基材不同的热膨胀系数,结合产品使用工况,对应的涂料配方也不同。在一定范围内,可根据基材不同膨胀系数调节涂料膨胀系数达到匹配。 适用温度: 最高耐受温度1300℃,耐火焰或高温气流直接冲刷。 根据不同底材的耐温情况,涂层的耐温有会有相应的变化;耐冷热冲击抗热震。 产品特性: 1、纳米涂料为单组份,醇体系无机纳米复合陶瓷涂料。施工方便,省涂料,环保无毒害。 2、涂层隔热保温性能稳定良好,热导率0.03W/M·K左右,可实现薄涂层(0.1mm以下) 良好的反射隔热。 3、涂层对热辐射反射率大于85%,有效提高热利用率 4、纳米涂料有相应规格的气凝胶复合,加强隔热保温性能。 5、涂层附着良好,耐高温冷热冲击,抗热震良好,隔热防腐一体完成,具有一定强度。 6、涂层具有良好的电绝缘性能,耐湿热 7、涂层酸碱腐蚀,氢氟酸和浓盐酸除外。 8、与配套的高温密封纳米复合陶瓷加强剂(型号:GN—F2A,后简称“高温密封加强剂”) 使用性能更稳定,具体使用见使用方法。 产品存储:避光密封保存,5℃—30℃环境中,纳米涂料保质期6个月。开盖后建议1月内用完,效果更佳(纳米颗粒表面能高,活性高,易团聚。在分散剂以及表面处理的作用下, 在一定时间内纳米颗粒保持稳定)。 特别备注: 1、本纳米涂料与配套的高温密封加强剂均为直接使用,不可添加其它任何组份(尤其是水), 否则该纳米涂料和配套的高温密封加强剂均会严重影响其功效甚至快速报废。 2、操作人员防护:跟普通涂料施工防护一样,涂布过程远离明火、电弧、电火花,具体参 照本产品的MSDS报告。 产品净重:标准包装:20 KG /桶;最小包装:5.0KG/桶。 产品图片:

纳米陶瓷技术

纳米陶瓷技术 摘要:纳米陶瓷粉体是介于固体与分子之间的具有纳米数量级尺寸的亚稳态中间物质。随着粉体的超细化,其表面电子结构和晶体结构发生变化,产生了块状材料所不具有的特殊的效应。纳米陶瓷的超细晶粒、高浓度晶界以及晶界原子邻近状况决定了它们具有明显区别于普通陶瓷的特异性能。本文对纳米陶瓷的这些主要的特异性能及其制备进行了阐述。 关键词:纳米陶瓷;性能;制备 陶瓷材料作为材料的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用。但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使其应用受到了较大的限制。所以随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服陶瓷材料的脆性,使陶瓷具有像金属一样的柔韧性和可加工性。 一、纳米陶瓷 纳米陶瓷是80年代中期发展起来的先进材料。利用纳米技术开发的纳米陶瓷材料是指在陶瓷材料的显微结构中,晶粒、晶界以及它们之间的结合都处在纳米水平,使得材料的强度、韧性和超塑性大幅度提高,克服了工程陶瓷的许多不足,并对材料的力学、电学、热学、磁学、光学等性能产生重要影响,为替代工程陶瓷的应用开拓了新领域。 二、纳米陶瓷材料的性能研究 2.1 力学性能 研究表明当陶瓷材料成为纳米材料后,材料的力学性能得到极大改善,主要表现在以下三个方面: 1)断裂强度大大提高;2)断裂韧性大大提高;3)耐高温性能大大提高。与此同时,材料的硬度、弹性模量、热膨胀系数都会发生改变。 不少纳米陶瓷材料的硬度和强度比普通陶瓷材料高出4~5倍。在陶瓷基体中引入纳米分散相并进行复合,不仅可大幅度提高其断裂强度和断裂韧性,明显改善其耐高温性能,而且也能提高材料的硬度、弹性模量和抗热震、抗高温蠕变的性能。 2.2 低温超塑性 陶瓷的超塑性是由扩散蠕变引起的晶格滑移所致,扩散蠕变率与扩散系数成正比,与晶粒尺寸的3次方成反比,普通陶瓷只有在很高的温度下才表现出明显的扩散蠕变。而纳米陶瓷的扩散系数提高了3个数量级,晶粒尺寸下降了3个数量级,因而其扩散蠕变率较高,在较低的温度下,因其较高的扩散蠕变速率而对外界应力做出迅速反应,造成晶界方向的平移,表现出超塑性,使其韧性大为提高。

