文档库 最新最全的文档下载
当前位置:文档库 › 实验报告 人工神经网络

实验报告 人工神经网络

实验报告  人工神经网络
实验报告  人工神经网络

实验报告人工神经网络

实验原理:利用线性回归和神经网络建模技术分析预测。

实验题目:利用给出的葡萄酒数据集,解释获得的分析结论。

library(plspm); data(wines); wines

实验要求:

1、探索认识意大利葡萄酒数据集,对葡萄酒数据预处理,将其随机划分为训练集和测试集,然后创建一个线性回归模型;

2、利用neuralnet包拟合神经网络模型;

3、评估两个模型的优劣,如果都不理想,提出你的改进思路。

分析报告:

1、线性回归模型

> rm(list=ls())

> gc()

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 250340 13.4 608394 32.5 408712 21.9

Vcells 498334 3.9 8388608 64.0 1606736 12.3

>library(plspm)

>data(wines)

>wines[c(1:5),]

class alcohol malic.acid ash alcalinity magnesium phenols flavanoids

1 1 14.23 1.71 2.43 15.6 127 2.80 3.06

2 1 13.20 1.78 2.14 11.2 100 2.65 2.76

3 1 13.16 2.36 2.67 18.6 101 2.80 3.24

4 1 14.37 1.9

5 2.50 16.8 113 3.85 3.49

5 1 13.24 2.59 2.87 21.0 118 2.80 2.69

nofla.phen proantho col.intens hue diluted proline

1 0.28 2.29 5.64 1.04 3.9

2 1065

2 0.26 1.28 4.38 1.05 3.40 1050

3 0.30 2.81 5.68 1.03 3.17 1185

4 0.24 2.18 7.80 0.86 3.4

5 1480

5 0.39 1.82 4.32 1.04 2.93 735

> data <- wines

> summary(wines)

class alcohol malic.acid ash

Min. :1.000 Min. :11.03 Min. :0.740 Min. :1.360

1st Qu.:1.000 1st Qu.:12.36 1st Qu.:1.603 1st Qu.:2.210

Median :2.000 Median :13.05 Median :1.865 Median :2.360

Mean :1.938 Mean :13.00 Mean :2.336 Mean :2.367

3rd Qu.:3.000 3rd Qu.:13.68 3rd Qu.:3.083 3rd Qu.:2.558

Max. :3.000 Max. :14.83 Max. :5.800 Max. :3.230

alcalinity magnesium phenols flavanoids Min. :10.60 Min. : 70.00 Min. :0.980 Min. :0.340 1st Qu.:17.20 1st Qu.: 88.00 1st Qu.:1.742 1st Qu.:1.205 Median :19.50 Median : 98.00 Median :2.355 Median :2.135 Mean :19.49 Mean : 99.74 Mean :2.295 Mean :2.029 3rd Qu.:21.50 3rd Qu.:107.00 3rd Qu.:2.800 3rd Qu.:2.875 Max. :30.00 Max. :162.00 Max. :3.880 Max. :5.080 nofla.phen proantho col.intens hue Min. :0.1300 Min. :0.410 Min. : 1.280 Min. :0.4800 1st Qu.:0.2700 1st Qu.:1.250 1st Qu.: 3.220 1st Qu.:0.7825 Median :0.3400 Median :1.555 Median : 4.690 Median :0.9650 Mean :0.3619 Mean :1.591 Mean : 5.058 Mean :0.9574 3rd Qu.:0.4375 3rd Qu.:1.950 3rd Qu.: 6.200 3rd Qu.:1.1200 Max. :0.6600 Max. :3.580 Max. :13.000 Max. :1.7100 diluted proline

Min. :1.270 Min. : 278.0

1st Qu.:1.938 1st Qu.: 500.5

Median :2.780 Median : 673.5

Mean :2.612 Mean : 746.9

3rd Qu.:3.170 3rd Qu.: 985.0

Max. :4.000 Max. :1680.0

Num Variable Description 解释

1 class Type of wine 葡萄酒的种类

2 alcohol Alcohol 醇

3 malic.acid Malic acid 苹果酸

4 ash Ash 灰

5 alcalinity Alcalinity 碱度

6 magnesium Magnesium 镁

7 phenols Total phenols 酚类

8 flavanoids Flavanoids 黄酮

9 nofla.phen Nonflavanoid phenols 非黄烷类酚类

10 proantho Proanthocyanins 花青素

11 col.intens Color intensity 颜色强度

12 hue Hue 色调

13 diluted OD280/OD315 of diluted wines 稀释的葡萄酒

14 proline Proline 脯氨酸

> apply(data,2,function(x) sum(is.na(x)))

class alcohol malic.acid ash alcalinity magnesium phenols 0 0 0 0 0 0 0 flavanoids nofla.phen proantho col.intens hue diluted proline 0 0 0 0 0 0 0

> dim(wines)

[1] 178 14

> set.seed(2)

> test=sample(1:nrow(wines),100)

> wines.train<-wines[-test,]

> wines.test<-wines[test,]

> dim(wines.train);dim(wines.test)

[1] 78 14

[1] 100 14

> lm.fit <- glm(alcohol~., data=wines.train)

> summary(lm.fit)

Call:

glm(formula = alcohol ~ ., data = wines.train)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.98017 -0.31067 -0.00405 0.36184 1.23885

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 13.0661361 1.2664910 10.317 3.04e-15 ***

class -0.4043994 0.2389115 -1.693 0.09538 .

malic.acid 0.1612962 0.0730559 2.208 0.03085 *

ash 0.2621448 0.3669235 0.714 0.47755

alcalinity -0.0591380 0.0328684 -1.799 0.07670 .

magnesium 0.0003567 0.0052733 0.068 0.94628

phenols 0.1719659 0.2078450 0.827 0.41110

flavanoids -0.1780915 0.1815817 -0.981 0.33039

nofla.phen -0.4623220 0.7409499 -0.624 0.53487

proantho -0.2402948 0.1449535 -1.658 0.10226

col.intens 0.1580059 0.0447835 3.528 0.00078 ***

hue 0.1226260 0.4205420 0.292 0.77154

diluted -0.0889085 0.1967579 -0.452 0.65289

proline 0.0008112 0.0003943 2.058 0.04371 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 0.2968956)

