文档库 最新最全的文档下载
当前位置:文档库 › 真菌漆酶的研究进展及其应用前景

真菌漆酶的研究进展及其应用前景

真菌漆酶的研究进展及其应用前景
真菌漆酶的研究进展及其应用前景

万方数据

万方数据

万方数据

真菌漆酶的研究进展及其应用前景

作者:周雪婷, 张跃华, 罗志文, 潘亭如, 缪天琳

作者单位:佳木斯大学,黑龙江佳木斯,154007

刊名:

农业与技术

英文刊名:Agriculture & Technology

年,卷(期):2012,32(9)

参考文献(33条)

1.王光辉;季立才中国漆树漆酶的底物专一性 1989

2.Nina H;Laura-Leena K Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear coper site 2002(08)

3.雷福厚;蓝虹云漆树漆酶和真菌漆酶的异同研究[期刊论文]-中国生漆 2003(01)

4.李慧蓉白腐真菌生物学和生物技术 2005

5.Harald Claus Laccases:structure.reactions,distrihution 2004(35)

6.张丽白腐真菌产漆酶对染料废水降解的研究 2004

7.张敏;肖亚中;龚为民真菌漆酶的结构与功能[期刊论文]-生物学杂志 2003(20)

8.Gimifreda L;Xu F;Bollag J-M Laccases:a useful group of oxido reductive enzymes 1999(03)

9.Xu F;Kulys J J;Duke K Redox Chemistry in Laccase-Catalyzed Oxidation of N-Hydroxy Compounds 2000(66)

10.堵国成;赵政;陈坚真菌漆酶的酶活测定及其在织物染料生物脱色中的应用[期刊论文]-江南大学学报(自然科学版) 2003(02)

11.缪静;姜竹茂漆酶的最新研究进展[期刊论文]-烟台师范学院学报(自然科学版) 2001(17)

12.刘尚旭;赖寒木质素降解酶的分子生物学研究进展[期刊论文]-重庆教育学院学报 2001(14)

13.何为;詹怀宇;王习文;伍红一种改进的漆酶酶活检测方法[期刊论文]-华南理工大学学报(自然科学版) 2003(31)

14.季立才;胡培植漆酶结构,功能及应用 1996(18)

15.侯红漫白腐菌Pleurotus ostreatus漆酶及对蒽醌染料和碱木素脱色的研究 2004

16.Huang Z Y;Huang H P;CaiR X Organic solvent enhanced spectrofluorin etric method for determition of laccase activity 1998(01)

17.Badiani M;Felici M;Luna M Laccase assay by means of highperfomance liquid chromatography 1983(02)

18.Wood D.A Production,Purification and Properties of Extracelluar laccase of Agaricus bisporus 1980(17)

19.林俊芳;刘志明;陈晓阳真菌漆酶的酶活测定方法评价[期刊论文]-生物加工过程 2009(04)

20.望天志;李卫莲;万洪文微量热法测定漆酶的活性[期刊论文]-自然杂志 1997(06)

21.Kirk T K;Farrell R L Enzymatic "combustion":The microbial degradation of lignin 1987(10)

22.张爱萍;秦梦华;徐清华漆酶在制浆造纸中的应用研究进展[期刊论文]-中国造纸学报 2004(02)

23.Reid I D Biological pulping in paper manufacture 1991(08)

24.Bergbauer M;Eggert C;Kraepelin G Degradation of chlorinated lignin compounds in a bleach plant effluent by the white-rot fungus Trametes Versicolor 1991(35)

25.林建城酶在食品工业,轻工业和环境保护上的应用分析[期刊论文]-莆田学院学报 2005(02)

26.林鹿;陈嘉翔白腐菌对纸浆CEH漂白废水的脱色、消除毒性和芳香化合物的降解 1996(11)

27.E Rodriguez;MA.Pickard;R Vazquez-Duhalt Industial dye decolorization by laccases from ligninolytic fungi

1999(38)

28.Bollag J M;Myers C Detoxification of aquatic and terrestrial sites through binding of pollutants to humic substances 1992(117-118)

29.Majcherczy A Oxidation of ploycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor 1998(22)

