文档库 最新最全的文档下载
当前位置:文档库 › 纳米药物载体介导的联合给药逆转肿瘤多药耐药的研究进展

纳米药物载体介导的联合给药逆转肿瘤多药耐药的研究进展

纳米药物载体介导的联合给药逆转肿瘤多药耐药的研究进展
纳米药物载体介导的联合给药逆转肿瘤多药耐药的研究进展

纳米药物载体介导的联合给药逆转肿瘤多药耐药的研究进展

目的:为设计用于联合给药逆转肿瘤多药耐药的新型纳米药物载体提供参考。方法:以“纳米药物载体”“联合给药”“多药耐药”“Multidrug resistance”“Co-delivery”“Nanoparticle”等为关键词,组合查询2012-2017年在中国知网、万方、维普、PubMed、Elsevier等数据库中的相关文献,对纳米药物载体介导的联合给药在逆转肿瘤多药耐药中的优势及联合给药的类型进行综述。结果与结论:共检索到相关文献282篇,其中有效文献47篇。药物经纳米载体包载后具有增加药物在肿瘤部位的蓄积、延长药物在体内的循环时间、促进药物在肿瘤部位的靶向递送、控制联合给药药物比例、增强逆转多药耐药的协同作用等优势。纳米载体可以介导不同类型药物的联合给药用于逆转肿瘤多药耐药。联合递送的药物组合类型包括化疗药与化疗药、化疗药与多药耐药逆转剂、化疗药与小干扰RNA、化疗药与单克隆抗体、天然产物与天然产物等。其中,采用化疗药与其他药联合给药是最常见的联合给药类型。纳米药物载体介导的联合给药是逆转肿瘤多药耐药的非常具有潜力的给药形式,但目前均未进入临床阶段。为使纳米药物载体介导的联合给药更好地应用于临床,在处方工艺和临床效果评价等方面尚需大量的研究工作。

关键词纳米药物载体;联合给药;肿瘤多药耐药;综述

肿瘤多药耐药(MDR)是指肿瘤细胞在对一种化疗药产生耐药的情况下同时对一系列不同结构和不同机制的化疗药产生耐药的现象,MDR是临床上导致化疗失败的重要原因[1]。MDR发生机制复杂,包括细胞内因以及肿瘤微环境改变等,MDR发生机制的复杂性为克服肿瘤耐药带来挑战[2-3]。目前有研究报道的逆转MDR的策略很多,包括应用新型药物递送系统递送化疗药、采用MDR 逆转剂与传统化疗药联合给药等[4-6]。与临床单一药物治疗比较,联合给药对耐药肿瘤具有更好的疗效,目前临床上往往采用联合给药的策略治疗耐药肿瘤或降低耐药肿瘤的发生率[7]。采用纳米药物载体共载需联合给药的药物可进一步增强对耐药肿瘤的增殖抑制作用,为逆转肿瘤MDR提供了很好的药物递送平台[8-9]。

采用药物递送系统联合递送化疗药与MDR逆转剂是近年来一种非常有前景的逆转MDR的策略[6]。有研究报道的可以用于联合递送药物的常用纳米药物载体包括脂质体、纳米粒、胶束、脂质体、纳米乳和纳米凝胶[7]。纳米载体可以通过高通透性和滞留(EPR)效应、延长体内循环时间、靶向给药等增强逆转MDR的效果。笔者以“纳米药物载体”“联合给药”“多药耐药”“Multidrug resistance”“Co-delivery”“Nanoparticle”等为关键词,组合查询2012-2017年在中国知网、万方、维普、PubMed、Elsevier等数据库中的相关文献。结果,共检索到相关文献282篇,其中有效文献47篇。现对纳米药物载体介导的联合给药在逆转肿瘤MDR中的优势及联合给药的类型进行综述,以期为设计新型纳米药物载体联合给药用于逆转肿瘤MDR提供参考。

1 纳米药物载体介导的联合给药的优势

抗肿瘤药物靶向纳米载体的构建及应用研究

抗肿瘤药物靶向纳米载体的构建及应用研究根据肿瘤环境的生理特征,人为构筑具有特定结构与功能的纳米尺度药物载体,使之对肿瘤组织具有特异性靶向、影像诊断并实现多种治疗功能,将成为癌症高效诊断与治疗的关键。将空心-介孔纳米载体的高比表面积以及选择透过性与超顺磁氧化铁纳米颗粒(IONPs)的生物相容性以及多种在体诊断-治疗模式相结合,发展肿瘤的多模态分子影像诊断以及联合治疗策略,将为纳米技术应用于癌症的临床个体化诊疗提供重要的科学依据与方法参考。 本研究主要在新型超顺磁空心-介孔纳米结构的制备方法,及其作为多功能药物载体在肿瘤成像以及光热-化学联合治疗方面开展了相关工作:一、设计合成了具有内部空腔及介孔外壳的二氧化硅纳米管(SNT);以该结构为模板,发展了Fe3O4的高温热分解原位合成方法,获得了 SNT@Fe3O4功能复合载体;该超顺磁纳米管具备良好的阿霉素负载及pH响应释放性能、较大的饱和磁化强度以及磁共振成像(MRI)性能;在其表面包裹透明质酸后,可特异性靶向过表达CD44的肿瘤细胞(如小鼠4T1乳腺癌细胞);静脉注射入小鼠后,药物载体可在受体靶向及磁场靶向共同作用下,显著提高在肿瘤组织内的富集,并实现肿瘤的MRI诊断及化学治疗。二、发展了以功能化氧化硅模板以及氧化铁修饰层原位沉积制备“蛋黄-蛋壳”型多功能药物载体的新策略。 利用氧化铁外壳的介孔特性,实现了对所负载化疗药物的酸响应释放,确保了药物在递送过程中的微量释放以及在肿瘤组织中的特异性释放,以提高其肿瘤治疗效果;利用金纳米棒的光热转换特性,实现药物的温度响应快速释放,即实现药物的外源刺激控制释放。将该多功能药物载体进行表面改性后,实现了对肿瘤

