文档库 最新最全的文档下载
当前位置:文档库 › 离子阱质谱和四极杆质谱的原理

离子阱质谱和四极杆质谱的原理

离子阱质谱和四极杆质谱的原理
离子阱质谱和四极杆质谱的原理

离子阱质谱和四极杆质谱的原理

分析质荷比的原理

四极杆(Quadrupole):由四根带有直流电压(DC)和叠加的射频电压(RF)的准确平行杆构成,相对的一对电极是等电位的,两对电极之间电位相反。当一组质荷比不同的离子进入由DC和RF组成的电场时,只有满足特定条件的离子作稳定振荡通过四极杆,到达监测器而被检测。通过扫描RF场可以获得质谱图。四极杆成本低,价格便宜,虽然目前日常分析的质荷比的范围只能达到3000,但由于分析器内部可容许较高压力,很适合在大气压条件下产生离子的ESI离子化方式,并且,ESI电离最突出特点是产生多电荷,蛋白质和其他生物分子电喷雾电离所产生的电荷分布一般在3000以下,所以四极杆广泛地与ESI联用。另外,三重四极杆由于可以做多级质谱,定量也方便,使用极为广泛。

离子阱(Ion trap):由一对环形电极(ring electrod)和两个呈双曲面形的端盖电极(end cap electrode)组成。在环形电极上加射频电压或再加直流电压,上下两个端盖电极接地。逐渐增大射频电压的最高值,离子进入不稳定区,由端盖极上的小孔排出。因此,当射频电压的最高值逐渐增高时,质荷比从小到大的离子逐次排除并被记录而获得质谱图。离子阱质谱可以很方便地进行多级质谱分析,对于物质结构的鉴定非常有用。

我们单位就用的ESI-四极杆分析多肽,请问三重四极杆原理又是什么?

说来比较复杂,我有相关的文献,需要的话我可以发信给你。

有本英文的书"Practical aspects of ion trap mass spectrometry" Thomas Cairns主编的,很详细,可以到国家图书馆借到。

简单得说,离子阱能囚禁的离子质量与所用射频的频率的平方成反比,与其幅度成反比。通常是固定频率,从小到大扫描幅度,其囚禁的离子以质量从小到大的次序就出来了。

简单得说,离子阱能囚禁的离子质量与所用射频的频率的平方成反比,与其幅度成反比。通常是固定频率,从小到大扫描幅度,其囚禁的离子以质量从小到大的次序就出来了。

----------------------------------------------------------------

还有点我不明白:就是SI M scan或MS/MS模式isolating ions时m/z大于要监测的离子的是怎么被eject的?还有Endcap上的tailored RF wav ef orm和resonance eject RF都是什么样的电压,怎么作用的?

“还有点我不明白:就是SIM scan或MS/MS模式isolating ions时m/z大于要监测的离子的是怎么被eject的?”

我来试试看解释一下这个问题

其实加载到四级杆上的DC和RF电压使得四级杆内产生一个变化的电场,而变化的电场又产生变化的磁场(电磁感应现象)。带点离子通过的时候,其实就是切割磁力线的匀速运动。

在选定的m/z下,这个能量场只允许某一个或某一范围内的m/z离子通过。更大的m/z离子因为场给予的能量不足将逐渐减速而从四级杆空隙跑出。更小的m/z离子因场能大于其自身能量,而加速飞离四级杆。

故而最后达到检测器的仅是你选定的m/z离子

第一个问题,对于三重四极杆,因为是空间分离,很容易理解。对于离子阱,小于的就按照RF扫描抛出,大于的,利用加在端盖电极上的共振电压,将大于的离子利用共振抛出。第二个问题,我估计你只能理解一部分。这些电压都是具有一定频率的射频电压,每个离子都有特征频率产生共振。频率是用Mathieu方程计算。

离子阱质谱

= 安捷伦 G6300 系列LC/MSD Trap 现场培训教材 质谱数据系统 毛细管电泳 液相色谱 气相色谱

注意 包含在该文件中的信息将可能在未通知的情况下改变。 安捷伦科技有限公司不对与该材料有关的任何活动做担保。这些活动包括但不仅限于为了某特殊目的而进行的销售和适应性。 安捷伦科技有限公司将不会对包含在材料里的与装备,表现和材料使用有关的错误或导致的损失负责。 这份文件中的任何部分都不得拷贝或复制或未经安捷伦科技公司的预先允许进行翻译。 安捷伦科技有限公司 售后服务电话:800-8203278 手机用户:400-8203278 中文网站:https://www.wendangku.net/doc/1717401728.html,/chem/cn 2007年6月

G6300A 系列离子阱软件概述以及开机关机操作 仪器硬件概述 1.1典型配置 1.2仪器原理简介 1.2.1离子阱的主体包含一个环电极和两个端电极,环电极和端电极都是绕Z轴旋转的双 曲面,并满足r20=2Z20( r0为环形电极的最小半径,Z0为两个端电极间的最短距 离)。射频电压V rf加在环电极上,两个端电极都处于零电位。 1.2.2与四极杆分析器类似,离子在离子阱内的运动遵循马修方程,也有类似四极杆分析 器的稳定图。在稳定区内的离子,轨道振幅保持一定大小,可以长时间留在阱内, 不稳定区的离子振幅很快增长,撞击到电极而消失。离子阱的操作只有射频RF电 压,没有直流DC电压,因此离子阱的操作只对应于稳定图上的X轴。对于一定质 量的离子,在一定V rf下,不同质量数的离子按照m/z由小到大在稳定图的X轴上

自右向左排列。当射频电压从小到大扫描时,排在稳定图上的离子自左向右移动, 振幅逐渐加大,依次到达稳定图右边界,从离子阱中抛出,经过高能打拿极然后由 电子倍增器检测。 1.3仪器硬件概述 1.3.1离子源 1.3.2离子源原理 1.3.3仪器构造-示意图

三重四极杆质谱仪招标要求(1套)