30.刘涛;曹瑞饪漆酶在环境保护领域中的研究及应用进展[期刊论文]-云南环境科学 2005(03)

31.Collins P J;Kotterman M J J;Field J A;Dobson A Oxidation of Anthracene and Benzo[a]pyrene by Laccase from Trametes versicolor[外文期刊] 1996(12)

32.Ghindilis A L;Gavrilova V P;Yaropolov AI Lacease-based biosensor for determination of polyphenols:determination of catechols in tea 1992(02)

33.Bauer C G;Kuehn A;Gajovic N;Skorobogatko O Holt P J Bruce N C New enzyme sensors for morphine and codeine based on morphine dehydrogenase and laccase 1999(364)

本文链接:https://www.wendangku.net/doc/1818745741.html,/Periodical_nyyjs201209002.aspx

漆酶催化活性中心结构及应用的研究进展

第8卷第2期2000年 6月 纤维素科学与技术 Journal of Cellulose Science and T echnology V ol.8 N o.2 Jun. 2000 综述评论漆酶催化活性中心结构及应用的研究进展Ξ 李光日 余惠生3 付时雨 秦文娟 (中国科学院广州化学研究所纤维素化学开放研究实验室 广州 510650) 文 摘:综述了漆酶催化活性中心结构及应用的研究进展。漆酶的催化 反应发生在铜离子形成的活性中心,但其氧化能力与氨基酸配体有密切 的关系。漆酶可应用于带有羟基或氨基的芳香族单体的聚合反应,偶氮 染料的合成及降解,稠环芳烃的降解去毒等。同时在纸浆的洁净漂白,化 学分析中痕量物质的检测,食品的保鲜及改良和环保等方面有重要应用。 关键词:漆酶,催化活性中心结构 中图法分类号:Q55 0 前 言 漆酶是一类含铜的多酚氧化酶(P—diphenol:oxidoreductase,EC1.10.3.2)。早在1883年,Y oshida从漆树的分泌物中发现了一种蛋白质,它可使油漆迅速固化[1]。1894年Bertrand将这种蛋白质命名为漆酶[2]。随后人们发现这种酶不仅存在于漆树的分泌物中[3~5],而且存在于多种植物[6~8]、昆虫[9,10]和高等真菌中[11~15]。 近年来,漆酶在痕量物质的分析、染料合成与降解、食品性质的改良、环保和皮革工业等领域显示了较高的应用价值。尤其重要的是漆酶在氧化还原介体的协助下具有降解木素的能力[16],可以用于纸浆中残余木素的脱除,有利于发展全无氯的纸浆漂白技术。与传统的氯漂工艺相比,利用漆酶来脱除纸浆中的残余木素,不会产生有毒性的氯酚类化合物,对减少环境污染有着重要的意义。因此漆酶作为一种具有很大的潜在应用价值的酶越来越受到人们的关注。关于漆酶产生方面的研究大多数是以白腐菌为研究对象,只有少数是以细菌[17]为研究对象。王佳玲等人对产漆酶白腐菌菌种,培养方式及产漆酶效果的影响因素等方面做过较为系统的总结[18]。本文将分以下三个方面对近年来有关漆酶的一些研究结果进行扼要的综述。 1 漆酶的催化活性中心结构 漆酶一般以单蛋白体的形式存在,其分子量范围一般是从52K Da到110K Da,也有些漆酶分子的分子量大于110K Da。不同来源的漆酶其分子被不同程度地糖基化,碳水化合物含量占10%~45%(质量分数),一般情况下真菌漆酶的碳水化合物含量要低于植物漆酶的碳水化合物含量[19]。含有糖基的蛋白不易结晶,为了研究漆酶蛋白多肽的 收稿日期:2000-01-06 国家自然科学基金和广东省科学基金资助课题 3通讯联系人