氟碳涂料与银圭陶瓷涂料的优势比较

银圭纳米陶瓷涂料与氟碳涂料的优势比较 银圭纳米陶瓷涂料是一种水性无机涂料,主要成分为SiO2、TiO2,是一种完全不同于传统氟碳(PTFE)的新型涂料,在其制造和生产过程中无需加入全氟辛酸铵(PFOA)添加剂,所以是一种完全绿色环保、无毒健康的涂料。 1、银圭纳米陶瓷涂料适用广泛性 银圭纳米陶瓷涂料,能适用于许多基材,如铝合金、不锈钢、冷轧板、青/黄铜、玻璃等。被广泛应用于不粘锅、烤盘、、直发器夹板、电熨斗底板、也可应用于建筑铝幕墙、军事领域、能源领域、海洋防腐领域、化工设备防腐和地铁机车车厢表面涂装等多个细分领域。 2、银圭纳米陶瓷涂料固化温度低,节约能源 银圭纳米陶瓷涂料,其不需烧结,可常温下固化,在铝板喷涂线上在180度固化,而传统的氟碳涂料固化温度需要400℃或以上,因此和氟碳涂料相比节能至少40%以上,从而大大减少了能源的耗用和生产成本;同时也大幅度的减少了温室气体二氧化碳的排放。 3、银圭纳米陶瓷涂料高硬度、高耐磨 银圭纳米陶瓷涂料,硬度高达9H(三菱铅笔),远高于传统的氟碳和有机硅涂料,因此涂膜更为耐磨、耐刮擦,从而使涂有该涂层的产品获得了更长的使用寿命。 4、银圭纳米陶瓷涂料耐温高、不燃 传统氟碳涂料的耐温性能很低,最高不能超过280℃,而且当温度超过承受能力时,涂料本身将会分解或氧化,甚至释放出有毒或致癌的物质。容易污染环境及危害我们人类的身体健康。而银圭纳米陶瓷涂料,耐温高达1600℃或以上,并且绝对不会产生烟雾及释放出任何有毒物质。所以陶瓷涂料在高温下仍能保持良好的不粘性和硬度,而氟碳涂料在高温下会变软发粘,硬度和不粘性也会大大降低。 5、银圭纳米陶瓷涂料良好的热传导性 PTFE制备的氟碳涂膜热传导率约为0.02~0.046W/m.K,而银圭纳米陶瓷涂膜的热传导率高达0.8W/m.K,具有良好的节能效果。 6、银圭纳米陶瓷涂料优良的不粘性 银圭纳米陶瓷涂料在生产过程中采用了纳米材料,以及先进的纳米合成技术,合成出来的陶瓷涂料具有似荷叶的双微结构(微米乳突+纳米结构表面);通过这种纳米结构,陶瓷涂料达到优良的不粘效果,而传统的不粘涂料主要是以靠PTFE的低表面能实现的。所谓的纳米结构所达到的不粘效果其实与自然界中的荷叶所表现出来的不粘效果有异曲同工之妙,是一种纯粹的物理效果,或称莲花效应,具有疏水、疏油、易洁(或自洁)等功能。 7、银圭纳米陶瓷涂料良好的抗菌、防毒性能 银圭纳米陶瓷涂料因其采用纳米材料.可释放负离子,具有很好的抗菌、防霉功效。 银圭纳米陶瓷涂料与氟碳涂料的众多性能比较,如下表:

陶瓷涂料及其涂装

XXXXXXXX单位XX 陶瓷涂料属于功能涂料领域,是一种新型的水性无机涂料。它是以纳米无机化合物为主要成分,并且以水为分散质,涂装后通常经过低温加热方式固化,形成性能和陶瓷相似的涂膜。其原料蕴藏丰富,便于开采且价格低廉,进而使其成本也相对传统涂料较低。其中一些采用了硅烷偶联剂,氢氧化铝胶体制备的陶瓷涂料,具有耐高温、高硬度、不燃无烟、超耐候、环保无毒、色彩丰富、涂装简便等诸多优势。经过各种新型的改良和增进后,其各种优越的性能和廉价的成本也讲逐渐取代传统涂料。 而传统的有机涂料等,对环境的影响颇为巨大,不仅成品经常排放温室气体导致气候变暖,而且还释放有毒物质于空气中,导致人或动植物的疾病和死亡,其在生产的过程之中也耗能大,不满足我国低碳的理念,并产生各种工业污水或有毒气体。 1陶瓷涂料概述 1.1成膜机理 一般由多种纳米级氧化物,通过改进的溶胶-凝胶[2]等反应,并且在低温下,以水为分散介质,水解固化行成类似陶瓷和玻璃的漆膜。 1.2原料来源 陶瓷涂料的原材料来自于极普通的、储量极为丰富的天然矿石和金属氧化物(如:石灰石、粘石英砂),而且生产工艺也不复杂,能耗相对较低。因而原材料资源十分丰富,这与完全依赖石油化学工业、并以石油为主要原料的有机涂料相比较,不仅具有很大的资源优势,而且更加符合低碳要求。 1.3应用领域 炊具:金属不能直接作为炊具使用,附加的涂层非常重要,其中陶瓷涂料以其健康环保及卓越的性能深受越来越多的褒奖。尤其是制作不粘锅时相较于“特氟龙”粘性更加大,不易脱落,并且无毒无害,在高温下长时间不易分解。 建筑幕墙:陶瓷涂料是纯无机成分,耐侯性极佳,并且防火阻燃。此外由于其呼吸性,耐污染性,更可附加散热隔热功能是建筑幕墙的理想材料。 医疗器械:陶瓷涂料可赋予多种性能,如抗菌性,防静电,并且天生具有防火阻燃的作用。 天然气,石油储罐:利用陶瓷涂料耐侯性,耐污染性,这其中包括人工污染及自然污染。 金属加热设备:陶瓷涂料的多功能性中可以赋予涂层抗氧化功能,防水垢功能,是涂料在起到装饰作用的同时,具有丰富的功能性。 其它:电子领域中的电路板上需求的散热性好的金属基陶瓷涂层材料、军事设备中需要隔热性,散热性,摩擦性好的关键部件上进行涂层等。 2主要陶瓷涂料介绍 2.1普通耐高温陶瓷涂料 耐高温的特性是陶瓷涂料所具备的基本属性之一。在高温之下,陶瓷涂料不易分解、形变、产生有害气体的稳定性能使其较于一般有机涂料而言是无法比拟的。而在现代工业生产及日常生活之中,对于具有基本耐高温属性的陶瓷涂料的需求可以根据原料来源的不同可分为以下2种: 2.1.1 无机纳米耐高温陶瓷涂料

高温防腐纳米复合陶瓷涂料

高温防腐纳米复合陶瓷涂料 产品特性及使用方法 产品型号:201(系列) 产品外观:(标准颜色) 黑色、白色、灰黑色、透明液体(颜色可调,根据客户需求调) 适用基材: 碳钢、不锈钢、铸铁、铝合金、钛合金、高温合金钢、耐火隔热砖、隔热纤维、玻璃、陶瓷、高温浇注料均可。 说明:不同基材不同的热膨胀系数,结合产品使用工况,对应的涂料配方也不同。在一定范围内,可根据基材不同膨胀系数调节涂料膨胀系数达到匹配。 适用温度: 最高耐受温度1300℃,耐火焰或高温气流直接冲刷。 根据不同底材的耐温情况,涂层的耐温有会有相应的变化;耐冷热冲击抗热震。 产品特性: 1、单组份,醇体系无机纳米复合陶瓷涂料。施工方便,省涂料,环保无毒害。 2、纳米无机涂层,致密,具有一定的电绝缘性能。 3、涂层耐酸碱腐蚀,氢氟酸和浓盐酸除外。 4、涂层可后加工,达到涂层所需厚度和精度。 5、耐高温腐蚀,抗热震(耐冷热交换,涂层使用寿命内不开裂不剥落)。 6、涂层结合强度良好,表面具有一定硬度和强度。 7、与配套的高温密封纳米复合陶瓷加强剂(型号:GN—F2A,后简称“高温密封加强剂”) 使用性能更稳定,具体使用见使用方法。 产品存储:避光密封保存,5℃—30℃环境中,纳米涂料保质期6个月。开盖后建议1月内用完,效果更佳(纳米颗粒表面能高,活性高,易团聚。在分散剂以及表面处理的作用下, 在一定时间内纳米颗粒保持稳定)。 特别备注: 1、本纳米涂料与配套的高温密封加强剂均为直接使用,不可添加其它任何组份(尤其是水), 否则该纳米涂料和配套的高温密封加强剂均会严重影响其功效甚至快速报废。 2、操作人员防护:跟普通涂料施工防护一样,涂布过程远离明火、电弧、电火花,具体参 照本产品的MSDS报告。 产品净重:标准包装:20 KG /桶;最小包装:5.0KG/桶。 产品图片:

高温导热防腐纳米复合陶瓷涂料

高温导热防腐纳米复合陶瓷涂料 产品特性及使用方法 产品型号:202(系列) 产品外观:(标准颜色) 黑色、白色(颜色可调,根据客户需求调) 适用基材: 碳钢、不锈钢、铸铁、铝合金、钛合金、高温合金钢、玻璃、陶瓷均可。 说明:不同基材不同的热膨胀系数,结合产品使用工况,对应的涂料配方也不同。在一定范围内,可根据基材不同膨胀系数调节涂料膨胀系数达到匹配。 适用温度: 最高耐受温度1300℃,耐火焰或高温气流直接冲刷。 根据不同底材的耐温情况,涂层的耐温有会有相应的变化;耐冷热冲击抗热震。 产品特性: 1、纳米涂料单组份,醇体系无机纳米复合陶瓷涂料。施工方便,省涂料,环保无毒害。 2、纳米无机涂层,致密,具有一定的电绝缘性能。 3、涂层导热性能良好,热导率9 W/M·K以上,显著提高热利用率,节能。 4、涂层耐酸碱腐蚀,氢氟酸和浓盐酸除外。 5、涂层可后加工,达到涂层所需厚度和精度。 6、耐高温腐蚀,抗热震(耐冷热交换,涂层使用寿命内不开裂不剥落)。 7、涂层结合强度良好,表面具有一定硬度和强度。 8、与配套的高温密封纳米复合陶瓷加强剂(型号:GN—F2A,后简称“高温密封加强剂”) 使用性能更稳定,具体使用见使用方法。 产品存储:避光密封保存,5℃—30℃环境中,纳米涂料保质期6个月。开盖后建议1月内用完,效果更佳(纳米颗粒表面能高,活性高,易团聚。在分散剂以及表面处理的作用下, 在一定时间内纳米颗粒保持稳定)。 特别备注: 1、本纳米涂料与配套的高温密封加强剂均为直接使用,不可添加其它任何组份(尤其是水), 否则该纳米涂料和配套的高温密封加强剂均会严重影响其功效甚至快速报废。 2、操作人员防护:跟普通涂料施工防护一样,涂布过程远离明火、电弧、电火花,具体参 照本产品的MSDS报告。 产品净重:标准包装:20 KG /桶;最小包装:5.0KG/桶。 产品图片:

纳米陶瓷的应用及发展趋势

纳米陶瓷的应用及发展趋势 摘要:介绍了纳米材料的特性以及纳米陶瓷的制备方法。针对纳米陶瓷特有的性能,进一步分析了纳米技术在陶瓷领域的最新应用及发展状况,并认为纳米陶瓷将在工程领域乃至日常生活中得到更广泛的应用。 关键词:纳米技术; 纳米陶瓷;前景预测 前言 当人们在研究中发现,纳米材料存在小尺寸效应、表面界面效应、量子尺寸效应及量子隧道效应等基本特性,近几十年来纳米材料备受世界各国的关注。纳米材料的这些特性使得纳米材料有着传统材料无法比拟的独特性能和极大的潜在应用价值。 传统的陶瓷材料质地较脆,韧性和强度都较差,因而使其应用受到了较大的限制。随着纳米技术的广泛应用,纳米陶瓷随之产生。所谓纳米陶瓷材料,是指显微结构中的物相具有纳米级尺度的陶瓷材料,也就是说晶粒尺寸、晶界宽度、第二相分布、缺陷尺寸等都是在纳米量级的水平上。目前,虽然纳米陶瓷还有许多关键技术需要解决,但其优良的保温和高温力学性能,使其在切削刀具、轴承、汽车发动机部件等许多方面都有广泛的应用,并在许多超高温、强腐蚀等苛刻环境下起着其他材料不可替代的作用。 1纳米技术与纳米陶瓷 1.1 纳米技术与纳米复合材料 纳米技术是20 世纪90年代出现的一门新兴技术,它是在0.10- 100nm的尺度空间内,研究电子、原子和分子的运动规律和特性。纳米材料研究是目前材料科学研究的一个热点, 其相应发展起来的纳 米技术,被公认为21世纪最有前途的科研领域。在纳米材料中,纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道的能级;高浓度晶界及晶界原子的特殊结构,导致材料的力学性能、磁性、光学性能乃至热力学性能的改变。纳米相材料与普通的金属、陶瓷和其它固体材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或结构单元。纳米材料具有常规粗晶粒材料所不具备的奇异特性和反常特性,例如纳米铁材料的断裂应力比一般铁材料高12倍;纳米相铜的强度

高温疏水防腐纳米复合陶瓷涂料

高温疏水防腐纳米复合陶瓷涂料 产品特性及使用方法 产品型号:206(系列) 产品外观:(标准颜色) 黑色、白色(颜色可调,根据客户需求调) 适用基材: 碳钢、不锈钢、铸铁、铝合金、钛合金、高温合金钢、微晶玻璃、陶瓷、耐火隔热保温砖、耐火纤维均可。 说明:不同基材不同的热膨胀系数,结合产品使用工况,对应的涂料配方也不同。在一定范围内,可根据基材不同膨胀系数调节涂料膨胀系数达到匹配。 适用温度: 最高耐受温度1300℃,耐火焰或高温气流直接冲刷。 根据不同底材的耐温情况,涂层的耐温有会有相应的变化;耐冷热冲击抗热震。 产品特性: 1、纳米涂料单组份,醇体系无机纳米复合陶瓷涂料。施工方便,省涂料,环保无毒害。 2、涂层表面不沾熔融金属液或飞溅熔融金属液,可有效防止焊接飞溅粘附。 3、涂层表面疏水防水不吸水,可有效防止水或水汽以及部分气体渗透腐蚀。 4、纳米无机涂层,致密,电绝缘性能稳定,绝缘电阻大于200 MΩ。 5、导热性能稳定良好,热导率大于9W/M·K。 6、涂层结合强度良好,表面具有一定的强度,可后加工到所需厚度和精度。 7、耐高温腐蚀,抗热震(耐冷热交换,涂层使用寿命内不开裂不剥落)。 8、必须与配套的高温密封纳米复合陶瓷加强剂(型号:GN—F2A,后简称“高温密封加 强剂”)使用才具有良好疏水不粘性能,具体使用见使用方法。 产品存储:避光密封保存,5℃—30℃环境中,纳米涂料保质期6个月。开盖后建议1月内用完,效果更佳(纳米颗粒表面能高,活性高,易团聚。在分散剂以及表面处理的作用下, 在一定时间内纳米颗粒保持稳定)。 特别备注: 1、本纳米涂料与配套的高温密封加强剂均为直接使用,不可添加其它任何组份(尤其是水), 否则该纳米涂料和配套的高温密封加强剂均会严重影响其功效甚至快速报废。 2、操作人员防护:跟普通涂料施工防护一样,涂布过程远离明火、电弧、电火花,具体参 照本产品的MSDS报告。 产品净重:标准包装:20 KG /桶;最小包装:5.0KG/桶。 产品图片:

纳米陶瓷材料的应用与发展

纳米陶瓷材料的应用与发展 新材料技术是介于基础科技与应用科技之间的应用性基础技术。而军用新材料技术则是用于军事领域的新材料技术,这部分技术是发展高技术武器的物质基础。目前,世界范围内的军用新材料技术已有上万种,并以每年5%的速 度递增,正向高功能化、超高能化、复合轻量和智能化的方向发展。常见的军用新材料技术:高级复合材料,先进陶瓷材料,高分子材料,非晶态材料,功能材料。 先进陶瓷材料是当前世界上发展最快的高技术材料,它已经由单相陶瓷发展到多相复合陶瓷,由微米级陶瓷复合材料发展到纳米级陶瓷复合材料。先进陶瓷材料主要有功能陶瓷材料和结构陶瓷材料两大类。其中,在结构材料中,人们已经研制出氮化硅高温结构陶瓷,这种材料不仅克服了陶瓷的致命的脆弱性,而且具有很强的韧性、可塑性、耐磨性和抗冲击能力,与普通热燃气轮机相比,陶瓷热机的重量可减轻 30%,而功率则提高 30%,节约燃料 50%。 陶瓷是人类最早使用的材料之一, 在人类发展史上起着重要的作用。但是, 由于传统的陶瓷材料脆性大, 韧性和强度较差、可靠性低, 使陶瓷材料的应用领域受到较大限制。随着纳米技术的广泛应用, 纳米陶瓷随之产生。所谓纳米陶瓷, 是指陶瓷材料的显微结构中, 晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸都是在纳米级的水平上。纳米陶瓷复合材料通过有效的分散、复合而使异质纳米颗粒均匀弥散地保留于陶瓷基质结构中, 这大大改善了陶瓷材料的韧性、耐磨性和高温力学性能。纳米陶瓷材料不仅能在低温条件象金属材料那样可任意弯曲而不产生裂纹, 而且能够象金属材料那样进行机械切削加工甚至可以做成陶瓷弹簧。纳米陶瓷材料的这些优良力学性能, 使其在切削刀具、轴承、汽车发动机部件等多方面得到广泛应用并在许多超高温、强腐蚀等苛刻的环境下起着其他材料不可替代的作用。纳米陶瓷在人工关节、人工骨、人工齿以及牙种植体、耳听骨修饰体等人工器官制造及临床应用领域有广阔的应用前景。此外, 纳米陶瓷的高磁化率、高矫顽率、低饱和磁矩、低磁耗, 特别是光吸收效应都成为材料开拓应用的新领域, 是当今材料科学研究的热点。 表1 纳米陶瓷材料力学性能的改善

纳米功能陶瓷研究现状及未来发展趋势

纳米功能陶瓷研究及未来发展趋势 摘要:概述了普通陶瓷存在的裂纹缺陷问题。介绍了纳米材料的特性以及纳米陶瓷的制备方法。针对纳米陶瓷特有的性能,分析了西方国家高性能陶瓷的市场情况以及纳米陶瓷的应用前景。认为纳米陶瓷将在工程领域乃至日常生活中得到更广泛的应用。 关键词:纳米技术; 纳米陶瓷;前景预测 引言 工程陶瓷又称为结构陶瓷,因其具有硬度高、耐高温、耐磨损、耐腐蚀以及质量轻、导热性能好等优点,而得到了广泛的应用。但是,工程陶瓷也存在着某些缺陷,主要表现为它的脆性(裂纹)、均匀性差以及可靠性低等。而在纳米陶瓷材料的显微结构中,晶粒、晶界以及它们之间的结合都处在纳米水平,使得材料的强度、韧性和超塑性大幅度提高,克服了工程陶瓷的许多不足,并对材料的力学、电学、热学、磁学、光学等性能产生重要影响,从而为工程陶瓷的应用开拓了新领域。 1纳米技术与纳米陶瓷 1.1 纳米技术与纳米复合材料 纳米技术是20 世纪90年代出现的一门新兴技术,它是在0.10- 100nm的尺度空间内,研究电子、原子和分子的运动规律和特性。纳米材料研究是目前材料科学研究的一个热点, 其相应发展起来的纳 米技术,被公认为21世纪最有前途的科研领域。在纳米材料中,纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道的能级;高浓度晶界及晶界原子的特殊结构,导致材料的力学性能、磁性、光学性能乃至热力学性能的改变。纳米相材料与普通的金属、陶瓷和其它固体材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或结构单元。纳米材料具有常规粗晶粒材料所不具备的奇异特性和反常特性,例如纳米铁材料的断裂应力比一般铁材料高12倍;纳米相铜的强度比普通的铜坚固 5倍,而且硬度随颗粒尺寸的减小而增大。利用纳米技术开发的纳米陶瓷材料,就是由纳米级显微结构组成的新型陶瓷材料,是在纳米长度范围内(1-100 nm) 的纳米复合材料。