三重四极杆质谱仪招标要求(1套) 一、仪器总体配置及要求 1、质谱为串联四极杆质谱,由计算机控制,配有独立的APCI离子及ESI源,非复合源;软件包括仪器调节、数据采集、数据处理、定量分析和报告;根据数据自动进行MS 和MS/MS切换;工作条件及安全性符合中国及国际有关标准或规定。 2、主要包括:主机1套,ESI 离子源1套,APCI离子源1套,液质操控软件1套,定量软件1套,中文方法快捷模式,新生儿疾病筛查专用软件。 3、配套设备含:电脑1套、显示器1套、打印机1套、质谱配套用气源及管路、6KV A UPS不间断电源1套(保证延时供电2小时)、专用泵油2瓶、新筛疾病筛查辅助设备(包括但不限于孵育振荡器、96孔板、中文版工作站报告系统等)。 4、仪器使用技术培训:用户使用人使用一段时间后应免费再进行不少于2人一次的厂家培训。 二、技术参数和性能规格要求: 1、四极杆串联质谱仪性能指标 1.1、质量范围:5-1,500(m/z) 1.2、分辨率:0.7 (FWHM) 1.3、质量数稳定性:≤0.05Da/24Hr 1.4、离子源接口:采用无毛细管的锥孔结构设计,保证特别强的抗污染能力, 通过气帘气的反吹技术,同时保持高灵敏度和优异的抗污染能力。 1.5、离子源接口:离子源接口适用于100%有机相到100%水相,耐用一定浓度 的缓冲液,雾化辅助气体5路,以保持高灵敏度和抗污染能力。 1.6、离子源加热温度:≥ 720 o C 1.7、ESI流速范围:无需分流条件下5ul/min- 2.5mL/min;APCI流速范围: 200 l/min-2.5mL/min;保证灵敏度不降低的情况下,1ml/min 的液相方法可以直接移植到质谱上。 1.8、真空系统:配备长寿命的涡轮分子泵和高抽速机械泵的专利差分真空系统。 空气冷却,无需循环水冷却;自动短电保护功能。 1.9、检测器:高能电子倍增器和脉冲计数器能记录每个离子并能快速进行正、

gc-ms的工作原理详解

GC-MS工作原理 GC气相色谱 MS 质谱 GC 把化合物分离开然后用质谱把分子打碎成碎片来测定该分子的分子量 一、气相色谱的简要介绍 气相色谱法是二十世纪五十年代出现的一项重大科学技术成就。这是一种新的分离、分析技术,它在工业、农业、国防、建设、科学研究等都得到了广泛应用。气相色谱可分为气固色谱和气液色谱。气固色谱的“气”字指流动相是气体,“固”字指固定相是固体物质。例如活性炭、硅胶等。气液色谱的“气”字指流动相是气体,“液”字指固定相是液体。例如在惰性材料硅藻土涂上一层角鲨烷,可以分离、测定纯乙烯中的微量甲烷、乙炔、丙烯、丙烷等杂质。 二、气相色谱法的特点 气相色谱法是指用气体作为流动相的色谱法。由于样品在气相中传递速度快,因此样品组分在流动相和固定相之间可以瞬间地达到平衡。另外加上可选作固定相的物质很多,因此气相色谱法是一个分析速度快和分离效率高的分离分析方法。近年来采用高灵敏选择性检测器,使得它又具有分析灵敏度高、应用范围广等优点。 三、气相色谱法的应用 在石油化学工业中大部分的原料和产品都可采用气相色谱法来分析;在电力部门中可用来检查变压器的潜伏性故障;在环境保护工作中可用来监测城市大气和水的质量;在农业上可用来监测农作物中残留的农药;在商业部门可和来检验及鉴定食品质量的好坏;在医学上可用来研究人体新陈代谢、生理机能;在临床上用于鉴别药物中毒或疾病类型;在宇宙舴中可用来自动监测飞船密封仓内的气体等等。 四、气相色谱专业知识 1 气相色谱 气相色谱是一种以气体为流动相的柱色谱法,根据所用固定相状态的不同可分为气-固色谱(GSC)和气-液色谱(GLC)。 2 气相色谱原理 气相色谱的流动向为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸

离子阱质谱和四极杆质谱的原理

离子阱质谱和四极杆质谱的原理 分析质荷比的原理 四极杆(Quadrupole):由四根带有直流电压(DC)和叠加的射频电压(RF)的准确平行杆构成,相对的一对电极是等电位的,两对电极之间电位相反。当一组质荷比不同的离子进入由DC和RF组成的电场时,只有满足特定条件的离子作稳定振荡通过四极杆,到达监测器而被检测。通过扫描RF场可以获得质谱图。四极杆成本低,价格便宜,虽然目前日常分析的质荷比的范围只能达到3000,但由于分析器内部可容许较高压力,很适合在大气压条件下产生离子的ESI离子化方式,并且,ESI电离最突出特点是产生多电荷,蛋白质和其他生物分子电喷雾电离所产生的电荷分布一般在3000以下,所以四极杆广泛地与ESI联用。另外,三重四极杆由于可以做多级质谱,定量也方便,使用极为广泛。 离子阱(Ion trap):由一对环形电极(ring electrod)和两个呈双曲面形的端盖电极(end cap electrode)组成。在环形电极上加射频电压或再加直流电压,上下两个端盖电极接地。逐渐增大射频电压的最高值,离子进入不稳定区,由端盖极上的小孔排出。因此,当射频电压的最高值逐渐增高时,质荷比从小到大的离子逐次排除并被记录而获得质谱图。离子阱质谱可以很方便地进行多级质谱分析,对于物质结构的鉴定非常有用。 我们单位就用的ESI-四极杆分析多肽,请问三重四极杆原理又是什么? 说来比较复杂,我有相关的文献,需要的话我可以发信给你。 有本英文的书"Practical aspects of ion trap mass spectrometry" Thomas Cairns主编的,很详细,可以到国家图书馆借到。 简单得说,离子阱能囚禁的离子质量与所用射频的频率的平方成反比,与其幅度成反比。通常是固定频率,从小到大扫描幅度,其囚禁的离子以质量从小到大的次序就出来了。 简单得说,离子阱能囚禁的离子质量与所用射频的频率的平方成反比,与其幅度成反比。通常是固定频率,从小到大扫描幅度,其囚禁的离子以质量从小到大的次序就出来了。 ---------------------------------------------------------------- 还有点我不明白:就是SI M scan或MS/MS模式isolating ions时m/z大于要监测的离子的是怎么被eject的?还有Endcap上的tailored RF wav ef orm和resonance eject RF都是什么样的电压,怎么作用的? “还有点我不明白:就是SIM scan或MS/MS模式isolating ions时m/z大于要监测的离子的是怎么被eject的?” 我来试试看解释一下这个问题 其实加载到四级杆上的DC和RF电压使得四级杆内产生一个变化的电场,而变化的电场又产生变化的磁场(电磁感应现象)。带点离子通过的时候,其实就是切割磁力线的匀速运动。 在选定的m/z下,这个能量场只允许某一个或某一范围内的m/z离子通过。更大的m/z离子因为场给予的能量不足将逐渐减速而从四级杆空隙跑出。更小的m/z离子因场能大于其自身能量,而加速飞离四级杆。 故而最后达到检测器的仅是你选定的m/z离子

