文档库 最新最全的文档下载
当前位置:文档库 › 第16课时利用导数研究函数的性质

第16课时利用导数研究函数的性质

第16课时利用导数研究函数的性质
第16课时利用导数研究函数的性质

第16 课时 利用导数研究函数的性质

编者:仇小华 审核:刘智娟 第一部分 预习案 一、知识回顾

1. f ′(x )>0在(a ,b )上成立是f (x )在(a ,b )上单调递增的 条件.

2. f (x )在(a ,b )上是增函数的充要条件是 .

3. 对于可导函数f (x ),f ′(x 0)=0并不是f (x )在x =x 0处有极值的充分条件 对于可导函数f (x ),x =x 0是f (x )的极值点,必须具备①f ′(x 0)=0,②在x 0两侧,f ′(x )的符号为异号.所以f ′(x 0)=0只是f (x )在x 0处有极值的 条件,但并不 .

4. 如果不间断的函数f (x )在区间(a ,b )内只有一个极值点,那么这个极值点就是最值点.在解决实际问题中经常用到这一结论.

二、基础训练

1. 已知函数f (x )=ln a +ln x x

在[1,+∞)上为减函数,则实数a 的取值范围为__________.

2. 设函数f (x )=ax 3-3x +1 (x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数a 的值为________.

3. 若函数f (x )的导函数为f ′(x )=-x (x +1),则函数g (x )=f (log a x )(0

4. 已知函数f (x )=a sin 2x -13sin 3x (a 为常数)在x =π3

处取得极值,则a 的值为________.

5. 函数f (x )=12

x 2-ln x 在[1,e]上的最大值为________.

班级_________

学号_________

姓名_________

第二部分 探究案

探究一 利用导数求函数的单调区间

问题1 已知函数f (x )=x 3+ax 2-x +c ,且a =f ′????23.

(1)求a 的值;(2)求函数f (x )的单调区间;

(3)设函数g (x )=(f (x )-x 3)·e x ,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围.

探究二 已知单调区间求参数范围

问题2 已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数).

(1)当a =2时,求函数f (x )的单调增区间;

(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围.

探究三 函数的极值、最值应用问题

问题3 设函数f (x )=x 4+ax 3+2x 2+b (x ∈R ),其中a ,b ∈R .

(1)当a =-103

时,讨论函数f (x )的单调性; (2)若函数f (x )仅在x =0处有极值,求a 的取值范围;

(3)若对于任意的a ∈[-2,2],不等式f (x )≤1在[-1,0]上恒成立,求b 的取值范围.

探究四导数应用

问题3已知f(x)=x3-ax2-3x.

(1)若f(x)在[2,+∞)上是增函数,求实数a的取值范围;

(2)若x=3是f(x)的极值点,求f(x)在[1,a]上的最小值和最大值.

第三部分训练案见附页

2020高考数学 课后作业 3-2 利用导数研究函数的性质

3-2 利用导数研究函数的性质 1.(文)(2020·宿州模拟)已知y=f(x)是定义在R上的函数,且f(1)=1,f′ (x)>1,则f(x)>x的解集是( ) A.(0,1) B.(-1,0)∪(0,1) C.(1,+∞) D.(-∞,-1)∪(1,+∞) [答案] C [解析]令F(x)=f(x)-x,则F′(x)=f′(x)-1>0,所以F(x)是增函数,∵f(x)>x,∴F(x)>0,∵F(1)=f(1)-1=0,∴F(x)>F(1),∵F(x)是增函数,∴x>1,即f(x)>x的解集是(1,+∞). (理)(2020·辽宁文,11)函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( ) A.(-1,1) B.(-1,+∞) C.(-∞,-1) D.(-∞,+∞) [答案] B [解析]由题意,令φ(x)=f(x)-2x-4,则 φ′(x)=f′(x)-2>0. ∴φ(x)在R上是增函数. 又φ(-1)=f(-1)-2×(-1)-4=0, ∴当x>-1时,φ(x)>φ(-1)=0, ∴f(x)-2x-4>0,∴f(x)>2x+4.故选B. 2.(2020·宁夏石嘴山一模)函数y=2x3-3x2-12x+5在[0,3]上的最大值,最小值分别是( ) A.5,-15 B.5,-4 C.-4,-15 D.5,-16 [答案] A [解析]∵y′=6x2-6x-12=0,得x=-1(舍去)或x=2,故函数y=f(x)=2x3-3x2-12x+5在[0,3]上的最值可能是x取0,2,3时的函数值,而f(0)=5,f(2)=-15,f(3)=-4,故最大值为5,最小值为-15,故选A. 3.(文)已知函数f(x)=x3-px2-qx的图象与x轴切于(1,0)点,则f(x)的极大值、极小值分别为( ) A.4 27 ,0 B.0, 4 27 C.-4 27 ,0 D.0,- 4 27

