文档库 最新最全的文档下载
当前位置:文档库 › 实验一 控制系统的数学模型

实验一 控制系统的数学模型

实验一 控制系统的数学模型
实验一 控制系统的数学模型

实验一 控制系统的数学模型

一 实验目的

1、学习用MATLAB 创建各种控制系统模型。

2、掌握传递函数模型、零-极点增益模型以及连续系统模型与离散系统模型之间的转化,模型的简化。

二 相关理论

1传递函数描述

(1)连续系统的传递函数模型

连续系统的传递函数如下: ? 对线性定常系统,式中s 的系数均为常数,且a1不等于零,这时系统在MATLAB 中

可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num 和den 表示。

num=[b1,b2,…,bm,bm+1]

den=[a1,a2,…,an,an+1]

注意:它们都是按s 的降幂进行排列的。

tf ()函数可以表示传递函数模型:G=tf(num, den) 举例: num=[12,24,0,20];den=[2 4 6 2 2];

G=tf(num, den)

(2)零极点增益模型

? 零极点模型实际上是传递函数模型的另一种表现形式,其原理是分别对原系统传递

函数的分子、分母进行分解因式处理,以获得系统的零点和极点的表示形式。

K 为系统增益,zi 为零点,pj 为极点 在MATLAB 中零极点增益模型用[z,p,K]矢量组表示。即:

z=[z1,z2,…,zm]

p=[p1,p2,...,pn]

K=[k]

zpk ()函数可以表示零极点增益模型:G=zpk(z,p,k)

(3)部分分式展开

? 控制系统常用到并联系统,这时就要对系统函数进行分解,使其表现为一些基本控

制单元的和的形式。

? 函数[r,p,k]=residue(b,a)对两个多项式的比进行部分展开,以及把传函分解为微

分单元的形式。

? 向量b 和a 是按s 的降幂排列的多项式系数。部分分式展开后,余数返回到向量r ,

极点返回到列向量p ,常数项返回到k 。

? [b,a]=residue(r,p,k)可以将部分分式转化为多项式比p(s)/q(s)。

11

211121......)()()(+-+-++++++++==n n n n m n m m a s a s a s a b s b s b s b s R s C s G ))...()(())...()(()(2121n m p s p s p s z s z s z s K s G ------=22642202412)(23423++++++=s s s s s s s G

举例:

部分分式展开: 》num=[2,0,9,1];

》den=[1,1,4,4]; [r,p,k]=residue(num,den)

》r= 0.0000-0.2500i 0.0000+0.2500i -2.0000 p= 0.0000+2.0000i 0.0000-2.0000i -1.0000 k= 2

结果表达式 2模型的转换与连接

(1)模型的转换

? 在一些场合下需要用到某种模型,而在另外一些场合下可能需要另外的模型,这就

需要进行模型的转换。

? 模型转换的函数包括:

residue :传递函数模型与部分分式模型互换

tf2zp : 传递函数模型转换为零极点增益模型

zp2tf : 零极点增益模型转换为传递函数模型

连续系统转化为离散系统:

相当于在连续系统中加入采样开关,),,(2method

T sys d c dsys = 其中:dsys 表示离散系统;sys 表示连续系统;T 表示采样时间;method

表示逼近方式;

离散系统转化为连续系统:)(2dsys c d sys =

用法举例: 1)系统的零极点增益模型转换为传递函数: 》z=[-3];p=[-1,-2,-5];k=6;

》[num,den]=zp2tf(z,p,k)

》num= 0 0 6 18 den= 1 8 17 10

2)已知部分分式: 转换为传递函数

》r=[-0.25i,0.25i,-2];

》p=[2i,-2i,-1];k=2;

》[num,den]=residue(r,p,k)

》num=

2 0 9 1

》den= 1 1 4 4

4

4192)(233+++++=s s s s s s G 1

2225.0225.02)(+-+++--+=s i s i i s i s G )

5)(2)(1()3(6)(++++=s s s s s G 12225.0225.02)(+-+++--+=s i s i i s i s G

注意余式一定要与极点相对应。

(2)模型的连接

a并联:parallel

格式:

[num,den]=parallel(num1,den1,num2,den2)

?%将并联连接的传递函数进行相加。

b串联:series

格式:

[num,den]=series(num1,den1,num2,den2)

%将串联连接的传递函数进行相乘。

c反馈:feedback

格式:

[num,den]=feedback(num1,den1,num2,den2,sign)

?%将两个系统按反馈方式连接,一般而言,系统1为对象,系统2为反馈控制器。

sign缺省时,默认为负,即sign= -1,表示负反馈,sign= 1,表示正反馈。

d闭环:cloop(单位反馈)

格式:

[numc,denc]=cloop(num,den,sign)

?%表示由传递函数表示的开环系统构成闭环系统,sign意义与上述相同。

三实验内容

1.系统的传递函数为:()

() ()()()15

5

1

3

15

+

+

+

+

=

s

s

s

s

s

G

1) 写出零极点模型,并转换为多项式传递函数模型;

2) 写出多项式模型。

2.系统结构图如下所示,求其多项式传递函数模型

T=0.1秒,用Matlab

产生下列系统的传递函数.(注:延迟用ioDelay,如系统G的延迟为2,那么代码为:G.ioDelay=2;)