质谱离子阱

离子阱的基本原理: 离子阱的发展历史:最早是三维离子阱,它模拟了理想的四极场,但其内表面是双曲面的,加工非常困难。慢慢有人做了简化,比如柱形离子阱(有商用的仪器),这还是三维离子阱。后来发展的线性离子阱是在四极杆轴向上加一个直流,比如商用的LTQ 。但LTQ 这样的线性阱里面的结构也是双曲面的,加工也非常困难,要求精度很高。线性离子阱经过简化后,可以变成矩形离子阱,加工比较简单,加工成本也不高,我国国内也可以加工。 当然,所有离子阱的核心都是从双曲面的离子阱来的,所以先介绍一下传统的双曲面三维离子阱。它由一个环形电极和上下两个端盖电极组成,加上前端的离子源入射和检测器。它的内表面是双曲面的,加工很困难。 离子阱能够储存(捕获)离子,根据马修方程,当离子在r 径向和 z 轴向两个方向都稳定时,离子就能够被离子阱稳定地捕获。根据 离子稳定图,当离子在两个方向都稳定时就被捕获了,通常利用的是第一稳定区(如图)。当离子处于稳定位置时,根据马修方程中a 和q 的关系式,a 和q 同离子的质荷比m/z 、所加射频场的频率、场半径、射频电压、直流电压有关。商用仪器通常不加直流(即a=0), 离子在一条线上运行,如图所示,质量数越小,越靠近右侧。当扫描射频电压时,每个离子的q 逐渐由小变大,直到离子脱离稳定区, 跑出离子阱,即可被检测。 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况 ,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

质谱仪原理

王俊朋6 我的主页帐号设置退出儒生一级|消息私信通知|我的百科我的贡献草稿箱我的任务为我推荐|百度首页新闻网页贴吧知道音乐图片视频地图百科文库 帮助首页自然文化地理历史生活社会艺术人物经济科技体育图片数字博物馆核心用户百科商城秦始皇兵马俑博物馆 质谱仪 求助编辑百科名片 CHY-2质谱仪质谱仪又称质谱计。分离和检测不同同位素的仪器。即根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。 目录 质谱仪原理 质谱仪简介 用法 有机质谱仪 无机质谱仪 同位素质谱仪 离子探针 编辑本段质谱仪原理质谱仪能用高能电子流等轰击样品分子,使该分子失去电子变为带正电荷的分子离子和碎片离子。这些不同离子具有不同的质量,质量不同的离子在磁场的作用下到达检测器的时间不同,其结果为质谱图。 原理公式:q/m=2v/B2r2 编辑本段质谱仪简介 质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/e大小分离的装置。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。离子源、质量分析器和离子检测器都各有多种类型。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪;按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。 编辑本段用法分离和检测不同同位素的仪器。仪器的主要装置放在真空中。将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。质谱方法最早于1913年由J.J.汤姆孙确定,以后经 F.W.阿斯顿等人改进完善。现代质谱仪经过不断改进,仍然利用电磁学原理,使离子束按荷质比分离。质谱仪的性能指标是它的分辨率,如果质谱仪恰能分辨质量m和m+Δm,分辨率定义为m/Δm。现代质谱仪的分辨率达105 ~106 量级,可测量原子质量精确到小数点后7位数字。 质谱仪最重要的应用是分离同位素并测定它们的原子质量及相对丰度。测定原子质量的精度超过化学测量方法,大约2/3以上的原子的精确质量是用质谱方法测定的。由于质量和能量的当量关系,由此可得到有关核结构与核结合能的知识。对于可通过矿石中提取的放射性衰变产物元素的分析测量,可确定矿石的地质年代。质谱方法还可用于有机化学分析,特别是微量杂质分析,测量分子的分子量,为确定化合物的分子式和分子结构提供可靠的依据。由

离子阱

离子阱 离子阱并不是一个很新颖的装置,早在50年代末它就被应用于改进光谱测量的精确度。设法提高光谱精确度是每个从事原子光谱研究的科学家所追求的「圣杯」,有人曾这么比喻:如果哪一天上帝允诺帮每个人实现一个愿望,十个原子光谱学家中,大概有九个都会希望上帝做同一件事──以他伟大的神力把一个原子或分子一动也不动地固定在空间中某一点,好让这些科学家把光谱线量到无比精确。这当然只是一个梦想,一个在真实世界中永远无法实现的愿望。由于测不准原理的作祟,DE不可能无限小,所以谱线不可能量到无限准。但是如果我们能使Dt够大,DE还是可以很小,换言之,想要量到更精准的谱线,测量时间必须拉长,因此必须设法局限住待测物体。于是离子阱因应而生,它的原理十分简单:利用电荷与电磁场间的交互作用力来牵制带电粒子的运动,以达到将其局限在某个小范围内的目的。 离子阱,又称离子陷阱,是一种利用电场或磁场将离子(即带电原子或分子)俘获和囚禁在一定范围内的装置,离子的囚禁在真空中实现,离子与装置表面不接触,应用最多的离子阱有“保罗阱”(四

