文档库 最新最全的文档下载
当前位置:文档库 › 粒子群算法的研究现状及其应用

粒子群算法的研究现状及其应用

粒子群算法的研究现状及其应用
粒子群算法的研究现状及其应用

智能控制技术

课程论文

中文题目: 粒子群算法的研究现状及其应用姓名学号:

指导教师:

年级与专业:

所在学院:

XXXX年XX月XX日

1 研究的背景

优化问题是一个古老的问题,可以将其定义为:在满足一定约束条件下,寻找一组参数值,使系统的某些性能指标达到最大值或最小值。在我们的日常生活中,我们常常需要解决优化问题,在一定的范围内使我们追求的目标得到最大化。为了解决我们遇到的最优化问题,科学家,们进行了不懈的努力,发展了诸如牛顿法、共轭梯度法等诸多优化算法,大大推动了优化问题的发展,但由于这些算法的低运行效率,使得在计算复杂度、收敛性等方面都无法满足实际的生产需要。

对此,受达尔文进化论的影响,一批新的智能优化算法相继被提出。粒子群算法(PSO )就是其中的一项优化技术。1995 年Eberhart 博士和Kennedy 博士[1]-[3]通过研究鸟群捕食的行为后,提出了粒子群算法。设想有一群鸟在随机搜索食物,而在这个区域里只有一块食物,所有的鸟都不知道食物在哪里。那么找到食物最简单有效的办法就是鸟群协同搜寻,鸟群中的每只鸟负责离其最近的周围区域。

粒子群算法是一种基于群体的优化工具,尤其适用于复杂和非线性问题。系统初始化为一组随机解,通过迭代搜寻最优值,通过采用种群的方式组织搜索,同时搜索空间内的多个区域,所以特别适合大规模并行计算,具有较高的效率和简单、易操作的特性。

目前使用的粒子群算法的数学描述[3]为:设粒子的寻优空间是m 维的,粒子的数目为ps ,算法的最大寻优次数为Iter 。第i 个粒子的飞行速度为T i i1i2im v [v v ]= ,,,v ,位置为T i i1i2im x [x x x ]= ,,,,粒子的个体极值T i i1i2im Pbest [,]P = ,P ,P ,全局极值为

T i i1i2im Gbest [,]g = ,g ,g 。

粒子群算法的寻优过程主要由粒子的速度更新和位置更新两部分组成,其更新方式如下:

i+11122v ()()i i i i i v c r Pbest x c r Gbest x =+?+?;

i+1i+1i x x v =+,

式中:12c c ,为学习因子,一般取2;12r r ,是均与分布着[0,1]上的随机数。

2 粒子群算法的国内外研究进展

粒子群算法一经提出就吸引了各国学者的注意,经历了许多变形和改进,为实际的工业应用指引了新的方向。从2003年IEEE第一届国际群智能研讨会在美国召开后,关于PSO算法的研究和应用成果的论文逐年增加,从图1不难看出,ISI数据库收录有关PSO论文数量近年来成指数增长趋势,这体现了对PSO的研究成了智能算法领域的一大热点。

PSO算法的研究主要集中在理论研究和应用研究两个方面。在理论研究方面,目前PSO 算法还没有成熟的理论分析,部分研究者对算法的收敛性进行了分析,而部分研究者在算法的结构和性能改善方面进行研究,包括参数分析,拓扑结构,粒子多样性保持,算法融合和性能比较等。在应用研究方面,根据具体情况,对算法进行改进,以满足应用要求。

图1 ISI数据库收录PSO算法论文

2.1收敛性分析

PSO 算法收敛性分析一直是研究的难点,由于算法引入了随机变量,使得很多常规数学方法对其无效。2001年Van[4]通过采用集合论的方法研究得出:只有改进的PSO 算法才可以保证算法的局部或全局收敛性。在此理论前提下,提出一种在时间无限下保证收敛到局部最优的改进算法,算法虽然保证了收敛性,但其优化效果并不理想。2002年Clerc 等[5]对PSO进化方程进行了分析,利用状态转移矩阵的策略研究单个粒子在进化中的运动轨迹,进而得到使单个粒子收敛的条件,但该分析方法忽略了粒子间作用和随机变量的作用。2003年Trelea[6]运用动态系统理论对粒子群算法

进行了分析,并给出了参数选取的指导规则。2004年Cui [7]通过在基本粒子群算法基础上,引入一种随机算法保证算法收敛到全局最优解。2004年曾建潮等[21]提出了一种能保证以概率1收敛于全局最优解的 PSO 算法(随机 PSO 算法),该算法对其全局收敛性进行了理论分析,并提出了两种停止进化粒子的重新产生方法。2007年Jiang 等[8]对 PSO 算法的收敛性进行了分析,给出了算法的收敛条件。2008年Chen [9]通过引入可控制的随机探索向量,来控制算法的收敛。2009年Latif [10]通过引入分布因子,分析了算法的收敛性条件。2009年高雷阜等[22]通过分析算法的收敛性,提出了基于混沌改进的粒子群算法。Rapaic 等[11-13]对算法的参数选取和收敛性进行分析,给出算法收敛条件下参数选取的准则。众多研究者对算法收敛性的分析,并在一定程度上给出了算法的收敛条件,但都是在简化条件下的结论,这使得对收敛性的分析缺乏一般性。

2.2 参数的分析与改进

为了加快收敛速度,提高算法的性能,研究者们对PSO 参数进行研究。PSO 的参数,主要有惯性因子ω,学习因子1c 和2c ,目前研究较多的是惯性因子ω。惯性因

子ω与粒子原速度相乘,体现了局部搜索能力和全局搜索能力的比例关系,较大的ω可以增强PSO 的全局搜索能力,适用于初期时的搜索,响应速度较快;而较小的ω能加强PSO 算法的局部搜索能力,适用于精度较高的末期搜索[14]。因此,随着迭代次数的增加,惯性因子ω应不断减小。目前对ω的取值大致有三种取法:固定惯性因子取值法[15,16]、线性自适应惯性因子取值法[14,17]、非线性惯性因子取值法[18-20]。

Shi 等[23]给出了一种用模糊规则动态调整惯性因子方法,通过对当前最好性能的评价来对惯性因子制定相应的隶属度函数和模糊推理规则。实验表明,与惯性因子线性减小的方法相比,模糊自适应方法有类似或更好的结果。国内李宁等[24]给出了一种惯性因子随着迭代代数采用余弦减小的方法,也取得了良好的效果。Chatterjee A 与Siarry P [25]提出在线性递减的方法中增加一个指数参数,变为非线性权重递减。Jiao B 等[26]提出惯性因子每步的情况都是动态变化,随着运行的迭代步数增加,权重可能会增加也可能会减小。

2.3 种群拓扑结构改进

粒子群算法是基于种群中粒子相互学习的进化算法,种群的拓扑结构直接决定了粒子学习样本的选择,不同的邻居拓扑结构衍生出不同的PSO 算法。Kennedy[15]最初提出粒子群算法时,采用了全局版本拓扑结构(图2(a)),每个粒子的邻居是除自身外的种群中其它所有粒子。但经过大量的仿真及实际应用后,发现这种拓扑结构极易陷入局部最优解。因此,在1999 年Kennedy[27]提出了局部版本的PSO 算法,该算法采用图2(b)所示的Ring 型拓扑结构,即每个粒子的邻居仅由与它自身最近的两个粒子构成。为了进步一步探索种群拓扑结构对于算法的影响,Mendes[28]从社会学的“Small Worlds”概念出发研究粒子间的信息流,对种群拓扑结构进行深入的研究,提出Four Cluster、Pyramid和Square型拓扑结构(图2(c)(d)(e)),上述5种拓扑结构衍生出5种PSO 算法。