Null deviance: 57.473 on 77 degrees of freedom

Residual deviance: 19.001 on 64 degrees of freedom

AIC: 141.2

Number of Fisher Scoring iterations: 2

> pr.lm <- predict(lm.fit,wines.test)

> MSE.lm <- sum((pr.lm - wines.test$alcohol)^2)/nrow(wines.test)

> print(MSE.lm)

[1] 0.3043625

2、神经网络模型

> maxs <- apply(wines, 2, max)

> mins <- apply(wines, 2, min)

> scaled <- as.data.frame(scale(wines, center = mins, scale = maxs - mins))

> index <- sample(1:nrow(wines),round(0.75*nrow(wines)))

> train_ <- scaled[index,]

> test_ <- scaled[index,]

> library(neuralnet)

> n <- names(train_)

> f <- as.formula(paste("alcohol~", paste(n[!n %in% "alcohol"], collapse = " + ")))

> nn <- neuralnet(f,data=train_,hidden=c(5,3),linear.output=T)

> plot(nn)

>pr.nn <- compute(nn,test_[,1:13])

>pr.nn__<-pr.nn$net.result*(max(test_$alcohol)-min(test_$alcohol))+mi n(test_$alcohol)

>test.r1<-(test_$alcohol)*(max(test_$alcohol)-min(test_$alcohol))+min (test_$alcohol)

> MSE.nn1 <- sum((test.r1 - pr.nn__)^2)/nrow(test_)

> print(paste(MSE.lm,MSE.nn1))

[1] "0.304362456679839 0.14726865189892"

3、模型修正

>par(mfrow=c(1,2))

>plot(test_$alcohol,pr.nn__,col='red',main='Real vs predicted NN',pch=18,cex=0.7)

>abline(0,1,lwd=2)

>legend('bottomright',legend='NN',pch=18,col='red', bty='n')

>plot(wines.test$alcohol,pr.lm,col='blue',main='Real vs predicted

lm',pch=18, cex=0.7) >abline(0,1,lwd=2)

>legend('bottomright',legend='LM',pch=18,col='blue', bty='n', cex=0.7)

0.0

0.4

0.8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Real vs predicted NN

test_$alcohol p r .n n _

_

11.512.513.5

11.5

12.0

12.5

13.0

13.5

14.0

14.5Real vs predicted lm

wines.test$alcohol

p r .l

m

> par(mfrow=c(1,1))

> plot(test_$alcohol,pr.nn__,col='red',main='Real vs predicted NN',pch=18,cex=0.7)

> points(wines.test$alcohol,pr.lm,col='blue',pch=18,cex=0.7) > abline(0,1,lwd=2)

>legend('bottomright',legend=c('NN','LM'),pch=18,col=c('red','blue'))

> library(boot)

> set.seed(200)

> lm.fit <- glm(alcohol~.,data=data)

> cv.glm(data,lm.fit,K=10)$delta[1]

[1] 0.3058061679

>set.seed(450)

>cv.error <- NULL

>k <- 10

>library(plyr)

>pbar <- create_progress_bar('text')

>pbar$init(k)

>for(i in 1:k){

index <- sample(1:nrow(data),round(0.9*nrow(data)))

train.cv <- scaled[index,]

test.cv <- scaled[-index,]

nn <- neuralnet(f,data=train.cv,hidden=c(5,2),linear.output=T)

pr.nn <- compute(nn,test.cv[,1:13])

pr.nn__<-pr.nn$net.result*(max(test_$alcohol)-min(test_$alcohol))+min (test_$alcohol)

test.cv.r <- (test.cv$alcohol)*(max(test.cv$alcohol)-min(test.cv$alcohol))+min(tes t.cv$alcohol)

cv.error[i] <- sum((test.cv.r - pr.nn__)^2)/nrow(test.cv)

pbar$step()

}

> mean(cv.error)

[1] 0.06900470043

> cv.error

[1] 0.0791******* 0.10556665990 0.05904083258 0.0714******* 0.0992******* [6] 0.03239406600 0.04807466437 0.0999******* 0.0355******* 0.0596*******

> par(mfrow=c(1,1))

> par(mfrow=c(1,1))

> boxplot(cv.error,xlab='MSE CV',col='cyan',

+ border='blue',names='CV error (MSE)',

+ main='CV error (MSE) for NN',horizontal=TRUE)

0.040.060.080.10

MSE CV

> cv.error[i] [1] 0.0596547757

人工神经网络原理及实际应用

人工神经网络原理及实际应用 摘要:本文就主要讲述一下神经网络的基本原理,特别是BP神经网络原理,以及它在实际工程中的应用。 关键词:神经网络、BP算法、鲁棒自适应控制、Smith-PID 本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在“计算"某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。1943年Macullocu和Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展,停滞,再发展的过程,时至今日发展正走向成熟,在广泛领域得到了令人鼓舞的应用成果。本文就主要讲述一下神经网络的原理,特别是BP神经网络原理,以及它在实际中的应用。 1.神经网络的基本原理 因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。其结构如下图所示: 从上图可看出生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成;

轴突:是从细胞体向外伸出的细长部分,也就是神经纤维。轴突是神经细胞的输出端,通过它向外传出神经冲动;树突:是细胞体向外伸出的许多较短的树枝状分支。它们是细胞的输入端,接受来自其它神经元的冲动;突触:神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。 对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高;当膜电位升高到一阀值(约40mV),细胞进入兴奋状态,产生神经冲动,并由轴突输出神经冲动;当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。细胞进入抑制状态,此时无神经冲动输出。“兴奋”和“抑制”,神经细胞必呈其一。 突触界面具有脉冲/电位信号转换功能,即类似于D/A转换功能。沿轴突和树突传递的是等幅、恒宽、编码的离散电脉冲信号。细胞中膜电位是连续的模拟量。 神经冲动信号的传导速度在1~150m/s之间,随纤维的粗细,髓鞘的有无而不同。 神经细胞的重要特点是具有学习功能并有遗忘和疲劳效应。总之,随着对生物神经元的深入研究,揭示出神经元不是简单的双稳逻辑元件而是微型生物信息处理机制和控制机。 而神经网络的基本原理也就是对生物神经元进行尽可能的模拟,当然,以目前的理论水平,制造水平,和应用水平,还与人脑神经网络的有着很大的差别,它只是对人脑神经网络有选择的,单一的,简化的构造和性能模拟,从而形成了不同功能的,多种类型的,不同层次的神经网络模型。 2.BP神经网络 目前,再这一基本原理上已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。 这里我们重点的讲述一下BP神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,其网络模型如下图所示。它可以分为输入层,影层(也叫中间层),和输出层,其中中间层可以是一层,也可以多层,看实际情况而定。

