文档库 最新最全的文档下载
当前位置:文档库 › 数列的极限及运算法则

数列的极限及运算法则

数列的极限及运算法则
数列的极限及运算法则

学习要求:

1.理解数列极限的概念。正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想

2.理解和掌握三个常用极限及其使用条件.能运用化归转化和分类讨论的思想解决数列极限问题的能力. 3.掌握数列极限的运算法则,并会求简单的数列的极限 4. 掌握无穷等比数列各项的和公式. 学习材料: 一、基本知识

1.数列极限的定义:

一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即n a a -无限趋近于0),那么就说数列}{n a 以a 为极限,或者说a 是数列}{n a 的极限.记作lim n n a a →∞

=,读作“当n 趋向

于无穷大时,n a 的极限等于a ”

“n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思lim n n a a →∞

=有时也记作:当n →∞时,n a →a .

理解:数列的极限的直观描述方式的定义,只是对数列变化趋势的定性说明,而不是定量化的定义.“随着项数n 的无限增大,数列的项n a 无限地趋近于某个常数a ”的意义有两个方面:一方面,数列的项

n a 趋近于a 是在无限过程中进行的,即随着n 的增大n a 越来越接近于a ;另一方面,n a 不是一般地趋近

于a ,而是“无限”地趋近于a ,即n a a -随n 的增大而无限地趋近于0. 2.几个重要极限: (1)01

lim

=∞→n n (2)C C n =∞

→lim (C 是常数) (3)lim 0n

n a →∞

= (a 为常数1a <),当1a =时,lim 1n

n a →∞

=;当1a =-或1a >时,lim n

n a →∞

不存在。 3. 数列极限的运算法则:

与函数极限的运算法则类似, 如果,lim ,lim B b A a n n n n ==∞

→∞

→那么

B A b a n n n +=+∞

→)(lim B A b a n n n -=-∞

→)(lim

B A b a n n n .).(lim =∞

→ )0(lim

≠=∞→B B A

b a n

n n

特别:若C 为常数,则lim()lim n n n n C a c a CA →∞

→∞

==g g

推广:上面法则可以推广到有限..多个数列的情况如,若{}n

a ,{}n

b ,{}n

c 有极限,则

n n n n n n n n n n c b a c b a ∞

→∞

→∞

→∞

→++=++lim lim lim )(lim

二、基本题目

1.判断下列数列是否有极限,若有,写出极限;若没有,说明理由

(1)1,

21,31,…,n 1

,… ; (2)3452,,,,234--…,1(1)n n n

+-,…; (3)1010

100(10)1(10)n n a n n ?≤?

=?>??

2.(1)若1lim(

)02n

n a a

→∞-=,则a 的取值范围是 。

(2)数列}{n a 的前n 项和为n S ,且2

13

n n S a =-,求lim n n a →∞的值。

3. 已知,5lim =∞

→n n a 3lim =∞→n n b ,求).43(lim n n n b a -∞

解:因为,5lim =∞

→n n a 3lim =∞

→n n b ,

所以 lim(34)lim3lim43lim 4lim 15123n n n n n n n n n n n a b a b a b →∞

→∞

→∞

→∞

→∞

-=-=-=-=

4. 求下列极限:(1))45(lim n n +∞→;

(2)2

)11(lim -∞→n n 解:(1)44lim(5)lim5lim 505n n n n n →∞→∞

→∞+=+=+=;(2)222

11lim(1)(lim lim1)(01)1n n n n n →∞→∞→∞-=-=-=

5. 求下列极限:

(1))21(lim 2n n n +∞→. (2)n

n n 2

3lim -∞→. (3)232lim 22++∞→n n n n . (4)24323lim n n n n n -+∞→.

解:(1)0001

lim 202lim 1lim )21(

lim 22=+=+=+=+∞→∞→∞→∞

→n n n n n n n n n . (2) (方法一)3031

lim 232lim 3lim )23(lim 23lim

=-=-=-=-=-∞→∞→∞→∞→∞→n n

n n n n n n n n .

(方法二)∵n →∞,∴0n ≠.分子、分母同除n 的最高次幂.

31

31lim )2

3(lim 123lim

2

3lim

==-=-

=-∞

→∞→∞→∞→n n n n n n n

n . 第二个题目不能体现“分子、分母同除n 的最高次幂”这个方法的优势.这道题目就可以.使用上述方法就简单多了.因为分母上是2

32n +,有常数项,所以 (2)的方法一就不能用了.

(3)3

203022

lim 3lim 1

lim

2lim )23(lim )12(lim 2312lim 232lim

22222

=++=++=++=++

=++∞→∞→∞→∞→∞→∞→∞→∞→n n n

n n n n n n n n n n n n n n . 规律一:一般地,当分子与分母是关于n 的次数相同的多项式时,这个公式在n →∞时的极限是分

子与分母中最高次项的系数之比.

(4)分子、分母同除n 的最高次幂即4

n ,得.

00

2001

lim 2lim 1lim 3lim 1213lim 23lim 23

23243

=-+=-+=-+=-+∞→∞→∞→∞→∞→∞→n n n n

n n n n n n n n n n n n . 规律二:一般地,当分子、分母都是关于n 的多项式时,且分母的次数高于分子的次数时,当n →∞

时,这个分式极限为0. 6.求下列极限.

(1))13(lim 2n n n n -+-∞→. (2)2

1323lim -++-∞→n n n . (3)15

13lim ++-∞→n n n .