四实验报告要求

(1)完成上述各题

(2)记录与显示给定系统数学模型

数学建模实验报告

在下面的题目中选做100分的题目,给出详略得当的答案。 一.通过举例简要说明数学建模的一般过程或步骤。(15分) 答:建立数学模型的方法大致有两种,一种是实验归纳的方法,即根据测试或计算数据,按照一定的数据,按照一定的数学方法,归纳出系统的数学模型;另一种是理论分析的方法,具体步骤有五步(以人口模型 为例): 1、明确问题,提出合理简化的假设:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息 2、建立模型:据所做的假设以及事物之间的联系,构造各种量之间的关系。(查资料得出数学式子或算法)。 3、模型求解:利用数学方法来求解上一步所得到的数学问题,此时往往还要做出进一步的简化或假设。注意要尽量采用简单的数学公具。例如:马尔萨斯模型,洛杰斯蒂克模型 4、模型检验:根据预测与这些年来人口的调查得到的数目进行对比检验 5、模型的修正和最后应用:所建立的模型必须在实际应用中才能产生效益,根据预测模型,制定方针政策,以实现资源的合理利用和环境的保护。 二.把一张四条腿等长的正方形桌子放在稍微有些起伏的地面上,通常只有三只脚着地,然而 只需稍为转动一定角度,就可以使四只脚同时着地,即放稳了。(1) 请用数学模型来描述和证明这个实际问题; (2)讨论当桌子是长方形时,又该如何描述和证明?(15分) 答: 模型假设: 1.椅子四条腿一样长,椅脚与地面的接触部分相对椅子所占的地面面积可视为一个点。 2.地面凹突破面世连续变化的,沿任何方向都不会出现间断(没有向台阶那样的情况),即地面可看作数学上的连续曲面。 3.相对椅脚的间距和椅子腿的长度而言,地面是相对平坦的,即使椅子在任何位置至少有三条腿同时着地。4.椅子四脚连线所构成的四边形是圆内接四边形,即椅子四脚共圆。 5.挪动仅只是旋转。 我们将椅子这两对腿的交点作为坐标原点,建立坐标系,开始时AC、BD这两对腿都在坐标轴上。将AC和BD这两条腿逆时针旋转角度θ。记AC到地面的距离之和为f(θ)。记BD到 地面的距离之和为g(θ)。易得f(θ),g(θ)至少有一个为零。

数学建模实验报告

数学建模实验报告

一、实验目的 1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握 数学建模分析和解决的基本过程。 2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新 能力,为今后从事科研工作打下初步的基础。 二、实验题目 (一)题目一 1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。设每个 乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直 到电梯中的乘客下完时,电梯需停次数的数学期望。 2、问题分析 (1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。所以选择采用计算机模拟的 方法,求得近似结果。 (2)通过增加试验次数,使近似解越来越接近真实情况。 3、模型建立 建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每 个乘客只会在某一层下,故没列只有一个1)。而每行中1的个数 代表在该楼层下的乘客的人数。 再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。 例如: 给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为: m = 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 c = 1 1 0 1 0 1 1 1 4、解决方法(MATLAB程序代码):

n=10;r=10;d=1000; a=0; for l=1:d m=full(sparse(randint(1,r,[1,n]),1:r,1,n,r)); c=zeros(n,1); for i=1:n for j=1:r if m(i,j)==1 c(j)=1; break; end continue; end end s=0; for x=1:n if c(x)==1 s=s+1; end continue; end a=a+s; end a/d 5、实验结果 ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。 (二)题目二 1、问题:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6 千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千 克,工人20名,可获利9万元.今工厂共有原料60千克,工人 150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何 安排生产计划,即两种饮料各生产多少使获利最大.进一步讨 论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划. 2、问题分析 (1)题目中共有3个约束条件,分别来自原料量、工人数与甲饮料产量的限制。 (2)目标函数是求获利最大时的生产分配,应用MATLAB时要转换

数学建模实验报告

数学建模实验报告 实验一计算课本251页A矩阵的最大特征根和最大特征向量 1 实验目的 通过Wolfram Mathematica软件计算下列A矩阵的最大特征根和最大特征向量。 2 实验过程 本实验运用了Wolfram Mathematica软件计算,计算的代码如下:

3 实验结果分析 从代码的运行结果,可以得到最大特征根为5.07293,最大特征向量为 {{0.262281},{0.474395},{0.0544921},{0.0985336},{0.110298}},实验结果 与标准答案符合。

实验二求解食饵-捕食者模型方程的数值解 1实验目的 通过Wolfram Mathematica或MATLAB软件求解下列习题。 一个生物系统中有食饵和捕食者两种种群,设食饵的数量为x(t),捕食者为y(t),它们满足的方程组为x’(t)=(r-ay)x,y’(t)=-(d-bx)y,称该系统为食饵-捕食者模型。当r=1,d=0.5,a=0.1,b=0.02时,求满足初始条件x(0)=25,y(0)=2的方程的数值解。 2 实验过程 实验的代码如下 Wolfram Mathematica源代码: Clear[x,y] sol=NDSolve[{x'[t] (1-0.1y[t])x[t],y'[t] 0.02x[t]y[t]-0.5y[t],x[0 ] 25,y[0] 2},{x[t],y[t]},{t,0,100}] x[t_]=x[t]/.sol y[t_]=y[t]/.sol g1=Plot[x[t],{t,0,20},PlotStyle->RGBColor[1,0,0],PlotRange->{0,11 0}] g2=Plot[y[t],{t,0,20},PlotStyle->RGBColor[0,1,0],PlotRange->{0,40 }] g3=Plot[{x[t],y[t]},{t,0,20},PlotStyle→{RGBColor[1,0,0],RGBColor[ 0,1,0]},PlotRange->{0,110}] matlab源代码 function [ t,x ]=f ts=0:0.1:15; x0=[25,2]; [t,x]=ode45('shier',ts,x0); End function xdot=shier(t,x)

