文档库 最新最全的文档下载
当前位置:文档库 › 一元一次方程的解法(提高)知识讲解

一元一次方程的解法(提高)知识讲解

一元一次方程的解法(提高)知识讲解
一元一次方程的解法(提高)知识讲解

一元一次方程的解法(提高)知识讲解

【学习目标】

1. 熟悉解一元一次方程的一般步骤,理解每步变形的依据;

2. 掌握一元一次方程的解法,体会解法中蕴涵的化归思想;

3. 进一步熟练掌握在列方程时确定等量关系的方法.

【要点梳理】

要点诠释:

(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.

(2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行.

(3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆. 要点二、解特殊的一元一次方程

1.含绝对值的一元一次方程

解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.

要点诠释:此类问题一般先把方程化为ax b c +=的形式,再分类讨论:

(1)当0c <时,无解;(2)当0c =时,原方程化为:0ax b +=;(3)当0c >时,原方程可化为:ax b c +=或ax b c +=-.

2.含字母的一元一次方程

此类方程一般先化为最简形式ax =b ,再分三种情况分类讨论:

(1)当a ≠0时,b x a

=

;(2)当a =0,b =0时,x 为任意有理数;(3)当a =0,b ≠0时,方程无解.

【典型例题】 类型一、解较简单的一元一次方程

1.关于x的方程2x﹣4=3m和x+2=m有相同的解,则m的值是()A.10 B.-8 C.-10 D.8

【答案】B.

【解析】

解:由2x﹣4=3m得:x=;由x+2=m得:x=m﹣2

由题意知=m﹣2

解之得:m=﹣8.

【总结升华】根据题目给出的条件,列出方程组,便可求出未知数.

举一反三:

【变式】下列方程的解法对不对?如果不对,错在哪里?应当怎样改正?

3x+2=7x+5

解:移项得3x+7x=2+5,合并得10x=7.,

系数化为1得

7

10

x=.

【答案】以上的解法是错误的,其错误的原因是在移项时没有变号,也就是说将方程中右边的7x移到方程左边应变为-7x,方程左边的2移到方程右边应变为-2.

正确解法:

解:移项得3x-7x=5-2,合并得-4x=3,系数化为1得

3

4

x=-.

类型二、去括号解一元一次方程

2. 解方程:112 [(1)](1) 223

x x x

--=-.

【答案与解析】

解法1:先去小括号得:11122

[]

22233

x x x

-+=-.

再去中括号得:

11122

24433

x x x

-+=-.移项,合并得:

511

1212

x

-=-.

系数化为1,得:

11

5

x=.

解法2:两边均乘以2,去中括号得:

14

(1)(1)

23

x x x

--=-.

去小括号,并移项合并得:

511

66

x

-=-,解得:

11

5

x=.

解法3:原方程可化为:112 [(1)1(1)](1) 223

x x x

-+--=-.

去中括号,得1112

(1)(1)(1) 2243

x x x

-+--=-.

移项、合并,得

51

(1)

122

x

--=-.

解得

11

5

x=.

【总结升华】解含有括号的一元一次方程时,一般方法是由内到外或由外到内逐层去括号,但有时根据方程的结构特点,灵活恰当地去括号,以使计算简便.例如本题的方法3:方程左、右两边都含(x-1),因此将方程左边括号内的一项x变为(x-1)后,把(x-1)视为一个整体运算.

3.解方程:1111

11110 2222

x

??

??

??

----=

??

?

??

??

??

??

【答案与解析】

解法1:(层层去括号)

去小括号1111

1110 2242

x

??

??

----=

??

??

??

??

去中括号1111

110 2842

x

??

----=

??

??

去大括号

1111

10 16842

x----=.

移项、合并同类项,得

115

168

x=,系数化为1,得x=30.

解法2:(层层去分母)

移项,得1111

1111 2222

x

??

??

??

---=

??

?

??

??

??

??

两边都乘2,得111

1112 222

x

??

??

---=

?

??

??

??

移项,得111

113 222

x

??

??

--=

?

??

??

??

两边都乘2,得11

116 22

x

??

--=

?

??

移项,得11

17

22

x

??

-=

?

??

,两边都乘2,得

1

114

2

x-=.

移项,得1

15

2

x=,系数化为1,得x=30.

【总结升华】此题既可以按去括号的思路做,也可以按去分母的思路做.举一反三:

【变式】解方程1111

1641 2345

x

??

??

??

--+=

??

?

??

??

??

??

【答案】

解:方程两边同乘2,得111

1642 345

x

??

??

--+=

?

??

??

??

移项、合并同类项,得111

162 345

x

??

??

--=-

?

??

??

??

两边同乘以3,得11

166 45

x

??

--=-

?

??

移项、合并同类项,得11

10 45

x

??

-=

?

??

两边同乘以4,得1

10 5

x-=.

移项,得1

1

5

x=,系数化为1,得x=5.

类型三、解含分母的一元一次方程

4.解方程﹣=.

【思路点拨】方程整理后,去分母,去括号,移项合并同类项,把x系数化为1,即可求出解.

【答案与解析】

解:原方程可化为6x﹣=,

两边同乘以6,得36x﹣21x=5x﹣7,

移项合并,得10x=-7

解得:x=﹣0.7.

【总结升华】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.

举一反三:

【变式】解方程0.40.90.30.2

1

0.50.3

y y

++

-=.

【答案】

解:原方程可化为4932

1 53

y y

++

-=.

去分母,得3(4y+9)-5(3+2y)=15.去括号,得12y+27-15-10y=15.移项、合并同类项,得2y=3.

系数化为1,得32y =. 类型四、解含绝对值的方程 5.解方程:3|2x|-2=0 .

【思路点拨】将绝对值里面的式子看作整体,先求出整体的值,再求x 的值. 【答案与解析】 解:原方程可化为:223x =

. 当x ≥0时,得223x =,解得:13

x =, 当x <0时,得223x -=,解得:13

x =-, 所以原方程的解是x =13或x =13

-. 【总结升华】此类问题一般先把方程化为ax b c +=的形式,再根据(ax b +)的正负分类讨论,注意不要漏解.