图2 种群的拓扑结构

All型种群拓扑结构有助于全局搜索,而Ring型拓扑结构对于局部探索有更好地表现。因此,Parsopoulos[29]在此基础上,提出一种结合All型和Ring型拓扑结构统一粒子群算法,提升粒子跳出局部最优解的能力。由于Ring型拓扑结构有很好的拓展性,许多学者在此基础上引入了变型的Ring型结构,如基于俱乐部的PSO算法[30],该算法将整个种群划分为若干个俱乐部,每个俱乐部相当于一个Ring型结构,每个俱乐部之间可以互相信息交流,但这种俱乐部结构是静态的,限制了粒子的自由流动。因此,为克服此缺陷,Emara[31]提出一种自适应俱乐部粒子群算法,Miyagawa等[32-34]在All型拓扑结构基础上,提出了小生境和树状拓扑结构的粒子群算法。

前面所涉及的改进拓扑结构实质上都是一种静态拓扑结构,这种拓扑结构由于粒子间学习样本的固定性,降低了种群的多样性,因此,许多学者在静态拓扑结构的基础上提出了动态拓扑结构以增加群的多样性,进而提升种群跳出局部最优解的能力。

2.4 算法融合研究

Wolpert[35]于1997年提出了没有免费的午餐理论,该理论指出每种进化算法都存在各自的优缺点,因此,如何将PSO 与其它算法的结合也是当前研究热点之一。2010年陶新民[36]和Wei[37]提出基于K均值的混合PSO算法,在算法运行过程中,根据每个粒子的适应函数值来确定K均值算法操作时机,不仅增强算法局部精确搜索能力,而且也缩短了收敛时间。Qin[38]将局部搜索算法嵌入到PSO中,每间隔若干代对粒子自身最优位置进行局部搜索,如果获得的局部最优解优于粒子自身历史最优解,则进行替换,通过这种策略,使得粒子避免了在局部最优解处的聚集。2005年高海兵等[39]提出了广义粒子群优化模型GPSO,使其适用于解决离散的组合优化问题。GPSO模型本质仍然符合粒子群优化机理,但是其粒子更新策略既可根据优化问题的特点设计,也可实现与己有方法的融合。

还有学者将PSO与其它算法,通过一定的规则结合在一起,以发挥各自算法的优势,出现了将PSO与模拟退火算法、细菌趋药性算法、禁忌算法、遗传算法、蚁群算法等诸多算法进行混合;出现了基于量子PSO 算法、自适应PSO算法和小生境PSO等混合改进算法。

总之,无论哪种混合算法都是为了提升种群多样性,但这些混合策略引入新的参数(如在与遗传算法结合的混合算法中,何时进行变异和交叉操作,需要引入额外参数来控制这些操作的时机),由于引入了额外参数,导致实际应用受到限制。

2.5 粒子群算法的应用研究

PSO算法由于具有简单、易于实现、设置参数少、无需梯度信息等特点,其在连续非线性优化问题和组合优化问题中都表现出良好的效果,因此被应用到很多的领域。PSO最早应用于神经元网络的训练,Kennedy和Eberhart成功地将其应用于分类XOR问题的神经网络训练;1999年Eberhart[40]用PSO来分析人类的帕金森综合症等颤抖类疾病;1999年Yoshida等[41]用PSO优化各种离散个连续变量,控制核电机组输出稳定电压;2002年Abido等[42]用PSO解决最优功率通量问题。现在,PSO算法已经应用于非线性规划,同步发电机辩识,车辆路径,约束布局优化,新产品组合投入,广告优化,多目标优化等众多问题中,也表现出了良好的效果。

2007年Poli[43,44]对PSO算法的应用做了一个相对比较全面综述,他把PSO算法的应用领域分为26个不同类别,根据Xplore中搜索到的1100篇有关PSO算法的文献作数据统计,其中有700篇是有关PSO算法应用的。他把这些应用文献归纳出以下应用领域:图像与视频分析;电子网络分布;控制工程应用;电子应用;天线设计;电力系统:调度;设计;通讯设计与优化;生物医药;数据挖掘;模糊系统与控制;信号处理;神经网络:组合优化;机器人;预测与预报;模型;故障诊断与恢复;传感器网络;计算机图形与可视化;发机动设计或优化;治金;音乐制作与游戏;安全与军事应用;财经与金融。

总之,PSO算法的优越性能吸引了许多学者的关注,并对其进行了大量的研究工作,被广泛地应用于各个领域。但是由于PSO算法提出的时间不长,还存在许多有待改进和发展的地方。

2.6 粒子群算法国内的研究现状

我国对粒子群算法的研究起步较晚,现在深入的研究和应用还相对有限,已发表的论文也不是很多,PSO算法的研究还有大量的工作要做,国际上前人走过的路我们也需要借鉴,根据前人的经验快速跟进。作为一个研究起步晚的国家,我们的研究也是理论与应用同时进行,主要研究方向有以下几个方面:

粒子群算法的改进:标准粒子群算法主要适用于连续空间函数的优化问题,如何将粒子群算法应用于离散空间优化问题,特别是一类非数值优化问题,将是粒子群算法的主要研究方向。另外,充分吸引其他进化类算法的优势,以改进PSO算法存在的不足也是值得研究的问题。

粒子群算法的理论分析:到目前为止,PSO算法的分析方法还很不成熟,存在许多不完善之处。如何利用有效的数学工具对PSO算法的运行行为、收敛性以及计算复杂性进行分析也是目前的研究热点之一。

粒子群算法与其他进化算法的比较研究:目前,进化算法的研究在理论和应用两方面都得到迅速发展,效果显著。其中研究的比较成熟的有遗传算法、蚁群算法等,而粒子群算法是一个新兴的群体智能算法,目前己成为进化算法的一个重要分支,如何从多方面比较各种算法从而得到各自的特长和不足,如何吸引其他进化类算法的优势来弥补PSO算法的不足也是当前研究的热点之一。

粒子群算法的应用:算法研究的目的是应用,如何将PSO 算法应用于更多领域,同时研究应用中存在的问题也是值得关注的热点。

3 粒子群算法用于求解Ackley 函数

3.1 定义Ackley 函数

我们定义一个Ackley 函数,Ackley 函数是指数函数叠加上适度放大的余弦而得到的连续型实验函数,其特征是一个几乎平坦的区域由余弦波调制形成一个个孔或峰,从而使曲面起伏不平。其表达式如下:

211110.2*cos(2)

()20*20+e n n j j j j x x n n f x e e π==?∑∑=??+

我们在1010,1,2j x j ?≤≤=

区间内,求解12min (,)f x x 。利用Matlab 软件,我们不难画出该二维的Ackley 函数的图像,从图3中可以看出,这个函数的搜索十分复杂,因为一个严格的局部最优化算法在爬山过程中不可避免地要落入局部最优的陷阱;而扫描较大领域就能越过干扰的山谷,逐步达到较好的最优点。

用Matlab 画出Ackley 图像可用如下程序:

clc;

clear;

x = -10 : 0.005 : 10;

y = x;

[x,y] = meshgrid(x , y);

f = -20*exp((-0.2*sqrt(1/2*x.^2+1/2*y.^2))-exp(1/2*cos(2*pi*x)+1/2*cos(2*pi*y))+22.71282;

mesh(x,y,f)

图3 二维Ackley 函数在[-10,10]区间图像

3.2 用PSO 算法求解

在此我们选用1998 年由Yuhui Shi 提出了带有惯性权重的改进粒子群算法。其进化过程为:

i+11122v ()()i i i i i v c r Pbest x c r Gbest x ω=+?+?;

i+1i+1i x x v =+,

其中加速常数1c 和2c 是两个非负值,这两个常数使粒子具有自我总结和向群体中

优秀个体学习的能力,从而向自己的历史最优点以及群体内或领域内的全局最优点靠近,1c 和2c 通常等于2;1r 和2r 是两个在[0,1]之间均匀分布的随机数。

根据1999年Shi [45]所做的实验说明,权重因子ω随着迭代次数的增加,采用从

1.4到0.4的线性递减方法,使得粒子群算法在初期有较强的全局收敛能力,在后期具有较强的局部收敛能力,优化效果较好。

max () 1.4t

t t ω=?