实验一 控制系统的数学模型

实验一 控制系统的数学模型 一 实验目的 1、学习用MATLAB 创建各种控制系统模型。 2、掌握传递函数模型、零-极点增益模型以及连续系统模型与离散系统模型之间的转化,模型的简化。 二 相关理论 1传递函数描述 (1)连续系统的传递函数模型 连续系统的传递函数如下: ? 对线性定常系统,式中s 的系数均为常数,且a1不等于零,这时系统在MATLAB 中 可以方便地由分子和分母系数构成的两个向量唯一地确定出来,这两个向量分别用num 和den 表示。 num=[b1,b2,…,bm,bm+1] den=[a1,a2,…,an,an+1] 注意:它们都是按s 的降幂进行排列的。 tf ()函数可以表示传递函数模型:G=tf(num, den) 举例: num=[12,24,0,20];den=[2 4 6 2 2]; G=tf(num, den) (2)零极点增益模型 ? 零极点模型实际上是传递函数模型的另一种表现形式,其原理是分别对原系统传递 函数的分子、分母进行分解因式处理,以获得系统的零点和极点的表示形式。 K 为系统增益,zi 为零点,pj 为极点 在MATLAB 中零极点增益模型用[z,p,K]矢量组表示。即: z=[z1,z2,…,zm] p=[p1,p2,...,pn] K=[k] zpk ()函数可以表示零极点增益模型:G=zpk(z,p,k) (3)部分分式展开 ? 控制系统常用到并联系统,这时就要对系统函数进行分解,使其表现为一些基本控 制单元的和的形式。 ? 函数[r,p,k]=residue(b,a)对两个多项式的比进行部分展开,以及把传函分解为微 分单元的形式。 ? 向量b 和a 是按s 的降幂排列的多项式系数。部分分式展开后,余数返回到向量r , 极点返回到列向量p ,常数项返回到k 。 ? [b,a]=residue(r,p,k)可以将部分分式转化为多项式比p(s)/q(s)。 11 211121......)()()(+-+-++++++++==n n n n m n m m a s a s a s a b s b s b s b s R s C s G ))...()(())...()(()(2121n m p s p s p s z s z s z s K s G ------=22642202412)(23423++++++=s s s s s s s G

自动控制系统的数学模型

第二章自动控制系统的数学模型 教学目的: (1)建立动态模拟的概念,能编写系统的微分方程。 (2)掌握传递函数的概念及求法。 (3)通过本课学习掌握电路或系统动态结构图的求法,并能应用各环节的传递函数,求系统的动态结构图。 (4)通过本课学习掌握电路或自动控制系统动态结构图的求法,并对系统结构图进行变换。 (5)掌握信号流图的概念,会用梅逊公式求系统闭环传递函数。 (6)通过本次课学习,使学生加深对以前所学的知识的理解,培养学生分析问题的能力 教学要求: (1)正确理解数学模型的特点; (2)了解动态微分方程建立的一般步骤和方法; (3)牢固掌握传递函数的定义和性质,掌握典型环节及传递函数; (4)掌握系统结构图的建立、等效变换及其系统开环、闭环传递函数的求取,并对重要的传递函数如:控制输入下的闭环传递函数、扰动输入 下的闭环传递函数、误差传递函数,能够熟练的掌握; (5)掌握运用梅逊公式求闭环传递函数的方法; (6)掌握结构图和信号流图的定义和组成方法,熟练掌握等效变换代数法则,简化图形结构,掌握从其它不同形式的数学模型求取系统传递函 数的方法。 教学重点: 有源网络和无源网络微分方程的编写;有源网络和无源网络求传递函数;传递函数的概念及求法;由各环节的传递函数,求系统的动态结构图;由各环节的传递函数对系统的动态结构图进行变换;梅逊增益公式的应用。 教学难点:举典型例题说明微分方程建立的方法;求高阶系统响应;求复杂系统的动态结构图;对复杂系统的动态结构图进行变换;求第K条前向通道特记式 的余子式 。 k 教学方法:讲授 本章学时:10学时 主要内容: 2.0 引言 2.1 动态微分方程的建立 2.2 线性系统的传递函数 2.3 典型环节及其传递函数 2.4系统的结构图 2.5 信号流图及梅逊公式

数学建模与数学实验报告

数学建模与数学实验报告 指导教师__郑克龙___ 成绩____________ 组员1:班级______________ 姓名______________ 学号_____________ 组员2:班级______________ 姓名______________ 学号______________ 实验1.(1)绘制函数cos(tan())y x π=的图像,将其程序及图形粘贴在此。 >> x=-pi:0.01:pi; >> y=cos(tan(pi*x)); >> plot(x,y) -4 -3 -2 -1 1 2 3 4 -1-0.8-0.6-0.4-0.200.20.40.60.8 1 (2)用surf,mesh 命令绘制曲面2 2 2z x y =+,将其程序及图形粘贴在此。(注:图形注意拖放,不要太大)(20分) >> [x,y]=meshgrid([-2:0.1:2]); >> z=2*x.^2+y.^2; >> surf(x,y,z)

-2 2 >> mesh(x,y,z) -2 2 实验2. 1、某校60名学生的一次考试成绩如下:

93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55 1)计算均值、标准差、极差、偏度、峰度,画出直方图;2)检验分布的正态性;3)若检验符合正态分布,估计正态分布的参数并检验参数. (20分) 1) >> a=[93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55]; >> pjz=mean(a) pjz = 80.1000 >> bzhc=std(a) bzhc = 9.7106 >> jc=max(a)-min(a) jc = 44 >> bar(a)