举一反三:

【变式】已知关于x 的方程mx+2=2(m ﹣x )的解满足方程|x ﹣|=0,则m 的值为( )

A. B. 2 C.

D.3

【答案】B

解:∵|x﹣|=0,∴x=,把x 代入方程mx+2=2(m ﹣x )得:m+2=2(m ﹣), 解之得:m=2. 类型五、解含字母系数的方程

6. 解关于x 的方程:1mx nx -=

【答案与解析】

解:原方程可化为:()1m n x -=

当0m n -≠,即m n ≠时,方程有唯一解为:1x m n

=

-; 当0m n -=,即m n =时,方程无解.

【总结升华】解含字母系数的方程时,先化为最简形式ax b =,再根据x 系数a 是否为零进行分类讨论.

举一反三:

【变式】若关于x 的方程(k-4)x =6有正整数解,求自然数k 的值.

【答案】

解:∵原方程有解,∴ 40k -≠

原方程的解为:

6

4

x

k

=

-

为正整数,∴4

k-应为6的正约数,即4

k-可为:1,2,3,6

∴k为:5,6,7,10

答:自然数k的值为:5,6,7,10.

一元一次方程解法练习(经典)

一元一次方程解法练习 1.若ax +b=0为一元一次方程,则__________. 2.当=m 时,关于字母x 的方程0112=--m x 是一元一次方程. 3.若9a x b 7 与 – 7a 3x –4 b 7是同类项,则x= . 4.如果()01122=+++-y x x ,则2 1x y -的值是 . 5.当=x ___时,代数式24+x 与93-x 的值互为相反数. 6.已知08)1()1(2 2=++--x m x m 是关于x 的一元一次方程,则m= . 7.已知2-=x 是方程042=-+m x 的根,则m 的值是( ) A. 8 B. -8 C. 0 D. 2 8.如果a 、b 互为相反数,(a ≠0),则ax +b =0的根为( ) A .1 B .-1 C .-1或1 D .任意数 9.下列方程变形中,正确的是( ) (A )方程1223+=-x x ,移项,得;2123+-=-x x (B )方程()1523--=-x x ,去括号,得;1523--=-x x (C )方程2 332=t ,未知数系数化为1,得;1=x (D )方程 15.02.01=--x x 化成.63=x 10.方程6 2123x x +=-去分母后可得( ) A 3x -3 =1+2x , B 3x -9 =1+2x , C 3x -3 =2+2x , D 3x -12=2+4x ; 11.如果关于x 的方程01231=+m x 是一元一次方程,则m 的值为( ) A .3 1 B 、 3 C 、 -3 D 、不存在 12.若32,24,A x B x =-=+使A -B=8,x 的值是( ) A .6 B .2 C .14 D .18

一元一次方程的解法及应用.学生版

定 义 示例剖析 等式的概念:用等号来表示相等关系的式子,叫做等式. 123+=,15x +=, s ab =,a b c mxy n ++=+ 等式的类型 恒等式:无论用什么数值代替等式中的字母,等式总能成立. 条件等式:只能用某些数值代替等式中的字母,等式才能成立. 矛盾等式:无论用什么数值代替等式中的字母,等式都不能成立. 33x x ==, 方程56x +=需要1x =才成立. 如32=,125+=,11x x +=-. 等式性质1:等式两边都加上(或减去)同一个数(或式子..),所得结果仍是等式. 等式性质2:等式两边都乘以(或除以)同一个数(除数不能是.....0. ),结果仍是等式. 若a b =,则a c b c ±=±. 若a b =,则ac bc =, 若a b =且0c ≠,则a b c c =. 在等式变形中,以下两个性质也经常用到: ①等式具有对称性,即:如果a b =,那么b a =; ②等式具有传递性,即:如果a b =,b c =,那么a c =. 【例1】 下列各式中,哪些是等式?是等式的请指出类型. 43x -、15713++=、1 722 y -=、231x x =+、64y -、5x y +=、π 3.14≈,20a b +>, 22 x x =,7171x x +=-. 夯实基础 模块一 等式的概念及性质 一元一次方程的解法 及应用

【例2】 ⑴ 根据等式的性质填空: ① 4a b =-,则a b +=______; ② 359x +=,则39x =- ; ③ 683x y =+,则x =________; ④ 1 22 x y =+,则x = . ⑵ 已知等式325a b =+,则下列等式中不一定成立的是( ) A .352a b -= B .3126a b +=+ C .325ac bc =+ D .25 33 a b =+ (北京二中期中) ⑶ 下列变形中,根据等式的性质变形正确的是( ) A .由12 33 x -=,得2x = B .由3222x x -=+,得4x = C .由233x x -=,得3x = D .由357x -=,得375x =- (海淀区期末) 定 义 示例剖析 方程:含有未知数的等式...即: ①方程中必须含有未知数; ②方程是等式,但等式不一定是方程. 例如123+=是等式不是方程. 方程的解:使方程左、右两边相等的未知数的值,叫做方程的解. 解方程:求方程的解的过程... 例如3x =是方程36x +=的解 方程中的已知数:一般是具体的数值. 方程中的未知数:是指要求的数,未知数通常用x 、y 、z 等字母表示. 例如50x +=中, 5和0是已知数, 例如关于x 、y 的方程2ax by c -=中,a 、2b -、c 是已知数,x 、y 是未知数. 一元一次方程:只含有一个..未知数,并且未知数的最高次数....是1,系数不等于...0.的整式..方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数. 235x +=,10y -=,3x = 最简形式:方程ax b =(0a ≠,a ,b 为已知数)的形式叫一元一次方程的最简形式. 例如35x =,27x =等. 标准形式:方程0ax b +=(0a ≠,a ,b 是已知数)的形式叫一元一次方程的标准形式. 例如21040x x +=+=, 易错点1:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程. 易错点2:任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一 能力提升 模块二 方程的相关概念