此外,还对粒子的飞行速度进行了限定,设一常数max v ,限制了速度的最大值。

粒子的速度被限制在一个范围内,即在速度更新公式执行后,有:

If id max -v v < ,then id max =-v v ;

If id max v v > ,then id max =v v ;

故粒子群算法的基本流程如下:

① 初始化:在问题空间的D 维中随机产生粒子的位置与速度;

② 评价粒子:对每一个粒子,评价D 维优化函数的适用值;

③ 更新最优:(1)比较粒子适用值与它的个体最优值pbest ,如果优于pbest ,

则pbest 位置就是当前粒子位置;(2)比较粒子适用值与群体全体最优值gbest ,

如果目前值好于gbest ,则设置gbest 位置就当前粒子位置;

④ 更新粒子:按照PSO 算法计算式改变粒子的速度和位置;

⑤ 停止条件:循环回到步骤stePZ,直到终止条件满足,通常是满足好适用值和最

大的迭代代数。

其流程图如图4所示:

图4 PSO 算法流程图

根据上述思路,我们书写得到如下源程序:

首先定义一个Ackley函数:

function [f]=Ackley(x,y)

f=-20*exp((-1)*.2*sqrt(1/2*x.^2+1/2*y.^2))-exp(1/2*cos(2*pi*x)+1/2*cos(2*pi*y))+20+exp(1);

end

其次得到PSO算法:

clc;

clear;

x = -10+20*rand(20,2); %初始化种群,选取种群数量20,粒子的初始位置随机产生

pbest=x; %个体最优值初始值

vmax=3; %设定最大速度为5

v = zeros(20,2); %设定粒子速度的初始值为零

tmax=1000; %设置迭代次数

error=[]; %定义相邻两次迭代的误差

gbest(1,:)=pbest(1,:);

for j=1:20 %判读比较初始时各粒子最优值,获得全局最优值初始值

if Ackley(pbest(j,1),pbest(j,2))

gbest(1,:)=pbest(j,:);

end

end

a=Ackley(gbest(1,1),gbest(1,2));

for i=1:tmax

w=1.4-i/tmax; %计算每次迭代的惯性权重

for j=1:20 %计算下一代的坐标

v(j,:)=w*v(j,:)+2*rand(1,1)*(pbest(j,:)-x(j,:))+2*rand(1,1)*(gbest(1,:)-x(j,:));%计算速度 if v(j,1)>vmax %对粒子速度进行限定

v(j,1)=vmax;

end

if v(j,1)<-vmax

v(j,1)=-vmax;

end

if v(j,2)>vmax

v(j,2)=vmax;

end

if v(j,2)<-vmax

v(j,2)=-vmax;

end

x(j,:)=x(j,:)+v(j,:);

end

for j=1:20

if Ackley(x(j,1),x(j,2))

end

if Ackley(pbest(j,1),pbest(j,2))

end

end

error(i)=a-Ackley(gbest(1,1),gbest(1,2)); %计算每次误差

a=Ackley(gbest(1,1),gbest(1,2));

end

sprintf('the min position[x,y]=[%.20f,%.20f]',gbest(1,1),gbest(1,2))

sprintf('min valve=%.20f',Ackley(gbest(1,1),gbest(1,2)))

plot(error)

3.3 结果分析

从图3我们不难看出,该Ackley函数理论最小值点为[0,0],最小值f(0,0)=0。

我们利用上述PSO算法,分别迭代了200,400,600,800和1000次,得到如下结果:

表1 PSO算法求解Ackley函数最小值迭代效果

迭代

最小值对应的坐标最小值

次数

200 [-0.00000013352625116509,0.00000020934822667101] 0.00000070231746551741 400 [0.00000000009096127051,0.00000000005581022366] 0.00000000030184654776 600 [0.00000000000000261040,-0.00000000000000101132] 0.00000000000000799361 800 [-0.00000000000000006787,0.00000000000000013750] 0.00000000000000088818 1000 [0.00000000000000000769,0.00000000000000008934] 0.00000000000000088818 从表1中我们可以看出,随着迭代次数的增加,利用PSO算法求解Ackley函数最小值的效果越好,迭代600次后,求解得到的坐标值与理论值相比,精度已达-15

10,迭代800次后,精度已达-16

10。整体上来说,该

10,而迭代1000次后,精度可达-17

方法用于求解该Ackley函数最小值问题的效果还是挺好的,可有效的逼近我们想要的理想值,误差也在很小的范围之内。

图5是相邻的两次迭代所对应得到的最小值之差,差值越大,搜索变化越快。从图中我们可以看出,开始时,权重因子ω较大,PSO算法搜索较快,有较强的全局搜

索能力,而搜索后期,权重因子ω减小,差值变化非常小,代表此时算法有较强的局部搜索能力。

为了验证权重因子ω的重要性,我们将PSO算法迭代表示式中的权重因子ω去掉,对该问题同样迭代1000次后,得到最小值为:0.00216594943843606560,对应的坐标为[0.00020512277252526800,-0.00073214458147763395]。对比两种方法得到的结果,我们可以看出加上权重因子ω后能够大大提高PSO算法求解问题的精度,大大增加算法的适用性。

图5 相邻两次迭代最小值之差

4 总结

本文对粒子群算法的国内外研究现状进行了一定的分析和阐述,对国内外取得的研究成果进行了简单的归纳总结。粒子群算法是在仿真生物群体社会活动的基础上,通过模拟群体生物的相互协同寻优能力,从而构造出一种基于群体智能的优化算法。从提出至今,虽然只有短短20年的时间,但引起了世界各国研究人员的注意,从收

敛性、权重因子选择、拓扑结构、多样性、算法融合等诸多理论方面和实际工业应用方面都投入了大量的精力,也取得了一定的成果。

但是,由于粒子群算法本身来源于生物群体现象,目前所得到的理论基础尚不完备,现有的标准算法形式也存在性能的缺陷。因此,在接下来的研究中,研究人员对粒子群算法的理论应该有更深入的研究,使得粒子群算法具有更普遍的应用规律,切实解决生活实际中遇到的问题。

5 参考文献

[1] Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C]. Proceedings of the sixth international symposium on micro machine and human science. Nagoya: IEEE, 1995: 39-43.

[2] Bai Qinghai. Analysis of particle swarm optimization algorithm[J]. Computer and Information Science, 2010, 3(1): 180.

[3] Kennedy J, Eberhart R C, Shi Y. Swarm intelligence[M]. San Francisco: Morgan Kaufmann Publishers, 2001: 227-229.

[4] Van D B F. An Analysis of Particle Swarm Optimizers[D]. University Of Pretoria(Ph.D), 2001.

[5] Clerc M, Kennedy J. The particle swarm-Explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73.

[6] Trelea I C. The particle swarm optimization algorithm: convergence analysis and parameter selection[J]. Information Processing Letters, 2003, 85(6): 317-325.

[7] Cui Z H, Zeng J C. A guaranteed global convergence particle swarm optimizer[C]. In the 4th International Conference on Rough Sets and Current Trends in Computing, Uppsala, Sweden, 2004: 762-767.

[8] Jiang M, Luo Y P, Yang S Y. Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm[J]. Information Processing Letters, 2007, 102(1): 8-16.

[9] Chen X, Li Y M. On convergence and parameter selection of an improved particle swarm optimization[J]. International Journal of Control Automation and Systems, 2008, 6(4): 559-570.

[10] Latiff A, Tokhi M O. Fast Convergence Strategy for Particle Swarm Optimization using Spread Factor[C]. In IEEE Congress on Evolutionary Computation, Trondheim, Norway, 2009: 2693-2699.

[11] Yang L, Jiang M Y. Dynamic Group Decision Making Consistence Convergence Rate Analysis Based on Inertia Particle Swarm Optimization Algorithm[C]. In Proceedings of First Iita International Joint Conference on Artificial Intelligence, Hainan Island, China, 2009: 492-496.

[12 Fang W, Sun J, Xie Z P. Convergence analysis of quantum-behaved particle swarm optimization algorithm and study on its control parameter[J]. Acta Physica Sinica, 2010, 59(6): 3686-3694.