利用导数解决函数零点问题

利用导数解决函数零点问题(第二轮大题) 这是一类利用导数解决函数零点的问题,解决这类问题的一般步骤是:转化为所构造函数的零点问题(1)求导分解定义域(2)导数为零列表去,(先在草稿纸进行)(3)含参可能要分类 (4)一对草图定大局(零点判定定理水上水下,找端点与极值点函数值符号) 目标:确保1分,争取2分,突破3分. (一)课前测试 1.(2015年全国Ⅰ卷,21)设函数x a e x f x ln )(2-=. (1)讨论)(x f 的导函数)(x f '零点的个数; (二)典型例题 2.(2017年全国Ⅰ卷,21)已知函数 e a ae x f x x -+=)2()(2(2)若0>a 且)(x f 有两个零点,求a 的取值范围. 注: ①求导分解定义域,这1分必拿, )0)(2(1 )(2>-= 'x a xe x x f x ②草稿纸上令0)(='x f ,构造函数)0(2)(>-=x a xe x g x ,重复上面步骤, 042)(22>+='x x xe e x g , )(x g 在),0(+∞递增 ③草图 a g -=)0(, +∞→+∞→)(x g x 时。 一定要用零点判定定理确定零点个数 ④综上所述送1分. )(x f ' )(x f

(三)强化巩固 3.(2017年全国Ⅱ卷,21)(2)证明:x x x x x f ln )(2 --=存在唯一 的极大值点0x ,且202 2)(--<

高中数学利用导数研究函数的性质( 极值与最值)

3.2利用导数研究函数的性质 第2课时导数与函数的极值、最值 一、基础知识 1.函数的单调性(复习) 在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减. 2.函数的极值 (1)一般地,求函数y=f(x)的极值的方法 解方程f′(x)=0,当f′(x0)=0时: ①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值; ②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值. (2)求可导函数极值的步骤 ①求f′(x); ②求方程f′(x)=0的根; ③考查f′(x)在方程f′(x)=0的根附近的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值. 3.函数的最值 (1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值. (2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值. 知识拓展 (1)对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件. (2)函数的极大值不一定比极小值大.

(3)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的必要不充分要条件. 二、基本题型 1.根据函数图象判断极值 【例1-1】 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( ) A .函数f (x )有极大值f (2)和极小值f (1) B .函数f (x )有极大值f (-2)和极小值f (1) C .函数f (x )有极大值f (2)和极小值f (-2) D .函数f (x )有极大值f (-2)和极小值f (2) 答案 D 解析 由题图可知,当x <-2时,f ′(x )>0;当-22时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 【变式1-1】函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( ) A .无极大值点、有四个极小值点 B .有三个极大值点、一个极小值点 C .有两个极大值点、两个极小值点 D .有四个极大值点、无极小值点 【答案】 C 【解析】 导函数的图象与x 轴的四个交点都是极值点,第一个与第三个是极大值点,第二个与第四个是极小值点. 2.求函数的极值和极值点 【例2-1】设函数f (x )=2x +ln x ,则( ) A .x =12为f (x )的极大值点 B .x =12 为f (x )的极小值点 C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点 【答案】 D 【解析】 f ′(x )=-2x 2+1x =x -2x 2(x >0),当02时,f ′(x )>0, ∴x =2为f (x )的极小值点.

利用导数研究方程的根和函数的零点--教案

利用导数研究方程的根和函数的零点--教案

利用导数研究方程的根和函数的零点 总结:①方程()0=x f的根()的零点 ? y= f 函数x ()轴的交点的恒坐标 ? f y= x 函数x 的图像与 ②方程()()x g f=的根 x ()()的根 f x x h- ? = g = x 方程0 - ?x f()()()的零点 x g ()()。 g y= x ? = 的图象的交点的横坐标 与 函数x f y 1.设a为实数,函数 ()a 3,当a什么范 - f+ - =2 x x x x 围内取值时,曲线()x f y= 与x轴仅有一个交点。 2、已知函数f(x)=-x2+8x,g(x)=6ln x+m (Ⅰ)求f(x)在区间[t,t+1]上的最大值h(t); (Ⅱ)是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点?若存在,求出m的取值范围;,若不存在,说明理由。 解:(I)22 =-+=--+ ()8(4)16. f x x x x