纳米陶瓷材料及其在军事领域的应用前景

纳米材料导论 纳米陶瓷材料及其在军事领域的应用前景

纳米陶瓷材料及其在军事领域的应用前景 摘要:近期以来外军专家纷纷指出:纳米军事离我们并不遥远,纳米技术革命并非海市蜃楼,纳米 战争从实验室走向未来战场将使新知世界大门洞开,届时联合作战态势更加复杂多变,战争更加扑朔 迷离……进入21世纪,科技发展如火如荼,军事变革风起云涌。站在历史新起点上审视,到底什么 科技能够像核能和微电子技术一样,对未来军事发展产生革命性的深远影响,并将主导新一轮军事变 革?国外专家不约而同地指出:“纳米技术将在21世纪引发重大变革,并成为新的技术革命的核心!” Abstract: since the recent foreign experts have pointed out that: nano military is not far away from us, not the Nanotechnology Revolution mirage, nano war from the laboratory to the battlefield of the future will make the new world the gate opens, then joint combat situation more complex, more whirling war...... Enter the twenty-first Century, science and technology development like a raging fire, military reform be raging like a storm. Standing on the new historical starting point to examine, what technology can be like nuclear and microelectronic technology, bringing revolutionary far-reaching influence on the future military development, and will lead the new revolution in military affairs? Foreign scholars pointed out: "nanotechnology will cause great change in twenty-first Century, and become the core of the new technological revolution!" 一.纳米陶瓷及其发展历程 陶瓷材料在日常生活、工业生产及国防领域中起着举足轻重的作用。但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使其应用受到了很大限制。随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服传统陶瓷的脆性,使其具有像金属一样的柔韧性和可加工性。与传统陶瓷相比。纳米陶瓷的原子在外力变形条件下自己容易迁移,因此表现出较好的韧性与一定的延展性,因而从根本上解决了陶瓷材料的脆性问题。英国著名材料科学家卡恩在Nature杂志上撰文道:“纳米陶瓷是解决陶瓷脆性的战略途径。” 中国的陶器可追溯到9000年前,瓷器也早在4000年前出现。最初利用火煅烧粘土制成陶器。后来提高燃烧温度的技术出现, 发现高温烧制的陶器, 由于局部熔化而变得更加致密坚硬, 完全改变了陶器多孔、透水的缺点, 以粘土、石英、长石等矿物原料烧制而成的瓷器登上了历史舞台。新型陶瓷诞生于20 世纪二三十年代, 科学技术高速发展,对材料提出了更高的要求。在传统陶瓷基础上, 一些强度高、性能好的新型陶瓷不断涌现, 它们的玻璃相含量都低于传统陶瓷。纳米陶瓷的研究始于80 年代中期。 所谓纳米陶瓷,是指陶瓷材料的显微结构中,晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸都限于100nm以下,是上世纪80年代中期发展起来的新型陶瓷材料。由于纳米陶瓷晶粒的细化,品界数量大幅度增加,可使材料的韧性和塑性大为提高并对材料的电学、热学、磁学、光学等性能产生重要的影响,从而呈现出与传统陶瓷不同的独特性能,成为当今材料科学研究的热点。 二.纳米陶瓷的制备方法 2.1物理制备方法 物理制备方法主要是蒸发凝聚法和高能机械球磨法两种。 蒸发凝聚法:在真空蒸发室内充入低压惰性气体,加热金属或化合物蒸发源,

相关文档