[13] Wei J X, Wang Y P. An Infeasible Elitist Based Particle Swarm Optimization for Constrained Multiobjective Optimization and Its Convengence[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2010, 24(3): 381-400.

[14] Shi Y H, Eberhart R. C. A Modified Particle Swarm Optimization, 1998 IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, May4-9, 1998: 69-73.

[15] Kennedy J, Eberhart R C. Particle Swarm Optimization[C]. In Proceedings of IEEE International Conference on Neural Networks, 1995, (2): 1942-1948.

[16] Eberhart R C, Kennedy J. A New Optimizer Using Particle Swarm Theory[J]. Institute and Electronics Engineers, 1995, (10): 39-43.

[17] Shi Y H, Eberhart R. C. Parameter Selection in Particle Swarm Optimization[J]. Lecture Notes in Computer Science, 1998, (1447): 591-600.

[18] 张丽平, 俞欢军, 陈德钊等. 粒子群优化算法的分析与改进[J]. 信息与控制, 2004, 33(5): 513-517.

[19] Chatterjee, Siarry P, Nonlinear Inertia Weight Variation for Dynamic Adaptation in Particle Swarm Optimization[J]. Computers & Operations Research, 2006, 33(3): 859-871.

[20] 王启付, 王战江, 王书亭. 一种动态改变惯性权重的粒子群优化算法[J]. 中国机械工程, 2005, 16(11): 945-948.

[21] Zeng J C. Guaranteed global convergence Particle swam optimization[J]. Computer Research and Development, 2004, 41(7): 1333-1338.

[22] 高雷阜, 刘旭旺. 基于混沌的弹性粒子群全局优化算法[J]. 控制与决策, 2009, 24(10): 1545-1548.

[23] Shi Y, Eberhart R. Fuzzy Adaptive Particle Swarm Optimization[C]. In: Proceedings of the IEEE Conference on Evolutionary Computation, Koreal, Soul: IEEE Press, 2001: 103-106.

[24] 李宁, 邹彤, 孙德宝. 带时间窗车车辆路径问题的粒子群算法[J]. 系统工程理论与实践, 2004, 24(4): 130-135.

[25] Chatterjee A, Siarry P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization[J]. Computers and Operations Research, 2006, 33(3): 859-871.

[26] Jiao B, Lian Z, Gu X. A dynamic inertia weight particle swarm optimization algorithm[J]. Chaos, Solitons and Fractals, 2008, 37(3): 698-705.

[27] Kennedy J. Small Worlds and Mega-minds: Effects of Neighborhood Topology on Particle Swarm Performance[C]. In IEEE Congress on Evolutionary Computation, Piscataway, NJ, 1999: 1931-1938.

[28] Mendes R, Kennedy J, Neves J. The fully informed particle swarm: Simpler, maybe better[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 204-210.

[29] Parsopoulos K E, Vrahatis M N. Unified particle swarm optimization in dynamic environments[C]. In Proceedings of Applications on Evolutionary Computing- EvoWorkshops: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, and EvoSTOC, Lausanne, Switzerland, 2005: 590-599.

[30] Elshamy W, Emara H M, Bahgat A. Clubs-based Particle Swarm Optimization[C]. In IEEE Swarm Intelligence Symposium, Honolulu, HI, United states, 2007: 289-296.

[31] Emara H M. Adaptive Clubs-based Particle Swarm Optimization[C]. In American Control Conference, St. Louis, MO, United states, 2009: 5628-5634.

[32] Li X D. Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology [J]. IEEE Transactions on Evolutionary Computation, 2010, 14(1): 150-169.

[33] Luh G C, Lin C Y. A Binary Particle Swarm Optimization for Structural Topology Optimization[C]. In the Third International Joint Conference on Computational Science and Optimization Huangshan, Anhui, China, 2010: 395-399.

[34] Miyagawa E, Saito T. Particle Swarm Optimizers with Growing Tree Topology [J]. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2009, 92(9): 2275-2282.

[35] Wolpert D H, Macready W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(2): 67-82.

[36] 陶新民, 徐晶, 杨立标. 一种改进的粒子群和K均值混合聚类算法[J]. 电子与信息学报, 2010, 32(1): 92-97.

[37] Wei B, Zhao Z. An improved particle swarm optimization algorithm based k-means clustering analysis[J]. Journal of Information and Computational Science, 2010, 7(3): 511-518.

[38] Qin J, Yin Y X, Ban X J. A Hybrid of Particle Swarm Optimization and Local Search for Multimodal Functions[C]. In Advances in Swarm Intelligence-First International Conference, Beijing, China, 2010: 589-596.

[39] 高海兵, 周驰, 高亮. 广义粒子群优化模型[J]. 计算机学报, 2005, 28(12): 1980-1988.

[40] Eberhart R C, Hu Xiaohui. Human tremor analysis using particle swarm optimization

[A]. In: Proceedings of the IEEE Congress on Evolutionary Computation[C]. Piscataway, 1999: 1927-1930.

[41] Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltagestability[A]. In: Proc. of IEEE Int. Conf. on Intelligent System Application to Power Systems[C]. Rio de Janeiro, 1999:117-121.[42] Abido M A. Optimal power flow using particle swarm optimization[J]. Electrical Power and Energy Systems, 2002, 24, 563-571.

[43] Riccardo Poli. An Analysis of Publications on Particle Swarm Optimisation Applications[R]. London: Department of Computer Science in University for Essex, 2007: l-41.

[44] Riccardo Poli, James Kennedy, Tim Blackwell. Particle swarm optimization, An overview[J]. Swarm Intelligence, 2007, l(l): 33-57.

[45] Shi Y, Eberhart R. Empirical Study of Particle Swarm Optimization[C]. In: Proceedings of the 1999 Congress on Evolutionary Computation, Piscataway, NJ: IEEE Service Center, 1999: 1948-1950.

粒子群算法的研究现状及其应用

智能控制技术 课程论文 中文题目: 粒子群算法的研究现状及其应用姓名学号: 指导教师: 年级与专业: 所在学院: XXXX年XX月XX日

1 研究的背景 优化问题是一个古老的问题,可以将其定义为:在满足一定约束条件下,寻找一组参数值,使系统的某些性能指标达到最大值或最小值。在我们的日常生活中,我们常常需要解决优化问题,在一定的范围内使我们追求的目标得到最大化。为了解决我们遇到的最优化问题,科学家,们进行了不懈的努力,发展了诸如牛顿法、共轭梯度法等诸多优化算法,大大推动了优化问题的发展,但由于这些算法的低运行效率,使得在计算复杂度、收敛性等方面都无法满足实际的生产需要。 对此,受达尔文进化论的影响,一批新的智能优化算法相继被提出。粒子群算法(PSO )就是其中的一项优化技术。1995 年Eberhart 博士和Kennedy 博士[1]-[3]通过研究鸟群捕食的行为后,提出了粒子群算法。设想有一群鸟在随机搜索食物,而在这个区域里只有一块食物,所有的鸟都不知道食物在哪里。那么找到食物最简单有效的办法就是鸟群协同搜寻,鸟群中的每只鸟负责离其最近的周围区域。 粒子群算法是一种基于群体的优化工具,尤其适用于复杂和非线性问题。系统初始化为一组随机解,通过迭代搜寻最优值,通过采用种群的方式组织搜索,同时搜索空间内的多个区域,所以特别适合大规模并行计算,具有较高的效率和简单、易操作的特性。 目前使用的粒子群算法的数学描述[3]为:设粒子的寻优空间是m 维的,粒子的数目为ps ,算法的最大寻优次数为Iter 。第i 个粒子的飞行速度为T i i1i2im v [v v ]= ,,,v ,位置为T i i1i2im x [x x x ]= ,,,,粒子的个体极值T i i1i2im Pbest [,]P = ,P ,P ,全局极值为 T i i1i2im Gbest [,]g = ,g ,g 。 粒子群算法的寻优过程主要由粒子的速度更新和位置更新两部分组成,其更新方式如下: i+11122v ()()i i i i i v c r Pbest x c r Gbest x =+?+?; i+1i+1i x x v =+, 式中:12c c ,为学习因子,一般取2;12r r ,是均与分布着[0,1]上的随机数。