当14,t +<即3t <时,() f x 在[],1t t +上单调递增,22()(1)(1)8(1)67;h t f t t t t t =+=-+++=-++ 当41,t t ≤≤+即34t ≤≤时,()(4)16;h t f ==当4t >时,()f x 在[],1t t +上单调递减,2()()8.h t f t t t ==-+综上,2267,3,()16,34, 8,4t t t h t t t t t ?-++? (II )函数()y f x =的图象与()y g x =的图象有且只有三个不同的交点,即函数 ()()()x g x f x φ=-的图象与x 轴的正半轴有且只有三个不同的交点。 22()86ln , 62862(1)(3)'()28(0),x x x x m x x x x x x x x x x φφ=-++-+--∴=-+==>Q 当(0,1)x ∈时,'()0,()x x φφ>是增函数;当(0,3)x ∈时,'()0,()x x φφ<是减函数; 当(3,)x ∈+∞时,'()0,()x x φφ>是增函数;当1,x =或3x =时,'()0.x φ= ()(1)7,()(3)6ln 315.x m x m φφφφ∴==-==+-最大值最小值 Q 当x 充分接近0时,()0,x φ<当x 充分大时,()0.x φ> ∴ 要使()x φ的图象与x 轴正半轴有三个不同的交点,必须且只须

3.2.1几个常用函数的导数教案

3.2.1几个常用函数的导数教案 教学目标: 1. 能够用导数的定义求几个常用函数的导数; 2. 利用公式解决简单的问题。 教学重点和难点 1.重点:推导几个常用函数的导数; 2.难点:推导几个常用函数的导数。 教学方法: 自己动手用导数的定义求几个常用函数的导数,感知、理解、记忆。 教学过程: 一 复习 1、函数在一点处导数的定义; 2、导数的几何意义; 3、导函数的定义; 4、求函数的导数的步骤。 二 新课 例1.推导下列函数的导数 (1) ()f x c = 解:()()0y f x x f x c c x x x ?+?--===???, '00()lim lim 00x x y f x x ?→?→?===? 1. 求()f x x =的导数。 解: ()()1y f x x f x x x x x x x ?+?-+?-===???, '00()lim lim 11x x y f x x ?→?→?===?。 '1y =表示函数y x =图象上每一点处的切线的斜率都为1.若y x =表示路程关于时间的函数,则' 1y =可以解释为某物体做瞬时速度为1的匀速运动。 思考:(1).从求y x =,2y x =,3y x =,4y x =的导数如何来判断这几个函数递增的快慢? (2).函数(0)y kx k =≠增的快慢与什么有关? 可以看出,当k>0时,导数越大,递增越快;当k<0时,导数越小,递减越快. 2. 求函数2()y f x x ==的导数。

解: 22 ()()()2y f x x f x x x x x x x x x ?+?-+?-===+????, ''00 ()lim lim (2)2x x y y f x x x x x ?→?→?===+?=?。 '2y x =表示函数2y x =图象上每点(x,y )处的切线的斜率为2x ,说明随着x 的变化,切线的斜率也在变化: (1) 当x<0时,随着 x 的增加,2y x =减少得越来越慢; (2)当x>0时,随着 x 的增加,2y x =增加得越来越快。 3. 求函数1()y f x x ==的导数。 解: 211()()()1()y f x x f x x x x x x x x x x x x x x x x x -?+?--+?+?====-???+??+??, ''220011()lim lim ()x x y y f x x x x x x ?→?→?===-=-?+?? 思考:(1)如何求该曲线在点(1,1)处的切线方程? '(1)1k f ==-,所以其切线方程为2y x =-+。 (2)改为点(3,3),结果如何? (3)把这个结论当做公式多好呀,,既方便,又减少了复杂的运算过程。 三 例题 1. 试求函数()y f x = 解: ()()y f x x f x x x ?+?-==??= ''0()lim lim x x y y f x x ?→?→?====? 2. 已知点P (-1,1),点Q (2,4)是曲线2y x =上的两点,求与直线PQ 平行的曲线 的切线方程。 解:'2y x =,设切点为00(,)M x y ,则0'02.x x y x ==

利用导数研究函数的单调性

利用导数研究函数的单调性 一、选择题 1.函数f (x )=x ln x ,则( ) A.在(0,+∞)上递增 B.在(0,+∞)上递减 C.在? ? ???0,1e 上递增 D.在? ? ???0,1e 上递减 解析 f (x )的定义域为(0,+∞),f ′(x )=ln x +1,令f ′(x )>0得x >1 e , 令f ′(x )<0得00. 答案 C 3.已知函数f (x )=1 2x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 f ′(x )=3 2x 2+a ,当a ≥0时,f ′(x )≥0恒成立,故“a >0”是“f (x ) 在R 上单调递增”的充分不必要条件. 答案 A 4.已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )

解析由y=f′(x)的图象知,y=f(x)在[-1,1]上为增函数,且在区间(-1,0)上增长速度越来越快,而在区间(0,1)上增长速度越来越慢. 答案 B 5.设函数f(x)=1 2 x2-9ln x在区间[a-1,a+1]上单调递减,则实数a的取值 范围是( ) A.(1,2] B.(4,+∞] C.[-∞,2) D.(0,3] 解析∵f(x)=1 2 x2-9ln x,∴f′(x)=x- 9 x (x>0), 当x-9 x ≤0时,有00且a+1≤3,解得10得 x>1. 答案(1,+∞) 7.已知a≥0,函数f(x)=(x2-2ax)e x,若f(x)在[-1,1]上是单调减函数,则实数a的取值范围是________.