极离子阱,沃尔夫冈·保罗)和“Penning阱”。离子阱可以应用于实现量子计算机,量子计算机以粒子的量子力学状态,如原子的自旋方向等表示0和1,称为“量子比特”,离子阱利用电极产生电场,将经过超冷处理的离子囚禁在电场里,实现量子比特。 离子阱(Ion trap),由一对环形电极(ring electrod)和两个呈双曲面形的端盖电极(end cap electrode)组成。在环形电极上加射频电压或再加直流电压,上下两个端盖电极接地。逐渐增大射频电压的最高值,离子进入不稳定区,由端盖极上的小孔排出。因此,当射频电压的最高值逐渐增高时,质荷比从小到大的离子逐次排除并被记录而获得质谱图。离子阱质谱可以很方便地进行多级质谱分析,对于物质结构的鉴定非常有用。这种由一对环电极和两个双曲面端电极形成的离子阱称为三维离子阱,离子聚焦的位置是在中心的一个点上,具有比较大的空间电荷效应,常规的三维离子阱的离子存储数目为几千个。 为了避免空间电荷效应和简化电极结构,后来人们使用四级杆的

三重四极杆串联质谱仪技术参数

三重四极杆串联质谱仪技术参数 原装进口 主要用途:用于食品、农产品、环境样品等复杂基质中痕量有机化合物的定量定性分析 1.工作条件 1.1电源:220V,50Hz 1.2温度:操作环境15?C -35?C 1.3湿度:操作状态25-50%, 非操作状态10-95% 2.性能指标 2.1质谱部分 2.1.1 免清洁离子源:整体非镀层惰性,无需拆卸离子源,无需清洗透镜,无需重新调谐,无需重新校正。 *2.1.2无损双灯丝设计,且具有灯丝透镜,保护灯丝,提高灯丝寿命,灯丝电流:0-300uA 2.1.3离子化能量:10-300ev *2.1.4质量分析器:整体、双曲面石英镀金四极杆(首选);四极杆温度(包括主四级杆及预杆)可独立加热至200℃,免清洗。 2.1.5质量轴分辨率:0.4-4amu 可调; 2.1.6质量轴稳定性:± 0.10u/48小时 2.1.7质量范围:10-1050 m/z 2.1.8侧开式面板,面板控制器可显示质谱状态信息及质谱工作参数的输入 *2.1.9仪器检测限指标 (为仪器验收指标):(测试的柱子规格为30mx0.25mmx0.25um) 仪器检测限指标(EI MRM IDL):小于0.5fg 八氟奈 (OFN),2fg OFN连续进样8次 投标时提供应用文章佐证 *2.1.10灵敏度:(测试的柱子规格为30mx0.25mmx0.25um) EI MRM模式:100fg 八氟奈, 信/噪比≥14000:1(272-222 ) EI MRM模式:10fg 八氟奈, 信/噪比≥1400:1(272-222 ) *2.1.11最大扫描速率:≥20000amu/秒 *2.1.12最小MRM驻留时间:≤0.5毫秒 *2.1.13多反应监测采集速度(MRM):≥800 MRM/秒 2.1.14线性加速高压六极杆碰撞反应池,消除“记忆效应”和“交叉污染”;采用氮气作为碰撞气,氦气淬灭技术,去除中性噪音干扰。 2.1.15碰撞池能量范围:0-60ev 连续可调 2.1.16动态范围:全动态范围为106 *2.1.17真空系统:两级分子涡轮泵高真空系统, 空气冷却,无需水冷,分子涡轮泵和质谱

分散固相萃取-离子阱质谱法(QuEChERS-GCMSMS)

分散固相萃取-离子阱质谱法(QuEChERS-GCMSMS )分析中药中的农药多残留 Application Notes_C_GCMS-31 吕建霞 余翀天 赛默飞世尔科技(中国)有限公司 引言 中药为我国的传统中医特有药物,为我国的民族文化瑰宝。据统计,我国用于饮片和中成药的药材有1000-1200余种,其中约有20%的中药材来自人工栽培[1]。随着人工栽培过程中农药的使用,使得中药材极可能受到农药的污染,中药材中农药残留的存在直接危害着人类的健康。《中国药典(2015版)》[2]中提供了多种农药残留的同时检测方法,采用分散固相萃取的前处理方法,气相色谱串联质谱法的检测手段进行检测。本文依据此方法建立了分散固相萃取-气相色谱串联质谱法对中药中60种有机氯、有机磷及拟除虫菊酯农药残留同时检测,结果表明该方法灵敏度好,回收率高,线性范围好。仪器 Trace1310-ITQ 气相色谱离子阱质谱仪,配EI 源(Thermo Scientific );AS1310 自动进样器(Thermo Scientific )均质器、离心机、天平、漩涡混合器、氮吹仪(Thermo Scientific )耗材 色谱柱:TG-5MS (30 m ×0.25 mm ×0.25 μm )(Thermo Scientific )QuEChERS 产品:萃取管,50 mL 含6.0 g 无水硫酸镁和1.5g 醋酸钠(PN :60105-210);净化管,15 mL 含900 mg 无水硫酸镁、150 mgPSA 、150 mgC18(PN :60105-227)(Thermo Scientific ) 关键词 分散固相萃取;离子阱质谱;TG-5 sil 色谱柱;中药;农药残留目标 建立高效的气相色谱串联质谱检测方法,灵敏、快速的测定中药中的多种农药残留;样品中的农药经分散固相萃取净化,离子阱质谱采用二级质谱模式检测,灵敏度高 试剂与标准品 农药标准 溶液购自国家标准物质中心,浓度100 mg/L 。乙腈:色谱级。冰醋酸。 0.1%醋酸-乙腈溶液:加10 mL 冰酯酸到990 mL 的乙腈。标准溶液的制备 单一农药标准溶液各取适量,用正己烷稀释定容,得浓度为1 mg/L 的混合标准溶液。样品前处理 取试样可食用部分,粉碎并混合均匀,准确称取3 g (精确至0.01 g ),加入10 mL 水浸泡,转移到QuEChERS 萃取管中,加入15 mL0.1%冰醋酸/乙腈溶液,均质提取2 min 。以10000 r/min 离心10 min 。准确吸取10 mL 提取液于离心管中,N 2吹干,用2.0 mL 乙腈涡混溶解残渣。将上述溶液转移到净化管中,涡混2 min ,5000 r/min 离心3 min 。用一次性注射器取上清液,过0.45 μm 滤膜,供气相色谱-质谱测定 。