数学建模实验报告第十一章最短路问答

实验名称:第十一章最短路问题 一、实验内容与要求 掌握Dijkstra算法和Floyd算法,并运用这两种算法求一些最短路径的问题。 二、实验软件 MATLAB7.0 三、实验内容 1、在一个城市交通系统中取出一段如图所示,其入口为顶点v1,出口为顶点v8,每条弧段旁的数字表示通过该路段所需时间,每次转弯需要附加时间为3,求v1到v8的最短时间路径。 V1 1 V2 3 V3 1 V5 6 V6 V4 2 V7 4 V8

程序: function y=bijiaodaxiao(f1,f2,f3,f4) v12=1;v23=3;v24=2;v35=1;v47=2;v57=2;v56=6;v68=3;v78=4; turn=3; f1=v12+v23+v35+v56+turn+v68; f2=v12+v23+v35+turn+v57+turn+v78; f3=v12+turn+v24+turn+v47+v78; f4=v12+turn+v24+v47+turn+v57+turn+v56+turn+v68; min=f1; if f2

f4 实验结果: v1到v8的最短时间路径为15,路径为1-2-4-7-8. 2、求如图所示中每一结点到其他结点的最短路。V110 V3V59 V6

floy.m中的程序: function[D,R]=floyd(a) n=size(a,1); D=a for i=1:n for j=1:n R(i,j)=j; end end R for k=1:n for i=1:n for j=1:n if D(i,k)+D(k,j)

数学建模实验报告

matlab 试验报告 姓名 学号 班级 问题:.(插值) 在某海域测得一些点(x,y)处的水深z 由下表给出,船的吃水深度为5英尺,在矩形区域(75,200)*(-50,150)里的哪些地方船要避免进入。 问题的分析和假设: 分析:本题利用插值法求出水深小于5英尺的区域,利用题中所给的数据,可以求出通过空间各点的三维曲面。随后,求出水深小于5英尺的范围。 基本假设:1表中的统计数据均真实可靠。 2矩形区域外的海域不对矩形海域造成影响。 符号规定:x ―――表示海域的横向位置 y ―――表示海域的纵向位置 z ―――表示海域的深度 建模: 1.输入插值基点数据。 2.在矩形区域(75,200)×(-50,150)作二维插值,运用三次插值法。 3.作海底曲面图。 4.作出水深小于5的海域范围,即z=5的等高线。 x y z 129 140 103.5 88 185.5 195 105 7.5 141.5 23 147 22.5 137.5 85.5 4 8 6 8 6 8 8 x y z 157.5 107.5 77 81 162 162 117.5 -6.5 -81 3 56.5 -66.5 84 -33.5 9 9 8 8 9 4 9

求解的Matlab程序代码: x=[129 140 103.5 88 185.5 195 105.5 157.5 107.5 77 81 162 162 117.5]; y=[7.5 141.5 23 147 22.5 137.5 85.5 -6.5 -81 3 56.5 -66.5 84 -33.5]; z=[-4 -8 -6 -8 -6 -8 -8 -9 -9 -8 -8 -9 -4 -9]; cx=75:0.5:200; cy=-50:0.5:150; cz=griddata(x,y,z,cx,cy','cubic'); meshz(cx,cy,cz),rotate3d xlabel('X'),ylabel('Y'),zlabel('Z') %pause figure(2),contour(cx,cy,cz,[-5 -5]);grid hold on plot(x,y,'+') xlabel('X'),ylabel('Y') 计算结果与问题分析讨论: 运行结果: Figure1:海底曲面图:

数模模数转换实验报告材料

数模模数转换实验报告 一、实验目的 1、了解数模和模数转换电路的接口方法及相应程序设计方法。 2、了解数模和模数转换电路芯片的性能和工作时序。 二、实验条件 1、DOS操作系统平台 2、数模转换芯片DAC0832和模数转换器ADC0809芯片。 三、实验原理 1、数模转换: (1)微机处理的数据都是数字信号,而实际的执行电路很多都是模拟的。因此微机的处理结果又常常需要转换为模拟信号去驱动相应的执行单元,实现对被控对象的控制。这种把数字量转换为模拟量的设备称为数模转换器(DAC),简称D/A。 (2)实验中所用的数模转换芯片是DAC0832,它是由输入寄存器、DAC 寄存器和D/A 转换器组成的CMOS 器件。其特点是片包含两个独立的8 位寄存器,因而具有二次缓冲功能,可以将被转换的数据预先存在DAC 寄存器中,同时又采集下一组数据,这就可以根据需要快速修改DAC0832 的输出。 2、模数转换: (1)在工程实时控制中,经常要把检测到的连续变化的模拟信号,如温度、压力、速度等转换为离散的数字量,才能输入计算机进行处理。实现模拟量到数字量转换的设备就是模数转换器(ADC),简称A/D。

(2)模数转换芯片的工作过程大体分为三个阶段:首先要启动模数转换过程。其次,由于转换过程需要时间,不能立即得到结果,所以需要等待一段时间。一般模数转换芯片会有一条专门的信号线表示转换是否结束。微机可以将这条信号线作为中断请求信号,用中断的方式得到转换结束的消息,也可以对这条信号线进行查询,还可以采用固定延时进行等待(因为这类芯片转换时间是固定的,事先可以知道)。最后,当判断转换已经结束的时候,微机就可以从模数转换芯片中读出转换结果。 (3)实验采用的是8 路8 位模数转换器ADC0809 芯片。ADC0809 采用逐次比较的方式进行A/D 转换,其主要原理为:将一待转换的模拟信号与一个推测信号进行比较,根据推测信号是大于还是小于输入信号来决定增大还是减少该推测信号,以便向模拟输入逼近。推测信号由D/A 转换器的输出获得,当推测信号与模拟信号相等时,向D/A 转换器输入的数字就是对应模拟信号的数字量。ADC0809 的转换时间为64 个时钟周期(时钟频率500K 时为128S)。分辨率为 8 位,转换精度为±LSB/2,单电源+5V 供电时输入模拟电压围为04.98V。 四、实验容 1、把DAC0832 的片选接偏移为10H 的地址,使用debug 命令来测试 DAC0832 的输出,通过设置不同的输出值,使用万用表测量Ua 和Ub 的模拟电压,检验DAC0832 的功能。选取典型(最低、最高和半量程等)的二进制值进行检验,记录测得的结果。实验结果记录如下: 输入 00 0.001 4.959 08 0.145 4.636