真菌漆酶的研究进展及其应用前景

万方数据

万方数据

万方数据

真菌漆酶的研究进展及其应用前景 作者:周雪婷, 张跃华, 罗志文, 潘亭如, 缪天琳 作者单位:佳木斯大学,黑龙江佳木斯,154007 刊名: 农业与技术 英文刊名:Agriculture & Technology 年,卷(期):2012,32(9) 参考文献(33条) 1.王光辉;季立才中国漆树漆酶的底物专一性 1989 2.Nina H;Laura-Leena K Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear coper site 2002(08) 3.雷福厚;蓝虹云漆树漆酶和真菌漆酶的异同研究[期刊论文]-中国生漆 2003(01) 4.李慧蓉白腐真菌生物学和生物技术 2005 5.Harald Claus Laccases:structure.reactions,distrihution 2004(35) 6.张丽白腐真菌产漆酶对染料废水降解的研究 2004 7.张敏;肖亚中;龚为民真菌漆酶的结构与功能[期刊论文]-生物学杂志 2003(20) 8.Gimifreda L;Xu F;Bollag J-M Laccases:a useful group of oxido reductive enzymes 1999(03) 9.Xu F;Kulys J J;Duke K Redox Chemistry in Laccase-Catalyzed Oxidation of N-Hydroxy Compounds 2000(66) 10.堵国成;赵政;陈坚真菌漆酶的酶活测定及其在织物染料生物脱色中的应用[期刊论文]-江南大学学报(自然科学版) 2003(02) 11.缪静;姜竹茂漆酶的最新研究进展[期刊论文]-烟台师范学院学报(自然科学版) 2001(17) 12.刘尚旭;赖寒木质素降解酶的分子生物学研究进展[期刊论文]-重庆教育学院学报 2001(14) 13.何为;詹怀宇;王习文;伍红一种改进的漆酶酶活检测方法[期刊论文]-华南理工大学学报(自然科学版) 2003(31) 14.季立才;胡培植漆酶结构,功能及应用 1996(18) 15.侯红漫白腐菌Pleurotus ostreatus漆酶及对蒽醌染料和碱木素脱色的研究 2004 16.Huang Z Y;Huang H P;CaiR X Organic solvent enhanced spectrofluorin etric method for determition of laccase activity 1998(01) 17.Badiani M;Felici M;Luna M Laccase assay by means of highperfomance liquid chromatography 1983(02) 18.Wood D.A Production,Purification and Properties of Extracelluar laccase of Agaricus bisporus 1980(17) 19.林俊芳;刘志明;陈晓阳真菌漆酶的酶活测定方法评价[期刊论文]-生物加工过程 2009(04) 20.望天志;李卫莲;万洪文微量热法测定漆酶的活性[期刊论文]-自然杂志 1997(06) 21.Kirk T K;Farrell R L Enzymatic "combustion":The microbial degradation of lignin 1987(10) 22.张爱萍;秦梦华;徐清华漆酶在制浆造纸中的应用研究进展[期刊论文]-中国造纸学报 2004(02) 23.Reid I D Biological pulping in paper manufacture 1991(08) 24.Bergbauer M;Eggert C;Kraepelin G Degradation of chlorinated lignin compounds in a bleach plant effluent by the white-rot fungus Trametes Versicolor 1991(35) 25.林建城酶在食品工业,轻工业和环境保护上的应用分析[期刊论文]-莆田学院学报 2005(02) 26.林鹿;陈嘉翔白腐菌对纸浆CEH漂白废水的脱色、消除毒性和芳香化合物的降解 1996(11) 27.E Rodriguez;MA.Pickard;R Vazquez-Duhalt Industial dye decolorization by laccases from ligninolytic fungi 1999(38) 28.Bollag J M;Myers C Detoxification of aquatic and terrestrial sites through binding of pollutants to humic substances 1992(117-118) 29.Majcherczy A Oxidation of ploycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor 1998(22) 30.刘涛;曹瑞饪漆酶在环境保护领域中的研究及应用进展[期刊论文]-云南环境科学 2005(03) 31.Collins P J;Kotterman M J J;Field J A;Dobson A Oxidation of Anthracene and Benzo[a]pyrene by Laccase from Trametes versicolor[外文期刊] 1996(12)