导数研究函数性质

1.导数与导函数的概念 (1)设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值Δy Δx =f (x 0+Δx )-f (x 0)Δx 无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称该常数A 为函数f (x )在x =x 0处的导数(derivative),记作f ′(x 0). (2)若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数,记作f ′(x ). 2.导数的几何意义 函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0). 3.基本初等函数的导数公式 4.导数的运算法则 若f ′(x ),g ′(x )存在,则有 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );

(3)[f (x )g (x )]′=f ′(x )g (x )-f (x )g ′(x )g 2(x ) (g (x )≠0). 5.复合函数的导数 若y =f (u ),u =ax +b ,则y ′x =y ′u ·u ′x ,即y ′x =y ′u ·a . 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)与(f (x 0))′表示的意义相同.( ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( ) 1.(教材改编)f ′(x )是函数f (x )=13x 3+2x +1的导函数,则f ′(-1)的值为 ________. 2.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是________. 3.设函数f (x )的导数为f ′(x ),且f (x )=f ′(π2)sin x +cos x ,则f ′(π4)=________. 4.已知点P 在曲线y = 4e x +1 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是__________. 5.(2015·陕西)设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.

3-2-1 几个常用函数的导数及基本初等函数的导数公式

基础巩固强化 一、选择题 1.设y =e 3,则y ′等于( ) A .3e 2 B .e 2 C .0 D .以上都不是 [答案] C [解析] ∵y =e 3是一个常数,∴y ′=0. 2.(2012~2013学年度陕西宝鸡中学高二期末测试)函数y =sin x 的导数是( ) A .y =sin x B .y =-cos x C .y =cos x D .y =-sin x [答案] C [解析] ∵(sin x )′=cos x , ∴选C. 3.已知函数f (x )=x 3的切线的斜率等于3,则切线有( ) A .1条 B .2条 C .3条 D .不确定 [答案] B [解析] ∵f ′(x )=3x 2=3,解得x =±1.切点有两个,即可得切线有两条. 4.若y =cos 2π 3,则y ′=( ) A .-3 2 B .-12

C .0 D.12 [答案] C [解析] 常数函数的导数为0. 5.若y =ln x ,则其图象在x =2处的切线斜率是( ) A .1 B .0 C .2 D.12 [答案] D [解析] ∵y ′=1x ,∴y ′|x =2=1 2,故图象在x =2处的切线斜率为12. 6.y =x α在x =1处切线方程为y =-4x ,则α的值为( ) A .4 B .-4 C .1 D .-1 [答案] B [解析] y ′=(x α)′=αx α-1, 由条件知,y ′|x =1=α=-4. 二、填空题 7.曲线y =ln x 与x 轴交点处的切线方程是__________. [答案] y =x -1 [解析] ∵曲线y =ln x 与x 轴的交点为(1,0) y ′|x =1=1,∴切线的斜率为1, ∴所求切线方程为:y =x -1. 8.质点沿直线运动的路程与时间的关系是s =5 t ,则质点在t =32时的速度等于____________.

《导数在研究函数中的应用—函数的单调性与导数》说课稿

《导数在研究函数中的应用—函数的单调性与导数》说课稿 周国会 一、教材分析 1教材的地位和作用 “函数的单调性和导数”这节新知识是在教材选修1—1,第三章《导数及其应用》的函数的单调性与导数.本节计划两个课时完成。在练习解二次不等式、含参数二次不等式的问题后,结合导数的几何意义回忆函数的单调性与函数的关系。例题精讲强化函数单调性的判断方法,例题的选择有梯度,由无参数的一般问题转化为解关于导函数的不等式,再解关于含参数的问题,最后提出函数单调性与导数关系逆推成立。培养学生数形结合思想、转化思想、分类讨论的数学思想。能利用导数研究函数的单调性;会求函数的单调区间.在高考中常利用导数研究函数的单调性,并求单调区间、极值、最值、以及利用导数解决生活中的优化问题。其中利用导数判断单调性起着基础性的作用,形成初步的知识体系,培养学生掌握一定的分析问题和解决问题的能力。 (一)知识与技能目标: 1、能探索并应用函数的单调性与导数的关系求单调区间; 2、能解决含参数函数的单调性问题以及函数单调性与导数关系逆推。 (二)过程与方法目标: 1、通过本节的学习,掌握用导数研究函数单调性的方法。 2、培养学生的观察、比较、分析、概括的能力,数形结合思想、转化思想、分类讨论的数学思想。 (三)情感、态度与价值观目标: 1、通过在教学过程中让学生多动手、多观察、勤思考、善总结, 2、培养学生的探索精神,渗透辩证唯物主义的方法论和认识论教育。激发学生独立思考和创新的意识,让学生有创新的机会,充分体验成功的喜悦,开发了学生的自我潜能。(四)教学重点,难点 教学重点:利用导数研究函数的单调性、求函数的单调区间。 教学难点:探求含参数函数的单调性的问题。 二、教法分析 针对本知识点在高考中的地位、作用,以及学生前期预备基础,应注重理解函数单调性与导数的关系,进行合理的推理,引导学生明确求可导函数单调区间的一般步骤和方法,无参数的一般问题转化为解关于导函数的不等式。解关于含参数的问题,注意分类讨论点的确认,灵活应用已知函数的单调性求参数的取值范围。采用启发式教学,强调数形结合思想、转化思想、分类讨论的数学思想的应用,培养学生的探究精神,提高语言表达和概括能力,