常用抗肿瘤药物大全

.抗肿瘤药物大全 15.1.烷化剂 苯丙氨酸氮芥L~Phenylalanine Mustard (D) 【别名】美法仑,爱克兰。Melphalan,Alkeran。【医保】乙 【应用】能进入肿瘤细胞,抑制肿瘤细胞和一切增生迅速的组织如骨髓、淋巴组织的细胞核分裂,适用于多发性骨髓瘤、乳腺癌、卵巢癌、慢性淋巴细胞和粒细胞白血病、恶性淋巴瘤、恶性黑色素瘤、软组织肉瘤、骨肉瘤等。 【用法用量】口服:每日8~10mg/m2,每日1次,连用4~6日,每隔6周重复1次。 【副作用】消化道反应和骨髓抑制。 【规格】片剂:2mgx25片/瓶,¥¥¥。 环磷酰胺Cyclophosphamide (D) 【别名】环磷氮芥。ENDOxAN,CTx。【医保】甲 【应用】在体内被活化,释放出氮芥基,从而抑制肿瘤生长。亦通过杀伤多种免疫细胞而抑制抗体形成,排斥反应,移植物抗宿主反应和迟发性超敏反应。用于恶性淋巴瘤、急、慢性淋巴细胞白血病、多发性骨髓瘤、乳腺癌、晚期肺癌、晚期鼻咽癌、神经母细胞瘤、骨肉瘤及睾丸肿瘤。 【用法用量】口服:50~100mg/次,2~3次/日,1疗程总量10~15g。静注:联盒用药1次500mg/m2,每周1次,连用2次,3~4周为1疗程。 【副作用】骨髓抑制、脱发、胃肠道反应、口腔炎、膀胱炎等。 【注意事项】(1)盒用巴比妥或皮质激素、别嘌醇等肝药酶诱导剂时需注意。(2)肾功能异常慎用。(3)本品代谢物对尿路有刺激,应用时应多喝茶水。 【规格】粉针剂:0.2g/瓶,¥。 异环磷酰胺Ifosfamide (D) 【别名】匹服平。Isofamide,Iphosphamide。【医保】乙 【应用】环磷酰胺同分异构体,对造血系统毒性较环磷酰胺低。用于骨及软组织肉瘤、非小细胞肺癌、乳腺癌、头颈部癌、子宫癌、食管癌。 【用法用量】静滴:常用剂量每次1.2~2.0g/m2,每日1次,连续5日,每3~4周重复1次。 【副作用】同环磷酰胺。 【注意事项】(1)对本品过敏、严重骨髓抑制、肾功能不良、双侧输尿管阻塞者禁用。(2)注意骨髓、肝、肾功能改变情况。(3)本品应与泌尿系统保护剂美司那(见19.解毒药)盒用。 【规格】粉针剂:1.0g/瓶,¥¥¥¥。 甲环亚硝脲MeCCNU 【别名】司莫司丁。Semustine。【医保】甲 【应用】在体内其氯乙基部分使DNA链断裂,RNA及蛋白质受到烷化发挥抗肿瘤作用。用于恶性黑色素瘤、恶性淋巴瘤、脑瘤、肺癌。 【用法用量】口服:单用100~200mg/m2,每6~8周给药1次,亦可36mg/m2 ,1次/周,6周为1疗程。盒用其他药物可75~150mg/m2 ,1次/6周或30mg/m2,1次/周,连给6周。 【副作用】迟发性骨髓抑制,血小板、白细胞减少,亦有恶心、呕吐、食欲下降等胃肠道反应和口腔炎、脱发、肝损等。 【规格】胶囊剂:50mgx5粒/瓶,¥¥¥。 尼莫司汀NIMUSTINE 【别名】丁禾青。【医保】乙 【应用】脑肿瘤、消化道癌(胃癌、肝癌、结肠癌、直肠癌),肺癌、恶性淋巴瘤、慢性白血病等。 【用法用量】通常,本剂按每5mg溶于注射用水1ml的比例溶解下述剂量,供静脉或动脉给药。1.以盐酸尼莫司汀计,按体重给药,1次给2~3mg/kg,其后据血象停药4~6周,再次给药,如此反复,直到临床满意的效果。2. 以盐酸尼莫司汀计,将1次量2mg/kg,隔1周给药,2~3次后据血象停药4~6周,再次给药,如此反复,直到临床满意的效果。 【副作用】 1.重大不良反应:(1)骨髓抑制:出现白细胞减少、血小板减少、贫血,有时出现出血倾向、骨髓抑制、全血细胞减少等,因此每次给药后至少6周应每周进行周围血象检查,若发现异常应作适当处理。(2)间质性肺炎及肺纤维症:偶出现间质性肺炎及肺纤维症。2.其他不良反应:(1)过敏症:有时出现皮疹,若出现此类过敏症状,应停药。(2)肝脏:有时出现AST、ALT等上升。(3)肾脏:有时出现BUN上升、蛋白尿。(4)消化道:出现食欲不振、恶心、欲吐、呕吐,有时出现口内炎、腹泻等。(5)其他:有时出现全身乏力感、发热、头痛、眩晕、痉挛、脱发、低蛋白血症。禁忌:(1)骨髓功能患者禁用;(2)对本品有严重过敏症既往史患者。 【注意事项】 1.下列患者慎用:(1)肝功能损害患者。(2)合并感染患者。(3)水痘患者。2.会引起迟缓性骨髓功能抑制等严重不良反应,因此每次给药后至少6周应每周进行临床检验(血液检查\肝功能及肾功能检查等),充分观察患者状态。若发现异常应作减量或停药等适当处理。另外,长期用药会加重不良反应呈迁延性推移,因此应慎重给药。3.应充分注意感染症及出血倾向的出现及恶化。4.小儿用药应慎重,尤应注意不良反应的出现。5.小儿及育龄患者用药时,应考虑对性腺的影响。给药途径:不得用于皮下或肌肉注射。7.本品与其他药物配伍有时会发生变化,故应避免与其他药物混盒使用。8.本品溶解后应迅速使用,因遇光易分解,水溶液不稳定。9.静脉内给药时,若药液漏于管外,会引起注射部位硬结及坏死,故应慎重给药以免药液漏于管外。 【规格】粉针剂:25mg/瓶,¥¥¥¥¥。 15.2.抗代谢药 甲氨蝶呤Methotrexate (x)