白腐真菌

白腐真菌 前言 白腐真菌(white rot fungi)为丝状真菌,系木腐真菌(wood—degrading fungi)的一种,绝大多数为担子菌纲,少数为子囊菌纲,着生在木材上,因其能降解木材中的木质素、纤维素和半纤维素使木材呈现特征性的白色腐朽状而得名。日前研究最多的有:黄孢原毛平革菌(Phanerochete chrysosporium)[1]、彩绒草盖菌(Coridusversicolor)、变色栓菌(Thametes versicolor)、射脉菌(Phlebia radiata)、风尾菇(Pleurotus pul—mononanus)等。其中黄孢原毛平革菌是其典型种,也是研究木质素降解的模式菌。白腐真菌是已知的唯一能在纯系培养中有效地将木质素降解为CO2和H2O 的一类微生物。木质素是由苯丙烷单元通过醚键和碳一碳键连接而成的具有三维空间结构的高分子芳香族类聚合物。组成单元的结构及其连接键复杂而稳定,使得木质素很难降解[2]。木质素结构的异质性和不规则性,决定了对其生物降解的复杂性和特殊性。白腐真菌经过长期进化,形成了相应的适应性特性:白腐真菌能分泌氧化酶到胞外,在催化氧化过程中形成自由基,进而攻击木质素结构,此过程不需要特异的电子供体,因此其作用具有非特异性[3]。1983年Kirk和Gold两个研究小组发现能够利用白腐真菌的上述生物学特性降解染料[4,5]。此后,白腐真菌受到许多研究者的高度关注,并在将白腐真菌应用于降解诸如染料、三硝基甲苯(TNT)等许多难降解有机物方面进行了有成效的探索[6],在木质素降解酶的生理生化过程以及基因调控方面获得了一些有意义的研究成果。以下就酶系统基因结构,催化机制,应用及新发展几方面进行介绍。木质素降解酶系统 白腐真菌依赖一系列酶催化反应实现对难降解有机物的转化,这一过程殊为复杂,其中的关键酶系为木质素降解酶系。木质素降解酶主要包括了3 种酶:木质素过氧化物酶( lignin peroxidase,LiP) 、锰过氧化物酶( mangnase peroxidase,MnP) 、漆酶( laccase,Lac) 这3 种木质素降解酶均能单独降解木质素,也能两两联合,或者3 种酶一起作用对木质素进行降解。 1、木质素降解酶的比较 1.1 LiP、MnP 和Lac 三种酶的结构及组成特点