gc-ms的工作原理详解

GC-MS工作原理 GC气相色谱MS 质谱 GC 把化合物分离开然后用质谱把分子打碎成碎片来测定该分子的分子量 一、气相色谱的简要介绍 气相色谱法是二十世纪五十年代出现的一项重大科学技术成就。这是一种新的分离、分析技术,它在工业、农业、国防、建设、科学研究等都得到了广泛应用。气相色谱可分为气固色谱和气液色谱。气固色谱的“气”字指流动相是气体,“固”字指固定相是固体物质。例如活性炭、硅胶等。气液色谱的“气”字指流动相是气体,“液”字指固定相是液体。例如在惰性材料硅藻土涂上一层角鲨烷,可以分离、测定纯乙烯中的微量甲烷、乙炔、丙烯、丙烷等杂质。 二、气相色谱法的特点 气相色谱法是指用气体作为流动相的色谱法。由于样品在气相中传递速度快,因此样品组分在流动相和固定相之间可以瞬间地达到平衡。另外加上可选作固定相的物质很多,因此气相色谱法是一个分析速度快和分离效率高的分离分析方法。近年来采用高灵敏选择性检测器,使得它又具有分析灵敏度高、应用范围广等优点。 三、气相色谱法的应用 在石油化学工业中大部分的原料和产品都可采用气相色谱法来分析;在电力部门中可用来检查变压器的潜伏性故障;在环境保护工作中可用来监测城市大气和水的质量;在农业上可用来监测农作物中残留的农药;在商业部门可和来检验及鉴定食品质量的好坏;在医学上可用来研究人体新陈代谢、生理机能;在临床上用于鉴别药物中毒或疾病类型;在宇宙舴中可用来自动监测飞船密封仓内的气体等等。 四、气相色谱专业知识 1 气相色谱 气相色谱是一种以气体为流动相的柱色谱法,根据所用固定相状态的不同可分为气-固色谱(GSC)和气-液色谱(GLC)。 2 气相色谱原理 气相色谱的流动向为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸

四极杆质谱原理

虽然现实中使用的四级杆质量选择器大多使用圆柱形,然而理想的质量选择器外形为双曲线形。质量选择器的大小通常在几厘米到几十厘米之间。 四级杆质量选择器的四根极杆被对应的分为两组,分别施加反相射频高压。其中两组电压的表达式分别为: 两组电压只有符号相反。其中U为直流(DC)分量,V为射频(达到发射频率的交流电,RF)分量的振幅(在此处用到的是V_rms而不是Vp-p)。 在通常情况下,U的值为500-2000 V,V为0-3000 V 。[1] 在这样的电场环境下,离子会根据电场进行震荡。然而,只有特定荷质比的离子可以稳定的通过电场。当极杆上的电压被指定时,质量过小的离子会受到很大的电压影响,从而进行非常激烈的震荡,导致碰触极杆失去电荷而被真空系统抽走;质量过大的离子因为不能受到足够的电场牵引,最终导致碰触极杆或者飞出电场而无法通过质量选择器。 质量稳定区间函数 在四级杆质量选择器的硬件中,通常的做法是调整射频工作频率w来选择离子的质量,调整U与V的比值来调整离子的通过率。本节对应的图片可见,三角形区域为该质量的离子稳定的区域。U与V的比值在此体现为斜率。可见,U/V越大,离子的选择精度越高,仪器的解析能力越强,但是能稳定通过的离子数量减小;而U/V比值越小,离子通过的数量多,但是解析度下降。经过权衡之后,大多数四级杆质谱仪的解析能力大约都是1Th,体现在质谱图上就是半峰宽度大约为1Th或者1Da。[3] 值得指出的是,当U值为零,即四级杆上仅施加射频电压时,所有离子均可通过。这样操作的意义是,可以使离子束更加聚拢。通常当作离子镜(Ion Lens)使用。最典型的扩展就是八极杆和六极杆的出现,实际是源自四级杆的基本工作特性。

气相色谱-四极杆质谱联用仪

陕西省环境工程重点实验室 西北水资源与环境生态教育部重点实验室大型分析仪器应用说明书 二00九年七月

目录 实验室使用注意事项 (2) 1、气相色谱-四极杆质谱联用仪 (3) 2、激光粒度分布测定仪 (4) 3、荧光图像工作站 (5) 4、原子吸收分光光度计 (6) 5、阴离子色谱仪 (7) 6、高效液相色谱仪 (8) 7、气相色谱仪 (9)

实验室使用注意事项 1. 将针对重点实验室各种大型仪器的基本操作安排不定期的培训,希望各位老师针对自己课题的需求安排学生提前到402办公室联系预约培训。 2. 每次使用完仪器清洁实验桌面及地面。 3. 安排实验时间,确保在实验室正常开放时间内完成实验。 4. 严格执行实验室使用登记制度。 5. 仪器出现异常应及时向实验室管理人员反映。 6. 拷贝数据前格式化优盘,以防将病毒带入计算机。

1、气相色谱-四极杆质谱联用仪 仪器名称气相色谱-四极杆质谱联用仪品牌及型号热电Trace-MS 主要性能指标离子源:EI源; 质量检测范围:1-1022amu;信噪比:50/1 用途主要用于石油烃组分、环境荷尔蒙物质以及多环芳烃等微量 有机物定性、定量分析 样品预处理使用吹扫捕集:0.45μm滤膜过滤 不使用吹扫捕集:样品纯化,有机相萃取,0.22针头滤膜过滤 注意事项1.根据检测信号强弱,进样量和浓度必须是从小到大调整 2.打开气相色谱前必须先打开载气瓶 3.先加热传输杆和离子源,再点亮灯丝 4.检测过程中不能打开柱温箱门 5.质谱断电前必须先卸真空 6.实验完毕,关闭气相色谱仪(质谱不关),关闭载气