纳米药物载体介导的联合给药逆转肿瘤多药耐药的研究进展

纳米药物载体介导的联合给药逆转肿瘤多药耐药的研究进展 目的:为设计用于联合给药逆转肿瘤多药耐药的新型纳米药物载体提供参考。方法:以“纳米药物载体”“联合给药”“多药耐药”“Multidrug resistance”“Co-delivery”“Nanoparticle”等为关键词,组合查询2012-2017年在中国知网、万方、维普、PubMed、Elsevier等数据库中的相关文献,对纳米药物载体介导的联合给药在逆转肿瘤多药耐药中的优势及联合给药的类型进行综述。结果与结论:共检索到相关文献282篇,其中有效文献47篇。药物经纳米载体包载后具有增加药物在肿瘤部位的蓄积、延长药物在体内的循环时间、促进药物在肿瘤部位的靶向递送、控制联合给药药物比例、增强逆转多药耐药的协同作用等优势。纳米载体可以介导不同类型药物的联合给药用于逆转肿瘤多药耐药。联合递送的药物组合类型包括化疗药与化疗药、化疗药与多药耐药逆转剂、化疗药与小干扰RNA、化疗药与单克隆抗体、天然产物与天然产物等。其中,采用化疗药与其他药联合给药是最常见的联合给药类型。纳米药物载体介导的联合给药是逆转肿瘤多药耐药的非常具有潜力的给药形式,但目前均未进入临床阶段。为使纳米药物载体介导的联合给药更好地应用于临床,在处方工艺和临床效果评价等方面尚需大量的研究工作。 关键词纳米药物载体;联合给药;肿瘤多药耐药;综述 肿瘤多药耐药(MDR)是指肿瘤细胞在对一种化疗药产生耐药的情况下同时对一系列不同结构和不同机制的化疗药产生耐药的现象,MDR是临床上导致化疗失败的重要原因[1]。MDR发生机制复杂,包括细胞内因以及肿瘤微环境改变等,MDR发生机制的复杂性为克服肿瘤耐药带来挑战[2-3]。目前有研究报道的逆转MDR的策略很多,包括应用新型药物递送系统递送化疗药、采用MDR 逆转剂与传统化疗药联合给药等[4-6]。与临床单一药物治疗比较,联合给药对耐药肿瘤具有更好的疗效,目前临床上往往采用联合给药的策略治疗耐药肿瘤或降低耐药肿瘤的发生率[7]。采用纳米药物载体共载需联合给药的药物可进一步增强对耐药肿瘤的增殖抑制作用,为逆转肿瘤MDR提供了很好的药物递送平台[8-9]。 采用药物递送系统联合递送化疗药与MDR逆转剂是近年来一种非常有前景的逆转MDR的策略[6]。有研究报道的可以用于联合递送药物的常用纳米药物载体包括脂质体、纳米粒、胶束、脂质体、纳米乳和纳米凝胶[7]。纳米载体可以通过高通透性和滞留(EPR)效应、延长体内循环时间、靶向给药等增强逆转MDR的效果。笔者以“纳米药物载体”“联合给药”“多药耐药”“Multidrug resistance”“Co-delivery”“Nanoparticle”等为关键词,组合查询2012-2017年在中国知网、万方、维普、PubMed、Elsevier等数据库中的相关文献。结果,共检索到相关文献282篇,其中有效文献47篇。现对纳米药物载体介导的联合给药在逆转肿瘤MDR中的优势及联合给药的类型进行综述,以期为设计新型纳米药物载体联合给药用于逆转肿瘤MDR提供参考。 1 纳米药物载体介导的联合给药的优势

槲皮素逆转肿瘤多药耐药作用进展

槲皮素逆转肿瘤多药耐药作用研究进展 翟闪闪杨成君王芳傅瑶 (吉林大学白求恩医学院生物化学与分子生物学实验中心,吉林 长春130021) 〔关键词〕槲皮素;肿瘤细胞;逆转;多药耐药〔中图分类号〕R73 〔文献标识码〕A 〔文章编号〕1005-9202(2012)13-2906-03;doi :10.3969/j.issn.1005- 9202.2012.13.126通讯作者:杨成君(1964-),男,副教授,硕士生导师,主要从事生物化学 与分子生物学实验教学与研究。 第一作者:翟闪闪(1986-),女,在读硕士,主要从事肿瘤多药耐药研究。 槲皮素是一种具有多种生理活性和药理活性的天然小分子黄酮类化合物。近年来研究发现,槲皮素可抑制肿瘤细胞增殖、诱导肿瘤细胞凋亡、干扰肿瘤细胞周期、干扰肿瘤细胞信号转导通路、逆转肿瘤细胞多药耐药等作用。本文结合国内外文献,就槲皮素影响肿瘤细胞多药耐药相关蛋白的表达,逆转肿瘤多药耐药方面进行综述分析。1 槲皮素抗肿瘤的作用 临床肿瘤患者很大一部分发生多药耐药现象,即对某些结构与作用机制不同的药物也产生耐药现象,严重阻碍了肿瘤患者的临床治疗。因此探索肿瘤细胞多药耐药的机理并加以有效的逆转,已成为肿瘤研究领域亟待解决的问题。目前针对肿瘤多药耐药的治疗主要采用联合化疗,而一些多药耐药逆转剂如维拉帕米、环孢素A 等因其副作用大,尚不能投入临床使用 〔1〕 ,因此从日常饮食中寻找潜在副作用小的多药耐药逆转剂 以成为目前亟待解决的问题。槲皮素,化学名为3,3',4',5,7-五羟基黄酮(结构式见图1),是一种天然的小分子黄酮类化合物。槲皮素及其衍生物作为一种常见的多酚类物质形成了普通饮食的一个组成部分,在蔬菜、水果、谷物和多种中草药中含量丰富 〔2〕 。近年来研究发现,槲皮素可抑制肿瘤细胞的增殖、 诱导肿瘤细胞的凋亡、干扰肿瘤细胞的周期、干扰肿瘤细胞的信号转导通路、逆转肿瘤细胞多药耐药等作用〔3 5〕 。 2 肿瘤多药耐药的机制 ATP 结合盒(ABC )跨膜转运蛋白的过度表达是肿瘤细胞多药耐药最常见的一种机制。ABC 家族是一个庞大的膜结合蛋白家族,与肿瘤多药耐药关系密切的主要有P 糖蛋白(P-gly-coprotein ,P-gp )、多药耐药相关蛋白(multidrug resistance-associ-ated protein ,MRP1)、乳腺癌耐药蛋白(breast cancer resistance protein ,BCRP )〔6 8〕。ABC 转运蛋白的底物众多,常用的抗肿瘤药物有蒽环类、长春碱类等。ABC 转运蛋白的功能组成分为两个部分:12个跨膜区(trans-membrane domain ,TMD ),形成底物转运通道,具底物识别功能;2个核苷酸结合区(nucleotide bind-ing domain ,NBD )水解ATP 为转运提供能量 〔8〕 。BCRP 仅具有6个跨膜转运区和1个核苷酸结合区, 需要形成二聚体发挥生 图1 槲皮素的基本结构 理功能〔9〕 。 2.1 P-gp P-gp 由多药耐药基因1(MDR1)基因编码,是目前 研究的最多的ABC 转运体。P-gp 可以转运多种化疗试剂像长春碱类,蒽环类,紫杉烷类等 〔10〕 。其在节肠癌细胞,白血病细 胞,畸胎癌细胞中均被检测到,在肿瘤细胞膜上过度表达,与化疗物结合,将其泵出胞外,使的细胞对化疗药物的敏感性降低,产生了多药耐药。曾有文献报道利用RNA 干扰技术特异性地抑制直肠癌细胞MDR1及P-gp 的表达,导致阿霉素及长春新碱在胞内浓度上升,从而使长春新碱及阿霉素的细胞毒性增强 〔11〕 。 2.2MRP1 MRP1是由ABC C 1基因编码。的带负电的药物 能被MRP1排出细胞外,从而造成MRP1高表达肿瘤细胞的多药耐药。MRP1的药泵作用与P-gp 并无协同,其特异性的转运底物是在胞内与还原型谷胱甘肽共轭结合的化疗药物。曾有文献报道通过建立K562/ADM 发现此细胞MRP1的表达较亲代明显升高,并表现出对长春新碱、阿霉素(adriamycin ,ADM )、顺铂(cisplatin ,DDP )、依托泊苷(etoposide ,VP-16)不同程度的耐药〔12 14〕 。 2.3 BCRP 1998年Doyle 等从人乳腺癌耐药细胞系(MCF-7/ Ad-rVP )中发现了BCRP ,其是由BCRP 基因编码的,其与P-gp 、MRP1同属于ATP 依赖性膜转运蛋白超家族,其同样是以药泵的形式减少胞内药物浓度来实现耐药的〔15〕 。BCRP 在乳腺癌 细胞, 白血病细胞,肺癌细胞等多种肿瘤细胞中均被检测,在对应的耐药株中表达量较高 〔16〕 。BCRP 虽与P-gp 和多药耐药蛋 白同属于ABC 跨膜转运蛋白超家族, 但他们在空间结构上存在很大的差异,这种差异导致了他们之间的耐药机制的不同。