解:(1)1113

1lim 13lim 13lim )13(lim 2

2

2

=+

-

-=+--=+---=-+-∞→∞→∞→∞→n

n n n n n n n n n n n n n n . (2)3010321

13

23lim

21323lim =-+=-++

-=-++-∞→∞

→n

n

n n

n n n n .

(3)001001lim

1lim 5lim

13lim 11513lim 1513lim 22=++=++-=++-=++-∞→∞→∞→∞→∞→∞→n n n n n

n n n n n n n n n n n .

说明:当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不

能直接运用两个(或几个)函数(或数列)的极限至少有一个不存在,但它们的和、差、积、商的极限不一定不存在

7. 求下列极限:

(1) )1

1

2171513(lim 2222+++++++++∞→n n n n n n K ;(2))39312421(lim 11--∞→++++++++n n n K K 解:先求和再求极限 (1) )1

1

2171513(

lim 2222+++++++++∞→n n n n n n K 2

2222

2[3(21)]

1357(21)22lim lim lim lim 111111n n n n n n n n n n n n n n

→∞→∞→∞→∞+++++++++=====++++L

(2)1

1212[()]

1242212(21)33lim()lim lim lim 011

139331(31)123

n n n

n

n n n n n n n n n --→∞→∞→∞→∞-++++--====++++---K K 8. 公比绝对值小于1的无穷等比数列前n 项和的极限

公比的绝对值小于1的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和.

设无穷等比数列ΛΛ,,,,,1

12

111-n q

a q a q a a 的公比q 的绝对值小于1,则其各项的和S 为

q

a S -=

11

)1(

解:, , ,…的首项10.3a =,公比0.1q =所以 s=+ + +…=0.31

10.13

=-

(2)将无限循环小数。

。92.0化为分数.

解:0.290.290.00290.000029=+++&&L =224621111291029()29110101099110

+++==-L 练习:如图,在边长为l 的等边ABC ?中,圆1O 为ABC ?的内切圆,圆2O 与圆1O 外切,且与,AB BC 相切,…,圆1n O +与圆n O 外切,且与,AB BC 相切,如此无限继续下去,

记圆n O 的面积为*

()n a n N ∈.

(Ⅰ)证明{}n a 是等比数列;

(Ⅱ)求12lim()n n a a a →∞

+++L 的值.

函数与数列的极限的强化练习题答案(含详细分析)

第一讲:函数与数列的极限的强化练习题答案 一、单项选择题 1.下面函数与y x =为同一函数的是() 2 .A y= .B y= ln .x C y e =.ln x D y e = 解:ln ln x y e x e x === Q,且定义域 () , -∞+∞,∴选D 2.已知?是f的反函数,则() 2 f x的反函 数是() () 1 . 2 A y x ? =() .2 B y x ? = () 1 .2 2 C y x ? =() .22 D y x ? = 解:令() 2, y f x =反解出x:() 1 , 2 x y =?互 换x,y位置得反函数() 1 2 y x =?,选A 3.设() f x在() , -∞+∞有定义,则下列函数 为奇函数的是() ()() .A y f x f x =+- ()() .B y x f x f x =-- ?? ?? () 32 .C y x f x = ()() .D y f x f x =-? 解:() 32 y x f x = Q的定义域() , -∞+∞且 ()()()()() 3232 y x x f x x f x y x -=-=-=- ∴选C 4.下列函数在() , -∞+∞内无界的是() 2 1 . 1 A y x = + .arctan B y x = .sin cos C y x x =+.sin D y x x = 解: 排除法:A 2 1 122 x x x x ≤= + 有界, B arctan 2 x π <有界, C sin cos x x +≤ 故选D 5.数列{}n x有界是lim n n x →∞ 存在的() A 必要条件 B 充分条件 C 充分必要条件 D 无关条件 解:Q{}n x收敛时,数列n x有界(即 n x M ≤),反之不成立,(如() {}11n--有界, 但不收敛, 选A 6.当n→∞时,2 1 sin n 与 1 k n 为等价无穷小, 则k= () A 1 2 B 1 C 2 D -2 解:Q 2 2 11 sin lim lim1 11 n n k k n n n n →∞→∞ ==,2 k=选C 二、填空题(每小题4分,共24分) 7.设() 1 1 f x x = + ,则() f f x ?? ??的定义域 为

极限四则运算法则

极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。 定理1:若B x g A x f ==)(lim ,)(lim ,则)]()(lim[x g x f ±存在,且 )(lim )(lim )]()(lim[x g x f B A x g x f ±=±=±。 证明: 只证B A x g x f +=+)]()(lim[,过程为0x x →,对0,01>?>?δε,当 100δ<-?δ,当2 00δ<-