2、激光粒度分布测定仪 仪器名称激光粒度分布测定仪 品牌及型号美国贝克曼LS230/SVM+ 主要性能指标检测粒径范围:0.04-2000μm 用途测定环境样品中悬浮微粒的粒径分布样品预处理 悬浊液:直接进样 干样:配制成悬浊液 注意事项1.使用超纯水配置样品 2.使用时必须先开泵再开超声波 3.测定完毕将加样水箱清洗干净(一般至少清洗三次)

超高效液相色谱三重四级杆质谱联用仪主要技术性能要求

超高效液相色谱三重四级杆质谱联用仪主要技术性能要求 1.技术指标: 1.1质谱部分 1.1.1质谱仪主机 ▲1.1.1.1质量数范围(m/z):覆盖5-2000 m/z。 1.1.1.2最高分辨率:分辨率≤0.5amu。 1.1.1.3扫描速度:≥18000amu/s。 1.1.1.4质量稳定性:±0.1amu (24hr)。 1.1.1.5最小离子驻留时间:1ms。 1.1.1.6三重四极杆扫描模式:全扫描(Full Scan),选择离子扫描(SIM),多反应监测扫描(MRM),子离子扫描,母离子扫描,中性丢失扫描。 1.1.1.7具备同时定性定量功能,具备MRM+PICs或MRM+EPI扫描功能。 1.1.1.8具备离子富集功能。 1.1.1.9真空系统:大抽速无油机械泵(终生无需泵油)和长寿命涡轮分子泵组合高真空系统, 无需额外水冷却系统,自动断电保护功能。 1.1.2离子源 ▲1.1.2.1需配置ESI和APCI复合离子源,离子源具有真空隔断阀,无须真空系统放空,即可拆洗离子源,可实现气路电路连接,自动识别,不需进行额外操作。复合源模式:一次进样可以同时获得ESI和APCI的正负离子方式数据等四张谱图,便于方法开发,ESI和APCI间切换时间≤20ms 1.1. 2.2离子源可加热,确保离子化更为充分, 辅助加热温度最大可达600℃以上,确保最大的离子化效率和抗基质干扰能力。 ▲1.1.2.3离子源接口采用锥孔结构和锥孔反吹技术,无毛细管设计,以同时保持高灵敏度和优异的抗污染能力。 1.1.3检测器性能以及灵敏度 1.1.3.1动态线性范围:定量超过六个数量级。 ▲1.1.3.2正/负离子快速切换扫描,同时测定正、负离子化合物,切换速度:≤18ms。 ▲1.1.3.3灵敏度(需提供制造商盖章的原版技术参数作为证明文件)

质谱离子阱

离子阱的基本原理: 离子阱的发展历史:最早是三维离子阱,它模拟了理想的四极场,但其内表面是双曲面的,加工非常困难。慢慢有人做了简化,比如柱形离子阱(有商用的仪器),这还是三维离子阱。后来发展的线性离子阱是在四极杆轴向上加一个直流,比如商用的L TQ。但L TQ这样的线性阱里面的结构也是双曲面的,加工也非常困难,要求精度很高。线性离子阱经过简化后,可以变成矩形离子阱,加工比较简单,加工成本也不高,我国国内也可以加工。 当然,所有离子阱的核心都是从双曲面的离子阱来的,所以先介绍一下传统的双曲面三维离子阱。它由一个环形电极和上下两个端盖电极组成,加上前端的离子源入射和检测器。它的内表面是双曲面的,加工很困难。 离子阱能够储存(捕获)离子,根据马修方程,当离子在r径向和z轴向两个方向都稳定时,离子就能够被离子阱稳定地捕获。根据离子稳定图,当离子在两个方向都稳定时就被捕获了,通常利用的是第一稳定区(如图)。当离子处于稳定位置时,根据马修方程中a和q的关系式,a和q同离子的质荷比m/z、所加射频场的频率、场半径、射频电压、直流电压有关。商用仪器通常不加直流(即a=0),离子在一条线上运行,如图所示,质量数越小,越靠近右侧。当扫描射频电压时,每个离子的q逐渐由小变大,直到离子脱离稳定区,跑出离子阱,即可被检测。

离子阱是怎样被选择的、如何作SIM和MS/MS: 当然稳定区是假想的状态,是通过理论模拟的反映离子运动的一种方式,离子在阱里处于各种各样的状态。当射频电压固定在某一个值时,每个不同m/z的离子在其中有一个振动频率ω,ω=1/2βΩ,其中Ω是射频的频率,而一台离子阱仪器的振动频率是固定的,所以离子的振动频率仅与β(beta)有关。β和q有个关系式,所以只要知道q的值,就可以知道离子的振动频率。在稳定图上可看到q从0到0.908(0.908是其稳定区的边界),每一个q值对应的点,都有一个对应的离子振动频率;也就是说,离子的振动频率和离子的m/z没有关系,而只和q有关系。第10张幻灯片讲的是β的q的关系式,有3种估值方法:当q<0.4时,用Dehmelt法估值;当q从0.4到0.7/0.8