数学建模实验报告

内江师范学院 中学数学建模 实验报告册 编制数学建模组审定牟廉明 专业: 班级:级班 学号: 姓名: 数学与信息科学学院 2016年3月 说明 1.学生在做实验之前必须要准备实验,主要包括预习与本次实验相关的理论知识,熟练与本次实验相关的软件操作,收集整理相关的实验参考资料,要求学生在做实验时能带上充足的参考资料;若准备不充分,则学生不得参加本次实验,不得书写实验报告; 2.要求学生要认真做实验,主要就是指不得迟到、早退与旷课,在做实验过程中要严格遵守实验室规章制度,认真完成实验内容,极积主动地向实验教师提问等;若学生无故旷课,则本次实验成绩不合格; 3.学生要认真工整地书写实验报告,实验报告的内容要紧扣实验的要求与目的,不得抄袭她人的实验报告; 4.实验成绩评定分为优秀、合格、不合格,实验只就是对学生的动手能力进

行考核,跟据所做的的情况酌情给分。根据实验准备、实验态度、实验报告的书写、实验报告的内容进行综合评定。

实验名称:数学规划模型(实验一)指导教师: 实验时数: 4 实验设备:安装了VC++、mathematica、matlab的计算机 实验日期:年月日实验地点: 实验目的: 掌握优化问题的建模思想与方法,熟悉优化问题的软件实现。 实验准备: 1.在开始本实验之前,请回顾教科书的相关内容; 2.需要一台准备安装Windows XP Professional操作系统与装有数学软件的计算机。 实验内容及要求 原料钢管每根17米,客户需求4米50根,6米20根,8米15根,如何下料最节省?若客户增加需求:5米10根,由于采用不同切割模式太多,会增加生产与管理成本,规定切割模式不能超过3种,如何下料最节省? 实验过程: 摘要:生活中我们常常遇到对原材料进行加工、切割、裁剪的问题,将原材料加工成所需大小的过程,称为原料下料问题。按工艺要求,确定下料方案,使用料最省,或利润最大就是典型的优化问题。以此次钢管下料问题我们采用数学中的线性规划模型、对模型进行了合理的理论证明与推导,然后借助于解决线性规划的专业软件Lingo 11、0对题目所提供的数据进行计算从而得出最优解。 关键词:钢管下料、线性规划、最优解 问题一 一、问题分析: (1)我们要分析应该怎样去切割才能满足客户的需要而且又能使得所用原料比较少; (2)我们要去确定应该怎样去切割才就是比较合理的,我们切割时要保证使用原料的较少 的前提下又能保证浪费得比较少; (3)由题意我们易得一根长为17米的原料钢管可以分别切割成如下6种情况(如表一): 表一:切割模式表 模式 4m钢管根数 6m钢管根数8m钢管根数余料/m 1 4 0 0 1 2 1 2 0 1 3 2 0 1 1 4 2 1 0 3 5 0 1 1 3 6 0 0 2 1

数学建模实验报告

湖南城市学院 数学与计算科学学院《数学建模》实验报告 专业: 学号: 姓名: 指导教师: 成绩: 年月日

实验一 初等模型 实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。 实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。 A 题 飞机的降落曲线 在研究飞机的自动着陆系统时,技术人员需要分析飞机的降落曲线。根据经验,一架水平飞行的飞机,其降落曲线是一条S 形曲线。如下图所示,已知飞机的飞行高度为h ,飞机的着陆点为原点O ,且在整个降落过程中,飞机的水平速度始终保持为常数u 。出于安全考虑,飞机垂直加速度的最大绝对值不得超过g /10,此处g 是重力加速度。 (1)若飞机从0x x 处开始下降,试确定出飞机的降落曲线; (2)求开始下降点0x 所能允许的最小值。 y 0x 一、 确定飞机降落曲线的方程

如图所示,我们假设飞机降落的曲线的方程为I d cx bx ax x f +++=23)( 由题设有 h x f f ==)(,0)0(0。 由于曲线是光滑的,所以f(x)还要满足0)(,0)0(0='='x f f ,代入f(x) 可以得到 ?? ? ? ?? ?=++='=+++==='==0 23)()(0)0(0)0(020*******c bx ax x f h d cx bx ax x f c f d f 得 ,0,0,3,22 3 ===- =d c x h b x h a 飞机的降落曲线为 )32()(2 30 2 0x x x x h x f --= 二、 找出最佳着陆点 飞机的垂直速度是关于时间t 的导数,所以 dt dx x x x x h dt dy )66(20 20--= 其中 dt dx 是飞机的水平速度, ,u dt dx = 因此 )(60 2 20x x x x hu dt dy --= 垂直加速度为 )12(6)12(6020 20202 2--=--=x x x hu dt dx x x x hu dt y d 记 ,)(22dt y d x a =则126)(0 2 02-=x x x hu x a ,[]0,0x x ∈ 因此,垂直加速度的最大绝对值为 2 26)(max x hu x a = []0,0x x ∈ 设计要求 1062 2g x hu ≤ ,所以g h u x 600?≥ (允许的最小值)