基于人工神经网络预测探究文献综述

基于人工神经网络的预测研究文献综述专业:电子信息工程班级:08级2班作者:刘铭指导老师:熊朝松 引言 随着多媒体和网络技术的飞速发展及广泛应用,人工神经网络已被广泛运用于各种领域,而它的预测功能也在不断被人挖掘着。人工神经网络是一种旨在模仿人脑结构及其功能的信息处理系统。现代计算机构成单元的速度是人脑中神经元速度的几百万倍,对于那些特征明确,推理或运算规则清楚地可编程问题,可以高速有效地求解,在数值运算和逻辑运算方面的精确与高速极大地拓展了人脑的能力,从而在信息处理和控制决策等方面为人们提供了实现智能化和自动化的先进手段。但由于现有计算机是按照冯·诺依曼原理,基于程序存取进行工作的,历经半个多世纪的发展,其结构模式与运行机制仍然没有跳出传统的逻辑运算规则,因而在很多方面的功能还远不能达到认得智能水平。随着现代信息科学与技术的飞速发展,这方面的问题日趋尖锐,促使科学和技术专家们寻找解决问题的新出路。当人们的思想转向研究大自然造就的精妙的人脑结构模式和信息处理机制时,推动了脑科学的深入发展以及人工神经网络和闹模型的研究。随着对生物闹的深入了解,人工神经网络获得长足发展。在经历了漫长的初创期和低潮期后,人工神经网络终于以其不容忽视的潜力与活力进入了发展高潮。这么多年来,它的结构与功能逐步改善,运行机制渐趋成熟,应用领域日益扩大,在解决各行各业的难题中显示出巨大的潜力,取得了丰硕的成果。通过运用人工神经网络建模,可以进行预测事物的发展,节省了实际要求证结果所需的研究时间。 正是由于人工神经网络是一门新兴的学科,它在理论、模型、算法、应用和时限等方面都还有很多空白点需要努力探索、研究、开拓和开发。因此,许多国家的政府和企业都投入了大量的资金,组织大量的科学和技术专家对人工神经网络的广泛问题立项研究。从人工神经网络的模拟程序和专用芯片的不断推出、论文的大量发表以及各种应用的报道可以看到,在这个领域里一个百家争鸣的局面已经形成。 为了能深入认识人工神经网络的预测功能,大量收集和阅读相关资料是非常必要的。搜集的资料范围主要是大量介绍人工神经网路,以及认识和熟悉了其中重要的BP网络。参考的著作有:马锐的《人工神经网络原理》,胡守仁、余少波的《神经网络导论》以及一些相关论文,董军和胡上序的《混沌神经网络研究进展和展望》,朱大奇的《人工神经网络研究现状及其展望》和宋桂荣的《改进BP算法在故障诊断中的应用》,这些

人工神经网络复习题

《神经网络原理》 一、填空题 1、从系统的观点讲,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应、非线性、动力学系统。 2、神经网络的基本特性有拓扑性、学习性和稳定收敛性。 3、神经网络按结构可分为前馈网络和反馈网络,按性能可分为离散型和连续型,按学习方式可分为有导师和无导师。 4、神经网络研究的发展大致经过了四个阶段。 5、网络稳定性指从t=0时刻初态开始,到t时刻后v(t+△t)=v(t),(t>0),称网络稳定。 6、联想的形式有两种,它们分是自联想和异联想。 7、存储容量指网络稳定点的个数,提高存储容量的途径一是改进网络的拓扑结构,二是改进学习方法。 8、非稳定吸引子有两种状态,一是有限环状态,二是混沌状态。 9、神经元分兴奋性神经元和抑制性神经元。 10、汉明距离指两个向量中对应元素不同的个数。 二、简答题 1、人工神经元网络的特点? 答:(1)、信息分布存储和容错性。 (2)、大规模并行协同处理。 (3)、自学习、自组织和自适应。 (4)、人工神经元网络是大量的神经元的集体行为,表现为复杂

的非线性动力学特性。 (5)人式神经元网络具有不适合高精度计算、学习算法和网络设计没有统一标准等局限性。 2、单个神经元的动作特征有哪些? 答:单个神经元的动作特征有:(1)、空间相加性;(2)、时间相加性;(3)、阈值作用;(4)、不应期;(5)、可塑性;(6)疲劳。 3、怎样描述动力学系统? 答:对于离散时间系统,用一组一阶差分方程来描述: X(t+1)=F[X(t)]; 对于连续时间系统,用一阶微分方程来描述: dU(t)/dt=F[U(t)]。 4、F(x)与x 的关系如下图,试述它们分别有几个平衡状态,是否为稳定的平衡状态? 答:在图(1)中,有两个平衡状态a 、b ,其中,在a 点曲线斜率|F ’(X)|>1,为非稳定平稳状态;在b 点曲线斜率|F ’(X)|<1,为稳定平稳状态。 在图(2)中,有一个平稳状态a ,且在该点曲线斜率|F ’(X)|>1,为非稳定平稳状态。