肿瘤多药耐药逆转剂的研究进展

◇讲座与综述◇ 肿瘤多药耐药逆转剂的研究进展 戴春岭,符立梧 (中山大学肿瘤防治中心,广东广州 510060) 收稿日期:2004-10-18,修回日期:2004-12-09 基金项目:广东省自然科学基金资助项目(No 021813);国家自然科 学基金资助项目(No 30371659) 作者简介:戴春岭(1978-),男,硕士生; 符立梧(1964-),男,博士,教授,博士生导师,研究方向:肿瘤药理学,Tel :020-********,E-mail :Fulw @https://www.wendangku.net/doc/1817753424.html, 中国图书分类号:R-05;R 341;R 730.5;R 730.53;R 979.1文献标识码:A 文章编号:1001-1978(2005)05-0513-06摘要:肿瘤细胞产生的多药耐药(multidrug resistance MDR )已成为当前影响肿瘤化学治疗疗效的主要障碍。尽管MDR 产生机制复杂,但是由mdr1基因编码的P-糖蛋白(P-glyco-protein P-gp )的过表达是产生MDR 的主要原因。寻找低毒有效的MDR 逆转剂是提高化疗疗效的一个重要方法,是化疗领域亟需解决的问题。 关键词:多药耐药;P-糖蛋白;逆转剂;肿瘤;治疗 1943年,耶鲁大学的Gilman 等首先将氮芥应用于淋巴瘤的治疗,揭开了现代肿瘤化疗的序幕。1948年Farber 成功地应用叶酸类似物甲氨蝶呤治疗小儿急性淋巴瘤细胞性白血病获得缓解,此后新的抗肿瘤药物不断出现。在人们看到希望的同时,新的问题随之而出现:即肿瘤细胞多药耐药性的产生,已成为目前肿瘤化学治疗失败的一个主要原因。P-gp 抑制剂作为逆转MDR 、提高化疗疗效的一种方法已经研究多年。该文就MDR 的形成机制及其逆转剂的研究现状作一综述。1 MDR 的发现及形成机制 1970年Bidler 等通过对中国仓鼠肺细胞P383肿瘤细胞的研究首次发现了MDR 现象。多药耐药性(multidrug resistance MDR )是指肿瘤细胞对一种抗肿瘤药物产生耐药性的同时,对结构和作用机制完全不同的抗肿瘤药物产生交叉耐药性。MDR 有两种类型,第一种为原发耐药或内在耐药,是指肿瘤细胞在治疗的初始阶段就对抗肿瘤药物产生耐药性;第二类称之为获得耐药,是指在化疗过程中肿瘤细胞对抗肿瘤药物产生耐药性。 MDR 形成机制相当复杂,而且是多因素的。与细胞膜有关的因素有: P170糖蛋白(P-gp )、多药耐药相关蛋白(multidrug resistance-associated protein MRP )、肺耐药相关蛋白(lung resistance-related pro-tein LRP )、乳腺癌抗药性蛋白(breast cancer resist-ance protein BCRP )的高表达;与细胞质/细胞核有关的因素有:谷胱甘肽S 转移酶(GST )和谷胱甘肽(GSH )的升高、拓扑异构酶(TOPO )活力降低、凋亡抑制以及肿瘤细胞某些生化特征的改变:如膜离子通道、蛋白激酶C (PKC )、磷酸化水平变化等。这些耐药机制可能单独或联合在MDR 的形成中起作用。但在MDR 中起主要作用且研究得最为深入的为:mdr1/p-gp 的高表达。2 P-gp 的生物学功能 P-gp 是由mdr1基因编码的分子量为170ku 的磷酸糖蛋白,该蛋白属于ABC 跨膜转运蛋白超家族中的一员。它具有多种功能,可能量依赖性地将药物泵出细胞外,并减少药物转运入细胞内,使细胞内蓄积药物减少;还可促使药物在细胞内的再分布,积聚于与药物作用无关的细胞器内,进一步降低作用于靶点部位的药物浓度,导致耐药。另外,P-gp 还具有抑制肿瘤细胞凋亡的功能,研究表明P-gp 能够抑制caspase-3和caspase-8的裂解激活,从而抑制了caspase 依赖的细胞凋亡。 P-gp 不仅在肿瘤组织中高表达,在正常组织中也有区域特异性表达,主要位于一些具有分泌、排泄功能的组织和器官,例如肾上腺皮质、胰腺、肝、肾、胎盘滋养层以及血脑屏障等。所以它除了可将化疗药物泵出肿瘤细胞外,还可能具有一些生理功能:减少组织对有害物质的吸收,从而保护一些重要器官。由此可见,P-gp 并非一种异常蛋白,这也可能是源于某些器官的肿瘤具有原发耐药性的原因。3 MDR 逆转剂 P-gp 抑制剂作为逆转MDR 的一种方法,已经被广泛深入的研究了二十多年,根据它们的特点,将其分为三代。 3.1 第一代MDR 逆转剂 主要特点是在体外试验中,可以逆转甚至完全逆转MDR 。但在体内试验中,由于自身的剂量限制性毒性,不能达到体外有效逆转MDR 所需要的浓度。 ? 315?中国药理学通报 Chinese Pharmacological Bulletin 2005May ;21(5):513~8