控制系统的数学模型[]

第二章控制系统的数学模型 2-1 什么是系统的数学模型?大致可以分为哪些类型? 答定量地表达系统各变量之间关系的表达式,称工矿企业数学模型。从不同的角度,可以对 数学模型进行大致的分类,例如:用来描述各变量间动态关系的数学模型为动态模型,用来描述各变量间稳态关系有数学模型为静态模型;数学模型中各变量与几何位置无关的称为集中参数模型,反之与几 何位置有关的称为分布参数模型;变量间关系表现为线性的称为线性模型,反之非线性模型;模型参数与时间有关的称为时变模型,与时间无关的称为时不变或定常模型;以系统的输入、输出变量这种外部特征来描述系统特性的数学模型称为输入输出模型,而以系统内部状态变量描述的数学模型称为状态空 间模型;等等。 2-2 系统数学模型的获取有哪几种方法? 答获取系统数学模型的方法主要有机理分析法和实验测试法。 机理分析法是通过对系统内部机理的分析,根据一些基本的物理或化学变化的规律而导出支配系统运动规律的数学模型,这样得到的模型称为机理模型。 实验测试法是通过对实际系统的实验测试,然后根据测试数据,经过一定的数据处理而获得系统的数学 模型,这样得到的模型可称为实测模型或经验模型。 如果将上述两种方法结合起来,即通过机理分析的方法预先得到数学模型的结构或函数形式,然后对其 中的某些参数用实验辨识的方法来确定,这样得到的数学模型可称为混合模型。这是介于 上述两种方法之间的一种比较切合实际的应用较为普遍的方法。 2-3 通过机理分析法建立对象微分方程数学模型的主要步骤有哪些? 答主要步骤有: ⑴根据系统的控制方案和对象的特性,确定对象的输入变量和输出变量。一般来说,对象的输出变量为系统的被控变量,输入变量为作用于对象的操纵变量或干扰变量。 ⑵根据对象的工艺机理,进行合理的假设和简化,突出主要因素,忽略次要 因素。⑶根据对象的工艺机理,从基本的物理、化学等定律出了,列写描述 对象运动规律的原始微分 方程式(或方程式组)。 ⑷消去中间变量,推导出描述对象输入变量与输出变量之间关系的方程式。 ⑸根据要求,对上述方程式进行增量化、线性化和无因次化的处理,最后得 出无因次的、能够 描述对象输入变量与输出变量的增量之间关系的线性微分方程式(对于严重非线性的对象,可进行分段 线性化处理或直接导出非线性微分方程式)。 2-4 试述传递函数的定义。如何由描述对象动态特性的微分方程式得到相应的传递函数?并写出传递函数的一般形式。 答对于线性定常系统、对象或环节的传递函数的定义可以表述为:当初始条 件为零时,系统、对象或环节输出变量的拉氏变换式与输入变量的拉氏变换式之比。 如果已知系统、对象或环节的动态数学模型用下述线性常系数微分方程式来描述: 式中y为输出变量,x为输入变量,表示y(t) 的n阶导数,表示x(t)

自动控制1用matlab建立系统数学模型

黄淮学院电子科学与工程系 自动控制原理课程验证性实验报告 实验名称 用MATLAB 建立系统数学模型 实验时间 2012 年10月11日 学生姓名 实验地点 同组人员 专业班级 1、实验目的 1)熟悉MATLAB 实验环境,掌握MATLAB 命令窗口的基本操作。 2)掌握MATLAB 建立控制系统数学模型的命令及模型相互转换的方法。 3)掌握使用MATLAB 命令化简模型基本连接的方法。 4)学会使用Simulink 模型结构图化简复杂控制系统模型的方法。 2、实验主要仪器设备和材料: MATLAB 软件 3、实验内容和原理:(1)控制系统模型的建立 控制系统常用的数学模型有四种:传递函数模型(tf 对象)、零极点增益模型(zpk 对象)、结构框图模型和状态空间模型(ss 对象)。经典控制理论中数学模型一般使用前三种模型,状态空间模型属于现代控制理论范畴。 1)传递函数模型(也称为多项式模型)。连续系统的传递函数模型为 101101() ()() m m m n n n b s b s b num s G s n m a s a s a den s --++ += =≥++ +, 在MATLAB 中用分子、分母多项式系数按s 的降幂次序构成两个向量: 0101[] []m n num b b b den a a a ==,,,,,,,。 用函数tf( )来建立控制系统的传递函数模型,用函数printsys( )来输出控制系统的函数,其命令调用格式为 ()int ()sys tf num den pr sys num den =,,, Tips :对于已知的多项式模型传递函数,其分子、分母多项式系数两个向量可分别用 .{1}sys num 与.{1}sys den 命令求出。这在MATLAB 程序设计中非常有用。 2)零极点增益模型。零极点模型是传递函数模型的另一种表现形式,其原理是分别对原传递函数的分子、分母进行因式分解,以获得系统的零点和极点的表示形式。 1212()()() ()()()() m n K s z s z s z G s s p s p s p ---= ---,式中,K 为系统增益;12m z z z , ,为系统零点;12m p p p ,,为系统极点。在MATLAB 中,用向量z p k ,,构成矢量组[]z p k ,,表示系统。