基于粒子群优化算法的图像分割

安康学院 学年论文(设计) 题目_____________________________________________ 学生姓名_______________ 学号_____________________________ 所在院(系)_______________________________________ 专业班级__________________________________________________ 指导教师_____________________________________________ 年月曰

基于粒子群优化算法的图像分割 (作者:) () 指导教师: 【摘要】本文通过对粒子群优化算法的研究,采用Java编程,设计出一套用于图像分割的系统。 基于粒子群优化算法的图像分割系统,可以将一幅给定的图像进行分割,然后将分割结果保存。图像分割的目的是将感兴趣的区域从图像中分割出来,从而为计算机视觉的后续处理提供依据。图像分割的方法有多种,阈值法因其实现简单而成为一种有效的图像分割方法。而粒子群优化(PSO)算法是一类随机全局优化技术,它通过粒子间的相互作用发现复杂搜索空间中的最优区域缩短寻找阈值的时间。因此,基于粒子群优化算法的图像分割以粒子群优化算法为寻优工具,建立具有自适应和鲁棒性的分割方法。从而可以在最短的时间内,准确地确定分割阈值。 关键词:粒子群优化(PSO,图像分割,阈值法,鲁棒性 Abstract T his paper based on the particle swarm optimizati on algorithm, desig ns a set of system for image segme ntati on using Java program min g. Image segme ntati on system based on particle swarm optimizati on algorithm, the image can be a given segmentation, and then the segmentation results would be saved. Image segmentation is the purpose of the interested area from the image, thus providing the basis for the subsequent processing of computer vision. There are many methods of image segmentation, threshold method since its simple realization, becomes a kind of effective method in image segmentation. Particle swarm optimization (PSO) algorithm is a stochastic global optimization technique; it finds optimal regions of complex search spaces for threshold time shorte ned through the in teractio n betwee n particles. Therefore, particle swarm optimization algorithm of image segmentation based on particle swarm optimization algorithm based on optimizati on tools; establish segme ntati on method with adaptive and robust. Therefore, it is possible for us in the shortest possible time to accurately determ ine the segme ntati on threshold. Key word s: PSO, image segmentation, threshold method, robust. 1引言 1.1研究的背景和意义 技术的不断向前发展,人们越来越多地利用计算机来获取和处理视觉图像信息。据统计,人类

改进的粒子群优化算法

第37卷第4期河北工业大学学报2008年8月V ol.37No.4JOURNAL OF HEBEI UNIVERSITY OF TECHNOLOGY August2008 文章编号:1008-2373(2008)04-0055-05 改进的粒子群优化算法 宋洁,董永峰,侯向丹,杨彦卿 (河北工业大学计算机科学与软件学院,天津300401) 摘要粒子群优化算法是一种基于群体的自适应搜索优化算法,存在后期收敛慢、搜索精度低、容易陷入局部极 小等缺点,为此提出了一种改进的粒子群优化算法,从初始解和搜索精度两个方面进行了改进,提高了算法的计 算精度,改善了算法收敛性,很大程度上避免了算法陷入局部极小.对经典函数测试计算,验证了算法的有效性. 关键词粒子群优化算法;均匀化;变量搜索;初始解;搜索精度 中图分类号TP391文献标识码A A Modified Particle Swarm Optimization Algorithm SONG Jie,DONG Yong-feng,HOU Xiang-dan,Y ANG Yan-qing (School of Computer Science and Engineering,Hebei University of Technology,Tianjin300401,China) Abstract Particle Swarm Optimization Algorithm is a kind of auto-adapted search optimization based on community. But the standard particle swarm optimization is used resulting in slow after convergence,low search precision and easily leading to local minimum.A new Particle Swarm Optimization algorithm is proposed to improve from the initial solution and the search precision.The obtained results showed the algorithm computation precision and the astringency are im- proved,and local minimum is avoided.The experimental results of classic functions show that the improved PSO is ef- ficient and feasible. Key words PSO;average;variable search;initial solution;search accuracy 0引言 粒子群优化(Particle Swarm Optimization,PSO)算法是一种基于群体的随机优化技术,最早在1995年由美国社会心理学家James Kennedy和电气工程师Russell Eberhart[1]共同提出,基本思想源于对鸟群觅食行为的研究.PSO将每个可能产生的解都表述为群中的一个微粒,每个微粒都具有自己的位置向量和速度向量,和一个由目标函数决定的适应度,通过类似梯度下降算法使各粒子向适应度函数值最高的方向群游.该算法控制参数少、程序相对简单,因此在应用领域表现出了很大的优越性.由于PSO算法容易理解、易于实现,所以PSO算法发展很快.目前,多种PSO改进算法已广泛应用于函数优化、神经网络训练、模式识别、模糊系统控制以及其他的应用领域. 许多学者对PSO算法进行研究,发现其容易出现早熟、最优解附近收敛慢等现象,并提出了一些改进方案,例如自适应PSO算法、混合PSO算法、杂交PSO算法等[2-4].因此,本文从初始解和收敛精度两个角度出发对PSO算法进行了改进,提高了算法的计算精度,有效的改善了算法的优化性能. 1基本PSO算法 PSO算法是一种基于群体的随机优化技术,基本思想源于对鸟群觅食行为的研究.通过对鸟群飞行时经常会突然改变方向、散开、聚集,但整体总保持一致性,个体与个体间鸟群好像在一个中心的控制 收稿日期:2008-04-17 基金项目:河北省自然科学基金(F2006000109) 作者简介:宋洁(1967-),女(汉族),副教授.

粒子群算法综述

粒子群算法综述 【摘要】:粒子群算法(pso)是一种新兴的基于群体智能的启发式全局搜索算法,具有易理解、易实现、全局搜索能力强等特点,倍受科学与工程领域的广泛关注,已得到广泛研究和应用。为了进一步推广应用粒子群算法并为深入研究该算法提供相关资料,本文对目前国内外研究现状进行了全面分析,在论述粒子群算法基本思想的基础上,围绕pso的运算过程、特点、改进方式与应用等方面进行了全面综述,并给出了未来的研究方向展望。 【关键词】:粒子群算法优化综述 优化理论的研究一直是一个非常活跃的研究领域。它所研究的问题是在多方案中寻求最优方案。人们关于优化问题的研究工作,随着历史的发展不断深入,对人类的发展起到了重要的推动作用。但是,任何科学的进步都受到历史条件的限制,直到二十世纪中期,由于高速数字计算机日益广泛应用,使优化技术不仅成为迫切需要,而且有了求解的有力工具。因此,优化理论和算法迅速发展起来,形成一门新的学科。至今已出现线性规划、整数规划、非线性规划、几何规划、动态规划、随机规划、网络流等许多分支。这些优化技术在诸多工程领域得到了迅速推广和应用,如系统控制、人工智能、生产调度等。随着人类生存空间的扩大,以及认识世界和改造世界范围的拓宽,常规优化法如牛顿法、车辆梯度法、模式搜索法、单纯形法等已经无法处理人们所面的复杂问题,因此高效的

优化算法成为科学工作者的研究目标之一。 1.粒子群算法的背景 粒子群算法(particle swarm optimization,pso)是一种新兴的演化算法。该算法是由j.kennedy和r.c.eberhart于1995年提出的一种基于群智能的随机优化算法。这类算法的仿生基点是:群集动物(如蚂蚁、鸟、鱼等)通过群聚而有效的觅食和逃避追捕。在这类群体的动物中,每个个体的行为是建立在群体行为的基础之上的,即在整个群体中信息是共享的,而且在个体之间存在着信息的交换与协作。如在蚁群中,当每个个体发现食物之后,它将通过接触或化学信号来招募同伴,使整个群落找到食源;在鸟群的飞行中,每只鸟在初始状态下处于随机位置,且朝各个方向随机飞行,但随着时间推移,这些初始处于随机状态的鸟通过相互学习(相互跟踪)组织的聚集成一个个小的群落,并以相同的速度朝着相同的方向飞行,最终整个群落聚集在同一位置──食源。这些群集动物所表现的智能常称为“群体智能”,它可表述为:一组相互之间可以进行直接通讯或间接通讯(通过改变局部环境)的主体,能够通过合作对问题进行分布求解。换言之,一组无智能的主体通过合作表现出智能行为特征。粒子群算法就是以模拟鸟的群集智能为特征,以求解连续变量优化问题为背景的一种优化算法。因其概念简单、参数较少、易于实现等特点,自提出以来已经受到国内外研究者的高度重视并被广泛应用于许多领域。