真菌基因组学研究进展

真菌基因组学研究进展 真菌为低等真核生物,种类庞大而多样。据估计,全世界约有真菌150万种,已被描述的约8万种。真菌在自然界分布广泛,存在于土壤、水、空气和生物体内外,与人类生产和生活有着非常密切的关系。许多真菌在自然界的碳素和氮素循环中起主要作用,参与淀粉、纤维素、木质素等有机含碳化合物及蛋白质等含氮化合物的分解。有些真菌如蘑菇、草菇、木耳、麦角、虫草、茯苓等可直接供作食用和药用,或在发酵工业、食品加工业、抗生素生产中具有重要作用。然而,也有些种类引起许多植物特别是重要农作物的病害,如水稻稻瘟病、小麦锈病、玉米腥黑穗病、果树病害等。少数真菌甚至是人类和动物的致病菌,如白色假丝酵母Candida albicans等。因此,合理利用有益真菌,控制和预防有害 真菌具有重要意义。 本文整理了已完成基因组序列测定的真菌的信息,并对真菌染色体组的历史、测序策略及其基因组学的研究进展进行了评述。 1真菌染色体组的研究历史和资源 1986年美国科学家Thomas Rodefick提出基因组学概念,人类基因组计划带动了模式生物和其它重要生物体基因组学研究。阐明各种生物基因组DNA中碱基对的序列信息及破译相关遗传信息的基因组学已经成为与生物学和医学研究不可分割的学科。由欧洲、美国、加拿大和日本等近百个实验室六百多位科学家通力合作,1996年完成第一个真核生物酿酒酵母Saccharomyces cerevisiae的基因组测序,这 对于酵母菌类群来说是一个革命性的里程碑,并且激起了真核基因功能和表达的第一次全球性研究(Goffeau etal,1996)。随后粟酒裂殖酵母Schizosaccharomyces pombe(Wood etal.2002)和粗糙脉孢 霉Neurospora crassa(Galagan etal.2003)染色体组的完成显露出酿酒酵母作为真菌模式生物的局限性。尽管如此,真菌染色体组测序的进展最初是缓慢的。为加快真菌染色体组研究的步伐,2000年由 美国Broad研究所与真菌学研究团体发起真菌基因组行动(fungal genome initiative,FGI),目的是 促进在医药、农业和工业上具有重要作用的真菌代表性物种的基因组测序。2002年2月FGI发表了第 一份关于测定15种真菌基因组计划的白皮书。2003年6月,真菌基因组行动发表了第二份白皮书,列 出了44种真菌作为测序的目标,强调对其中10个属即青霉属Penicillium、曲霉属Aspergillus、组 织胞浆菌属Histoplasma、球孢子菌Coccidioides、镰刀菌属Fusarium、脉孢菌属Neurospora、假丝 酵母属Candida、裂殖酵母属Schizosaccharomyces、隐球酵母属Cryptococcus和柄锈病菌属Puccin& 的物种优先进行测序。之后,经过FGI、法国基因组学研究项目联(G6nolevures Consortium)、美国能 源部联合基因组研究所(The DOE Joint Genome Institute,JGI)DOE联合基因组研究所、基因组研究 院(The Institute for Genomic Research,TIGR)、英国The Wellcome Trust Sanger InstimteSanger和华盛顿大学基因组测序中心等共同努力;得到包括美国国家人类染色体研究所、国 家科学基金会、美国农业部和能源部等的资助,也有来自学术界和产业集团如著名的 Monsanto、Syngenta、Biozentrum、Bayer Crop Science AG和Exelixis等公司的持续合作,在最近 的几年里,真菌基因组学研究取得重大突破。至2008年6月1日,共有3734种生物的全基因组序列测定工作已经完成或正在进行,公开发表812个完整的基因组,其中,70余种真菌基因组测序工作已经 组装完成或正在组装,分别属于子囊菌门、担子菌门、接合菌门、壶菌门和微孢子虫(Microsporidia) 的代表。此外,还有Ajellomyces dermatitidis和Antonospora locustae等20余种真菌基因组序列 正在测定中(Bemal etal.2001)。这些真菌都是重要的人类病原菌、植物病原菌、腐生菌或者模式生物,基因组大小为2.5—81.5Mb,包含酵母或产生假菌丝的酵母、丝状真菌,或者具有二型性(或多型性) 生活史的真菌,拥有与动物和植物细胞一样的的细胞生理学和遗传学特征,包括多细胞性、细胞骨架结

漆酶在制浆造纸中的应用研究进展

收稿日期:2004 07 19(修改稿) 作者简介:张爱萍,女,1980年生;山东轻工业学院硕士研究生;主要研究方向:纤维资源的制浆造纸特性与生物技术应用。 E mail:zhap@https://www.wendangku.net/doc/1818745741.html, 漆酶在制浆造纸中的应用研究进展 张爱萍 秦梦华 徐清华 (山东轻工业学院制浆造纸工程省级重点学科,山东济南,250100) 摘 要:漆酶是一种多酚氧化酶,参与木素的降解或聚合,具有氧化木素的能力,在制浆造纸中的应用已拓展到脱墨、漂白、制浆、废水处理、增加湿强性能等诸多方面。本文综述了近年来漆酶在制浆造纸工业中的应用研究进展。关键词:漆酶;脱墨;漂白;湿强中图分类号:Q55 文献标识码:A 文章编号:1000 6842(2004)02 0161 05 漆酶是一种含酮的多酚氧化酶(p diphenol oxidore ductase,EC 1 10 3 2),最早是1883年Yoshida 从漆树的分泌物中发现的[1],以后的研究进一步发现漆酶广泛存在于昆虫、植物和真菌中,尤其在一些能够降解天然木素的白腐菌(T versicolo r )中大量存在。 作为一种木素降解酶,漆酶可以降解生物体中的木素。漆酶的氧化还原电势比较低,为300~800m V (对标准氢电极)[2],只能氧化降解木素中的酚型结构单元(图1),而不能氧化占木素90%的非酚型结构。1990年[3] 发现如果有低分子质量的化合物作为氧化还原介体,漆酶能氧化非酚型木素结构(图2),最适合的介体是一些酚型化合物和杂环如卟啉类化合物,这些介体物质有的来自真菌次生代谢产物或木素降解产物,如紫丁香醛和来自P ycno porus cinnabarinus 的3 羟基邻氨基苯甲酸(3 hydroxyanthranilicacid,3 HAA);有的来自人工合成化合物,如AB TS[2,2 联氨 二(3 乙基 苯并噻唑 6 磺酸)]、HB T (1 羟基苯并三唑)、VI O (紫尿酸)、NHA(N 羟基 N 乙酰苯胺)等[4]。据报道,在氧气存在的条件下,漆酶能将介体转化成共介体,由于这种共介体尺寸较小,能够渗透进入纤维而与木素反应,脱木素机理基于自由基的形成[5 6]。目前,漆酶在制浆造纸工业的诸多方面得到了广泛的应用,如二次纤维回用、漂白、制浆、废水处理、纤维性能的改善,湿强剂及纤维板制造等,本文就这些方面的研究进展进行了综述。 1 漆酶在二次纤维回用中的应用 近年来,二次纤维在原料中所占的比例日益增加, 脱墨技术引起了越来越多的关注,酶法脱墨是一种经济有效的脱墨方法,可以减少化学脱墨带来的环境污染,而且酶处理可以改善浆料滤水性能和纸页强度,降 低漂白化学品用量。 图1 漆酶氧化酚型木素结构 图2 漆酶介体体系氧化非酚型木素结构 161 Vol 19,No.2,2004 Transactions of China Pulp and Paper 中 国 造 纸 学 报