一元一次方程解法

一元一次方程及解法 撰稿:占德杰责编:赵炜 一、目标认知 学习目标: 经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,了解一元一次方程及其相关概念,认识从算式到方程是数学的进步。通过观察、归纳得出等式的性质,能利用它们探究一元一次方程的解法。了解解方程的基本目标(使方程逐步转化为x=a的形式),熟悉解一元一次方程的一般步骤,掌握一元一次方程的解法,体会解法中蕴涵的化归思想。 重点: 一元一次方程的解法 难点: 一元一次方程的解法 二、知识要点梳理 知识点一:方程的概念 1、含有未知数的等式叫做方程. 2、使方程中等号左右两边相等的未知数的值叫做方程的解. 3、求方程的解的过程叫做解方程。 4、方程的两个特征:(1)方程是等式;(2)方程中必须含有字母(未知数)。 知识点二:一元一次方程的概念 1、概念:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程。一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0),“元”是指未知数,“次”是指未知数的次数,应从以下几点理解此概念: (1)方程中的未知数的个数是1。例如2x+3y=2就不是一元一次方程,因为未知数的个数是两个,而不 是一个。 (2)一元一次方程等号的两边都是整式,并且至少有一边是含有未知数的整式。例如 方程, 其中不是整式,所以它不是一元一次方程。 (3)未知数的次数是1,如x2+2x-2=0, 在x2项中,未知数的次数是2,所以它不是一元一次方程。 2、判定:判断一个方程是不是一元一次方程应看它的最终形式,而不是看原始形式。 (1)如果一个方程经过去分母、去括号、移项、合并同类项等变形能化为ax=b(a≠0),或ax b=0(a≠0),那么它就是一元一次方程;否则就不是一元一次方程。 (2)方程ax=b或ax b=0,只有当a≠0时才是一元一次方程;反之,如果明确指出方程ax=b或 ax+b=0是一元一次方程,则隐含条件a≠0.

一元一次方程及其解法

学科:数学凤阳县十校合作师生共用教学案 课题:3.1一元一次方程及其解法课型:新授课教学时间:第二课时 年级:七年级主备:黄湾中学程方林审核:武善礼、黄海雷授课人: 教学目标: 1、巩固一元一次方程概念;理解“移相”概念。 2、能够综合应用等式性质及“移相”法解一元一次方程。培养学生的观察及综合能力,提高他们分析问题和解决问题的能力。 3、在经历方程求解的过程中,使学生自己认识到学习方程知识的重要性,感受学习数学的价值,使学生初步养成正确思考问题的良好习惯。 教学重点:一元一次方程的解法。 教学难点:“移相”法解一元一次方程时,被移的相变号的依据 教学过程: 一、课前准备: 1、等式的性质有(1), (2)。 2、下列各变形分别用了等式的那一条基本性质 (1)由x + 4 = 6,得x = 6 – 4;() (2)由3 x= 2x + 5,得3 x – 2 x = 5;() 二、导入新课: 创设问题情境 活动:观察下图,你能得到什么结论?( 表示x) x + 2 = 5 x = 5 – 2

3 x = 2 x + 2 3 x – 2 x = 2 2 x = 6 x = 6 ÷ 2 交流:用天平测量物体的质量时,常将物体放在天平的左盘,在右盘内放上砝码,使天平处于平衡状态,这时两边的质量相等,就可以测得该物体的质量。 如果我只拿走天平一边的一部分物体会有什么现象呢? 如果要使天平重新达到平衡,我们可以如何操作? 讨论:请认真思考并把你的想法写出来。 三、探究导学: (—)独立思考、解决问题 首先各小组集体研讨上面提出的问题,汇总结果,之后展示各小组成果。教师总结 。 (二)师生探究、合作交流 综述:通过上面的试验得出的方法可以用来解决数学问题。本节课内容:用移相法解一元一次方程。 观察:仔细观察下面的解答过程2 x – 4 = 18 2 x = 18 + 4 你发现了什么? 讨论:各小组认真讨论,体会前后变化在关键项的位置及符号上的变化的特点。你的结论是 。 归纳: 叫做移相。移相的根据是。 应用:解方程: 3 x + 5 = 5 x –7 示范:解移相,得3 x – 5 x = – 7 –5 合并同类项,得–2 x = – 12 两边都除以-2,得x = 6 思考:本题有无其它的变形方法?如果你认为有请你把你的想法或解法写在下面 。 互动:下面的移相对不对?如果不对,错在哪里?应当怎样改正? (1)从9 + x = 7,得x = 7 + 9 (2)从5 x = 7 – 4 x,得5 x – 4 x = 7 (3)从2 y – 1 = 3 y + 6,得2 y – 3 y = 6 – 1

一元一次方程的解法

一元一次方程的解法 【知识回顾】 1.下列等式的变形是否正确?正确的打“ √ ”,错误的打“ⅹ ” (1)由2=x+3得x=3+2 ( ) (2)由3 2x=-8得x=-12 ( ) (3)由 5y+2=7y+8得7y-5y=8-2 ( ) 2.回答下列问题: (1)由等式a=b ,能不能得到等式a+2=b+2?为什么? (2)由等式2 2b a ,能不能得到等式a=b ?为什么? 【学习目标】 1.了解等式的基本性质在解方程中的作用. 2.会解一元一次方程,并经历和体会解方程中的“转化”的过程和思想. 3.了解一元一次方程解法的一般步骤,并能正确灵活应用. 【学习重点与难点】 重点:会利用等式的性质解方程 难点:正确灵活解方程 学习过程: 一、导入新课: 上节课我们学习了“等式的性质”,这一节课我们来学习如何利用等式的性质来解一元一次方程. 二、新知学习: (一)移项 1.自学要求:请认真看课本本节的内容,并明确两个问题: ①什么是方程的移项? ②方程的移项与等式的基本性质有什么关系? 2.自学检测: (1)把方程中的某一项_________后,从方程的一边________另一边,这种变形叫做 移项.