第一讲数列地极限典型例题

第一讲 数列的极限 一、内容提要 1.数列极限的定义 N n N a x n n >?N ∈?>??=∞ →,,0lim ε,有ε<-a x n . 注1 ε的双重性.一方面,正数ε具有绝对的任意性,这样才能有 {}n x 无限趋近于)(N n a x a n ><-?ε 另一方面,正数ε又具有相对的固定性,从而使不等式ε<-a x n .还表明数列{}n x 无限趋近于a 的渐近过程的不同程度,进而能估算{}n x 趋近于a 的近似程度. 注2 若n n x ∞ →lim 存在,则对于每一个正数ε,总存在一正整数N 与之对应,但这种N 不是 唯一的,若N 满足定义中的要求,则取Λ,2,1++N N ,作为定义中的新的一个N 也必须满足极限定义中的要求,故若存在一个N 则必存在无穷多个正整数可作为定义中的N . 注3 a x n →)(∞→n 的几何意义是:对a 的预先给定的任意-ε邻域),(εa U ,在{}n x 中至多除去有限项,其余的无穷多项将全部进入),(εa U . 注4 N n N a x n n >?N ∈?>??≠∞ →00,, 0lim ε,有00ε≥-a x n . 2. 子列的定义 在数列{}n x 中,保持原来次序自左往右任意选取无穷多个项所得的数列称为{}n x 的子列,记为{} k n x ,其中k n 表示k n x 在原数列中的项数,k 表示它在子列中的项数. 注1 对每一个k ,有k n k ≥. 注2 对任意两个正整数k h ,,如果k h ≥,则k h n n ≥.反之,若k h n n ≤,则k h ≤. 注3 K k K a x k n n >?N ∈?>??=∞→,, 0lim ε,有ε<-a x k n . 注4 ?=∞ →a x n n lim {}n x 的任一子列{} k n x 收敛于a . 3.数列有界 对数列{}n x ,若0>?M ,使得对N n >?,有M x n ≤,则称数列{}n x 为有界数列. 4.无穷大量 对数列{}n x ,如果0>?G ,N n N >?N ∈?,,有G x n >,则称{}n x 为无穷大量,记 作∞=∞ →n n x lim .

数列的极限及运算法则

学习要求: 1.理解数列极限的概念。正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想 2.理解和掌握三个常用极限及其使用条件.能运用化归转化和分类讨论的思想解决数列极限问题的能力. 3.掌握数列极限的运算法则,并会求简单的数列的极限 4. 掌握无穷等比数列各项的和公式. 学习材料: 一、基本知识 1.数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即n a a -无限趋近于0),那么就说数列}{n a 以a 为极限,或者说a 是数列}{n a 的极限.记作lim n n a a →∞ =,读作“当n 趋向 于无穷大时,n a 的极限等于a ” “n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思lim n n a a →∞ =有时也记作:当n →∞时,n a →a . 理解:数列的极限的直观描述方式的定义,只是对数列变化趋势的定性说明,而不是定量化的定义.“随着项数n 的无限增大,数列的项n a 无限地趋近于某个常数a ”的意义有两个方面:一方面,数列的项 n a 趋近于a 是在无限过程中进行的,即随着n 的增大n a 越来越接近于a ;另一方面,n a 不是一般地趋近 于a ,而是“无限”地趋近于a ,即n a a -随n 的增大而无限地趋近于0. 2.几个重要极限: (1)01 lim =∞→n n (2)C C n =∞ →lim (C 是常数) (3)lim 0n n a →∞ = (a 为常数1a <),当1a =时,lim 1n n a →∞ =;当1a =-或1a >时,lim n n a →∞ 不存在。 3. 数列极限的运算法则: 与函数极限的运算法则类似, 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 特别:若C 为常数,则lim()lim n n n n C a c a CA →∞ →∞ ==g g 推广:上面法则可以推广到有限..多个数列的情况如,若{}n a ,{}n b ,{}n c 有极限,则 n n n n n n n n n n c b a c b a ∞ →∞ →∞ →∞ →++=++lim lim lim )(lim 二、基本题目 1.判断下列数列是否有极限,若有,写出极限;若没有,说明理由

数列极限的运算法则

数列极限的运算法则(5月3日) 教学目标:掌握数列极限的运算法则,并会求简单的数列极限的极限。 教学重点:运用数列极限的运算法则求极限 教学难点:数列极限法则的运用 教学过程: 一、复习引入: 函数极限的运算法则:如果,)(lim ,)(lim 0 B x g A x f x x x x ==→→则[]=±→) ()(lim 0 x g x f x x ___ []=→)().(lim 0 x g x f x x ____,=→) () (lim x g x f x x ____(B 0≠) 二、新授课: 数列极限的运算法则与函数极限的运算法则类似: 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 推广:上面法则可以推广到有限.. 多个数列的情况。例如,若{}n a ,{}n b ,{}n c 有极限, 则:n n n n n n n n n n c b a c b a ∞ →∞ →∞ →∞ →++=++lim lim lim )(lim 特别地,如果C 是常数,那么CA a C a C n n n n n ==∞ →∞ →∞ →lim .lim ).(lim 二.例题: 例1.已知,5lim =∞ →n n a 3lim =∞→n n b ,求).43(lim n n n b a -∞ → 例2.求下列极限: (1))45(lim n n + ∞ →; (2)2)11 (lim -∞→n n

上海高中数学数列的极限(完整资料)

【最新整理,下载后即可编辑】 7.6 数列的极限 课标解读: 1、理解数列极限的意义; 2、掌握数列极限的四则运算法则。 目标分解: 1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{}n a 的项n a 无限地趋近于某个常数a (即||a a n -无限地接近于0),那么就说数列{}n a 以a 为极限。 注:a 不一定是{}n a 中的项。 2、几个常用的极限:①C C n =∞→lim (C 为常数);②01lim =∞→n n ;③ ) 1|(|0lim <=∞ →q q n n ; 3、数列极限的四则运算法则:设数列{}n a 、{}n b , 当 a a n n =∞ →lim , b b n n =∞ →lim 时,b a b a n n n ±=±∞→)(lim ; b a b a n n n ?=?∞ →)(lim ; )0(lim ≠=∞→b b a b a n n n 4、两个重要极限: ① ?? ???<=>=∞→00100 1lim c c c n c n 不存在