纳米药物载体抗肿瘤多药耐药机制的研究进展_赵金香

●综 述● 纳米药物载体抗肿瘤多药耐药机制的研究进展 赵金香1,李耀华2* (1平凉医学高等专科学校,甘肃 平凉,740000;2甘肃省中医学院,甘肃 兰州,730000) 摘要:肿瘤细胞对化疗药物产生多药耐药(multidrug resistance,MDR)是临床化疗失败的一个重要原因,而纳米技术的发展为肿瘤药物的靶向输送提供了新的研究机遇。纳米载体可以通过避免和降低MDR肿瘤细胞的药物外排泵,靶向肿瘤干细胞(cancer stem cells,CSC)克服其复发性,阻断肿瘤细胞的互调及其作用的微环境,以及改变免疫反应等增强细胞对化疗药物的敏感性。本文综述了肿瘤多药耐药的机制,纳米药物载体抗肿瘤多药耐药的机制研究的新进展。 关键词:肿瘤多药耐药;纳米技术;肿瘤干细胞;肿瘤微环境 中图分类号:R730 文献标识码:A 文章编号:2095-1264(2015)03-0174-05 d oi:10.3969/j.issn.2095-1264.2015.035 Research Progress of the Mechanisms of Nanotechnology in the Treatment of Multidrug Resistant Tumors ZHAO Jinxiang1, LI Yaohua2* (1Pingliang Medical College, Pingliang, Gansu, 740000, China; 2Gansu University Traditional Chinese Medicine, Lanzhou, Gansu, 730000, China) Abstract: Multidrug resistance (MDR) is a main reason for the failure of tumor chemotherapy, the development of nanotechnology sheds light on targeted delivery of antitumor drugs. Nanocarriers can not only enhance the sensitivity of tumor cells to chemothera-peutic drugs but also downregulate the invasion and metastasis of tumor. The mechanisms of nanocarriers' anti-tumor effect involve in targeting cancer stem cells to overcome MDR and prevent recurrence, preventing the cross talk between cancer cells and their micro-environment, and modifying the immune response to improve the treatment of MDR cancers. In this review, new research progresses of the mechanisms of multidrug resistance and anti-tumor effects of nanotechnology are reviewed. Key words: Multidrug resistance; Nanotechnology; Cancer stem cells; Tumor microenvironment 前言 2014年的《全球癌症报告》表明,近两年全球癌症的患病和死亡病例都在不断增加,近一半新增癌症病例出现在亚洲,其中大部分在中国,中国新增癌症病例高居世界第一。化疗仍然是治疗癌症的主要手段,但化疗药物的非特异性及肿瘤的多药耐药(MDR)易导致肿瘤复发,MDR已成为肿瘤化疗的最大瓶颈。因此,逆转肿瘤细胞的MDR、提高肿瘤细胞对化疗药物的敏感性对肿瘤的治疗具有重大意义。开发新材料和新药物用于靶向治疗肿瘤及肿瘤多药耐药是目前亟待解决的问题[1]。 随着新兴纳米生物技术的发展,纳米技术已经被应用于影像诊断和治疗、综合化疗、放疗和基因治疗等多个学科,为肿瘤药物的靶向输送提供了新的研究机遇[2]。目前研发的纳米载药微粒包括聚合物胶束[3,4]、脂质体[5]、树状聚合物[6]、纳米乳、纳米金[7,8]或其他金属纳米颗粒[1,9]等。这些纳米载药微粒具有如下优点:①粒径小,粒径分布窄,表面修饰后可以进行靶向特异性定位,达到药物靶向输送的目的;②缓释药物,延长药物作用时间;③保护药物分子,提高其稳定性;④结合外加能量如光、声、磁场等可进行显像和治疗相结合实现肿瘤的诊断和治疗[1,10,11]。基于这些优点,越来越多的研究 作者简介:赵金香,女,讲师,研究方向:肿瘤内科,E-mail:zhaojinxiang0716@https://www.wendangku.net/doc/1817753424.html,。*通讯作者:李耀华,男,主治医师,研究方向:内科学,E-mail:yaohuali1980@https://www.wendangku.net/doc/1817753424.html,。

肿瘤的多药耐药及其逆转剂研究进展样本

综述 肿瘤的多药耐药及其逆转剂研究进展 安徽省肿瘤医院桂留中 化疗仍是恶性肿瘤的重要治疗手段之一, 然而肿瘤细胞的耐药常使化疗最终失败。根据肿瘤细胞的耐药特点, 耐药可分为原药耐药( Primary drug resistance,PDR) 和多药耐药( Multidrug resistance ,MDR) 。PDR只对诱导药物产生耐药而对其它药物不产生交叉耐药性, 如抗代谢药类; MDR则是指肿瘤细胞对一种抗肿瘤药产生抗药性的同时, 对其它结构和作用机制不同的抗肿瘤药产生交叉耐药性。MDR的表现十分复杂, 既可有原发性( 天然性) 耐药, 也可有诱导性( 获得性) 耐药; 还有典型性和非典型性耐药之分。由于MDR给化疗带来了困难, 近年人们对其产生的机制以及试图寻找逆转剂做了大量的工作。本文简介MDR产生的机制并着重介绍近年逆转剂的研究进展。 1.MDR产生的机制 1.1膜糖蛋白介导的机制 1.1.1 P-gp与MDR 1976年Ling等首先在抗秋水仙碱的中国仓鼠卵巢细胞株上发现了一种能调节细胞膜通透性的糖蛋白( P-glycoprotein,P-gp) ,因其相对分子量为170kd, 又称P-170。[1]。P-gp主要分布在有分泌功能的上皮细胞的细胞膜中, 在人类正常组织中有不同程度的表示, 其中肾上腺、肺脏、胃肠、胰腺等组织中表示较高, 而在骨髓中表示较低。P-gp属于ATP结合盒家族的转运因子, 其生理功能为在ATP供能下将细胞内的毒性产物泵出细胞, 对组织细胞起保护作用。P-gp由mdr1基因编码产生。人类mdr1基因位于7号染色体长臂2区一带一亚带( 7q21.1) 。1986年, Gros将编码P-gp的mdr1cDNA直接转染敏感细胞后, 转染细胞表现出完全的MDR 表型, 从而提供了P-gp能够导致多药耐药的有力证据。 现已证明, 许多肿瘤原发性或获得性耐药均与P-gp过量表示有关。P-gp随mdr1基因扩增而增加。P-gp有多个药物结合位点, 因而具有多种药物泵出功能, 不过其底物多为天然性抗癌药如长春碱类、蒽环类、紫杉醇类和鬼臼毒素类等。由于P-gp 能逆浓度差将药物泵出胞外, 使细胞内药物浓度降低, 从而减弱了药物的细胞毒作用。