漆酶

漆酶性质及应用 漆酶(1accase)是一种含铜的多酚氧化酶,通常由500个氨基酸单一多肽组成,其中含有19种氨基酸,漆酶有一定的含糖量[1]。真菌漆酶是一种糖蛋白,由肽链、糖配基和Cu2+三个部分组成,分子量在60-390kDa之间[2]。肽链一般由500-550个氨基酸组成[3],糖配基有氨基己糖、葡萄糖、甘露糖、半乳糖、岩藻糖和阿拉伯糖,占整个分子重量的10%-80%。糖配基组成及含量的不同是漆酶分子量存在较大差异的主要原因。 漆酶一般含有4个铜离子(P. radiate漆酶除外,仅含2个铜离子,无3号铜离子)。根据其光谱特征,可划分为3种类型的铜: 1号铜(只有一个铜离子,顺磁性)具有典 型的蓝铜谱带:紫外可见光谱上600nm [ε: 5000 (mol·L-1cm)-1]处出现峰值,在EPR (电子顺磁共振)谱上有一个小的平行超精细耦合结构[A11:(4070) * 10-4cm-1],它参与分子内的电子传递,把电子从底物传递到其他铜原子上; 2号铜(只有一个铜离子,顺磁性)只具一般的EPR谱带(A11>140×10-4m-1); 3号铜由2个3号铜原子通过一个OH桥配位连接起来,组成双核铜区,具有抗磁性,因而在EPR上无谱带,紫外可见光谱上330nm处的肩峰是3号Cu2+的特征峰。漆酶空间结构更详细的资料来自其晶体衍射的研究。含四个铜原子的酶分子是常见的形式,而某些酶蛋白的辅基有例外的情况。Karhunen E[4]等的研究指出,phlebia radiata产生的漆酶中只含有2个铜原子,另外还有一分子的有机小分子辅基吡咯喹琳醌(pyrroloquinolin-equi-none, PQQ),该辅基在分子中扮演类似Ⅲ型铜原子的功能。 漆酶能够催化酚类、芳胺类、羧酸类、甾体类激素、生物色素、金属有机化合物和非酚类物质生成醌类化合物、羰基化合物和水,属于铜蓝氧化酶(或称为铜蓝蛋白酶)中的一小族,广泛存在于真菌、植物和昆虫中,有报道细菌也能产生漆酶I21。漆酶含有的铜离子,它们位于酶的活性位,在氧化反应中能够协同传递电子并将氧还原成水。目前, 研究最多的产漆酶微生物大多是白腐真菌, 主要有黄孢原毛平革菌、彩绒革盖菌、变色栓菌、射脉菌、凤尾菇等。 1883年Yoshida[5]最先从漆树液中发现了漆酶131,后来被Bertranc命名。我国最早研究漆酶的是刘国智、黄葆同等,他们于20世纪50年代末利用漆酶在催化反