数学建模实验报告模板

数学建模实验报告 一、摘要(写出本次作业建模的大致思路、方法及主要结果) 根据微积分中熟知的有限覆盖定理,必然存在最小的覆盖,这样就为节约用水而建立优化模型提供了理论依据。然而我们更需要的是对实际问题有具体指导的结论。 我们假设每个喷水龙头的喷水面积都是固定不变的,要使用水最少,只需浇灌的重复面积最小。因此我们需要建立这样一个模型,既要使绿地全部被均匀地浇到,又要达到节约水资源的目的;而只有在被重复浇到的绿地面积达到最小时,才能使喷浇节约用水。我们假设在绿地区内可以放置 n 个龙头,每个龙头最大的喷射半径为R 。记绿地区域的面积为,第i 个龙头的喷射半径为i r ,喷射角度为i α,它所形成的区域为t S ,则绿地受水的总面积(实际上的圆覆盖)为n t t=1S=S ∑, 从而得到如下优化模型问题: 目标函数: S S n t t t=1 S=Min{S }α∑ 约束条件: t t t 1 S S;r R n =?≤ ; 为了解决和简化问题,更能表达“覆盖”的含义,我们以 S K=S 代替文献[1,2]中的S S 来作为有效覆盖率来刻画和评价模型的优劣, 就有:1≥K 。K 越接近1,模型就越好,因此用水也就越节约。 我们针对4种不同的几何形状绿地区域的覆盖进行讨论,从而得到了

关于它们的有效覆盖率的计算结果。 二、问题重述(写出本次作业的具体内容) 城市公共绿地的浇灌是一个长期大量的用水项目。随着现代城市人们生活质量的提高,美化城市和建设绿色家园的需要,城市绿化带正在扩大,用水量随之不断增大。因此,城市绿化用水的节约是一个十分重要的问题。 目前,对于绿地的浇灌用水主要有移动水车浇灌和安装固定喷水龙头旋转喷浇两种方式。移动水车主要用于道路两侧狭长绿地的浇灌,固定喷水龙头主要用于公园、校区、广场等观赏性绿地。观赏性绿地的草根很短,根系寻水性能差,不能蓄水,因此,喷水龙头的喷浇区域要保证对绿地的全面覆盖。根据观察,绿地喷水龙头分布和喷射半径的设定较大随意性。 那么,对于任意绿地,喷浇龙头到底以什么方案设置才最节约用水呢?请建立数学模型分析。 三、问题分析(对本模型进行分析、阐述) 每一块绿地都有一定的形状,我们在模型中对正方形、等腰三角形、正多边形和长方形进行分析。以正方形为例,我们假设绿地区域是边长为2a的正方形。先以正方形中心为圆心,R为半径作圆,我们称之为大圆。再分别以四个顶点为圆心,r为半径,作等半径的四分之一圆,我们称之为小圆。使整个正方形被覆盖,我们的目标是让绿地都能喷浇到水,并且要使被重复喷浇到水的面积最小。换句话说:我们的目标是使受水面积与绿地面积的比值达到最小。因此,我们要选择适当的半径R与r ,使大圆与小圆面积之和达到最小。我们以

数模实验报告—实验11

实验11-1 公平的席位分配(参照惯例的席位分配方法) 一、实验目的 1、理解比例加惯例分配方法。 2、熟悉使用Matlab软件编写比例加惯例的程序代码。 二、实验要求 1、在命令窗口分别调用以上函数求解(使用最佳定点或浮点格式(5 位数字)控制命令format short g)。 2、两个结果比较,合理吗? 三、实验内容 参照惯例的席位分配方法:(参考P278-279) n为席位总数,p1,p2,…,pm为各单位人数。 步骤: a. 按比例各单位所得席位为 n*pi/(p1+p2+,…,pm),i=1,2,…,m(结果可能含有小数)。 b. 对各单位所得席位取整。 c. 若对各单位所得席位取整数之和

鲈鱼数学建模实验报告

数学建模实验报告 姓名:胡斌学号:09015120 一、摘要 题目提供了哈德逊河鲈鱼的年龄分组、成年鱼的年龄、允许捕捞鱼的年龄段、各年龄段的鱼的存活率以及各组成年雌性鱼每年能产雌性后代的个数。题目初始数据是1970年各年龄组的鱼的数量。根据题目要求利用Leslie模型进行建模,找出鱼群总数的变化趋势。以及在条件变化影响出生率和存活率的情况下的鱼群情况。对于模型的简化,可以将存活率相同年龄组的鱼合并,将产雌性鱼的个数累加。二、问题重述 著名哈德逊河的鲈鱼生活在大西洋,但是每年游到哈德逊河产卵。由于哈德逊河流域工业的发展引起重大的污染,使得河水温度升高,影响了产卵率和成活率。为了了解工业污染对鲈鱼的影响,将鲈鱼分成16个年龄组: 0~1年(卵),1~2年(游鱼),2龄鱼,3龄鱼,…,15龄鱼. 已知5~15年龄的鱼为成年鱼,允许捕捞3~15年龄的鱼.考虑自 然死亡及捕捞等原因,得各年龄组的成活率及每个雌性个体所产雌性后代的统计资料如下:

已知1970年各年龄组的鱼数(单位:千条)为 X(0)=() (1)在所给条件下,求L矩阵的模最大特征值及稳定的年龄分布. (2)假设生态条件不变,讨论何时鲈鱼达到稳定的年龄分布(精确到小数点后2位) (3)假设由于工业污染使卵的成活率降低25%,幼鱼的成活率降低15%,成年鱼的成活率降低10%,对鲈鱼年龄分布结构进行特征分析,并预测种群的发展趋势:经过几年后,可捕捞的鱼数减半.