(2)对比下列的变形,并体会其不同之处 对方程3x-4=1求解 运用等式的基本性质: 3x –4+4=1+4 ( ) 3x = 5 ( ) x =35 ( ) 运用移项: 3x=1+4 ( ) 3x=5 ( ) x=3 5 ( ) 3.练习 把下列的方程中的含有未知数的项移到方程的一边,常数项移到另一边: (1)2=x+3 (2)5y+2=3y+8 (3)4x –3=0 你得到了什么结论:___________________________________________. (二)一元一次方程的解法 1.自学要求:请认真阅读课本每道解答过程,注意每一种方程的解题步骤和方法. 2.对应训练 (1)解方程的最根本目的是____________,也就是把未知数的___________化为1. (2)请说出下列方程的第一步的解题步骤和依据 ① x –3=12 ② -3y=-15 ③ 11x+3=5(2x+1) ④ 13223-=-- x x (3)纵观所有的例题可以看出,本节主要体现了___________的数学思想和方法. (4)解一元一次方程的基本步骤为_______、_______、_______、______、________. 小结:____________________________________________________. 【精练反馈】 基础部分 1. 解方程中,移项的依据是( )

四年级奥数.应用题.一元一次方程解法综合(ABC级)

一、方程的起源 方程这个名词,最早见于我国古代算书《九章算术》。《九章算术》是在我国东汉初年编定的一部现有传本的、最古老的中国数学经典著作.书中收集了246个应用问题和其他问题的解法,分为九章,“方程”是其中的一章。在这一章里的所谓“方程”,是指一次方程和方程组。例如其中的第一个问题实际上就是求解三元一次方程组。 古代解方程的方法是利用算筹。我国古代数学家刘徽注释《九章算术》说,“程,课程也。二物者二程,三物者三程,皆如物数程之,并列为行,故谓之方程”这里所谓“如物数程之”,是指有几个未知数就必须列出几个等式。一次方程组各未知数的系数用算筹表示时好比方阵,所以叫做方程。 《九章算术》中解方程组的方法,不但是我国古代数学中的伟大成就,而且是世界数学史上一份非常宝贵的遗产。同学们也要好好学习数学,将来争取为数学研究做出新的贡献! 二、方程的重要性 方程作为一个小学数学的重要工具,是小学向初中过渡的重点也是难点。渗透方程思想,让学生能用字母表示数字,解决一些比较抽象的数学关系,所以学好方能对于学生以后学习数论等较难专题有很大帮助。 三、相关名词解释 (1) 算式:把数用运算符号与运算顺序符号连接起来是算式 (2) 等式:表示相等关系的式子 (3) 方程:含有未知数的等式 (4) 方程命名:未知数的个数代表元,未知数的次数:n 元a 次方程就是含有n 个未知数,且含未知数 项最高次数是a 的方程 例如:一元一次方程:含有一个未知数,并且未知数的指数是1的方程; 如:37x +=,71539q +=,222468m ?+=(), 一元一次方程的能使一元一次方程左右两边相等的未知数的值; 如:4x =是方程37x +=的解,3q =是方程81539q +=的解, 一元一次方程解法综合 知识框架

一元一次方程的定义及解法

《第4章 一元一次方程》4.1—4.2期末复习学案(1) 一、基础训练 1、 y 比它的4 3小7,列出方程为______________________;若代数式6x 2-的值与0.5互为倒数,则列出方程为________ . 2、判断下列哪些是一元一次方程。 (1) 4365=x ( ) (2)7x -5 ( ) (3)x x 367 1=-( ) (4)3x 2-7x+1=0( )(5)2x -y=1( ) (6)312=-x ( ) 3、 已知4x ax 2=-是关于x 的一元一次方程,则a=________. 其中2、3两题用到的知识点是:一元一次方程的定义:含有 未知数,未知数的次数是 的方程叫一元一次方程。(其中表示未知数的式子还必须是整式。) 4、 写出一个满足下列条件的一元一次方程:①某个未知数的系数是1;②方程的解是3;这样的方程是 。 5、 若x=3是方程x 68a 4x 2+=-的解,则=a ________ 。 知识点:什么叫方程的解? 。 6. 若-9+x =63则x =______;若-2(x+1)=13,则x =______ ; 2 1323 x 的解为 ;若30%x =5则x =__ ;。 解方程的基本步骤是 、 、 、 、 : 去分母时应该注意 ;去括号时应注意 ;移项时应该注意 ;将系数化为1时应注意 。 7. 若1x 2y 1 x y 21+=-=,,且0y 3y 21=-,则x=________,=+21y y ________. 8.若41m 2y x 3-与3n 23y x 2--是同类项,且0)n b 5.0(|m 2a |2=-+-,则b a n m +++的值为________。 二、例题推荐

初一数学一元一次方程的概念与解法教案

一元一次方程的概念与解法 【知识要点】 1.一元一次方程的有关概念 (1)一元一次方程:只含有一个未知数,并且未知数的次数是1,系数不等于0,这样的方程叫做一元一次方程. (2)一元一次方程的标准形式是: 2.等式的基本性质 (1)等式的两边都加上或减去或,所得的结果仍是等式. (2)等式的两边都乘以或都除以,所得的结果仍是等式. 3.解一元一次方程的基本步骤:

【典型例题】 例1.下列方程是一元一次方程的有哪些? x+2y=9 x 2 -3x=1 11=x x x 312 1 =- 2x=1 3x –5 3+7=10 x 2 +x=1 例2. 用适当的数或整式填空,使得结果仍是等式,并说明是根据等式的哪条性质,通过怎样变形得到的. (1)如果________;-8x 3,853==+那么x (2)如果-1_x _________3,123=--=那么x x ; (3)如果;__________x ,52 1 ==那么x (4)如果________.3x ,3 2==那么y x 例3.解下列简易方程 1.5223-=+x x 2.4.7-3x=11 3.x x +-=-32.0 4.)3(4)12(3-=+x x