人工神经网络的发展及应用

人工神经网络的发展与应用 神经网络发展 启蒙时期 启蒙时期开始于1980年美国著名心理学家W.James关于人脑结构与功能的研究,结束于1969年Minsky和Pape~发表的《感知器》(Perceptron)一书。早在1943年,心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型(即M—P模型),该模型把神经细胞的动作描述为:1神经元的活动表现为兴奋或抑制的二值变化;2任何兴奋性突触有输入激励后,使神经元兴奋与神经元先前的动作状态无关;3任何抑制性突触有输入激励后,使神经元抑制;4突触的值不随时间改变;5突触从感知输入到传送出一个输出脉冲的延迟时问是0.5ms。可见,M—P模型是用逻辑的数学工具研究客观世界的事件在形式神经网络中的表述。现在来看M—P 模型尽管过于简单,而且其观点也并非完全正确,但是其理论有一定的贡献。因此,M—P模型被认为开创了神经科学理论研究的新时代。1949年,心理学家D.0.Hebb 提出了神经元之间突触联系强度可变的假设,并据此提出神经元的学习规则——Hebb规则,为神经网络的学习算法奠定了基础。1957年,计算机学家FrankRosenblatt提出了一种具有三层网络特性的神经网络结构,称为“感知器”(Perceptron),它是由阈值性神经元组成,试图模拟动物和人脑的感知学习能力,Rosenblatt认为信息被包含在相互连接或联合之中,而不是反映在拓扑结构的表示法中;另外,对于如何存储影响认知和行为的信息问题,他认为,存储的信息在神经网络系统内开始形成新的连接或传递链路后,新 的刺激将会通过这些新建立的链路自动地激活适当的响应部分,而不是要求任何识别或坚定他们的过程。1962年Widrow提出了自适应线性元件(Ada—line),它是连续取值的线性网络,主要用于自适应信号处理和自适应控制。 低潮期 人工智能的创始人之一Minkey和pape~经过数年研究,对以感知器为代表的网络系统的功能及其局限性从数学上做了深入的研究,于1969年出版了很有影响的《Perceptron)一书,该书提出了感知器不可能实现复杂的逻辑函数,这对当时的人工神经网络研究产生了极大的负面影响,从而使神经网络研究处于低潮时期。引起低潮的更重要的原因是:20世纪7O年代以来集成电路和微电子技术的迅猛发展,使传统的冯·诺伊曼型计算机进入发展的全盛时期,因此暂时掩盖了发展新型计算机和寻求新的神经网络的必要性和迫切性。但是在此时期,波士顿大学的S.Grossberg教授和赫尔辛基大学的Koho—nen教授,仍致力于神经网络的研究,分别提出了自适应共振理论(Adaptive Resonance Theory)和自组织特征映射模型(SOM)。以上开创性的研究成果和工作虽然未能引起当时人们的普遍重视,但其科学价值却不可磨灭,它们为神经网络的进一步发展奠定了基础。 复兴时期 20世纪80年代以来,由于以逻辑推理为基础的人工智能理论和冯·诺伊曼型计算机在处理诸如视觉、听觉、联想记忆等智能信息处理问题上受到挫折,促使人们

人工神经网络综述

目录 1 人工神经网络算法的工作原理 (3) 2 人工神经网络研究内容 (4) 3 人工神经网络的特点 (5) 4 典型的神经网络结构 (6) 4.1 前馈神经网络模型 (6) 4.1.1 自适应线性神经网络(Adaline) (6) 4.1.1.1网络结构 (6) 4.1.1.2学习算法步骤 (7) 4.1.1.3优缺点 (7) 4.1.2单层感知器 (8) 4.1.2.1网络结构 (8) 4.1.2.2学习算法步骤 (9) 4.1.2.3优缺点 (9) 4.1.3多层感知器和BP算法 (10) 4.1.3.1网络结构: (10) 4.1.3.2 BP算法 (10) 4.1.3.3算法学习规则 (11) 4.1.3.4算法步骤 (11) 4.1.3.5优缺点 (12) 4.2反馈神经网络模型 (13) 4.2.1 Hopfield神经网络 (13) 4.2.1.1网络结构 (13) 4.2.1.2 学习算法 (15) 4.2.1.3 Hopfield网络工作方式 (15) 4.2.1.4 Hopfield网络运行步骤 (15) 4.2.1.5优缺点 (16) 4.2.2海明神经网络(Hamming) (16) 4.2.2.1网络结构 (16) 4.2.2.2学习算法 (17) 4.2.2.3特点 (18) 4.2.3双向联想存储器(BAM) (19) 4.2.3.1 网络结构 (19) 4.2.3.2学习算法 (19) 4.2.3.4优缺点 (21) 5.人工神经网络发展趋势以及待解决的关键问题 (22) 5.1 与小波分析的结合 (22) 5.1.1小波神经网络的应用 (23) 5.1.2待解决的关键技术问题 (23) 5.2混沌神经网络 (23) 5.2.1混沌神经网络的应用 (24) 5.2.2待解决的关键技术问题 (24)

人工神经网络题库

人工神经网络 系别:计算机工程系 班级: 1120543 班 学号: 13 号 姓名: 日期:2014年10月23日

人工神经网络 摘要:人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成,由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。 关键词:神经元;神经网络;人工神经网络;智能; 引言 人工神经网络的构筑理念是受到生物(人或其他动物)神经网络功能的运作启发而产生的。人工神经网络通常是通过一个基于数学统计学类型的学习方法(Learning Method )得以优化,所以人工神经网络也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。 一、人工神经网络的基本原理 1-1神经细胞以及人工神经元的组成 神经系统的基本构造单元是神经细胞,也称神经元。它和人体中其他细胞的关键区别在于具有产生、处理和传递信号的功能。每个神经元都包括三个主要部分:细胞体、树突和轴突。树突的作用是向四方收集由其他神经细胞传来的信息,轴突的功能是传出从细胞体送来的信息。每个神经细胞所产生和传递的基本信息是兴奋或抑制。在两个神经细胞之间的相互接触点称为突触。简单神经元网络及其简化结构如图2-2所示。 从信息的传递过程来看,一个神经细胞的树突,在突触处从其他神经细胞接受信号。 这些信号可能是兴奋性的,也可能是抑制性的。所有树突接受到的信号都传到细胞体进行综合处理,如果在一个时间间隔内,某一细胞接受到的兴奋性信号量足够大,以致于使该细胞被激活,而产生一个脉冲信号。这个信号将沿着该细胞的轴突传送出去,并通过突触传给其他神经细胞.神经细胞通过突触的联接形成神经网络。 图1-1简单神经元网络及其简化结构图 (1)细胞体 (2)树突 (3)轴突 (4)突触