稳定同位素比例质谱仪(IRMS)的原理和应用

稳定同位素比例质谱仪(IRMS)的原理和应用 祁彪,崔杰华 同位素质谱最初是伴随着核科学与核工业的发展而发展起来的,同位素质谱是同位素地质学发展的重要实验基础。当前我国同位素质谱技术已深入到矿床同位素地球化学、岩石年代学、有机稳定同位素地球化学、无机稳定同位素地球化学等各个方面,并在国家一系列重大攻关和研究课题中发挥重大作用,如金矿和石油天然气研究、水资源开发等。稳定同位素技术的出现加深了生态学家对生态系统过程的进一步了解,使生态学家可以探讨一些其它方法无法研究的问题。与其它技术相比,稳定同位素技术的优点在于使得这些生态和环境科学问题的研究能够定量化并且是在没有干扰(如没有放射性同位素的环境危害)的情况下进行。有些问题还只能通过利用稳定同位素技术来解决。现在,有许多农业研究机构和大学,已经开始使用高精度同位素质谱计从事合理用肥、果实营养、固氮分析、农药毒性、家畜气候对作物的影响以及食品质量控制等多方面的研究工作。与原子能和地质研究工作相比较,在农业和食品方面应用同位素方法从事科研和检测工作,正处于方兴未艾阶段,随着人类社会发展,对农业的要求越来越高,今后大力开展和普及用现代化方法研究农业增产、改善果实质量以及进行食品质量控制检测的工作前途无限广阔。 一、有关同位素的基本概念 1、同位素(Isotope) 由于原子核所含有的中子数不同,具有相同质子数的原子具有不同的质量,这些原子被称为同位素。例如,碳的3个主要同位素分别为12C、13C和14C,它们都有6个质子和6个电子,但中子数则分别为6、7和8。 2、稳定同位素(Stable isotope) 同位素可分为两大类:放射性同位素(radioactive isotope)和稳定同位素(stable isotope)。 凡能自发地放出粒子并衰变为另一种同位素者为放射性同位素。 无可测放射性的同位素是稳定同位素。其中一部分是放射性同位素衰变的最终稳定产物。例如206Pb 和87Sr等。另一大部分是天然的稳定同位素,即自核合成以来就保持稳定的同位素,例如12C和13C、18O 和16O等。与质子相比,含有太多或太少中子均会导致同位素的不稳定性,如14C。这些不稳定的“放射性同位素”将会衰变成稳定同位素。 3、同位素丰度(Isotope abundance) ①绝对丰度:指某一同位素在所有各种稳定同位素总量中的相对份额,常以该同位素与1H(取1H =1012)或28Si(28Si=106)的比值表示。这种丰度一般是由太阳光谱和陨石的实测结果给出元素组成,结合各元素的同位素组成计算的。 ②相对丰度:指同一元素各同位素的相对含量。例如12C=98.892%,13C=1.108%。大多数元素由两种或两种以上同位素组成,少数元素为单同位素元素,例如19F=100%。 4、R值和δ值 ①一般定义同位素比值R为某一元素的重同位素原子丰度与轻同位素原子丰度之比. 例如D/H、13C/12C、34S/32S等,由于轻元素在自然界中轻同位素的相对丰度很高,而重同位素的相对丰度都很低,R值就很低且冗长繁琐不便于比较,故在实际工作中通常采用样品的δ值来表示样品的同位素成分。 ②样品(sq)的同位素比值Rsq与一标准物质(st)的同位素比值(Rst)比较,比较结果称为样品的δ值。其定义为: δ(‰)=(Rsq/Rst -1)×1000 即样品的同位素比值相对于标准物质同位素比值的千分差。 5、同位素标准(Isotope standard) δ值的大小显然与所采用的标准有关,所以在作同位素分析时首先要选择合适的标准,不同的样品间的比较也必须采用同一标准才有意义。对同位素标准物质的一般要求是:

液相色谱-三重四极杆质谱法

中华人民共和国国家环境保护标准 HJ 1049-2019 水质 4种硝基酚类化合物的测定 液相色谱-三重四极杆质谱法 Water quality —Determination of 4 nitrophenol compounds —Liquid chromatography-triple quadrupole mass spectrometry (发布稿) 本电子版为发布稿。请以中国环境出版集团出版的正式标准文本为准。 2019-10-24发布 2020-04-24 实施

目次 前言............................................................................................................................................... i i 1适用范围. (1) 2规范性引用文件 (1) 3方法原理 (1) 4干扰和消除 (1) 5试剂和材料 (2) 6仪器和设备 (2) 7样品 (3) 8分析步骤 (3) 9结果计算与表示 (5) 10精密度和准确度 (6) 11质量保证和质量控制 (7) 12废物处理 (7) 附录A(规范性附录)方法的检出限和测定下限 (8) 附录B(资料性附录)质谱参考条件 (9) 附录C(资料性附录)方法的精密度和准确度 (10) i

前言 为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,保护生态环境,保障人体健康,规范水中硝基酚类化合物的测定方法,制定本标准。 本标准规定了测定地表水、地下水、生活污水和工业废水中4种硝基酚类化合物的液相色谱-三重四极杆质谱法。 本标准的附录A为规范性附录,附录B~附录C为资料性附录。 本标准为首次发布。 本标准由生态环境部生态环境监测司、法规与标准司组织制订。 本标准起草单位:四川省生态环境监测总站。 本标准验证单位:重庆市生态环境监测中心、广元市环境监测中心站、攀枝花市环境监测中心站、泸州市环境监测中心站、宜宾市环境监测中心站和南充市环境监测中心站。 本标准生态环境部2019年10月24日批准。 本标准自2020年4月24日起实施。 本标准由生态环境部解释。 ii