1. 32243332=+--x x 2.142 3(1)(64)5(3)25 x x x --++=+ 3.21101211364x x x -++-=- 4.223 14615+=+---x x x x 5.003.002.003.0255.09.03.0=+---+x x x 6.8316 1.20.20.55 x x x +-+-=-

一元一次方程的解法(提高)知识讲解

一元一次方程的解法(提高)知识讲解 【学习目标】 1. 熟悉解一元一次方程的一般步骤,理解每步变形的依据; 2. 掌握一元一次方程的解法,体会解法中蕴涵的化归思想; 3. 进一步熟练掌握在列方程时确定等量关系的方法. 【要点梳理】 要点诠释: (1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化. (2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行. (3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆. 要点二、解特殊的一元一次方程 1.含绝对值的一元一次方程 解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义. 要点诠释:此类问题一般先把方程化为ax b c +=的形式,再分类讨论: (1)当0c <时,无解;(2)当0c =时,原方程化为:0ax b +=;(3)当0c >时,原方程可化为:ax b c +=或ax b c +=-. 2.含字母的一元一次方程 此类方程一般先化为最简形式ax =b ,再分三种情况分类讨论: (1)当a ≠0时,b x a = ;(2)当a =0,b =0时,x 为任意有理数;(3)当a =0,b ≠0时,方程无解. 【典型例题】 类型一、解较简单的一元一次方程

1.关于x的方程2x﹣4=3m和x+2=m有相同的解,则m的值是()A.10 B.-8 C.-10 D.8 【答案】B. 【解析】 解:由2x﹣4=3m得:x=;由x+2=m得:x=m﹣2 由题意知=m﹣2 解之得:m=﹣8. 【总结升华】根据题目给出的条件,列出方程组,便可求出未知数. 举一反三: 【变式】下列方程的解法对不对?如果不对,错在哪里?应当怎样改正? 3x+2=7x+5 解:移项得3x+7x=2+5,合并得10x=7., 系数化为1得 7 10 x=. 【答案】以上的解法是错误的,其错误的原因是在移项时没有变号,也就是说将方程中右边的7x移到方程左边应变为-7x,方程左边的2移到方程右边应变为-2. 正确解法: 解:移项得3x-7x=5-2,合并得-4x=3,系数化为1得 3 4 x=-. 类型二、去括号解一元一次方程 2. 解方程:112 [(1)](1) 223 x x x --=-. 【答案与解析】 解法1:先去小括号得:11122 [] 22233 x x x -+=-. 再去中括号得: 11122 24433 x x x -+=-.移项,合并得: 511 1212 x -=-. 系数化为1,得: 11 5 x=. 解法2:两边均乘以2,去中括号得: 14 (1)(1) 23 x x x --=-. 去小括号,并移项合并得: 511 66 x -=-,解得: 11 5 x=. 解法3:原方程可化为:112 [(1)1(1)](1) 223 x x x -+--=-. 去中括号,得1112 (1)(1)(1) 2243 x x x -+--=-.

一元一次方程及解法专题讲义(供参考)

一元一次方程的概念及解法 一、知识梳理: 知识点1、一元一次方程的概念: (1)、方程:含有未知数的等式叫方程,能够使方程左右两边的值相等的未知数的值叫方程的解,求方程的解的过程叫解方程。 (2)、一元一次方程:只含有一个未知数,并且未知数的次数是1,系数不等于0的一类方程叫做一元一次方程。 一元一次方程的标准形式0ax b +=(其中x 是未知数,a b 、是已知数,并且0a ≠) 知识点2、等式及其基本性质 (1)定义:用等号“=”表示相等关系的式子叫等式。 (2)等式的基本性质: ①等式两边同时加上(或减去)同一个代数式,所得结果仍是等式。 ②等式两边都乘以或除以同一个不为0的数,所得结果仍是等式。 三、解一元一次方程的一般步骤: (1)去分母:在方程两边都乘以各分母的最小公倍数; (2)去括号:先去小括号,再去中括号,最后去大括号; (3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住:移项要变号); (4)合并同类项:把方程化为()0ax b a =≠的形式; (5)系数化为1:在方程两边都除以未知数的系数a ,得到方程的解b x a =。 解一元一次方程时,可以根据方程的形式灵活地安排解题步骤,不必机械地生搬硬套。 二、典例精讲: 考点一、概念的考查 例1、(2011、鄂州训练题)下列各式是方程的是 ,其中是一元一次方程的是 。 (1)327x -=;(2)4812+=;(3)3x -;(4)230m n -=;(5)23210x x --=; (6)23x +≠;(7)251 x =+ 变式训练: 1、判断下列各式中哪些是等式?哪些是代数式?哪些是方程?哪些是一元一次方程? (1)253-+=;(2)317x -=;(3)0m =;(4)3x >;(5)8x y +=; (6)22510x x ++=;(7)2a b + 2、方程()110m m x ++=是关于x 的一元一次方程,则m = 考点二、方程的解 例2、(2011、宜昌模拟)若关于x 的方程332x a x -= +的解是4x =,求2a a - 的值。 变式训练: 1、已知关于x 的方程432x m -=的解是x m =,求m 的值。 考点三、等式的性质 例3、下列等式变形正确的是( ) A 、如果,ay ax =那么y x = B 、如果y x =,那么y x -=-55 C 、如果,0=+b ax 那么a b x = D 、如果,2635-=-x x 那么1-=x ★变式赏析:由110.20.3x -=变形为1010123x -=的依据是( )

一元一次方程的定义及解法

一元一次方程的定义及 解法 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一元一次方程的定义及解法 方程定义:只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程,通常形式是ax+b=0(a,b为常数,且a≠0)。 方程简介 一元一次方程(linearequationinone)通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数必须是1。即一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0。 “方程”一词来源于我国古算术书《九章算术》。在这本着作中,已经会列一元一次方程。法国数学家笛卡尔把未知数和常数通过代数运算所组成的方程称为代数方程。在19世纪以前,方程一直是代数的核心内容。 详细内容 合并同类项 1.依据:乘法分配律 2.把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项 3.合并时次数不变,只是系数相加减。 移项 1.含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。 2.依据:等式的性质 3.把方程一边某项移到另一边时,一定要变号。性质 性质 等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。等式的性质三:等式两边同时乘方(或开方),等式仍然成立。解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立 解法步骤