高中数学高考总复习利用导数研究函数的性质习题及详解

高中数学高考总复习利用导数研究函数的性质习题及详解 一、选择题 1.(文)函数y =ax 3 -x 在R 上是减函数,则( ) A .a =1 3 B .a =1 C .a =2 D .a ≤0 [答案] D [解析] y ′=3ax 2-1, ∵函数y =ax 3-x 在R 上是减函数, ∴3ax 2-1≤0在R 上恒成立,∴a ≤0. (理)(2010·瑞安中学)若函数f (x )=x 3+x 2+mx +1是R 上的单调递增函数,则实数m 的取值范围是( ) A.? ???? 13,+∞ B.? ???? -∞,13 C.???? ??13,+∞ D. ? ?? ?? -∞,13 [答案] C [解析] f ′(x )=3x 2+2x +m ,由条件知,f ′(x )≥0恒成立,∴Δ=4-12m ≤0,∴m ≥1 3 ,故选C. 2.(文)(2010·柳州、贵港、钦州模拟)已知直线y =kx +1及曲线y =x 3+ax +b 切于点(1,3),则b 的值为( ) A .3 B .-3 C .5 D .-5 [答案] A [解析] 由条件知(1,3)在直线y =kx +1上,∴k =2. 又(1,3)在曲线y =x 3+ax +b 上,∴a +b =2, ∵y ′=3x 2+a ,∴3+a =2,∴a =-1,∴b =3. (理)(2010·山东滨州)已知P 点在曲线F :y =x 3-x 上,且曲线F 在点

P处的切线及直线x+2y=0垂直,则点P的坐标为( ) A.(1,1) B.(-1,0) C.(-1,0)或(1,0) D.(1,0)或(1,1) [答案] C [解析] ∵y′=(x3-x)′=3x2-1,又过P点的切线及直线x+2y=0垂直,∴y′=3x2-1=2,∴x=±1,又P点在曲线F:y=x3-x上,∴当x=1时,y=0,当x=-1时,y=0,∴P点的坐标为(-1,0)或(1,0),故选C. 3.(2010·山东文)已知某生产厂家的年利润y(单位:万元)及年产量 x(单位:万件)的函数关系式为y=-1 3 x3+81x-234,则使该生产厂家获 取最大的年利润的年产量为( ) A.13万件B.11万件 C.9万件D.7万件 [答案] C [解析] 由条件知x>0,y′=-x2+81,令y′=0得x=9,当x∈(0,9)时,y′>0,函数单调递增,当x∈(9,+∞)时,y′<0,函数单调递减,∴x=9时,函数取得最大值,故选C. [点评] 本题中函数只有一个驻点x=9,故x=9就是最大值点. 4.(文)(2010·四川双流县质检)已知函数f(x)的定义域为R,f′(x)为其导函数,函数y=f′(x)的图象如图所示,且f(-2)=1,f(3)=1,则不等式f(x2-6)>1的解集为( ) A.(2,3)∪(-3,-2) B.(-2,2) C.(2,3) D.(-∞,-2)∪(2,+∞)

第16课时利用导数研究函数的性质

第16 课时 利用导数研究函数的性质 编者:仇小华 审核:刘智娟 第一部分 预习案 一、知识回顾 1. f ′(x )>0在(a ,b )上成立是f (x )在(a ,b )上单调递增的 条件. 2. f (x )在(a ,b )上是增函数的充要条件是 . 3. 对于可导函数f (x ),f ′(x 0)=0并不是f (x )在x =x 0处有极值的充分条件 对于可导函数f (x ),x =x 0是f (x )的极值点,必须具备①f ′(x 0)=0,②在x 0两侧,f ′(x )的符号为异号.所以f ′(x 0)=0只是f (x )在x 0处有极值的 条件,但并不 . 4. 如果不间断的函数f (x )在区间(a ,b )内只有一个极值点,那么这个极值点就是最值点.在解决实际问题中经常用到这一结论. 二、基础训练 1. 已知函数f (x )=ln a +ln x x 在[1,+∞)上为减函数,则实数a 的取值范围为__________. 2. 设函数f (x )=ax 3-3x +1 (x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数a 的值为________. 3. 若函数f (x )的导函数为f ′(x )=-x (x +1),则函数g (x )=f (log a x )(0