粒子群算法基本原理

4.1粒子群算法基本原理 粒子群优化算法[45]最原始的工作可以追溯到1987年Reynolds 对鸟群社会系统Boids (Reynolds 对其仿真鸟群系统的命名)的仿真研究 。通常,群体的行为可以由几条简单的规则进行建模,虽然每个个体具有简单的行为规则,但是却群体的行为却是非常的复杂,所以他们在鸟类仿真中,即Boids 系统中采取了下面的三条简单的规则: (1)飞离最近的个体(鸟),避免与其发生碰撞冲突; (2)尽量使自己与周围的鸟保持速度一致; (3)尽量试图向自己认为的群体中心靠近。 虽然只有三条规则,但Boids 系统已经表现出非常逼真的群体聚集行为。但Reynolds 仅仅实现了该仿真,并无实用价值。 1995年Kennedy [46-48]和Eberhart 在Reynolds 等人的研究基础上创造性地提出了粒子群优化算法,应用于连续空间的优化计算中 。Kennedy 和Eberhart 在boids 中加入了一个特定点,定义为食物,每只鸟根据周围鸟的觅食行为来搜寻食物。Kennedy 和Eberhart 的初衷是希望模拟研究鸟群觅食行为,但试验结果却显示这个仿真模型蕴含着很强的优化能力,尤其是在多维空间中的寻优。最初仿真的时候,每只鸟在计算机屏幕上显示为一个点,而“点”在数学领域具有多种意义,于是作者用“粒子(particle )”来称呼每个个体,这样就产生了基本的粒子群优化算法[49]。 假设在一个D 维搜索空间中,有m 个粒子组成一粒子群,其中第i 个粒子的空间位置为123(,,,...,)1,2,...,i i i i iD X x x x x i m ==,它是优化问题的一个潜在

粒子群优化算法及其应用研究

摘要 在智能领域,大部分问题都可以归结为优化问题。常用的经典优化算法都对问题有一定的约束条件,如要求优化函数可微等,仿生算法是一种模拟生物智能行为的优化算法,由于其几乎不存在对问题的约束,因此,粒子群优化算法在各种优化问题中得到广泛应用。 本文首先描述了基本粒子群优化算法及其改进算法的基本原理,对比分析粒子群优化算法与其他优化算法的优缺点,并对基本粒子群优化算法参数进行了简要分析。根据分析结果,研究了一种基于量子的粒子群优化算法。在标准测试函数的优化上粒子群优化算法与改进算法进行了比较,实验结果表明改进的算法在优化性能明显要优于其它算法。本文算法应用于支持向量机参数选择的优化问题上也获得了较好的性能。最后,对本文进行了简单的总结和展望。 关键词:粒子群优化算法最小二乘支持向量机参数优化适应度

目录 摘要...................................................................... I 目录....................................................................... II 1.概述. (1) 1.1引言 (1) 1.2研究背景 (1) 1.2.1人工生命计算 (1) 1.2.2 群集智能理论 (2) 1.3算法比较 (2) 1.3.1粒子群算法与遗传算法(GA)比较 (2) 1.3.2粒子群算法与蚁群算法(ACO)比较 (3) 1.4粒子群优化算法的研究现状 (4) 1.4.1理论研究现状 (4) 1.4.2应用研究现状 (5) 1.5粒子群优化算法的应用 (5) 1.5.1神经网络训练 (6) 1.5.2函数优化 (6) 1.5.3其他应用 (6) 1.5.4粒子群优化算法的工程应用概述 (6) 2.粒子群优化算法 (8) 2.1基本粒子群优化算法 (8) 2.1.1基本理论 (8) 2.1.2算法流程 (9) 2.2标准粒子群优化算法 (10) 2.2.1惯性权重 (10) 2.2.2压缩因子 (11) 2.3算法分析 (12) 2.3.1参数分析 (12) 2.3.2粒子群优化算法的特点 (14) 3.粒子群优化算法的改进 (15) 3.1粒子群优化算法存在的问题 (15) 3.2粒子群优化算法的改进分析 (15) 3.3基于量子粒子群优化(QPSO)算法 (17) 3.3.1 QPSO算法的优点 (17) 3.3.2 基于MATLAB的仿真 (18) 3.4 PSO仿真 (19) 3.4.1 标准测试函数 (19) 3.4.2 试验参数设置 (20) 3.5试验结果与分析 (21) 4.粒子群优化算法在支持向量机的参数优化中的应用 (22) 4.1支持向量机 (22) 4.2最小二乘支持向量机原理 (22)

基于MATLAB的粒子群优化算法的应用示例

对于函数f=x*sin(x)*cos(2*x)-2*x*sin(3*x),求其在区间[0,20]上该函数的最大值。 ?初始化种群 已知位置限制[0,20],由于一维问题较为简单,因此可以取初始种群N 为50,迭代次数为100,当然空间维数d 也就是1。 位置和速度的初始化即在位置和速度限制内随机生成一个N×d 的矩阵,对于此题,位置初始化也就是在0~20内随机生成一个50×1的数据矩阵,而对于速度则不用考虑约束,一般直接在0~1内随机生成一个50×1的数据矩阵。 此处的位置约束也可以理解为位置限制,而速度限制是保证粒子步长不超限制的,一般设置速度限制为[-1,1]。 粒子群的另一个特点就是记录每个个体的历史最优和种群的历史最优,因此而二者对应的最优位置和最优值也需要初始化。其中每个个体的历史最优位置可以先初始化为当前位置,而种群的历史最优位置则可初始化为原点。对于最优值,如果求最大值则初始化为负无穷,相反地初始化为正无穷。 每次搜寻都需要将当前的适应度和最优解同历史的记录值进行对比,如果超过历史最优值,则更新个体和种群的历史最优位置和最优解。 ?速度与位置的更新

速度和位置更新是粒子群算法的核心,其原理表达式和更新方式如下: 每次更新完速度和位置都需要考虑速度和位置的限制,需要将其限制在规定范围内,此处仅举出一个常规方法,即将超约束的数据约束到边界(当位置或者速度超出初始化限制时,将其拉回靠近的边界处)。当然,你不用担心他会停住不动,因为每个粒子还有惯性和其他两个参数的影响。 代码如下: clc;clear;close all; %% 初始化种群 f= @(x)x .* sin(x) .* cos(2 * x) - 2 * x .* sin(3 * x); % 函数表达式figure(1);ezplot(f,[0,0.01,20]); N = 50; % 初始种群个数 d = 1; % 空间维数 ger = 100; % 最大迭代次数 limit = [0, 20]; % 设置位置参数限制 vlimit = [-1, 1]; % 设置速度限制 w = 0.8; % 惯性权重 c1 = 0.5; % 自我学习因子 c2 = 0.5; % 群体学习因子 for i = 1:d