(小学奥数)2-2-1 一元一次方程解法综合.学生版

1、认识了解方程及方程命名 2、移项、系数、解方程、方程的解等名词的意思一定要让学生了解 3、运用等式性质解方程 4、会解简单的方程 一、方程的起源 方程这个名词,最早见于我国古代算书《九章算术》。《九章算术》是在我国东汉初年编定的一部现有传本的、最古老的中国数学经典著作.书中收集了246个应用问题和其他问题的解法,分为九章,“方程”是其中的一章。在这一章里的所谓“方程”,是指一次方程和方程组。例如其中的第一个问题实际上就是求解三元一次方程组。 古代解方程的方法是利用算筹。我国古代数学家刘徽注释《九章算术》说,“程,课程也。二物者二程,三物者三程,皆如物数程之,并列为行,故谓之方程”这里所谓“如物数程之”,是指有几个未知数就必须列出几个等式。一次方程组各未知数的系数用算筹表示时好比方阵,所以叫做方程。 《九章算术》中解方程组的方法,不但是我国古代数学中的伟大成就,而且是世界数学史上一份非常宝贵的遗产。同学们也要好好学习数学,将来争取为数学研究做出新的贡献! 二、方程的重要性 方程作为一个小学数学的重要工具,是小学向初中过渡的重点也是难点。渗透方程思想,让学生能用字母表示数字,解决一些比较抽象的数学关系,所以学好方能对于学生以后学习数论等较难专题有很大帮助。 三、相关名词解释 1、算式:把数用运算符号与运算顺序符号连接起来是算式 2、等式:表示相等关系的式子 3、方程:含有未知数的等式 4、方程命名:未知数的个数代表元,未知数的次数:n 元a 次方程就是含有n 个未知数,且含未知数项最高次数是a 的方程 例如:一元一次方程:含有一个未知数,并且未知数的指数是1的方程; 如:37x +=,71539q +=,222468m ?+=(), 一元一次方程的能使一元一次方程左右两边相等的未知数的值; 如:4x =是方程37x +=的解,3q =是方程81539q +=的解, 5、解方程:求方程的解的过程叫解方程。所以我们做方程的题时要先写“解”字,表示求方程的解的过程开始,也就是开始“解方程”。 6、方程的能使方程左右两断相等的未知数的值叫方程的解 四、解方程的步骤 知识点拨 教学目标 一元一次方程解法综合

一元一次方程的解法基础知识讲解

一元一次方程的解法(基础)知识讲解 撰稿:孙景艳审稿:赵炜 【学习目标】 1.熟悉解一元一次方程的一般步骤,理解每步变形的依据; 2.掌握一元一次方程的解法,体会解法中蕴涵的化归思想; 3.进一步熟练掌握在列方程时确定等量关系的方法. 【要点梳理】 要点一、解一元一次方程的一般步骤 变形名称具体做法注意事项 去分母 在方程两边都乘以各分母的最小公倍 数(1)不要漏乘不含分母的项 (2)分子是一个整体的,去分母后应加上括号 去括号 先去小括号,再去中括号,最后去大 括号(1)不要漏乘括号里的项 (2)不要弄错符号

移项把含有未知数的项都移到方程的一 边,其他项都移到方程的另一边(记住 移项要变号) (1)移项要变号 (2)不要丢项 合并同类 项 把方程化成ax=b(a≠0)的形式字母及其指数不变 系数化成 1在方程两边都除以未知数的系数a,得 到方程的解 b x a . 不要把分子、分母写颠倒 要点诠释: (1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化. (2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行. (3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆. 要点二、解特殊的一元一次方程 1.含绝对值的一元一次方程

解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义. 要点诠释:此类问题一般先把方程化为ax b c +=的形式,再分类讨论: (1)当0 c<时,无解;(2)当0 c=时,原方程化为:0 ax b +=;(3)当0 c>时,原方程可化为:ax b c +=或ax b c +=-. 2.含字母的一元一次方程 此类方程一般先化为一元一次方程的最简形式ax=b,再分三种情况分类讨论: (1)当a≠0时, b x a =;(2)当a=0,b=0时,x为任意有理数;(3)当a=0,b≠0 时,方程无解. 【典型例题】 类型一、解较简单的一元一次方程1.解下列方程 (1) 3 4 5 m m -=- (2)-5x+6+7x=1+2x-3+8x 【答案与解析】 解:(1)移项,得 3 4 5 m m -+=-.合并,得 2 4 5 m=-.系数化为1,得m=-10. (2)移项,得-5x+7x-2x-8x=1-3-6.合并,得-8x=-8.系数化为1,得x=1.【总结升华】方法规律:解较简单的一元一次方程的一般步骤:

一元一次方程知识点及经典例题

精心整理一、知识要点梳理 知识点一:方程和方程的解 1.方程:含有_____________的______叫方程 注意:a.必须是等式b.必须含有未知数。 易错点:(1).方程式等式,但等式不一定是方程;(2).方程中的未知数可以用x表示,也可以用其他字母表示;(3).方程中可以含多个未知数。 考法:判断是不是方程: 例:下列式子:(1).8-7=1+0(2). 1、一元一次方程: 一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。 要点诠释: 一元一次方程须满足下列三个条件: (1)只含有一个未知数; (2)未知数的次数是1次; (3)整式方程. 2、方程的解: 判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法 1、方程的同解原理(也叫等式的基本性质) 等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。 如果,那么;(c为一个数或一个式子)。 等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。 如果,那么;如果,那么 要点诠释: 分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