3.2.1几个常用函数导数(学、教案)

3. 2.1几个常用函数导数 课前预习学案 (预习教材P 88~ P 89,找出疑惑之处) 复习1:导数的几何意义是:曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为 复习2:求函数)(x f y =的导数的一般方法: (1)求函数的改变量y ?= (2)求平均变化率y x ?=? (3)取极限,得导数/y =()f x '=x y x ??→?0lim = 上课学案 学习目标1记住四个公式,会公式的证明过程; 2.学会利用公式,求一些函数的导数; 3.知道变化率的概念,解决一些物理上的简单问题. 学习重难点:会利用公式求函数导数,公式的证明过程 学习过程 合作探究 探究任务一:函数()y f x c ==的导数. 问题:如何求函数()y f x c ==的导数 新知:0y '=表示函数y c =图象上每一点处的切线斜率为 . 若y c =表示路程关于时间的函数,则y '= ,可以解释为 即一直处于静止状态. 试试: 求函数()y f x x ==的导数 反思:1y '=表示函数y x =图象上每一点处的切线斜率为 . 若y x =表示路程关于时间的函数,则y '= ,可以解释为 探究任务二:在同一平面直角坐标系中,画出函数2,3,4y x y x y x ===的图象,并根据导数定义,求它们的导数. (1)从图象上看,它们的导数分别表示什么? (2)这三个函数中,哪一个增加得最快?哪一个增加得最慢? (3)函数(0)y kx k =≠增(减)的快慢与什么有关? 典型例题 例1 求函数1()y f x x ==的导数 解析:因为11()()y f x x f x x x x x x x -?+?-+?==???

(整理)利用导数研究函数的性质.

专题三 利用导数研究函数的性质 1. f ′(x )>0在(a ,b )上成立是f (x )在(a ,b )上单调递增的充分不必要条件. 2. f (x )在(a ,b )上是增函数的充要条件是f ′(x )≥0,且f ′(x )=0在有限个点处取到. 3. 对于可导函数f (x ),f ′(x 0)=0并不是f (x )在x =x 0处有极值的充分条件 对于可导函数f (x ),x =x 0是f (x )的极值点,必须具备①f ′(x 0)=0,②在x 0两侧,f ′(x )的符号为异号.所以f ′(x 0)=0只是f (x )在x 0处有极值的必要条件,但并不充分. 4. 如果连续函数f (x )在区间(a ,b )内只有一个极值点,那么这个极值点就是最值点.在解决 实际问题中经常用到这一结论. 1. 已知函数f (x )=ln a +ln x x 在[1,+∞)上为减函数,则实数a 的取值范围为__________. 答案 [e ,+∞) 解析 f ′(x )=1x ·x -(ln a +ln x )x 2=1-(ln a +ln x )x 2,因为f (x )在[1,+∞)上为减函数,故 f ′(x )≤0在[1,+∞)上恒成立,即ln a ≥1-ln x 在[1,+∞)上恒成立.设φ(x )=1-ln x ,φ(x )max =1,故ln a ≥1,a ≥e. 2. 设函数f (x )=ax 3-3x +1 (x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数a 的值为________. 答案 4 解析 若x =0,则不论a 取何值,f (x )≥0显然成立; 当x >0,即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3.设g (x )=3x 2-1 x 3,则g ′(x ) = 3(1-2x ) x 4 , 所以g (x )在区间????0,12上单调递增,在区间????12,1上单调递减,因此g (x )max =g ????1 2=4,从而a ≥4. 当x <0,即x ∈[-1,0)时,同理a ≤3x 2-1 x 3.

用导数研究函数的恒成立与存在性问题-答案

用导数研究函数的恒成立与存在问题 1.已知函数23()2ln x f x x x a = -+,其中a 为常数. (1)若1a =,求函数()f x 的单调区间; (2)若函数()f x 在区间[1,2]上为单调函数,求a 的取值范围. 2.已知函数3 2 ()4()f x x ax a R =-+-∈,'()f x 是()f x 的导函数。 (1)当2a =时,对于任意的[1,1]m ∈-,[1,1]n ∈-,求()()f m f n '+的最小值; (2)若存在0(0,)x ∈+∞,使0()f x >0,求a 的取值范围。

3.已知函数x ax x f ln )(+= )(R a ∈. (1)若2=a ,求曲线)(x f y =在点1x =处的切线方程; (2)求)(x f 的单调区间; (3)设22)(2 +-=x x x g ,若对任意1(0,)x ∈+∞,均存在[]1,02∈x ,使得)()(21x g x f <, 求实数a 的取值范围.