②?? ???-=>=<=∞ →11||111||0 lim r r r r r n n 或不存在 问题解析: 一、求极限: 例1:求下列极限: (1) 3 21 4lim 22 +++∞→n n n n (2) 2 4323lim n n n n n -+∞→ (3) )(lim 2n n n n -+∞ → 例2:求下列极限: (1) )23741(lim 2222n n n n n n -++++∞→ ; (2) ])23()13(11181851521[lim +?-++?+?+?∞→n n n 例3:求下式的极限:

极限的运算法则

7.7 (2)极限的运算法则 一、教学内容分析 本小节的教学内容是在理解无穷数列极限的概念的基础上学习数列极限的运算性质及四个重要的极限,鉴于高二学生现有的数学基础,教材采取从实际的例子引入,给出数列极限的运算性质及四个重要极限的结论,然后通过例题加以说明的方式. 教学重点是数列极限的运算性质,教学中要强调运算性质成立的条件是两个数列的极限都存在. 教学难点是数列极限的运算性质及四个重要极限结论的灵活运用,会进行恒等变形,运算性质可从两个数列推广到有限个数列,注意有限与无限的本质区别. 二、教学目标设计 掌握数列极限的运算性质,会利用这些性质计算数列的极限. 知道数列极限的四个重要结论,并会用它们来求有关数列的极限; 会运用式的恒等变形,把分子、分母极限不存在的分式转化为若干个极限存在的数列的代数和,从而求出极限,提高观

察,分析以及等加转换的能力. 三、教学重点及难点 重点:数列极限的运算性质. 难点:数列极限的运算性质及重要极限的灵活运用. 四、教学流程设计 五、教学过程设计 一、复习回顾 1、数列极限的定义. 2、已知1 23-=n n a n 试判断数列{}n a 是否有极限,如果有,写 出它的极限. 二、讲授新课

1、实例引入 计算由抛物线x y =2,x 轴以及直线x=1所围成的区域 面积S :2 6)12)(1(lim lim n n n S S n n n --==∞→∞→ 2、数列极限的运算性质 (1)数列极限的运算性质 如果B b A a n n n n ==∞ →∞→lim ,lim ,那么 (1)B A b a b a n n n n n n n ±=±=±∞ →∞→∞→lim lim )(lim ; (2)B A b a b a n n n n n n n ?=?=?∞ →∞→∞→lim lim )(lim ; (3)B A b a b a n n n n n n n ==∞ →∞→∞→lim lim lim ; (2)的推论:若C 是常数,则A C a C b C n n n n n ?=?=?∞ →∞→∞→lim lim )(lim 说明:1、运算性质成立的条件 2、在数列商的极限中,作为分母的数列的项及其极 限都不为零. (2)常用的数列极限的几个结论 (1)对于数列{}n q ,当1

数列极限四则运算法则的证明

数列极限四则运算法则的证明 设limAn=A,limBn=B,则有 法则1:lim(A n+B n)=A+B 法则2:lim(An-Bn)=A-B 法则3:lim(An ? Bn)=AB 法则4:lim(An/Bn)=A/B. 法则5:lim(An的k次方)=A的k次方(k是正整数) (n T+R的符号就先省略了,反正都知道怎么回事.) 首先必须知道极限的定义: 如果数列{Xn}和常数A有以下关系:对于?£> 0(不论它多么小),总存在正数N,使得对于满足n > N的一切Xn,不等式|Xn-A| v &都成立, 则称常数A是数列{Xn}的极限,记作limXn=A. 根据这个定义,首先容易证明:引理1: limC=C.(即常数列的极限等于其本身) 法则1的证明: ?/ limAn=A,二对任意正数 &存在正整数N?,使n > N?时恒有|An-A| v&①(极限定义)同理对同一正数&存在正整数N?,使n>N?时恒有|Bn-B| v 设N=max{N ?,N?},由上可知当n > N时①②两式全都成立. 此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)| < |An-A|+|Bn-B| v & + & =2 &. 由于&是任意正数,所以2&也是任意正数. 即:对任意正数2 &存在正整数N,使n > N时恒有|(An+Bn)-(A+B)| v 2 &. 由极限定义可知,lim(An+Bn)=A+B. 即:对任意正数C&存在正整数N,使n > N时恒有|C ? An-CA|v C&. 由极限定义可知,lim(C ? An)=C?A若C=0的话更好证) 法则2的证明: lim(A n-B n) =limA n+lim(-B n)(法则1) =limAn+(-1)limBn (引理2) =A-B. 为了证明法则3,再证明1个引理. 引理3:若limAn=0,limBn=0,则lim(An ? Bn)=0. 证明:?/ limAn=0,二对任意正数 &存在正整数N?,使n>N?时恒有|An-0| v &③(极限定义)同理对同一