氦质谱检漏仪基本原理简介

氦质谱检漏仪基本原理简介 氦质谱检漏仪是用氦气为示漏气体的专门用于检漏的仪器,它具有性能稳定、灵敏度高的特点。是真空检漏技术中灵敏度最高,用得最普遍的检漏仪器。 氦质谱检漏仪是磁偏转型的质谱分析计。单级磁偏转型仪器灵敏度为lO-9~10-12Pam3/s,广泛地用于各种真空系统及零部件的检漏。双级串联磁偏转型仪器与单级磁偏转型仪器相比较,本底噪声显著减小.其灵敏度可达10-14~10-15Pam3/s,适用于超高真空系统、零部件及元器件的检漏。逆流氦质谱检漏仪改变了常规型仪器的结构布局,被检件置于检漏仪主抽泵的前级部位,因此具有可在高压力下检漏、不用液氮及质谱室污染小等特点.适用于大漏率、真空卫生较差的真空系统的检漏,其灵敏度可达10-12Pam3/s。 (1)工作原理与结构 氦质谱检漏仪由离子源、分析器、收集器、冷阴极电离规组成的质谱室和抽气系统及电气部分等组成。 ①单级磁偏转型氦质谱检漏仪 现以HZJ—l型仪器为例.介绍单级磁偏转型氦质谱检漏仪。 在质谱室内有:由灯丝、离化室、离子加速极组成离子源;由外加均匀磁场、挡板及出口缝隙组成分析器;由抑制栅、收集极及高阻组成收集器;第一级放大静电计管和冷阴极电离规。。 在离化室N内,气体电离成正离子,在电场作用下离子聚焦成束。并在加速电压作用下以一定的速度经过加速极S1的缝隙进入分析器。在均匀磁场的作用下,具有一定速度的离子将按圆形轨迹运动,其偏转半径可计算。 可见,当B和U为定值时,不同质荷比me-1的离子束的偏转半径R不同。仪器的B和R 是固定的,调节加速电压U使氦离子束恰好通过出口缝隙S2,到达收集器D,形成离子流并由放大器放大。使其由输出表和音响指示反映出来;而不同于氦质荷比的离子束[(me-1)1(me-1)3]因其偏转半径与仪器的R值不同无法通过出口缝隙S2,所以被分离出来。(me-1)2=4,即He+的质荷比,除He+之外,C卅很少,可忽略。 ②双级串联磁偏转型氦质谱检漏仪 由于两次分析,减少了非氦离子到达收集器的机率。并且,如在两个分析器的中间,即图

Agilent 7000 型三重串联四级杆 气相质谱仪现场培训教材

Agilent 7000 型三重串联四级杆气相质谱仪现场培训教材

Ⅰ.7000型质谱仪概述及工作原理一、三重四级杆质谱仪的优点(与单四级杆质谱相比) ?在高化学背景样品中可以对目标化合物选择性定量。 ?在复杂的基体中可以获得更好的信噪比。 ?可以达到飞克水平的检测限和定量。 ?对某些样品分析的应用能够满足严格的法规限制。 二、仪器结构概述

7000型三重四极杆质谱仪主要包括离子源、第一级四级杆、六极杆碰撞反应池、第二级四级杆、检测器、和真空系统。 离子源: 四级杆: 双灯丝 常用的离子源温度: 230℃

六极杆碰撞池: 被分析的样品气态分子进入离子源,被电子轰击转化为离子。 电子轰击(electron impact,EI)离子源,其构造原理如图 1 Array 图1 电子轰击离子源( EI )

在电离室内,气态的样品分子受到高速电子的轰击后,该分子就失去电子成为正离子(分子离子): 分子离子继续受到电子的轰击,使一些化学键断裂,或引起重排以瞬间速度裂解成多种碎片离子(正离子)。 图2 化合物电离过程 在排斥极上施加正电压,带正电荷的阳离子被推出离子化室,而形成离子束,离子束经过加速极加速,而进入质量分析器。多余热电子被钨丝对面的电子收集极(电子接收屏)捕集。分子离子继续受到电子的轰击,使一些化学键断裂,或引起重排以瞬间速度裂解成多种碎片离子(正离子)。 EI 源的特点: ? 电离效率高,灵敏度高; ? 应用最广; ? 稳定,操作方便; ? 结构简单,控温方便; 四、四级杆质谱仪工作原理 样品分子在 GC 中分离后,首先进入电离源,一旦样品离子化,推斥极引导离子通过一系列透镜进入四级杆质量分析器。 在四级杆质量分析器中,生成的离子根据它们的质荷比(m/z)被分离。 M + (M -R 2)+ (M -R 3)+ Mass (M -R 1)+ : R1 : R2 : R3 : R4 : e

离子阱

离子阱由于可以存贮所有从离子源产生进入阱中的离子,因此灵敏度很高;另外,离子阱的特有功能是容易产生MS n,对分子的结构解析非常有用;离子阱质谱还非常容易用软件实现全自动控制,人机接口非常简单。三维离子阱质谱的分析器由一对环形电极和两个呈双曲面形的端盖电极组成(见图1)。 在环形电极上加基础射频电压(Fundemental rf)和直流电压;在端盖电极上加交流补充电压。由离子源产生的离子,通过脉冲离子门进入离子阱,通过调节射频电压和直流电压,离子可以稳定地存贮在离子阱中。阱中离子的数目可通过自动增益控制(AGC)技术进行有效控制。阱中离子数目太多,会引起空间电荷效应,导致电场的扭曲和整体性能的下降。离子阱中一般充入1 mTorr的氦气,它有两个作用,一是碰撞“冷却”降低初进入离子的动能,有效地捕获注入的离子;二是作为碰撞气体,从而产生多级MS。一个离子是否可稳定地存贮在阱中,取决于离子的荷质比,离子阱的大小(r),fundamental rf的谐振频率(ω),和环电极上的电压幅度(V)。离子行为的依赖性被描述为多维参数q z q z=4eV/mr2ω2公式

图2显示了阱中离子“稳定区域图”,一个给定质荷比的离子将有一个q z 值,若落在稳定区的边界内,离子就被稳定捕获。若q z值落在边界外,则该离子会撞在电极上湮灭。通过扫描射频电压值(即从低到高加射频电压值),可以使阱中离子的轨道依次变得不稳定,因此可从低m/z到高m/z依次将离子甩出阱外检测。对于高质量数m/z的离子,用扫描射频电压无法使离子轨道不稳定,这时在端盖电极上加高幅的交流电压,如果交流电压频率与离子振荡频率一致,将会产生共振,离子振荡的振幅随时间线性增加,当振幅足够大时,离子将甩出阱外。结合这两种方式还可分离出特定m/z的离子,比如扫描范围为50~1500 m/z,若想分离出m/z=500的离子,则先扫描射频电压,使50~499 m/z被甩出阱;再依次改变交流电压频率,使501~1500 m/z被甩出阱,这样就分离出m/z=500的离子。若在端盖电极上加低幅的交流电压信号,将使被分离出的离子产生共振激发,与氦气碰撞,产生结构碎片信息。以肽分析为例,这个过程将引起沿肽骨架的随机断裂,在质谱上获得丰富的氨基酸序列碎片。

相关文档
相关文档 最新文档