4.(2016届惠州二模)已知函数()22ln f x x x =-+. (Ⅰ)求函数()f x 的最大值; (Ⅱ)若函数()f x 与()a g x x x =+ 有相同极值点. ①求实数a 的值; ②对121,,3x x e ???∈???? (e 为自然对数的底数),不等式 ()() 1211 f x g x k -≤-恒成立,求实数k 的取值范围.

5.已知函数2 12 ()()ln ()f x a x x a R =-+∈. (1)当1a =时,01[,]x e ?∈使不等式0()f x m ≤,求实数m 的取值范围; (2)若在区间1(,)+∞,函数()f x 的图象恒在直线2y ax =的下方,求实数a 的取值范围.

高中数学二轮复习专题二—利用导数研究函数的性质

专题二——利用导数研究函数的性质2009-2-24 高考趋势 导数作为进入高中考试范围的新内容,在考试中占比较大.常利用导数研究函数的性质,主要是利用导数求函数的单调区间、求函数的极值和最值,这些内容都是近年来高考的重点和难点,大多数试题以解答题的形式出现,通常是整个试卷的压轴题。试题主要先判断或证明函数的单调区间,其次求函数的极值和最值,有时涉及用函数的单调性对不等式进行证明。 考点展示 1.二次函数y f x =()的图象过原点且它的导函数y f x ='()的图象是如图所示的一条直线,则y f x =()图象的顶点在第 一 象限 2.如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别 为(04)(20)(64),,,,,,则((0))f f = 2 ; 函数()f x 在1x =处的导数(1)f '= -2 . 3.曲线324y x x =-+在点(13),处的切线的倾斜角为 45° 4.设曲线2 ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a 1 5.设R a ∈,若函数ax e y x +=,R x ∈有大于零的极值点,则a 的取值范围1-,对于任意实数x ,有()0f x ≥,则 (1) (0) f f '的最小值为 2 . 7.已知函数3 ()128f x x x =-+在区间[]33-,上的最大值与最小值分别为M ,m ,则M m -=__32_ _ 8.过点P (2,8)作曲线3 x y =的切线,则切线方程为_ 12x-y -16=0或3x-y+2=0 样题剖析 例1、设函数32 3()(1)1,32 a f x x x a x a = -+++其中为实数。 (Ⅰ)已知函数()f x 在1x =处取得极值,求a 的值; (Ⅱ)已知不等式'2 ()1f x x x a >--+对任意(0,)a ∈+∞都成立,求实数x 的取值范围。 解: (1) ' 2 ()3(1)f x ax x a =-++,由于函数()f x 在1x =时取得极值,所以 ' (1)0f = 即 310,1a a a -++==∴ (2) 方法一:由题设知:2 2 3(1)1ax x a x x a -++>--+对任意(0,)a ∈+∞都成立 即2 2 (2)20a x x x +-->对任意(0,)a ∈+∞都成立 设 2 2 ()(2)2()g a a x x x a R =+--∈, 则对任意x R ∈,()g a 为单调递增函数()a R ∈ 所以对任意(0,)a ∈+∞,()0g a >恒成立的充分必要条件是(0)0g ≥ 即 2 20x x --≥,20x -≤≤∴ 于是x 的取值范围是}{ |20x x -≤≤ 方法二:由题设知:2 2 3(1)1ax x a x x a -++>--+对任意(0,)a ∈+∞都成立 即2 2 (2)20a x x x +-->对任意(0,)a ∈+∞都成立 于是2222x x a x +>+对任意(0,)a ∈+∞都成立,即22 202 x x x +≤+ 20x -≤≤∴ 于是x 的取值范围是}{|20x x -≤≤ 点评:函数在某点处取得极值,则在这点处的导数为0,反过来,函数的导数在某点的值为0,则在函数这点处取得极值。 变式1.若f(x)=2 1ln(2)2 x b x - ++∞在(-1,+)上是减函数,则b 的取值范围是 1b ≤- 由题意可知' ()02 b f x x x =-+<+,在(1,)x ∈-+∞上恒成立, 即(2)b x x <+在(1,)x ∈-+∞上恒成立,由于1x ≠-,所以1b ≤-, 变式2.已知函数1 1()3 x p f x -=,2 2()23 x p f x -=?(12,,x R p p ∈为常数).则()()12f x f x ≤对所有实 数x 成立的充分必要条件(用12,p p 表示)为 (1)由()f x 的定义可知,1()()f x f x =(对所有实数x )等价于 ()()12f x f x ≤(对所有实数x )这又等价于1 2 3 23 x p x p --≤,即 12 3log 23 32x p x p ---≤=对所有实数x 均成立. (*) 由于121212()()()x p x p x p x p p p x R ---≤---=-∈的最大值为12p p -, 2 B C A y x 1 O 3 4 5 6 1 2 3 4