中医药逆转肿瘤多药耐药性的研究进展

【关键词】抗药性,多药;抗药性,肿瘤;抗肿瘤药,植物;综述文献肿瘤诱导化疗不易缓解或缓解后极易复发,重要原因是肿瘤细胞的耐药现象———多药耐药性。多药耐药性(multidrug resistance,MDR)是指肿瘤细胞对一种抗肿瘤药物产生抗药性的同时,对结构和作用机制不同的抗癌药物产生交叉耐药性。MDR的形成机制十分复杂,肿瘤细胞可通过不同途径导致MDR的产生。同时,单个MDR细胞可同时存在多种抗药性的机制,一种或几种联合作用均可导致MDR的产生。MDR是肿瘤化疗急需解决的难题,对其发生机制的研究和开发逆转多药耐药性的药物是当前肿瘤研究中的重要课题。随着中医药对肿瘤化疗减毒增效及逆转肿瘤多药耐药性研究的深入,寻找开发逆转肿瘤多药耐药性的高效、低毒中医药已成目前中医肿瘤内科研究的重要课题[1]。现对近年来中医在开发逆转肿瘤多药耐药性方面的研究综述如下。 1 多药耐药性产生机制肿瘤多药耐药性产生的原因和机制十分复杂,细胞可通过多种机制产生多药耐药性,与细胞膜有关的主要因素有P-糖蛋白(P-gp)、多药抗药性相关蛋白(MRP)、肺多药抗药性相关蛋白(LRP)、乳癌耐药性相关蛋白(BCRP)等;与细胞质有关的主要因素有拓扑异构酶Ⅱ(TopoⅡ)、蛋白激酶C(PKC)、谷胱苷肽氧化还原系统等。但最重要的为P-gp介导的多药耐药性,即典型MDR[2,3]。抗凋亡机制在肿瘤细胞发生发展及多药耐药性中起很重要作用[4]。化学结构和作用靶点各异的抗肿瘤药物均可诱导肿瘤细胞凋亡,细胞对化疗药物多药耐药性的产生部分是凋亡受抑制的结果。已发现30多种基因对细胞凋亡起促进或抑制作用,如肿瘤抑制p53基因、抗肿瘤凋亡蛋白bcl-2家族、凋亡蛋白抑制因子IAP家族,但其发生机制仍不完全清楚。另外,癌基因C-jun 编码转录激活因子AP-1激活,谓之jun.AP-1。该产物可识别特异基因的启动子,与C-fos 基因产物形成异源二聚体后,即可与基因结合并激活其转录,激活的PKC可持续活化jun.AP-1,且其活性增强,对基因转录产生正向调节[5]。有研究表明MDR细胞株具有凋亡抗性,P-gp 能延缓凋亡“瀑布”的出现。P-gp除了作为药物外排泵外,能抑制Caspase-3和Caspase-8的激活,抑制大多数抗肿瘤药物诱导细胞凋亡的核心通路———Caspase依赖性细胞凋亡[6]。肿瘤多细胞球体是由多个肿瘤细胞组成的球状聚集体,组织结构与实体瘤相似,和肿瘤单细胞相比,多细胞球体对化疗MDR增加,渗透机制不足以完全解释多细胞球体细胞的多药耐药现象。可能机制有:①多细胞球体细胞周期特异性敏感的细胞数减少;②细胞接触或黏附介导的生存机制,化疗多药耐药部分是凋亡受抑制的结果,细胞接触或黏附可抑制细胞凋亡的发生,这也可能是多细胞球体细胞化疗多药耐药的原因之一;③多细胞球体的生长微环境引起多药耐药相关基因活性变化[7]。逆转MDR主要有2种途径,开发对MDR细胞不具有多药耐药性的新抗肿瘤药物及寻找MDR逆转剂与抗肿瘤药物合用,恢复MDR细胞对抗肿瘤药物的敏感性,后者目前已在以下方面开展研究以克服MDR:①使用免疫治疗药物,如单克隆抗体;②使用能抑制P-gp功能的药物;③抑制多药耐药基因表达;④逆转MDR中医药的开发研究。[!--empirenews.page--] 2 中药复方及临床研究 2.1中药方剂R1的无细胞毒浓度可完全逆转人乳腺癌细胞系(MCF-7adv).阿霉素(ADM)的MDR[8]。中药R3(补骨脂抽提剂)的无细胞毒浓度可增加MCF-7.ADR对ADM的敏感性,且与异搏定具有协同作用,可完全抑制P-gp的表达,呈时间依赖性,48h后P-gp表达完全消失。提示中药R3可能通过抑制P-gp功能,增加ADM在MCF-7.ADR细胞中浓度,调控MCF-7.ADR的MDR[9]。中医药对MDR肿瘤细胞有诱导凋亡作用。研究4种中药提取物GLYC、DLEN、SPES、PC-SPES的提取液对小细胞肺癌H69(敏感株)、H69VP(耐药株)、正常肺上皮细胞BEAS-2作用表明,4种中药提取物组方对肿瘤细胞的细胞毒作用强于对BEAS-2,不同中药组方对细胞作用不同,在GLYC中细胞表现为坏死;在DLEN、SPES、PC-SPES中有凋亡表现,且用原位末端标记法分析确认后三者的表达为细胞凋亡[10]。康莱特注射液(KLT)对耐药人白血病细胞K562.adr和K562.vcr的作用实验结果显示:①人白血病耐药细胞对KLT有轻度抗性;②KLT 能明显增强MDR细胞对化疗药物的敏感性,其逆转作用呈剂量依赖关系;③KLT能诱导人白血