最新神经网络最新发展综述汇编

神经网络最新发展综述 学校:上海海事大学 专业:物流工程 姓名:周巧珍 学号:201530210155

神经网络最新发展综述 摘要:作为联接主义智能实现的典范,神经网络采用广泛互联的结构与有效的学习机制来模拟人脑信息处理的过程,是人工智能发展中的重要方法,也是当前类脑智能研究中的有效工具。目前,模拟人脑复杂的层次化认知特点的深度学习成为类脑智能中的一个重要研究方向。通过增加网络层数所构造的“深层神经网络”使机器能够获得“抽象概念”能力,在诸多领域都取得了巨大的成功,又掀起了神经网络研究的一个新高潮。本文分8个方面综述了其当前研究进展以及存在的问题,展望了未来神经网络的发展方向。 关键词: 类脑智能;神经网络;深度学习;大数据 Abstract: As a typical realization of connectionism intelligence, neural network, which tries to mimic the information processing patterns in the human brain by adopting broadly interconnected structures and effective learning mechanisms, is an important branch of artificial intelligence and also a useful tool in the research on brain-like intelligence at present. Currently, as a way to imitate the complex hierarchical cognition characteristic of human brain, deep learning brings an important trend for brain-like intelligence. With the increasing number of layers, deep neural network entitles machines the capability to capture “abstract concepts” and it has achieved great success in various fields, leading a new and advanced trend in neural network research. This paper summarizes the latest progress in eight applications and existing problems considering neural network and points out its possible future directions. Key words : artificial intelligence; neural network; deep learning; big data 1 引言 实现人工智能是人类长期以来一直追求的梦想。虽然计算机技术在过去几十年里取得了长足的发展,但是实现真正意义上的机器智能至今仍然困难重重。伴随着神经解剖学的发展,观测大脑微观结构的技术手段日益丰富,人类对大脑组织的形态、结构与活动的认识越来越深入,人脑信息处理的奥秘也正在被逐步揭示。如何借助神经科学、脑科学与认知科学的研究成果,研究大脑信息表征、转换机理和学习规则,建立模拟大脑信息处理过程的智能计算模型,最终使机器掌握人类的认知规律,是“类脑智能”的研究目标。 类脑智能是涉及计算科学、认知科学、神经科学与脑科学的交叉前沿方向。类脑智能的

实验报告 人工神经网络

实验报告人工神经网络 实验原理:利用线性回归和神经网络建模技术分析预测。 实验题目:利用给出的葡萄酒数据集,解释获得的分析结论。 library(plspm); data(wines); wines 实验要求: 1、探索认识意大利葡萄酒数据集,对葡萄酒数据预处理,将其随机划分为训练集和测试集,然后创建一个线性回归模型; 2、利用neuralnet包拟合神经网络模型; 3、评估两个模型的优劣,如果都不理想,提出你的改进思路。 分析报告: 1、线性回归模型 > rm(list=ls()) > gc() used (Mb) gc trigger (Mb) max used (Mb) Ncells 250340 13.4 608394 32.5 408712 21.9 Vcells 498334 3.9 8388608 64.0 1606736 12.3 >library(plspm) >data(wines) >wines[c(1:5),] class alcohol malic.acid ash alcalinity magnesium phenols flavanoids 1 1 14.23 1.71 2.43 15.6 127 2.80 3.06 2 1 13.20 1.78 2.14 11.2 100 2.65 2.76 3 1 13.16 2.36 2.67 18.6 101 2.80 3.24 4 1 14.37 1.9 5 2.50 16.8 113 3.85 3.49 5 1 13.24 2.59 2.87 21.0 118 2.80 2.69 nofla.phen proantho col.intens hue diluted proline 1 0.28 2.29 5.64 1.04 3.9 2 1065 2 0.26 1.28 4.38 1.05 3.40 1050 3 0.30 2.81 5.68 1.03 3.17 1185 4 0.24 2.18 7.80 0.86 3.4 5 1480 5 0.39 1.82 4.32 1.04 2.93 735 > data <- wines > summary(wines)

人工神经网络研究背景目的意义与现状

人工神经网络研究背景目的意义与现状 1研究背景 2国内外研究状况及趋势 3研究的目的及意义 1研究背景 现代计算机构成单元的速度是人脑中神经元速度的几百万倍,对于那些特征明确,推理或运算规则清楚的可编程问题,可以高速有效地求解,在数值运算和逻辑运算方面的精确与高速极大地拓展了人脑的能力,从而在信息处理和控制决策等各方面为人们提供了实现智能化和自动化的先进手段。但由于现有计算机是按照冯·诺依曼原理,基于程序存取进行工作的,历经半个多世纪的发展,其结构模式与运行机制仍然没有跳出传统的逻辑运算规则,因而在很多方面的功能还远不能达到人的智能水平。随着现代信息科学与技术的飞速发展,这方面的问题日趋尖锐,促使科学和技术专家们寻找解决问题的新出路。当人们的思路转向研究大自然造就的精妙的人脑结构模式和信息处理机制时,推动了脑科学的深入发展以及人工神经网络和脑模型的研究。随着对生物脑的深入了解,人工神经网络获得长足发展。在经历了漫长的初创期和低潮期后,人工神经网络终于以其不容忽视的潜力与活力进入了发展高潮。60多年来,它的结构与功能逐步改善,运行机制渐趋成熟,应用领域日益扩大,在解决各行各业的难题中显示出巨大的潜力,取得了丰硕的成果。 正是由于人工神经网络是一门新兴的学科,它在理论、模型、算法、应用和时限等方面都还有很多空白点需要努力探索、研究、开拓和开发。因此,许多国家的政府和企业都投入了大量的资金,组织大量的科学和技术专家对人工神经网络的广泛问题立项研究。从人工神经网络的模拟程序和专用芯片的不断推出、论文的大量发表以及各种应用的报道可以看到,在这个领域里一个百花气放、百家争鸣的局面已经形成。 在进行神经网络的理论研究时,人们可以将自己的神经网络模型或算法在通用的串行或并行计算机上编程实现,但这只是研究的手段而绝非目的,在构造实际的神经网络应用系统时,必然要考虑到硬件实现问题,特定应用下的高性能专

人工神经网络的发展及应用

人工神经网络的发展及应用 西安邮电学院电信系樊宏西北电力设计院王勇日期:2005 1-21 1 人工神经网络的发展 1.1 人工神经网络基本理论 1.1.1 神经生物学基础生物神经系统可以简略地认为是以神经元为信号的处理单元,通过广泛的突触联系形成的信息处理集团,其物质结构基础和功能单元是脑神经细胞,即神经元(neuron) 。 (1)神经元具有信号的输人、整合、输出三种主要功能作用行为,结构如图1 所示: (2)突触是整个神经系统各单元间信号传递驿站,它构成各神经元之间广泛的联接。 (3)大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物,其变化是先天遗传信息确定的总框架下有限的自组织过程。 1.1.2 建模方法神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系,这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法:①神经生物学模型方法,即根据微观神经生物学知识的积累,把脑神经系统的结构及机理逐步解释清楚,在此基础上建立脑功能模型;②神 经计算模型方法,即首先建立粗略近似的数学模型并研究该模型的动力学特性,然后冉与真实对象作比较(仿真处理方法)。1.1.3 概