(完整版)极限四则运算法则.doc

极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。 定理 1:若lim f (x) A,lim g (x) B ,则 lim[ f ( x) g (x)] 存在,且 lim[ f ( x) g ( x)] A B lim f (x) lim g( x) 。 证明:只证 lim[ f ( x) g ( x)] A B ,过程为 x x0,对0, 1 0 ,当 0 x x0 1时,有 f (x) A ,对此, 2 0 ,当0 x x0 2 2 时,有 g ( x) B ,取min{ 1 , 2 } ,当0 x x0 时,有 2 ( f ( x) g( x)) ( A B) ( f (x) A) ( g( x) B) f ( x) A g( x) B 2 2 所以 lim ( f ( x) g( x)) A B 。 x x0 其它情况类似可证。 注:本定理可推广到有限个函数的情形。 定理 2:若lim f (x)A,lim g(x) B ,则 lim f ( x) g( x) 存在,且 lim f (x) g( x) AB lim f ( x) lim g( x) 。 证明:因为 lim f ( x) A, lim g( x) B , f ( x) A, g (x) B, (,均为无穷小) f ( x) g(x) ( A)( B) AB ( A B) ,记 A B,为无穷小,lim f ( x) g(x) A B 。 推论 1:lim[ cf ( x)]clim f ( x) ( c 为常数)。 推论 2:lim[ f ( x)]n[lim f ( x)] n( n 为正整数)。 定理 3:设lim f ( x) A, lim g( x) B 0 ,则 lim f ( x) A lim f ( x) 。 g( x) B lim g (x) 证明:设 f ( x) A, g(x) B(,为无穷小),考虑差:

数列极限求法及其应用-毕业论文

数 列 极 限 的 求 法 及 其 应 用 2012年 9 月 28 日

容提要 数列极限可用N ε-语言和A N -语言进行准确定义,本文主要讲述数列极限的不同求法,例如:极限定义求法、极限运算法则法、夹逼准则求法、单调有界定理求法、函数极限法、定积分定义法、Stoltz 公式法、几何算术平均收敛公式法、级数法、收缩法等等.我们还会发现同一数列极限可用不同方法来求. 最后我们还简要介绍了数列极限在现实生活中的应用,如几何中推算圆面积,求方程的数值解,研究市场经营的稳定性及购房按揭贷款分期偿还问题.通过这些应用使我们对数列极限有一个更系统立体的了解. 关键词 ε-定义;夹逼准则;Stoltz公式;函数极限 N

On the Solutions and the Applications as to the Sequence Limit Name: Yang NO. 07 The guidance of teachers: Dong Titles: Lecturer Abstract The limit of a sequence can be accurately defined by N ε-language and A N - language. This paper mainly describes different solutions to finding sequence limit, for example, definition of sequence limit method, fundamental operations of sequence limit method, squeezing law method, the monotone convergence theorem method, function limits method, definite integrals definition method, Stoltz formula method, geomeric and arithmetic convergence formula method, series method, contraction method, etc. We'll also find that different methods can be used to solve the same limit. Finally, we also briefly introduce the applications of sequence limit in real life, such as, infering the area of a circle in geometry, finding the numerial solution of equations, studying the stability of the market operation and the amortization problems of purchase mortgage loans.

数列极限的运算法则

数列极限的运算法则 (上海教育出版社高中课本数学高二第一学期第二课时) 一.教学目标: 掌握数列极限的运算法则,并会利用这些法则求简单的数列的极限。 二.教学重点:运用数列极限的运算法则求极限 教学难点:无限个数列极限的运算 教学过程: 1. 引入: 今天的主角是古希腊著名的数学家、物理学家阿基米德。他提出了三次方程的几何解法,发现了以他的名字命名的螺线,他曾求出许多图形的面积和体积,极限的思想能够帮助我们解决很多几何图形面积体积的问题,今天我们也来做一次数学家,研究重现一下他这一贡献的过程。我们来看这个例子,要计算由抛物线2y x =、x 轴以及直线x=1所围成的区域的面积S ,这是一个曲边三角形,不能用三角形的面积公式来计算,阿基米德是如何计算的呢首先把区间[0,1]分为两部分,那么作出的这一个矩形的面积必然小于曲边三角形面积,之后我们再尝试继续一分为二,那么作出这三个矩形,其面积比我们刚才计算的要大,但仍小于曲边三角形的面积,继续采取这种方法,增大区间段,不妨设把区间[0,1]分成n 个小区间,即用x 轴上的分点0,1231,,,.....,,n n n n n n - 分隔;那么在每个小区间上作一个小矩形,使矩形的左上端点在抛物线上,这些矩形的高对应就是 222212310,(),(),(),.....,()n n n n n -,我们来考虑这些矩形面积的总和: 2222222332 1112111123...(1)(1)(21)(1)(21)0()()....()66n n n n n n n n S n n n n n n n n n n -++++-----=?+?+?+?===我们不妨考察n S 与S 之间有何关系,我们尝试使n 越来越大,也就使分的每段区间越来越小,那么矩形可以要多窄有多窄,我们是不是就可以把n S 近似看作S 了呢,n 无限增大,矩形面积的和就可以无限逼近曲边三角形的面积~这就是一种极限的思想,当n 无限增大时,矩形面积的总和n S 可以近似等于曲边三角形的面积,它们之间的差极其小。那么这个极限我们上节课已经学过了,结果是多少哇(1/3)非常好,这是大学中非常重要的一种积分的思想,我们看到了极限的重要性,那么大家更要认真学习,积极理解。那么我们就来回顾一下上节课介绍的常见的三种数列极限。(提问)不错,功课做的很足~我们上节课呢,介绍的f(n)/g(n)模型是常考点,但除此之外还有很多复杂的数列,他们的极限比较复杂,那么应该如何求呢我们学过实数的四则运算,今天我们就来探讨一下数列极限的四则运算性质: 揭示主题:数列极限的四则运算性质。 2. 概念详细讲解:

高考数学二轮复习 数列、极限、数学归纳法(1)

2008高考数学二轮复习数列、极限、数学归纳法(1) 教学目标: 1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项. 2.理解等差(比)数列的概念,掌握等差(比)数列的通项公式与前n项和的公式. 并能运用这些知识来解决一些实际问题. 教学重点: 理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项. 教学难点: 理解等差(比)数列的概念,掌握等差(比)数列的通项公式与前n项和的公式. 并能运用这些知识来解决一些实际问题. 教学方法设计:“五步”教学法 教学用具:三角板多媒体 板书设计 一、知识框架 二、典型例题 三、总结 四、检测 教学过程 一、出示教学目标。

理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n 项. 理解等差(比)数列的概念,掌握等差(比)数列的通项公式与前n 项和的公式. 并能运用这些知识来解决一些实际问题. 二、组织基础知识结构,构建知识网络。 三、典型例题引路。 【例1】 已知由正数组成的等比数列{}n a ,若前n 2项之和等于它前n 2项中的偶数项之和的11倍,第3项与第4项之和为第2项与第4项之积的11倍,求数列{}n a 的通项公式. 解:∵q =1时122na S n =,1na S =偶数项 又01>a 显然11112na na ≠,q ≠1 ∴2212121)1(1)1(q q q a S q q a S n n n --==--=偶数项 依题意2 21211)1(111)1(q q q a q q a n n --?=--;解之101 = q 又421422143),1(q a a a q q a a a =+=+,

最新3第一讲__数列的极限典型例题汇总

3第一讲__数列的极限典型例题

第一讲 数列的极限 一、内容提要 1.数列极限的定义 ?Skip Record If...?,有?Skip Record If...?. 注1 ?Skip Record If...?的双重性.一方面,正数?Skip Record If...?具有绝对的任意性,这样才能有 ?Skip Record If...?无限趋近于?Skip Record If...? 另一方面,正数?Skip Record If...?又具有相对的固定性,从而使不等式?Skip Record If...?.还表明数列?Skip Record If...?无限趋近于?Skip Record If...?的渐近过程的不同程度,进而能估算?Skip Record If...?趋近于?Skip Record If...?的近似程度. 注2若?Skip Record If...?存在,则对于每一个正数?Skip Record If...?,总存在一正整数?Skip Record If...?与之对应,但这种?Skip Record If...?不是唯一的,若?Skip Record If...?满足定义中的要求,则取?Skip Record If...?,作为定义中的新的一个?Skip Record If...?也必须满足极限定义中的要求,故若存在一个?Skip Record If...?则必存在无穷多个正整数可作为定义中的?Skip Record If...?. 注3?Skip Record If...??Skip Record If...?的几何意义是:对?Skip Record If...?的预先给定的任意?Skip Record If...?邻域?Skip Record If...?,在?Skip Record If...?中至多除去有限项,其余的无穷多项将全部进入?Skip Record If...?. 注4?Skip Record If...?,有?Skip Record If...?. 2.子列的定义

《数列极限的运算法则》教案(优质课)

《数列极限的运算法则》教案 【教学目标】:掌握数列极限的运算法则,并会求简单的数列极限的极限。 【教学重点】:运用数列极限的运算法则求极限 【教学难点】:数列极限法则的运用 【教学过程】: 一、复习引入: 函数极限的运算法则:如果,)(lim ,)(lim 0 B x g A x f x x x x ==→→则[]= ±→)()(lim 0 x g x f x x ___ []=→)().(lim 0 x g x f x x ____,=→) () (lim x g x f x x ____(B 0≠) 二、新授课: 数列极限的运算法则与函数极限的运算法则类似: 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 推广:上面法则可以推广到有限..多个数列的情况。例如,若{}n a ,{}n b ,{} n c 有极限,则:n n n n n n n n n n c b a c b a ∞ →∞ →∞ →∞ →++=++lim lim lim )(lim 特别地,如果C 是常数,那么CA a C a C n n n n n ==∞ →∞ →∞ →lim .lim ).(lim 三、例题: 例1.已知,5lim =∞ →n n a 3lim =∞→n n b ,求).43(lim n n n b a -∞ →

例2.求下列极限: (1))45(lim n n +∞→; (2)2)11 (lim -∞→n n 例3.求下列有限: (1)1312lim ++∞→n n n (2)1 lim 2-∞→n n n 分析:(1)(2)当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用。 例4.求下列极限: (1) )1 1 2171513( lim 2222+++++++++∞ →n n n n n n (2))39312421( lim 1 1 --∞→++++++++n n n