抗肿瘤药物分类

抗肿瘤药物的分类和临床应用 抗肿瘤药物的分类和临床应用 1.根据药物的化学结构和来源分:烷化剂、抗代谢药物、抗肿瘤抗生素、抗肿瘤植物药、激素和杂类。 2.根据抗肿瘤作用的生化机制分:干扰核酸生物合成的药物、直接影响DNA结构与功能的药物、干扰转录过程和阻止RNA合成的药物、干扰蛋白质合成与功能的芗、影响激素平衡的药物和其他。 3.根据药物作用的周期或时相特异性分:细胞周期非特异性药物和细胞周期(时相)特异性药物。 恶性肿瘤是危害人类健康的最危险的疾病之一,肿瘤的治疗强调综合治疗的原则,化疗是其中的一个重要手段。近年来抗肿瘤药物的研究取得了飞速发展,出现了一些新型的抗肿瘤药物,作用于肿瘤发生和转移的不同环节和新靶点。按照抗肿瘤药物的传统分类和研究进展,将抗肿瘤药物分为细胞毒药物;影响激素平衡的药物;其他抗肿瘤药物,包括生物反应调节剂和新型分子靶向药物等;抗肿瘤辅助用药。 一、细胞毒药物 1.破坏DNA结构和功能的药物 氮芥烷化剂类的代表药物,高度活泼,在中性或弱碱条件下迅速与多种有机物质的亲核基团结合,作用强但缺乏选择性。进入血中后水解或与细胞的某些成分结合,在血中停留的时间只有几分钟,作用短暂而迅速。G1期及M期细胞对氮芥的作用最敏感,大剂量时对各周期的细胞和非增殖细胞均有杀伤作用。主要用于恶性淋巴瘤及癌性胸膜、心包及腹腔积液。目前已很少用于其他肿瘤。不良反应包括消化道反应、骨髓抑制脱发、注射于血管外可引起溃疡。 环磷酰胺周期非特异性药,作用机制与氮芥相同。在体外无活性,主要通过肝p450酶水解成醛磷酰胺再形成磷酰胺氮芥发挥作用。抗瘤谱广,对白血病和实体瘤都有效。环磷酰胺口服后易被吸收,约1小时后血浆浓度达最高峰,在体内t1/2 4—6小时,约50%由肾脏排出,对泌尿道有毒性。大部分不能透过血脑屏障。环磷酰胺临床广泛应用,对恶性淋巴瘤、白血病、多发性骨髓瘤均有效,

中药逆转肿瘤多药耐药的分子生物学机制实验研究进展

中药逆转肿瘤多药耐药的分子生物学机 制实验研究进展 (作者:___________单位: ___________邮编: ___________) 【摘要】总结了近年来中药逆转多药耐药的分子生物学研究的实验概况,从逆转多药耐药的经典、非经典及多靶点作用的角度阐述了中药的逆转作用,认为其主要是通过下调P-gp蛋白及调控MRP、LRP、拓扑异构酶、谷胱甘肽S转移酶、核转录因子、Ca2+浓度、凋亡相关基因等介导的多药耐药而实现,其作用多不局限于单一机制,而与其多靶点作用有关。 【关键词】中药;多药耐药;分子生物学 目前,化疗是治疗恶性肿瘤的主要手段之一,而在化疗过程中易产生肿瘤的多药耐药,大大降低了其疗效。因此,如何解决多药耐药就成为了提高化疗疗效,改善患者生活质量的关键问题。多药耐药(multidrug resistance,MDR)是一个多基因参与的过程,涉及多种耐药相关蛋白[1]。不同肿瘤具有不同的耐药表型,可以是某种耐药基因表达,也可能是多种耐药基因同时表达的结果,而由于中药的多靶点作用,其可通过作用于多个耐药相关蛋白达到逆转多药耐药的作用。目前,中药抗多药耐药的作用研究已深入到分子水平。本文概述

近年来中药在逆转多药耐药的分子水平的研究进展。 1 肿瘤多药耐药经典途径 P-gp蛋白介导的多药耐药是研究最多,机制最为明确的多药耐药产生途径,因此被称为多药耐药的经典途径。由MDR1基因编码的P-gp蛋白ATP依赖性的药物泵,其是通过水解ATP提供的能量,将进入细胞内的药物泵出细胞,使得细胞内药物浓度不断下降,最终使药物细胞毒作用减弱甚至丧失出现耐药[2]。中药下调P-gp蛋白的实验研究较多,下面就分体外与体内实验分别阐述。 1.1 体外实验研究解霞等[3]对川芎嗪(TMP)逆转多药耐药机制的研究显示MCF-7/ADM 细胞P-gp蛋白表达率为(90.60±0.41)%,而加入非细胞毒性剂量川芎嗪后,耐药细胞P-gp的表达率则降为(69.10±1.65)%(P0.01),结果提示TMP能显著抑制MCF-7/ADM细胞 P-gp的表达。谢长生等[4]复方三根制剂对MDR细胞株K562/ADR 和K562/VCR逆转作用的研究,结果复方三根制剂对K562/ADR 作用24,48,72 h后 P-gp蛋白表达量分别降为622±6.56,730±4.51,310±1.09,而对K562/VCR作用24,48,72h后P-gp表达量分别降为1054±83.16,775±7.02,3393±6.56,与空白对照组相比,能显著下调P-gp蛋白的表达,且有显著性差异(P0.05),提示其逆转多药耐药的作用可能与其下调P-gp蛋白的表达有关。许文林等[5]对汉防己甲素逆转多药耐药机制的研究发现 P-gp蛋白在K562/ADM 细胞中呈现高表达,经10μmol/L的汉防己甲素处理细胞48h后,细

常用抗肿瘤药物配置方法一览表(2)

常用抗肿瘤药物配置方法一览表(2) 序名称储藏溶解溶解后稀释使用方法及注意事项 23长春地辛遮光,0.9% NaCI6h内使用5%GS 或0.9%NaCI只可静脉注射(缓慢)及静滴(6~12小时),不能肌注、皮下及鞘内注射。 (西艾克,2~10C500~1000ml静注时如果外漏,立即停止用药,用大量生理盐水冲洗,1%普鲁卡因局部VDS) 封闭,温湿敷或冷敷。 24长春瑞宾遮光,5% GS 或0.9% 5%GS 或0.9%NaCI24 h内室温下储存。 (诺维本,2~8C NaCI125ml,浓度为可静注(6~10分钟内)或静滴(15~20分钟内);给药后用至少75~125ml NVB) 浓度为0.5~2.0 mg/ml0.9%NS、GNS、GS、林格氏液等冲洗:禁止鞘内注射。 1.5~3.0mg /ml静注时如果外漏,立即停止给药并在另一静脉重新开始将剩下的药品注射 完毕。 不可使用碱性药物稀释本品,以免产生沉淀。 25羟基喜树碱遮光0.9 %NaCl可静注(缓慢)、肝动脉给药、动脉滴注、膀胱灌注。 (HCPT)本品不宜用GS等酸性药液溶解。 26伊立替康遮光40mg/2ml12h室温5%GS 或0.9%NaCI静滴(30~90分钟内完成)。 (开普拓)24h冷藏250ml 27拓扑替康遮光1mg/ml注射用5%GS 或0.9%NaCI24h内室温下储存,静滴(不少于30分钟)。 (和美新)水 28足叶乙甙遮光注射用水、0.9%静滴(不少于30分钟):不宜胸腔、腹腔注射或鞘内注射,不能肌注,静 (依托泊苷,NaCI,浓度为滴时注意不能外漏。 VP-16) 10~20mg/L (在与阿糖胞苷、环磷酰胺、卡氮芥有协冋作用。 5%GS中不稳定) 29替尼泊苷50mg/5ml0.9 % NaCI静滴(1.5~2小时),不能静注。 (鬼臼噻吩浓度为0.5~1mg/ml5%GS稀释后容易产生沉淀,有沉淀不能使用。 苷,卫萌,与肝素配伍禁忌。