利用导数研究函数的图像及零点问题(提高)

利用导数研究函数的图像及零点问题 【复习指导】 本讲复习时,应注重利用导数来研究函数图像与零点问题,复习中要注意等价转化、分类讨论等数学思想的应用. 双基自测 1.已知曲线C :x 2+y 2=9(x ≥0,y ≥0)与函数y =ln x 及函数y =e x 的图像分别交于点A (x 1,y 1),B (x 2,y 2),则2212x x +的值为 .9 2.[10浙江]已知0x 是函数1()21x f x x =+-的一个零点.若10(1,)x x ∈,20(,)x x ∈+∞,则1()f x ,2()f x 的符号分别______________.解:负;正; 3.已知函数()ln x f x e x -=+(e 是自然对数的底数),若实数0x 是方程()0f x =的解,且1020x x x <<<,则1()f x 2()f x (填“>”,“≥”,“<”,“≤”). 4.已知234101()1234101x x x x f x x =+-+-+???+,234101()1234101x x x x g x x =-+-+-???-,若函数()f x 有唯一零点1x ,函数()g x 有唯一零点2x ,则1x ,2x 所在的区间 为 .1(1,0)x ∈-,2(1,2)x ∈ 考点一 函数的图像问题 【例1】对于三次函数32()(0)f x ax bx cx d a =+++≠.定义:设''()f x 是函数 ()y f x =的导数'()y f x =的导数, 若方程''()0f x =有实数解x 0,则称点(x 0,f (x 0))为函数()y f x =的“拐点”;已知函数32()654f x x x x =-++,请回答下列问题; ⑴.求函数()y f x =的“拐点”A 的坐标; ⑵.检验函数()y f x =的图像是否关于“拐点”A 对称,对于任意的三

利用导数研究函数的零点

利用导数研究函数的零点 (求导求出极值,画出函数的草图分析) 1.已知曲线C :32 112132 y x x x = --+,直线:l y a = (1)若直线l 与曲线C 有唯一一个交点,求a 的取值范围;(73a <-或13 6a >) (2)若直线l 与曲线C 有两个不同的交点,求a 的取值范围;(73a =-或13 6a =) (3)若直线l 与曲线C 有三个不同的交点,求a 的取值范围.(76a -<13 6 <) 解:令2 '2(1)(2)y x x x x =--=+-0=得11,x =-或22x = 当12x -<<时,'0y <;当1x <-或2x >时,'0y >. 所以()g x 在(1,2)-为减函数,在(,1)-∞-,(2,)+∞为增函数. 当1x =-时,取得极大值max 13 6 y =;当2x =时, 取得极大值min 73y =- ; (1)当73a <-或13 6a >时,直线l 与曲线C 有唯一一个交点; (2)当73a =-或13 6a =时,直线l 与曲线C 有两个不同的交点; (3)当713 36 a -<<时,直线l 与曲线C 有三个不同的交点. 2.已知函数3 ()31,1f x x ax a =--≠ (1)函数()y f x =的单调区间; (2)若()f x 在1x =-处取得极值,直线y m =与()y f x =的图象有三个不同的交点,求m 的取值范围.(-3,1) 解: (1)f ′(x )=3x 2-3a =3(x 2-a ),当a <0时,对x ∈R ,有f ′(x )>0, ∴当a <0时,f (x )的单调增区间为(-∞,+∞).当a >0时,由f ′(x )>0,解得x <-a 或x >a . 由f ′(x )<0,解得-a 0时,f (x )的单调增区间为 (-∞,-a ),(a ,+∞),单调减区间为(-a ,a ). (2)∵f (x )在x =-1处取得极值,∴f ′(-1)=3×(-1)2-3a =0, ∴a =1.∴f (x )=x 3-3x -1,f ′(x )=3x 2-3, 由f ′(x )=0,解得x 1=-1,x 2=1. 由(1)中f (x )的单调性可知,f (x )在x =-1处取得极大值 f (-1)=1,在x =1处取得极小值f (1)=-3.∵直线y =m 与函数y =f (x )的图象有三个不同的交点,结合如图所示f (x )的图象可知:实数m 的取值范围是(-3,1). x y (2,-7 6 )(-1,7 3 )f x () = 13?x 3 1 2 ?x 2 2?x + 1 2-1

相关文档
相关文档 最新文档