3第一讲__数列地极限典型例题

第一讲 数列的极限 一、容提要 1.数列极限的定义 N n N a x n n >?N ∈?>??=∞ →,,0lim ε,有ε<-a x n . 注1 ε的双重性.一方面,正数ε具有绝对的任意性,这样才能有 {}n x 无限趋近于)(N n a x a n ><-?ε 另一方面,正数ε又具有相对的固定性,从而使不等式ε<-a x n .还表明数列{}n x 无限趋近于a 的渐近过程的不同程度,进而能估算{}n x 趋近于a 的近似程度. 注2 若n n x ∞ →lim 存在,则对于每一个正数ε,总存在一正整数N 与之对应,但这种N 不是 唯一的,若N 满足定义中的要求,则取 ,2,1++N N ,作为定义中的新的一个N 也必须满足极限定义中的要求,故若存在一个N 则必存在无穷多个正整数可作为定义中的N . 注3 a x n →)(∞→n 的几何意义是:对a 的预先给定的任意-ε邻域),(εa U ,在{}n x 中至多除去有限项,其余的无穷多项将全部进入),(εa U . 注4 N n N a x n n >?N ∈?>??≠∞ →00,, 0lim ε,有00ε≥-a x n . 2. 子列的定义 在数列{}n x 中,保持原来次序自左往右任意选取无穷多个项所得的数列称为{}n x 的子列,记为{} k n x ,其中k n 表示k n x 在原数列中的项数,k 表示它在子列中的项数. 注1 对每一个k ,有k n k ≥. 注2 对任意两个正整数k h ,,如果k h ≥,则k h n n ≥.反之,若k h n n ≤,则k h ≤. 注3 K k K a x k n n >?N ∈?>??=∞→,, 0lim ε,有ε<-a x k n . 注4 ?=∞ →a x n n lim {}n x 的任一子列{} k n x 收敛于a . 3.数列有界 对数列{}n x ,若0>?M ,使得对N n >?,有M x n ≤,则称数列{}n x 为有界数列. 4.无穷大量 对数列{}n x ,如果0>?G ,N n N >?N ∈?, ,有G x n >,则称{}n x 为无穷大量,记

数列的极限及运算法则

数列的极限及其运算法则 学习要求: 1.理解数列极限的概念。正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想 2.理解和掌握三个常用极限及其使用条件.能运用化归转化和分类讨论的思想解决数列极限问题的能力. 3.掌握数列极限的运算法则,并会求简单的数列的极限 4. 掌握无穷等比数列各项的和公式. 学习材料: 一、基本知识 1.数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即n a a -无限趋近于0),那么就说数列}{n a 以a 为极限,或者说a 是数列}{n a 的极限.记作lim n n a a →∞ =,读作“当n 趋向 于无穷大时,n a 的极限等于a ” “n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思n a a →∞ =有时也记作:当n →∞时,n a →a . 理解:数列的极限的直观描述方式的定义,只是对数列变化趋势的定性说明,而不是定量化的定义.“随着项数n 的无限增大,数列的项n a 无限地趋近于某个常数a ”的意义有两个方面:一方面,数列的项 n a 趋近于a 是在无限过程中进行的,即随着n 的增大n a 越来越接近于a ;另一方面,n a 不是一般地趋近 于a ,而是“无限”地趋近于a ,即n a a -随n 的增大而无限地趋近于0. 2.几个重要极限: (1)01 lim =∞→n n (2)C C n =∞ →lim (C 是常数) (3)lim 0n n a →∞ = (a 为常数1a <),当1a =时,lim 1n n a →∞ =;当1a =-或1a >时,lim n n a →∞ 不存在。 3. 数列极限的运算法则: 与函数极限的运算法则类似, 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 特别:若C 为常数,则lim()lim n n n n C a c a CA →∞ →∞ ==g g 推广:上面法则可以推广到有限..多个数列的情,若{}n a ,{}n b ,{}n c 有极限,则 n n n n n n n n n c b a c b a ∞ →∞→∞→∞→++=++lim lim lim )(lim

数列极限的运算法则

精心整理 数列极限的运算法则(5月3日) 教学目标:掌握数列极限的运算法则,并会求简单的数列极限的极限。 教学重点:运用数列极限的运算法则求极限 教学难点:数列极限法则的运用 [→lim 0 x x 如果}有极二.例1.例2.(例3.求下列有限: (1)1312lim ++∞ →n n n (2)1 lim 2-∞→n n n 分析:(1)(2)当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用。 例4.求下列极限:

(1))1 1 2171513( lim 2 222+++++++++∞ →n n n n n n K (2)39312421(lim 1 1--∞→++++++++n n n K K 说明:1.数列极限的运算法则成立的前提的条件是:数列的极限都是存在,在进行极限运算时,要特别注意这一点。当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用。 2. 3.1.(12.(13.(1)n n lim ∞→; (2) 2 3lim -∞→n n ; (3)2 12 3lim n n n --∞→; (4)1325lim 22--∞→n n n n 。 4.求下列极限 已知,3lim =∞→n n a ,5lim =∞ →n n b 求下列极限: (1).).43(lim n n n b a -∞ → (2). n n n n n b a b a +-∞ →lim

5.求下列极限: (1). );2 7(lim n n -∞→ (2).)51 ( lim 2-∞ →n n (3).)43 (1lim +∞→n n n (4).11 1 1 lim -+∞→n n n (5).22321lim n n n ++++∞→Λ (6).11657lim -+∞→n n n (7). n (9