念人工神经网络用物理町实现系统采模仿人脑神经系统的结构和功能,是一门新兴的前沿交义学科,其概念以T.Kohonen.Pr 的论述 最具代表性:人工神经网络就是由简单的处理单元(通常为适应性神经元,模型见图2)组成的并行互联网络,它的组织能够模拟生物神 经系统对真实世界物体所作出的交互反应。 1.2 人工神经网络的发展 人工神经网络的研究始于40 年代初。半个世纪以来,经历了兴起、高潮与萧条、高潮及稳步发展的较为曲折的道路。1943 年,心理学家W.S.Mcculloch 和数理逻辑学家W.Pitts 提出了M—P 模型, 这是第一个用数理语言描述脑的信息处理过程的模型,虽然神经元的功能比较弱,但它为以后的研究工作提供了依据。1949 年,心理学家D. O. Hebb提出突触联系可变的假设,根据这一假设提出的学习规律为神经网络的学习算法奠定了基础。1957 年,计算机科学家Rosenblatt 提出了著名的感知机模型,它的模型包含了现代计算机的一些原理,是第一个完整的人工神经网络。1969 年,美国著名人工智能学者M.Minsky 和S.Papert 编写了影响很大的Perceptron 一书,从理论上证明单层感知机的能力有限,诸如不能解决异或问题,而且他们推测多层网络的感知能也不过如此,在这之后近10 年,神经网络研究进入了一个缓慢发展的萧条期。美国生物物理学家J.J.Hopfield 于1982年、1984 年在美国科学院院刊发表的两篇文章,有力地推动了神经网络的研究,引起了研究神经网络的

神经网络实验指导书2013版[1]

神经网络实验指导书2013版[1]

北京信息科技大学自编实验讲义 神经网络实验指导书 许晓飞陈雯柏编著

找其映射是靠学习实践的,只要学习数据足够完备,就能够描述任意未知的复杂系统。因此前馈神经网络为非线性系统的建模和控制提供了有力的工具。 输入层隐层输出层 图1 前馈型神经网络结构 2.BP算法原理 BP(Back Propagation)神经网络是一种利用误差反向传播训练算法的前馈型网络,BP学习算法实质是求取网络总误差函数的最小值问题[2]。这种算法采用非线性规划中的最速下降方法,按误差函数的负梯度方向修改权系数,它是梯度下降法在多层前馈网络中的应用。具体学习算法包括两大过程,其一是输入信号的正向传播过程,其二是输出误差信号的反向传播过程。 1.正向传播 输入的样本从输入层经过隐层单元一层一层进行处理,通过所有的隐层之后,则传向输出

层;在逐层处理的过程中,每一层神经元的状态只对下一层神经元的状态产生影响。在输出层把现行输出和期望输出进行比较,如果现行输出不等于期望输出,则进入反向传播过程。 2.反向传播 反向传播时,把误差信号按原来正向传播的通路反向传回,并对每个隐层的各个神经元的权系数进行修改,以望误差信号趋向最小。网络各层的权值改变量,则由传播到该层的误差大小来决定。 3.BP算法的特点 BP神经网络具有以下三方面的主要优点[3]:第一,只要有足够多的隐含层和隐层节点,BP 神经网络可逼近任意的非线性映射关系;第二,BP学习算法是一种全局逼近方法,因而它具有较好的泛化能力。第三,BP神经网络具有一定的容错能力。因为BP神经网络输入输出间的关联信息分布存储于连接权中,由于连接权的个数总多,个别神经元的损坏对输入输出关系只有较小影响。 但在实际应用中也存在一些问题,如:收敛

人工神经网络文献综述.

WIND 一、人工神经网络理论概述 (一人工神经网络基本原理 神经网络 (Artificialneuralnet work , ANN 是由大量的简单神经元组成的非线性系统,每个神经元的结构和功能都比较简单,而大量神经元组合产生的系统行为却非常复杂。人工神经元以不同的方式,通过改变连接方式、神经元的数量和层数,组成不同的人工神经网络模型 (神经网络模型。 人工神经元模型的基本结构如图 1所示。图中X=(x 1, x 2, … x n T ∈ R n 表示神经元的输入信号 (也是其他神经元的输出信号 ; w ij 表示 神经元 i 和神经元 j 之间的连接强度,或称之为权值; θj 为神经元 j 的阀值 (即输入信号强度必须达到的最小值才能产生输出响应 ; y i 是神经元 i 的输出。其表达式为 y i =f( n j =i Σw ij x j +θi 式中, f (

·为传递函数 (或称激活函数 ,表示神经元的输入 -输出关系。 图 1 (二人工神经网络的发展 人工神经网络 (ArtificialNeuralNetwork 是一门崭新的信息处理科学,是用来模拟人脑结构和智能的一个前沿研究领域,因其具有独特的结构和处理信息的方法,使其在许多实际应用中取得了显著成效。人工神经网络系统理论的发展历史是不平衡的,自 1943年心理学家 McCulloch 与数学家 Pitts 提出神经元生物学模型 (简称MP-模型以来,至今已有 50多年的历史了。在这 50多年的历史中,它的发展大体上可分为以下几个阶段。 60年代末至 70年代,人工神经网络系统理论的发展处于一个低潮时期。造成这一情况的原因是人工神经网络系统理论的发展出现了本质上的困难,即电子线路交叉极限的困难。这在当时条件下,对神经元的数量 n 的大小受到极大的限制,因此它不可能去完成高度智能化的计算任务。 80年代中期人工神经网络得到了飞速的发展。这一时期,多种模型、算法与应用问题被提出,主要进展如:Boltzmann 机理论的研究, 细胞网络的提出,性能指标的分析等。 90年代以后,人工神经网络系统理论进入了稳健发展时期。现在人工神经网络系统理论的应用研究主要是在模式识别、经济管理、优化控制等方面:与数学、统计中的多个学科分支发生联系。 (三人工神经网络分类 人工神经网络模型发展到今天已有百余种模型,建造的方法也是多种多样,有出自热力学的、数学方法的、模糊以及混沌方法的。其中 BP 网络(BackPropagationNN 是当前应用最为广泛的一种人工神经网络。在人工神经网络的实际应用中, 80%~90%的人工神经网络模型是采用 BP 网络或它的变化形式,它也