标准粒子群算法(PSO)及其Matlab程序和常见改进算法

一、粒子群算法概述 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由Eberhart 博士和kennedy博士提出,源于对鸟群捕食的行为研究。该算法最初是受到飞鸟集群活动的规律性启发,进而利用群体智能建立的一个简化模型。粒子群算法在对动物集群活动行为观察基础上,利用群体中的个体对信息的共享使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得最优解。 PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。 PSO 初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个”极值”来更新自己。第一个就是粒子本身所找到的最优解,这个解叫做个体极值pBest。另一个极值是整个种群目前找到的最优解,这个极值是全局极值gBest。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。 二、算法原理 粒子群算法采用常数学习因子,及惯性权重,粒子根据如下的公式更新自己的速度和位置。 V ki=ωk V i?1i+c1r1(Q bi?Q k?1i)+c2r2(Q bg?Q k?1i)Q ki=Q k?1i+V ki 三、算法步骤 1、随机初始化种群中各微粒的位置和速度; 2、评价个粒子的适应度,将各粒子的位置和适应度储存在各微粒的pbest(Q bi)中,将所有pbest中适应度最优的个体的位置和适应度存储在gbest(Q bg)中。 3、更新粒子的速度和位移。 V ki=ωk V i?1i+c1r1(Q bi?Q k?1i)+c2r2(Q bg?Q k?1i)Q ki=Q k?1i+V ki 4、对每个微粒,与其前一个最优位置比较,如果较好,则将其作为当前的最优位置。 5、比较当前所有的pbest和上一迭代周期的gbest,更新gbest。 6、若满足停止条件(达到要求精度或迭代次数),搜索停止,输出结果,否则,返回2。

基于粒子群算法的控制系统PID参数优化设计

基于粒子群算法的控制系统 PID 参数优化设计 摘 要 本文主要研究基于粒子群算法控制系统PID 参数优化设计方法以及对PID 控制的 改进。PID 参数的寻优方法有很多种,各种方法的都有各自的特点,应按实际的系统特点选择适当的方法。本文采用粒子群算法进行参数优化,主要做了如下工作:其一,选择控制系统的目标函数,本控制系统选用时间乘以误差的绝对值,通过对控制系统的逐步仿真,对结果进行分析。由于选取的这个目标函数的解析式不能直接写出,故采用逐步仿真来实现;其二,本文先采用工程上的整定方法(临界比例度法)粗略的确定其初始的三个参数p K ,i K ,d K ,再利用粒子群算法进行寻优,得到更好的PID 参数;其三,采用SIMULINK 的仿真工具对PID 参数优化系统进行仿真,得出系统的响应曲线。从中发现它的性能指标,都比原来有了很大的改进。因此,采用粒子群算法的优越性是显而易见的。 关键词 目标函数;PID 参数;粒子群算法;优化设计;SIMULINK

Optimal design of PID parameter of the control system based on Particle Swarm Optimization Abstract The main purpose of this paper is to study the optimal design of PID parameter of the control system based on Particle Swarm Optimization and find a way to improve the PID control. There are a lot of methods of optimization for the parameters of PID, and each of them has its own characteristics. The proper methods need to be selected according to the actual characteristics of the system. In this paper we adopt the Particle Swarm Optimization to tune the parameters. To finish it, the following tasks should be done. First, select the target function of the control system. The target function of the control system should be chosen as the absolute value of the error multiplied by time. Then we simulate the control system gradually, and analyze the results of the process. Because the solution of the target function cannot be worked out directly, this design adopts simulation gradually. Second, this paper adopts the engineering method (the critical ratio method) to determine its initial parameters p K ,i K ,d K , then uses the Particle Swarm Optimization to get a series better PID parameters. Third, this paper uses the tool of SIMULINK to optimize the parameters of PID and gets the response curve of the system. By contrast with the two response curves, it is clearly that the performance has improved a lot than the former one. Therefore, it is obviously to find the advantages in using the Particle Swarm Optimization. Key word : target function; PID parameters; Particle Swarm Optimization; optimal design; SIMULINK

粒子群算法与遗传算法的比较

粒子群算法介绍 优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题. 为了解决各种各样的优化问题,人们提出了许多优化算法,比较著名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度. 爬山法精度较高,但是易于陷入局部极小. 遗传算法属于进化算法( Evolutionary Algorithms) 的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异. 但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重 影响解的品质,而目前这些参数的选择大部分是依靠经验.1995 年Eberhart博士和kennedy博士提出了一种新的算法;粒子群优化(Particle Swarm Optimization -PSO) 算法. 这种算法以 其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。 粒子群优化(Particle Swarm Optimization - PSO) 算法是近年来发展起来的一种新的进化算法( Evolutionary Algorithm - EA) .PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质. 但是它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作. 它通过追随 当前搜索到的最优值来寻找全局最优。 1. 引言 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),由Eberhart博士和kennedy博士提出。源于对鸟群捕食的行为研究。 PSO同遗传算法类似,是一种基于迭代的优化算法。系统初始化为一组随机解,通过迭代搜寻最优值。但是它没有遗传算法用的交叉(crossover)以及变异(mutation),而是粒子在解空间追随最优的粒子进行搜索。同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域 2. 背景: 人工生命 "人工生命"是来研究具有某些生命基本特征的人工系统。人工生命包括两方面的内容: 1. 研究如何利用计算技术研究生物现象 2. 研究如何利用生物技术研究计算问题 我们现在关注的是第二部分的内容. 现在已经有很多源于生物现象的计算技巧. 例如, 人工神经网络是简化的大脑模型. 遗传算法是模拟基因进化过程的. 现在我们讨论另一种生物系统- 社会系统. 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为. 也可称做"群智能"(swarm intelligence). 这些模拟系统利用局 部信息从而可能产生不可预测的群体行为 例如floys和boids, 他们都用来模拟鱼群和鸟群的运动规律, 主要用于计算机视觉和计算机辅助设计. 在计算智能(computational intelligence)领域有两种基于群智能的算法. 蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization). 前者是对蚂蚁群落食物采集过程的模拟. 已经成功运用在很多离散优化问题上. 粒子群优化算法(PSO) 也是起源对简单社会系统的模拟. 最初设想是模拟鸟群觅食的 过程. 但后来发现PSO是一种很好的优化工具.

浅谈粒子群算法改进方法

浅谈粒子群算法改进方法 【摘要】本文介绍了粒子群算法的基本概念及粒子群算法的训练过程,分别从基本进入、改变惯性因子、改变收缩因子三个方面对其进行优化改进。 【关键词】粒子群;进化方程;惯性因子;收缩因子 1.粒子群算法综述 二十世纪九十年代,美国的社会心理学家James Kennedy和电气工程师Russell通过对自然界的鸟群进行觅食的行为进行观察和研究,提出了模仿鸟群行为的新型群体智能算法——粒子群(Particle Swarm Optimization,PSO)算法。 粒子群算法与其它进化类算法十分相似,同样也是采用“群体”与“进化”的概念,同样也是依据粒子的适应值大小进行操作。而与之不同的是,粒子群算法不像其它进化算法那样,对于每个个体使用进化算子,而是将每个个体看作是在一个n维搜索空间中的没有重量没有体积的微粒,并在搜索空间中以一定的速度进行飞行。该飞行速度这个个体的飞行经验和群体的飞行经验来进行动态的调整。 2.粒子群算法实现的步骤 这里将基本粒子群算法的训练过程描述如下: (1)首先将初始化方程作为依据,将该粒子群体的随机位置和速度进行初始化设置; (2)计算粒子群中每个粒子的适应度值; (3)将该粒子群中每个粒子的适应值与其经历过的最好位置Pi的适应值进行比较,如果好,将它作为当前的最好位置; (4)将该粒子群体中每个粒子的适应值与所有粒子经历的最好位置Pg的适应值进行比较,如果好,将它作为当前的全局最好位置; (5)以粒子群进化方程为依据,进化粒子的速度及位置; (6)如果没有达到设置的结束条件或达到一个设置的最大迭代次数,则返回到第二步,否则结束。 3.粒子群算法进化方程的改进 3.1 基本粒子群算法进化方程的分析