姜黄素抗肿瘤及逆转多药耐药的研究进展

姜黄素抗肿瘤及逆转多药耐药的研究进展 任金妹1,2,3,纪宏宇1,2,3,唐景玲2,3,李梦婷1,2,3,崔超1,2,3,吴琳华1,2,3(1. 哈尔滨医科大学附属第二医院药学部;2. 哈尔滨医科大学药学院,;3. 黑龙江省高校重点实验室,黑龙江哈尔滨150086) 关键词姜黄素;抗肿瘤;多药耐药 肿瘤是当今严重威胁人类健康的重要疾病之一。化疗是治疗癌症的重要手段,然而重复使用化学药物,会让肿瘤细胞对药物产生耐药性。据统计,90%的化疗失败是由于耐药性的产生。因此,从中药中筛选提取出低毒的可逆转多药耐药(Multidrug Resistance,MDR)的有效成分成为近年来的研究热点。 姜黄素(Curcumin,Cur),是从姜科姜黄属植物姜黄的根茎中提取出的主要活性成分,收载于各版《中华人民共和国药典》。在姜黄根茎中的含量约为2%~5%,目前被广泛用作色素、食品添加剂及调味品,由于安全无毒、无副作用,被WHO 和FDA批准为天然食品添加剂(编号08.321),其结构式见图1。近年来,有关姜黄素各种药理作用的研究已越来越受到重视,如抗炎、抗肿瘤、抗动脉粥样硬化、治疗阿尔茨海默氏病等,其中一些药理作用已进入临床验证阶段,尤其是其抗肿瘤作用。现将姜黄素抗肿瘤及逆转肿瘤多药耐药作用机制的研究进展综述如下,以期为姜黄素的应用与研究提供参考。 图1 姜黄素化学结构 1 姜黄素的抗肿瘤活性 自1985年,印度Kuttan等首次提出姜黄素能明显抑制中国仓鼠卵巢细胞和Dulton淋巴瘤细胞的生长以来,姜黄素的抗肿瘤作用受到广泛的关注。动物实验包括大鼠、小鼠,及人的细胞系,结果均表明姜黄素能够通过多种机制控制肿瘤

抗肿瘤纳米药物载体的研究进展

抗肿瘤纳米药物载体的研究进展 1 通讯作者,E 2mail:cba8888@hot m ail .co m 210009 南京 东南大学临床医学院东南大学附属中大医院血液科 蔡晓辉 综述,陈宝安1  审校 【摘 要】 目前在临床广泛应用的抗肿瘤药物多数为非选择性药物,为了提高药物疗效,减少毒副作用,人们对其超微 粒子靶向、控释体系进行探索。载体材料必须是可生物降解的聚合物,包括天然和合成两类,可以为抗肿瘤药物治疗提供新的具有靶向功能的药物。本文就近年来抗肿瘤纳米药物载体的研究进展作一综述。 【关键词】 肿瘤; 纳米技术; 药物载体中图分类号:R730151 文献标识码:A 文章编号:1009-0460(2010)01-0090-05 Progressi on of an ti 2tu m or drug carr i er by nano m eter technology CA I X iao 2hui,CHEN B ao 2an .D epa rt m en t of He m atology,the A ffiliated Zhongda Hospital to S outheast U niver 2 sity,C linical College of Southeast U niversity,N anjing 210009,China Correspond ing author :CHEN B ao 2an,E 2m a il:cba 8888@hot m ail .co m 【Abstract 】 A t the p resent ti m e,the drugs t o the tu mors used in clinic mostly are not selective in vivo .Peop le have started t o do many researches on the targeting ultrastructure and the syste m s of contr olling release for i m p r oving the drug 2efficiencies and decrea 2sing the side 2effects .And the carrier materials must be res olvable which include the natural category and the synthetics .A ll these may be able t o p r ovide a ne w kind of medicine having targeting functi on .The research advance ment of drug 2nanoparticles πcarrying agents in recent years will be su mmarized in this article . 【Key W ords 】 Tu mor; Nanometer technol ogy; D rug carrier 目前在临床广泛应用的抗肿瘤药物还多数为非选择性药物,体内分布广泛。为了提高药物疗效,减少毒副作用,人们对其超微粒子靶向、控释体系进行探索,将它负载于脂质体、纳米微粒、聚合物结合体和聚合物胶束等一系列药物载体系统。 控释体系所用的载体材料必须是可生物降解的聚合物,包括天然和合成两类。较早应用的血清蛋白、血红蛋白骨胶原、明胶等天然可生物降解的高分子材料,生物相容性好,但制备困难,成本高,质量无法控制,不能大规模生产。近年,研究转向了合成类的可生物降解聚合物,如脂肪族聚酯、聚氰基丙烯酸烷基酯、聚原酸酯、聚氨基酸等。这些超微载体一方面可对药物起到缓释、控释作用,另一方面,可对病变部位靶向给药,同时还有载药量大的特点,有望提高药物治疗效果,降低药物对正常组织的毒副作用。本文就近年来抗肿瘤纳米药物载体的研究进展作一综述。 1 天然载体系统 111 脂质体微球 脂质体的主要成分是磷脂,磷脂分子中 含磷酸基团的部分具有强烈极性(亲水性),而两个长碳氢键具有非极性(疏水性)。脂质体这种典型的亲水、疏水分子特性,使其具有亲油、亲水性,在水溶液中形成单层或多层囊泡,可以作为药物载体包裹多种药物。脂质体用作药物载体具有以下优点:(1)主要由天然磷脂和胆固醇组成,进入体内被生物降解不会积累在体内,免疫原性小。(2)水溶性和脂溶性药物都可包埋运载,药物从脂质体中缓慢释放,药物持续时间长。(3)通过细胞内吞和融合作用,脂质体可直接将药物送入细胞内,避免使用高浓度游离药物从而降低不良反应。 早期脂质体的应用受到稳定性差、药物易渗漏、储存期短、组织靶向性差和易被网状内皮系统(RES )迅速清除等的限制。脂质体表面包裹高分子修饰,通过聚乙二醇、甲基聚唑啉、聚乙烯吡咯酮和神经节苷脂(G M 21)修饰解决了普通脂质体易从体循环中被肝、脾巨噬细胞迅速清除的缺点,可以使脂质体在血液中保留较长时间,增加了药物的被动靶向功能。维生素E 是一有效的抗氧化剂,被认为是通过与类脂过氧化自由基反应并淬灭单一态的氧分子和对类脂双分子

相关文档