人工神经网络及其应用实例_毕业论文

人工神经网络及其应用实例人工神经网络是在现代神经科学研究成果基础上提出的一种抽 象数学模型,它以某种简化、抽象和模拟的方式,反映了大脑功能的 若干基本特征,但并非其逼真的描写。 人工神经网络可概括定义为:由大量简单元件广泛互连而成的复 杂网络系统。所谓简单元件,即人工神经元,是指它可用电子元件、 光学元件等模拟,仅起简单的输入输出变换y = σ (x)的作用。下图是 3 中常用的元件类型: 线性元件:y = 0.3x,可用线性代数法分析,但是功能有限,现在已不太常用。 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -6 -4 -2 0 2 4 6 连续型非线性元件:y = tanh(x),便于解析性计算及器件模拟,是当前研究的主要元件之一。

离散型非线性元件: y = ? 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6 ?1, x ≥ 0 ?-1, x < 0 ,便于理论分析及阈值逻辑器件 实现,也是当前研究的主要元件之一。 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6

每一神经元有许多输入、输出键,各神经元之间以连接键(又称 突触)相连,它决定神经元之间的连接强度(突触强度)和性质(兴 奋或抑制),即决定神经元间相互作用的强弱和正负,共有三种类型: 兴奋型连接、抑制型连接、无连接。这样,N个神经元(一般N很大)构成一个相互影响的复杂网络系统,通过调整网络参数,可使人工神 经网络具有所需要的特定功能,即学习、训练或自组织过程。一个简 单的人工神经网络结构图如下所示: 上图中,左侧为输入层(输入层的神经元个数由输入的维度决定),右侧为输出层(输出层的神经元个数由输出的维度决定),输入层与 输出层之间即为隐层。 输入层节点上的神经元接收外部环境的输入模式,并由它传递给 相连隐层上的各个神经元。隐层是神经元网络的内部处理层,这些神 经元在网络内部构成中间层,不直接与外部输入、输出打交道。人工 神经网络所具有的模式变换能力主要体现在隐层的神经元上。输出层 用于产生神经网络的输出模式。 多层神经网络结构中有代表性的有前向网络(BP网络)模型、

人工神经网络发展历史与训练算法概述-2019年文档

人工神经网络发展历史与训练算法概述 以一己之力战胜两位世界级围棋高手李世石及柯洁的Alpha Go 的横空出世,不仅仅吸引了相应人才从事此方面的研究,更显示了其的巨大潜力。而Alpha Go 能战胜这两位围棋中顶级选手,与其采用了人工神经网络不无关联。而人工神经网络是一门结合了众多学科的内容而发展起来的一门新的信息处理学科。 1 人工神经网络的发展历史 1) 起源。人工神经网络最初是由科研工作者根据生物神经网络的特点而创造出来的一种可以进行简单信息处理的模型。生物神经网络( Biological Neural Networks )以神经元为骨架,通过神经元彼此之间的连结形成了一个完整的能对所给刺激产生反应的系统。人工神经网络就是类比生物神经网络的这个可以进行信息处理的原理而制造出来的。用节点替代神经元,且每个节点代表一种固定的函数,节点之间彼此联接形成一个庞大的网状系统,可处理一些信息。综合人工神经网络的起源、特点及定义,它可以用这样一句话概括:人工神经网络是一种信息处理系统,目的在于模仿人类大脑的相应结构及其相关功能[ 1 ] 。 2) 摸索阶段。历史上第一个提出人工神经网络设想并藉此制造出了第一个模型的是心理学家W.S.McCulloch 和数理逻辑学家。他们提出的模型就是MP模型,而MP模型的建立不仅证明了单个

神经元执行逻辑功能的可行性,还带来对人工神经网络研究的热潮。因此W.S.McCulloch 和被后来者尊称为人工神经网络研究的先驱。但是当时的人工神经网络只是一个胚胎,甚至只能说是一个大胆的猜想,缺乏相应的理论支持。 50年代末,F?罗森布拉特提出并设计了感知机。60年代初,Windrow 提出了一种自适应线性元件网络,这两项工作第一次将人工神经网络的研究成果应用到实践中[7] 。而他们的成功也激励了其他众多科学家,提高了他们对人工神经网络的研究兴趣。但是当时有学者指出感知机本身存在问题,且该问题的不可解决性,再加上当时正值计算机高速发展、各种研究成果竞相发表的时期,众多科学研究者纷纷转向计算机的研究,因此人工神经网络的研究被搁置。人工神经网络的发展也停滞不前。 3)高速发展阶段。1982年及1984 年,美国加州工学院物理学家J.J.Hopfield 先后提出了Hopfield 神经网格模型与连续时间Hopfield 神经网络模型,这两项研究解决了感知机所存在的不能解决高阶谓词的问题,为人工神经网络的研究提供了一个新思路。随后,一些学者提出了玻尔兹曼模型。这三项研究不仅为人工神经网络的发展做了开拓性的研究,更是使人工神经网络这个备受冷落的研究项目重新回到科研人员的视野中。也正是有这些科学工作人员的一个又一个的研究成果,才能令人工神经网络从原本不被重视的状态扭转为当时备受人们追捧的状态。 1991年,Aihara 等基于之前的推导和实验,提出了一个混沌

《人工智能及其应用》实验指导书

《人工智能及其应用》 实验指导书 工业大学计算机科学与技术学院—人工智能课程组 2011年9月

前言 本实验是为了配合《人工智能及其应用》课程的理论学习而专门设置的。本实验的目的是巩固和加强人工智能的基本原理和方法,并为今后进一步学习更高级课程和信息智能化技术的研究与系统开发奠定良好的基础。 全书共分为八个实验:1.产生式系统实验;2.模糊推理系统实验;3.A*算法求解8数码问题实验;4.A*算法求解迷宫问题实验;5.遗传算法求解函数最值问题实验;6.遗传算法求解TSP问题实验;7.基于神经网络的模式识别实验;8.基于神经网络的优化计算实验。每个实验包括有:实验目的、实验容、实验条件、实验要求、实验步骤和实验报告等六个项目。 本实验指导书包括两个部分。第一个部分是介绍实验的教学大纲;第二部分是介绍八个实验的容。 由于编者水平有限,本实验指导书的错误和不足在所难免,欢迎批评指正。 人工智能课程组 2011年9月