一种基于粒子群算法的聚类算法

第35卷第1期2009年3月延边大学学报(自然科学版) Journal of Yanbian University (Natural Science )Vol.35No.1Mar.2009 收稿日期:2008-10-18 作者简介:姜浩(1981— ),男,硕士研究生,研究方向为粒子群算法.文章编号:100424353(2009)0120064204 一种基于粒子群算法的聚类算法 姜浩, 崔荣一 (延边大学工学院计算机科学与技术系智能信息处理研究室,吉林延吉133002) 摘要:提出一种基于粒子群算法的聚类算法,该算法利用粒子群算法随机搜索解空间的能力找到最优解.首先,将样本所属类号的组合作为粒子,构成种群,同时引入极小化误差平方和来指导种群进化的方向.其次,通过对全局极值的调整,搜索到全局最优值.最后,通过仿真实验的对比,验证了该算法在有效性和稳定性上要好于K 2means 算法. 关键词:粒子群;聚类;极小化误差平方和中图分类号:TP301.6 文献标识码:A A Method of Clustering B ased on the P article Sw arm Optimization J IAN G Hao , CU I Rong 2yi (I ntelli gent I nf ormation Processing L ab.,De partment of Com puter Science and Technolog y , College of Engineering ,Yanbian Universit y ,Yanj i 133002,China ) Abstract :A clustering method based on the particle swarm optimization is provided ,using the ability of PSO algorithm which can search all of the solution space to find the optimum solution.Firstly ,the combination of the cluster number of the samples was taken as particles to consist a swarm.Meanwhile ,the evolution trend was used to modulate with the theory of the L MS error criterion.Secondly ,according to the modulating for global best ,the algorithm researched the global optimum.Finally ,the simulation results show that the new algorithm of proposed algorithm is more efficient and stable than K 2means algorithm.K ey w ords :particle swarm optimization ;clustering ;L MS error criterion 0 引言 聚类分析研究具有很长的历史,其重要性及 与其他研究方向的交叉特性得到人们的肯定[1].聚类是数据挖掘、模式识别等研究方向的重要研究内容之一,在识别数据的内在结构方面具有极其重要的作用.聚类技术广泛应用于语音识别、字符识别、图像分割、机器视觉、数据压缩和文献信息检索等领域.聚类的另一主要应用是数据挖据(多关系数据挖掘)、时空数据库应用(GIS 等)、序列和一类数据分析等.此外,聚类还应用于统计科学.值得一提的是,聚类分析对生物学、心理学、考 古学、地质学、地理学以及市场营销等研究也都有重要应用. 粒子群优化(Particle Swarm Optimization ,PSO )算法是由Eberhart 和Kennedy [2]于1995年提出的一类基于群智能的随机优化算法.该算法模拟鸟群飞行觅食的行为,通过个体之间的集体协作和竞争来实现全局搜索,是一种基于群智能的演化计算技术.同遗传算法相比,虽然同是基于迭代的进化算法,但没有交叉和变异算子,群体在解空间中根据自身经历的最好位置,以及群体最优解来进行搜索.由于PSO 算法有着参数少,

粒子群算法基本原理

4.1 粒子群算法基本原理 粒子群优化算法[45] 最原始的工作可以追溯到1987年Reynolds 对鸟群社会 系 统Boids(Reynolds 对其仿真鸟群系统的命名)的仿真研究。通常,群体的行为可以由几条简单的规则进行建模,虽然每个个体具有简单的行为规则,但是却群体的行为却是非常的复杂,所以他们在鸟类仿真中,即Boids 系统中采取了下面的三条简单的规则: (1)飞离最近的个体( 鸟) ,避免与其发生碰撞冲突; (2)尽量使自己与周围的鸟保持速度一致; (3)尽量试图向自己认为的群体中心靠近。 虽然只有三条规则,但Boids 系统已经表现出非常逼真的群体聚集行为。但Reynolds 仅仅实现了该仿真,并无实用价值。 1995年Kennedy [46-48] 和Eberhart 在Reynolds 等人的研究基础上创造性地提出了粒子群优化算法,应用于连续空间的优化计算中。Kennedy和Eberhart 在boids 中加入了一个特定点,定义为食物,每只鸟根据周围鸟的觅食行为来搜寻 食物。Kennedy和Eberhart 的初衷是希望模拟研究鸟群觅食行为,但试验结果 却显示这个仿真模型蕴含着很强的优化能力,尤其是在多维空间中的寻优。最初仿真的时候,每只鸟在计算机屏幕上显示为一个点,而“点”在数学领域具有多 种意义,于是作者用“粒子(particle )”来称呼每个个体,这样就产生了基本 [49] 的粒子群优化算法。 假设在一个 D 维搜索空间中,有m个粒子组成一粒子群,其中第i 个粒子的空间位置为X( x , x ,x,..., x ) i 1,2,..., m ,它是优化问题的一个潜在解, i i1 i 2 i 3 iD 将它带入优化目标函数可以计算出其相应的适应值,根据适应值可衡量x的优 i 劣;第i 个粒子所经历的最好位置称为其个体历史最好位置,记为 P ( p , p , p , ... p,) i 1, 2 ,,m..相,应的适应值为个体最好适应值Fi ;同 i 1i i2 3i i D 时,每个粒子还具有各自的飞行速度V(v ,v ,v,..., v ) i 1,2,..., m 。所有粒 i i1 i 2 i 3 iD

基于粒子群优化算法的神经网络在

基于粒子群优化算法的神经网络在农药定量构效关系建模中的应用 张丽平 俞欢军3 陈德钊 胡上序 (浙江大学化工系,杭州310027) 摘 要 神经网络模型能有效模拟非线性输入输出关系,但其常规训练算法为BP 或其它梯度算法,导致训练时间较长且易陷入局部极小点。本实验探讨用粒子群优化算法训练神经网络,并应用到苯乙酰胺类农药的定量构效关系建模中,对未知化合物的活性进行预测来指导新药的设计和合成。仿真结果表明,粒子群优化算法训练的神经网络不仅收敛速度明显加快,而且其预报精度也得到了较大的提高。关键词 粒子群优化算法,神经网络,定量构效关系  2004201204收稿;2004207225接受 本文系国家自然科学基金资助项目(N o.20276063) 1 引 言 药物定量构效关系(QS AR )是研究药物生理活性和药物分子结构参数间的量变规律并建立相应的 数学模型,进而研究药物的作用机理,从而用于预测未知化合物的生物活性,探讨药物的作用机理,指导新药的设计和合成,在药物和农药的研究与设计中已经显示出广阔的应用前景1。以往QS AR 的建模方法大多基于统计原理,局限于线性模型,只进行简单的非线性处理,由此所建立的模型很难契合实际构效关系,并且其处理过程都比较繁琐2。神经网络通过学习将构效关系知识隐式分布在网络之中,适用于高度非线性体系。 在药物QS AR 中采用神经网络(NN )始于20世纪80年代末3,此后得到迅速的发展,目前已发展为除多重线性回归和多元数据分析之外的第3种方法4。通常多层前传网络采用BP 算法,通过误差反传,按梯度下降的方向调整权值。其缺点是可能陷入局部极小点,且对高维输入收敛速度非常缓慢。 粒子群优化算法(particle swarm optimization ,PS O )是K ennedy 等5源于对鸟群、鱼群和人类社会行为的研究而发展的一种新的进化型寻优技术。PS O 已成为进化寻优算法研究的热点,其最主要特点是简单、收敛速度快,且所需领域知识少。本实验拟将该方法初始化前传神经网络为苯乙酰胺类农药建立良好适用的QS AR 模型。 2 苯乙酰胺类农药的Q SAR 问题 苯乙酰胺类化合物是除草农药,其除草活性与其分子结构密切相关。所有的N 2(12甲基212苯乙基)苯乙酰胺都可用相应的羧酸酰胺通过霍夫曼反应生成。N 2(12甲基212苯乙基)苯乙酰胺的基本结构式为 : 其中X 为Me 、F 、Cl 、OMe 、CF 3和Br 等,Y 为Me 、Cl 、F 和Br 等,由不同的X 和Y 取代基可构成不同的化合物。常用以下7个理化参数描述化合物的分子组成和结构:log P 、log 2P (疏水性参数及其平方项)、 σ(电性效应参数)、E s (T aft 立体参数)、MR (摩尔折射度),1χ、2 χ(分子连接性指数)。于是这类化合物的QS AR 就转化为上述理化参数与除草活性间的关系。为研究这种关系,选用具有代表性的50个化合物, 他们的活性值取自文献1,见表1。 第32卷2004年12月分析化学(FE NXI H UAX UE ) 研究报告Chinese Journal of Analytical Chemistry 第12期1590~1594

相关文档
相关文档 最新文档