(4)能否将模型简化?对简化的模型进行特征值分析,并讨论达到稳定的年龄分布的时间.将所得结果与(1),(2)进行比较。 三、模型假设 1.将时间离散化,假设雌雄鱼数目的性别为1:1 2.各年的出生率和存活率不变 3.不考虑生存空间等自然资源的制约,不考虑意外灾难等因素对鱼 数目变化的影响 四、分析与建立模型 由题目给的初始条件,即1970年初始鱼数目的矩阵,以及各年龄段与的出生率和死亡率,并且只考虑了雌性鱼的数目发展变化,我们可以知道,各年龄段的鱼的数目是相互影响的,并且可以用Leslie 建立模型。我们假设第K年总的鱼数目为X(k),第K年第m年龄组的鱼的数目为(k). 根据以上分析我们可得到方程 X(k)=(,,,,) = =,i=1,2,…,15 写成矩阵形式为 =Ln(k), 其中,

自动控制系统的数学模型模板

自动控制系统的数 学模型 1 2020年4月19日

第二章自动控制系统的数学模型 教学目的: (1)建立动态模拟的概念,能编写系统的微分方程。 (2)掌握传递函数的概念及求法。 (3)经过本课学习掌握电路或系统动态结构图的求法,并能应用各环节的传递函数,求系统的动态结构图。 (4)经过本课学习掌握电路或自动控制系统动态结构图的求法,并对系统结构图进行变换。 (5)掌握信号流图的概念,会用梅逊公式求系统闭环传递函数。 (6)经过本次课学习,使学生加深对以前所学的知识的理解,培养学生分析问题的能力 教学要求: (1)正确理解数学模型的特点; (2)了解动态微分方程建立的一般步骤和方法; (3)牢固掌握传递函数的定义和性质,掌握典型环节及传递函数; (4)掌握系统结构图的建立、等效变换及其系统开环、闭环传递函数的求 2 2020年4月19日

3 2020年4月19日 取,并对重要的传递函数如:控制输入下的闭环传递函数、扰动输入 下的闭环传递函数、误差传递函数,能够熟练的掌握; (5) 掌握运用梅逊公式求闭环传递函数的方法; (6) 掌握结构图和信号流图的定义和组成方法,熟练掌握等效变换代数法 则,简化图形结构,掌握从其它不同形式的数学模型求取系统传递函 数的方法。 教学重点: 有源网络和无源网络微分方程的编写;有源网络和无源网络求传递函数;传递函数的概念及求法;由各环节的传递函数,求系统的动态结构图;由各环节的传递函数对系统的动态结构图进行变换;梅逊增益公式的应用。 教学难点:举典型例题说明微分方程建立的方法;求高阶系统响应;求复杂系统的动态结构图;对复杂系统的动态结构图进行变换; 求第K 条前向通道特记式的余子式k 。 教学方法:讲授 本章学时:10学时 主要内容: 2.0 引言

数学建模迭代实验报告

非 线 性 迭 代 实 验 报 告 一、实验背景与实验目的 迭代是数学研究中的一个非常重要的工具,通过函数或向量函数由初始结点生成迭代结点列,也可通过函数或向量函数由初值(向量)生成迭代数列或向量列。 蛛网图也是一个有用的数学工具,可以帮助理解通过一元函数由初值生成的迭代数列的敛散性,也帮助理解平衡点(两平面曲线交点)的稳定性。 本实验在Mathematica 平台上首先利用蛛网图和迭代数列研究不动点的类型;其次通过蛛网图和迭代数列研究Logistic 映射,探索周期点的性质、认识混沌现象;第三通过迭代数列或向量列求解方程(组)而寻求有效的求解方法;最后,利用结点迭代探索分形的性质。 二、实验材料 2.1迭代序列与不动点 给定实数域上光滑的实值函数)(x f 以及初值0x ,定义数列 )(1n n x f x =+, ,2,1,0=n (2.2.1) }{n x 称为)(x f 的一个迭代序列。 函数的迭代是数学研究中的一个非常重要的思想工具,利用迭代序列可以研究函数)(x f 的不动点。 对函数的迭代过程,我们可以用几何图象来直观地显示它——“蜘蛛网”。运行下列Mathematica 程序: Clear[f] f[x_] := (25*x - 85)/(x + 3); (实验时需改变函数) Solve[f[x]==x , x] (求出函数的不动点) g1=Plot[f[x], {x, -10, 20}, PlotStyle -> RGBColor[1, 0, 0], DisplayFunction -> Identity]; g2=Plot[x, {x, -10, 10}, PlotStyle -> RGBColor[0, 1, 0], DisplayFunction -> Identity]; x0=5.5; r = {}; r0=Graphics[{RGBColor[0, 0, 1], Line[{{x0, 0}, {x0, x0}}]}]; For[i = 1, i <= 100, i++, r=Append[r, Graphics[{RGBColor[0, 0, 1], Line[{{x0, x0}, {x0, f[x0]}, {f[x0], f[x0]}}] }]]; x0=f[x0] ]; Show[g1, g2, r, r0, PlotRange -> {-1, 20}, (PlotRange 控制图形上下范围) DisplayFunction -> $DisplayFunction] x[0]=x0; x[i_]:=f[x[i-1]]; (定义序列) t=Table[x[i],{i,1,10}]//N ListPlot[t] (散点图) 观察蜘蛛网通过改变初值,你能得出什么结论? 如果只需迭代n 次产生相应的序列,用下列Mathematica 程序: Iterate[f_,x0_,n_Integer]:= Module[{ t={},temp= x0},AppendTo[t,temp]; For[i=1,i <= n, i++,temp= f[temp]; AppendTo[t,temp]]; t ] f[x_]:= (x+ 2/x)/2; Iterate[f,0.7,10]

相关文档