考研数列极限计算汇总

数列极限及其计算(习题部分) 数列极限存在性的证明以及数列极限的计算,是考研数学的重难点,有时会命制成压轴题。 在考研范围内,数列极限计算常用的方法主要有单调有界准则、夹逼准则、初等变形、定积分定义、归结原理、级数收敛的必要条件、转化为幂级数求和等。本章部分题目涉及到后续章节的知识(如利用定积分定义求极限),自学本讲义的同学可暂时跳过。 题型一、递推数列的极限 (一)单调有界准则 例题1收敛并求极限值 注:利用单调有界准则证明递推数列的收敛性,是常考题型。在具体证明单调性和有界性时,常用到一些经典的不等式放缩,如均值不等式,柯西不等式等等;有时也可用数学归纳法证明。(在进行含有自然数的命题的证明时,我们常常可以考虑数学归纳法,这是一个很好用也很流氓的一个方法。) 类题1 ,证明收敛并求极限值 类题2 ,证明收敛并求极限值 ,问此时是否收敛,该如何 证明?若将,又该如何证明? 类题3 ,证明收敛并求极限值 [注]:此题对于极限值的取舍才是关键点,这是很多辅导书都没有讲清楚的地方,希望大家好好思考。 类题4 设数列,证明收敛并求极限 类题5设可导,且,对于数列收敛, 且极限值满足方程 类题6 收敛并求极限值 类题7 (2018年数学二压轴题)设,证明收敛并求极限 注:这题是我当年考研时的原题,当时考完以后,很多人就在吹这个题多么的不常规,是考研史上最难的数列极限题。也正常,弱者总喜欢找各种理由。 例题2设收敛 注:①.该题说明,某些不是递推型的数列,也可以用单调有界准则来证明 ②.是一个非常重要的极限,我们将这个极限值定义为欧拉常数, 和是等价无穷

是发散的。() 例题3问数列的单调性和函数的单调性之间有无必然联系?请猜想并证明你的判断。 例题4 (2013年数学二压轴题)设函数 (1) 求的最小值 (2)设数列收敛并求极限 注:本题的解法值得借鉴。该题说明,即使某些数列的递推关系由不等式给出,也能使用单调有界准则。 类题1 收敛并求极限 类题2 ,证明收敛并求极限 (二)非单调的迭代数列 例题1收敛并求极限值 注:对付这种不单调的数列,我们可以采取“先斩后奏”的办法——即先把极限值找出来,然后再用递推放缩的方法,证明这个数字就是该数列的极限。以下还有几道类似的题—— 类题1 ,证明收敛并求极限值 类题2 收敛并求极限值 例题2 压缩映像原理 设当,满足——对于上任意两点和,都有 ,试证明—— (1) ,使得 (2) ,证明收敛,且 注:压缩映像原理根本就不要求数列是单调的——只要函数是一个压缩映射,那么就一定收 若题目还告知了可导,那么在具体使用压缩映像原理证明数列收敛时,更常用的是下面这个推论:推论成立,则一定收敛。 (在利用压缩映像原理解题时,最常见的错误就是忽略了 ——正是因为,才能保证数列收敛。这里的相当于是一个“压缩比例” 或“压缩因子”。所以,如果只是证明出来了,是证明不出数列收敛的;, 才能说明数列收敛,也就是说,这个是不可缺少的,在解题时一定要找到这个具体的,切记!)

高三数学试题数列的极限

数列的极限 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注:a 不一定是{a n }中的项. 2.几个常用的极限:①∞ →n lim C =C (C 为常数);②∞ →n lim n 1 =0;③∞→n lim q n =0 (|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; ∞ →n lim (a n ·b n )=a ·b ; ∞ →n lim n n b a =b a ( b ≠0). ●点击双基 1.下列极限正确的个数是 ①∞ →n lim α n 1=0(α>0) ②∞ →n lim q n =0 ③∞ →n lim n n n n 3 232+-=-1 ④∞ →n lim C =C (C 为常数) A.2 B.3 C.4 D.都不正确 解析:①③④正确. 答案:B 2. ∞ →n lim [n (1-3 1)(1-4 1)(1-51) (1) 2 1 +n )]等于 A.0 B.1 C.2 D.3 解析: ∞ →n lim [n (1-3 1)(1-4 1)(1-5 1) (1) 2 1 +n )]

=∞ →n lim [n ×32×43×54×…×2 1++n n ] =∞ →n lim 2 2+n n =2. 答案:C ●典例剖析 【例1】 求下列极限: (1)∞ →n lim 7 5722 2+++n n n ;(2) ∞ →n lim ( n n +2-n ); (3)∞ →n lim ( 2 2n + 2 4n +…+2 2n n ). 剖析:(1)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n 2后再求极限;(2)因 n n +2与 n 都没有极限,可先分子有理化再求极限;(3)因为极限的运算法则只适用于有限个数列,需先求和再求极限. 解:(1)∞ →n lim 7 57 222 +++n n n =∞→n lim 2 2757 12n n n +++ =5 2. (2)∞ →n lim ( n n +2-n )= ∞ →n lim n n n n ++2=∞ →n lim 1111++ n =2 1. (3)原式=∞ →n lim 2 2642n n ++++Λ=∞ →n lim 2 )1(n n n +=∞→n lim (1+n 1 )=1. 评述:对于(1)要避免下面两种错误:①原式=) 75(lim ) 72(lim 22+++∞ →∞ →n n n n n =∞ ∞=1, ②∵∞ →n lim (2n 2+n +7), ∞ →n lim (5n 2+7)不存在,∴原式无极限.对于(2) 要避免出现下面两种错误: ①∞ →n lim ( n n +2-n )= ∞ →n lim n n +2-∞ →n lim n =∞-∞=0;②原式=∞ →n lim n n +2-∞ →n lim n =∞-∞不存在.

相关文档
相关文档 最新文档