即:(其中m≠0) 特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为:-=1.6。方程的右边没有变化,这要与“去分母”区别开。 2、解一元一次方程的一般步骤: 解一元一次方程的一般步骤 变 形 步 骤 具体方法变形根据注意事项 去分母方程两边都乘以 各个分母的最小 公倍数 等式性质 2 1.不能漏乘不含分母的项; 2.分数线起到括号作用,去 掉分母后,如果分子是多项 式,则要加括号 去括号先去小括号,再 去中括号,最后 去大括号 乘法分配 律、去括 号法则 1.分配律应满足分配到每一 项 2.注意符号,特别是去掉括 号 移项把含有未知数的 项移到方程的一 边,不含有未知 数的项移到另一 边 等式性质 1 1.移项要变号; 2.一般把含有未知数的项移 到方程左边,其余项移到右 边 合并同类项把方程中的同类 项分别合并,化 成“b ax=”的形 式(0 ≠ a) 合并同类 项法则 合并同类项时,把同类项的 系数相加,字母与字母的指 数不变 未知数的系方程两边同除以 未知数的系数a, 得 a b x= 等式性质 2 分子、分母不能颠倒

一元一次方程的解法专题训练

一元一次方程的解法专题训练 类型一:一元一次方程的概念 例1:若关于x 的方程02)1(2=+-m x m 是一元一次方程,求m 的值,并求出方程的解。 分析:回到定义,关于x 的方程是一元一次方程的条件是未知数x 的指数是1,而其系数不为0. 练:1、当=m 时,方程03)3(2=-+--m x m m 是一元一次方程,方程的解是。 类型二:一元一次方程的解的概念 例2:若2=x 是方程0132=-+m x 的解,则m 的值为。 练: 2、已知关于x 的方程423=-m x 的解是m x =,则m 的值是。 3、请写出一个解为2=x 的一元一次方程:。 4、已知p ,q 都是质数,且1=x 满足方程113=+q x p ,则q p =。 类型三:等式性质 例3:下列变形正确的是( ) A 、如果bx ax =,那么 b a = B 、如果1)1(+=+a x a ,那么1=x C 、如果y x =,则y x -=-55 D 、如果1)1(2=+x a ,则1 12+=a x 分析:正确理解等式的两个性质,利用等式性质2作等式变形时,应注意字母的取值范围。 练:5、若b a =,则下列等式中,正确的个数有( )个 ①33+=+b a ;②b a 43=;③b a 4343-=- ;④1313-=-b a ;⑤1122+=+c b c a 类型四:一元一次方程的解法 例4:依据下列解方程 3122.05.03.0-=+x x 的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。 解:原方程可变形为3 12253-=+x x ………… ( ) 去分母,得 )12(2)53(3-=+x x ………………( ) 去括号,得 24159-=+x x ……………… ( ) ( ),得21549--=-x x ……………… ( ) 合并, 得 175-=x ……………… ( ) ( ),得 5 17-=x ………………… ( ) 分析:当分母中含有小数时,可以用分数的基本性质,把它们化为整数,再按去分母、去括号、移项、合 并同类项、系数化为1的步骤进行解答。

四年级奥数.应用题.一元一次方程解法综合(ABC级)

一、方程的起源 方程这个名词,最早见于我国古代算书《九章算术》。《九章算术》是在我国东汉初年编定的一部现有传本的、最古老的中国数学经典著作.书中收集了246个应用问题和其他问题的解法,分为九章,“方程”是其中的一章。在这一章里的所谓“方程”,是指一次方程和方程组。例如其中的第一个问题实际上就是求解三元一次方程组。 古代解方程的方法是利用算筹。我国古代数学家刘徽注释《九章算术》说,“程,课程也。二物者二程,三物者三程,皆如物数程之,并列为行,故谓之方程”这里所谓“如物数程之”,是指有几个未知数就必须列出几个等式。一次方程组各未知数的系数用算筹表示时好比方阵,所以叫做方程。 《九章算术》中解方程组的方法,不但是我国古代数学中的伟大成就,而且是世界数学史上一份非常宝贵的遗产。同学们也要好好学习数学,将来争取为数学研究做出新的贡献! 二、方程的重要性 方程作为一个小学数学的重要工具,是小学向初中过渡的重点也是难点。渗透方程思想,让学生能用字母表示数字,解决一些比较抽象的数学关系,所以学好方能对于学生以后学习数论等较难专题有很大帮助。 三、相关名词解释 (1) 算式:把数用运算符号与运算顺序符号连接起来是算式 (2) 等式:表示相等关系的式子 (3) 方程:含有未知数的等式 (4) 方程命名:未知数的个数代表元,未知数的次数:n 元a 次方程就是含有n 个未知数,且含未知数 项最高次数是a 的方程 例如:一元一次方程:含有一个未知数,并且未知数的指数是1的方程; 如:37x +=,71539q +=,222468m ?+=(), 一元一次方程的能使一元一次方程左右两边相等的未知数的值; 如:4x =是方程37x +=的解,3q =是方程81539q +=的解, 知识框架 一元一次方程解法综合

一元一次方程及其解法教案

“一元一次方程及其解法复习”教学设计 【学习者分析】: 本班学生在一个星期前已经学习了等式的性质、一元一次方程的概念、一元一次方程的解以及一元一次方程的解法,在学习过程中大部分同学能掌握上述知识,但学生不会自主复习知识,因此很容易遗忘,需复习巩固。 【教学目标】: 一、情感态度与价值观 1、在复习一元一次方程的过程中,体会学习方程的意义在于解决实际问题。 2、在查漏补缺的过程中培养学生自我发现、自我归纳、善于分析、勇于探索的能力,循序渐进,激发学生求知欲,增强学生自信心,体会分类的数学思想。 二、过程与方法 1、以点拨——精讲——精练的模式,完善知识的结构。 2、尽力引导学生进行分析、归纳总结。 三、知识与技能 1、会运用等式的性质解一元一次方程,并检验一个数是不是某个一元一次方程的解,在解方程时会对求出的解进行检验,养成良好的学习习惯,并加深对方程解的认识。 2、会一元一次方程的简单应用。 【教学重点、难点】: 重点:一元一次方程的解和解一元一次方程 难点:能够熟练准确地解一元一次方程和它的应用 【教学过程】: 教学活动1: 一、复习知识点:等式的性质、一元一次方程的概念以及一元一次方程的解 (1)基础练习,回顾知识点: 1、巳知a=b,下列四个式子中,不正确的是( ) A .2a=2b B .-2a=-2b C .a+2=b-2 D .a-2=b-2 2、下列四个方程中,一元一次方程是( ) A 、012=-x B 、1=+y x C 、5712=- D 、0=x 3、下列方程中,以4为解的方程是( ) A .1052=+x B .483=--x C . 3232 1-=+x D .6322-=-x x (2)学生归纳,电脑呈现知识点 教学活动2:

含参一元一次方程解法教学文案

含参一元一次方程的解 法 知识回顾 1.一元一次方程:只含有一个未知数,并且未知数的最高次数是1,系数不等于0的整式方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数.2.解一元一次方程的一般步骤:⑴去分母;⑵去括号;⑶移项;⑷合并同类项;⑸未知数的系数化为1. 这五个步骤在解一元一次方程中,有时可能用不到,有时可能重复用,也不一定按顺序进行,要根据方程的特点灵活运用. 3.易错点1:去括号:括号前是负号时,括号里各项均要变号. 易错点2:去分母:漏乘不含分母的项. 易错点3:移项忘记变号. 基础巩固 【巩固1】若是关于x的一元一次方程,则. 【巩固2】方程去分母正确的是() A .B. C.D. 【巩固3】解方程 1.1一元一次方程的巧解 知识导航 求解一元一次方程的一般步骤是:⑴去分母;⑵去括号;⑶移项;⑷合并同类项;⑸未知数的系数化为1.在求解的过程中要要根据方程的特点灵活运用. 对于复杂的一元一次方程,在求解过程中通常会采用一些特殊的求解方法,需要同学们掌握,如:解一元一次方程中的应用. 具体归纳起来,巧解的方法主要有以下三种:⑴提取公因式;⑵对系数为分数的一元一次方程的系数进行裂项;⑶进行拆项和添项,从而化简原方程.

【例1】 ⑴⑵ 【例2】 解方程: ⑴ ⑵ ()()1123233211191313x x x -+-+= 1.2同解方程 若两个一元一次方程的解相同,则称它们是同解方程.同解方程一般有两种解法: ⑴只有一个方程含有参数,另外一个方程可以直接求解.此时,直接求得两个方程的公共解,然后代入需要求参数的方程,能够最快的得到答案. ⑵两个方程都含有参数,无法直接求解.此时,由于两个方程的解之间有等量关系,因此,可以先分别用参数来表示这两个方程的解,再通过数量关系列等式从而求得参数,这是求解同解方程的最一般方法. 注意:⑴两个解的数量关系有很多种,比如相等、互为相反数、多1、2倍等. (2)一元一次方程的公共根看似简单,其实却是一元二次方程公共根问题的前铺和基础. 【例3】 ⑴若方程 与有相同的解,求a 得值.; ⑵若 和是关于x 的同解方程,求的值. 【例4】 ⑴已知:与都是关于x 的一元一次方 程,且它们的解互为相反数,求m,n 分别是多少?关于x 的方程 的解是多少? ⑵当时,关于x 的方程的解是关于y 的方程的解得2倍. 1.3含参方程 当方程的系数用字母表示时,这样的方程称为含字母系数的方程,含字母系数的方程总能化成 的形式,方程的解根据的取值范围分类讨论. 1. 当 时,方程有唯一解. 2. 当时,方程有无数个解,解是任意数. 经典例题 知识导航 经典例题 知识导航

6-1一元一次方程的概念及解法

教师姓名 学生姓名 年 级 预初 上课时间 学 科 数学 课题名称 一元一次方程的概念及解法 周次 5 教学目标 1.理解和掌握方程的概念、方程中的项、系数、次数的概念; 2.掌握方程的解的概念和应用。 教学重难点 1.能够正确理解题意,找出等量关系式,列方程; 2.能够解决关于方程的解的解答题。 知识点回顾 1、方程的概念 用字母x 、y 、等表示所要求的未知的数量,这些字母称为未知数。含有未知数的等式叫做方程。在方程中,所含的未知数又称为元。 例题:下列各式是方程的是( ) A.3x-2 B.7y-5=2 C.a+b D.5-3=2 练习:有以下式子:(1) x ;(2)错误!未找到引用源。+2 ; (3) x 1 ; (4)错误!未找到引用源。=9; (5)错误!未找到引用源。y ; (6)x+3>5 ;错误!未找到引用源。 (7)2(z+1)=2; (8)错误!未找到引用源。+2y=0, 其中方程的个数是( ). 2、方程中的项、系数、次数等概念 (1)项:在方程中,被“+”、“-”,号隔开的每一部分(包括这部分前面的“十”、“-”号在内)称为一项. (2)未知数的系数:在一项中,写在未知数前面的数字或表示已知数的字母叫做未知数的系数. (3)项的次数:在一项中,所有未知数的指数和称为这一项的次数. (4)常数项:不含未知数的项,称为常数项. 例题:方程-3xy+8x-8=0中有_____项;它们分别是_____________________;-3xy 项的系数是______,次数是____________,常数项是___________。 练习:(1)方程 05 6 x 22=+-x 中有_____项;它们分别是_____________________;2x 项的系数是______。 (2)方程1047 2-3 =+x x 中常数项是__________;三次项是___________。 3、列方程 为了求得未知数,在未知数和已知数之间建立一种等量关系式,就是列方程。 例题:一个长方形篮球场的周长为86米,长是宽的2倍少2米,这个篮球场的长与宽分别是多少米? 用两种方法列式: 方程:设这个篮球场的宽为x 米,则长为(2x -2)米 2(2x -2+x )=86 想一想:你能再列一种方程吗?你还能用列式计算吗?

相关文档
相关文档 最新文档