目录 实验教学大纲 (1) 实验一产生式系统实验 (3) 实验二模糊推理系统实验 (5) 实验三 A*算法实验I (9) 实验四 A*算法实验II (12) 实验五遗传算法实验I (14) 实验六遗传算法实验II (18) 实验七基于神经网络的模式识别实验 (20) 实验八基于神经网络的优化计算实验 (24)

实验教学大纲 一、学时:16学时,一般安排在第9周至第16周。 二、主要仪器设备及运行环境:PC机、Visual C++ 6.0、Matlab 7.0。 三、实验项目及教学安排 序号实验名称实验 平台实验容学 时 类型教学 要求 1 产生式系统应用VC++ 设计知识库,实现系统识别或 分类等。 2 设计课 2 模糊推理系统应 用Matlab 1)设计洗衣机的模糊控制器; 2)设计两车追赶的模糊控制 器。 2 验证课 3 A*算法应用I VC++ 设计与实现求解N数码问题的 A*算法。 2 综合课4 A*算法应用II VC++ 设计与实现求解迷宫问题的A* 算法。 2 综合课5 遗传算法应用I Matlab 1)求某一函数的最小值; 2)求某一函数的最大值。 2 验证课6 遗传算法应用II VC++ 设计与实现求解不同城市规模 的TSP问题的遗传算法。 2 综合课 7 基于神经网络的 模式识别Matlab 1)基于BP神经网络的数字识 别设计; 2)基于离散Hopfiel神经网络 的联想记忆设计。 2 验证课 8 基于神经网络的 优化计算VC++ 设计与实现求解TSP问题的连 续Hopfield神经网络。 2 综合课 四、实验成绩评定 实验课成绩单独按五分制评定。凡实验成绩不及格者,该门课程就不及格。学生的实验成绩应以平时考查为主,一般应占课程总成绩的50%,其平时成绩又要以实验实际操作的优劣作为主要考核依据。对于实验课成绩,无论采取何种方式进行考核,都必须按实验课的目的要求,以实际实验工作能力的强弱作为评定成绩的主要依据。 评定各级成绩时,可参考以下标准:

人工神经网络作业MATLAB仿真(共3篇)

人工神经网络作业M A T L A B 仿真(共3篇) -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

人工神经网络仿真作业(3篇) 人工神经网络仿真作业1: 三级倒立摆的神经网络控制 人工神经网络仿真作业2: 基于模型整体逼近的机器人RBF网络自适应控制 人工神经网络仿真作业3: 基于RBF的机械手无需模型自适应控制研究

神经网络仿真作业1:三级倒立摆的神经网络控制 摘要:建立了基于人工神经网络改进BP 算法的三级倒立摆的数学模型,并给 出了BP 网络结构,利用Matlab 软件进行训练仿真,结果表明,改进的BP 算法控制倒立摆精度高、收敛快,在非线性控制、鲁棒控制等领域具有良好的应用前景。 1.引言 倒立摆系统的研究开始于19世纪50年代,它是一个典型的非线性、高阶次、多变量、强耦合和绝对不稳定系统.许多抽象的控制概念,如系统的稳定性、可控性、系统的收敛速度和抗干扰能力都可以通过倒立摆直观地表现出来。随着现代控制理论的发展,倒立摆的研究对于火箭飞行控制和机器人控制等现代高科技的研究具有重要的实践意义。目前比较常见的倒立摆稳定控制方法有线性控制,如LQR,LQY 等;智能控制,如变论域自适应模糊控制,遗传算法,预测控制等。 2.系统的数学模型 2.1三级倒立摆的模型及参数 三级倒立摆主要由小车,摆1、摆2、摆3组成,它们之间自由链接。小车可以在水平导轨上左右平移,摆杆可以在铅垂平面内运动,将其置于坐标系后如图1 所示: 规定顺时针方向的转角和力矩均为正。此外,约定以下记号:u 为外界作用力,x 为小车位移,i (i =1,2,3)为摆i 与铅垂线方向的夹角, i O 分别为摆i 的链接点位置。其它的系统参数说明如下:

介绍人工神经网络的发展历程和分类.

介绍人工神经网络的发展历程和分类 1943年,心理学家W.S.McCulloch 和数理逻辑学家W.Pitts 建立了神经网络和数学模型,称为MP 模型。他们通过MP 模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。1949年,心理学家提出了突触联系强度可变的设想。60年代,人工神经网络的到了进一步发展,更完善的神经网络模型被提出。其中包括感知器和自适应线性元件等。M.Minsky 等仔细分析了以感知器为代表的神经网络系统的功能及局限后,于1969年出版了《Perceptron 》一书,指出感知器不能解决高阶谓词问题。他们的论点极大地影响了神经网络的研究,加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。在此期间,一些人工神经网络的研究者仍然致力于这一研究,提出了适应谐振理论(ART 网)、自组织映射、认知机网络,同时进行了神经网络数学理论的研究。以上研究为神经网络的研究和发展奠定了基础。1982年,美国加州工学院物理学家J.J.Hopfield 提出了Hopfield 神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。 1984年,他又提出了连续时间Hopfield 神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究,1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。1986年进行认知微观结构地研究,提出了并行分布处理的理论。人工神经网络的研究受到了各个发达国家的重视,美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。在日本的“真实世界计算(RWC )”项目中,人工智能的研究成了一个重要的组成部分。 人工神经网络的模型很多,可以按照不同的方法进行分类。其中,常见的两种分类方法是,按照网络连接的拓朴结构分类和按照网络内部的信息流向分类。按照网络拓朴结构分类网络的拓朴结构,即神经元之间的连接方式。按此划分,可将神经网络结构分为两大类:层次型结构和互联型结构。层次型结构的神经网络将神经

相关文档
相关文档 最新文档