真菌漆酶的研究进展

真菌漆酶的研究进展 宋瑞(安徽大学生命科学学院合肥230039) 【摘要】漆酶是一种蓝色多铜氧化酶,和植物中的抗坏血酸氧化酶,哺乳动物的血浆铜蓝蛋白属同族,能够催化多种有机底物和无机底物的氧化[1,2],同时伴随分子氧还原成水。漆酶广泛分布于真菌、高等植物、少量细菌和昆虫中,尤其在白腐真菌中普遍存在。漆酶特有的结构性质和作用机理使其具有巨大的应用价值。本文就真菌漆酶结构,功能的研究进展作一综述,并对其应用作简单介绍。 【关键词】真菌漆酶三维结构功能应用 1真菌漆酶结构特征 1.1 漆酶的组成 漆酶是一种糖蛋白,肽链一般约由500个氨基酸组成[3],糖基含量差异较大,占整个分子质量的10%—80%[4],据相关报道,漆酶的热稳定性可能与其糖基化有关。糖组成包括半乳糖、葡萄糖、甘露糖、岩藻糖、氨基己糖和阿拉伯糖等。Mayer[5]认为漆酶并不均一,它由多条5000~7000分子量的糖肽链基本结构单元组成。由于结构单元之间的缔合度不同,造成了各种漆酶分子量的不同。另外,分子中的糖基的差异,也会引起漆酶的分子量随来源不同会有很大的差异,从59—390ku不等。真菌漆酶约含19种氨基酸,绝大部分为单体酶,但也有例外,如双孢蘑菇和长绒毛栓菌漆酶由两个亚基组成[6],而柄孢壳漆酶I由四个亚基组成。漆酶种类繁多,不同种类的真菌产生的漆酶种类不同,即使同一种真菌在不同环境下也产生不同种漆酶。

1.2漆酶的晶体结构 由于漆酶是含糖蛋白质,且糖质量分数较高,一直以来很难获得X-衍射分析所用的单晶体,因此阻碍了关于漆酶结构的研究进展。1998年第一个漆酶晶体是Ducros V[7]制备的来自灰盖鬼伞(Coprinus cinereusv)T1Cu缺失型漆酶晶体,并分析了其结构。至今为止,Bacillus subtilis(CoA)[8];Melanocarpus albomyces(MaL)[9];Rigidoporus lignosus(RiL)[10];Pycnoporus cinnabaricus(PcL)[11];Coprinus cinereus(CcL)[12]和Trametes versicolor(TvL)[13]漆酶的三维结构已相继被报道。 漆酶分子整体由3个杯状结构域所组成,分别称作结构域A、B、C,每个结构域主要由β-折叠桶,α-螺旋,loop结构所组成。三者紧密结合形成球状结构。这是铜蓝蛋白家族所共有的结构形式[7,9]。分子当中含有二硫键,漆酶种类不同,二硫键数目也不一样,MaL 漆酶分子由3个二硫键,分别是位于结构域A Cys4~Cys12、结构域A和C界面上Cys114~Cys540、结构域C Cys298~Cys332,而CcL,RiL漆酶中则含有两个二硫键。在CcL漆酶分子中,由结构域A的Cys85和结构域B的Cys487形成一个二硫键,另一个二硫键存在于结构域A和结构域B(Cys117—Cys204)之间。一个伸展的loop(氨基酸284—327)连接结构域B和结构域C。Asn343上有N连接的N—乙酰葡萄胺。 1.3 漆酶的催化中心 真菌漆酶分子中一般都含有4个Cu原子,根据磁学和光谱学性

漆酶对环境污染物降解的研究

《环境生物技术》论文 ——漆酶对污染物降解的研究 漆酶对环境污染物降解的研究 摘要:漆酶是一种含铜多酚氧化酶,该酶是一种氨基酸残基在500个左右的单体酶,一般都为酸性蛋白,漆酶的应用集中在以下几方面:生物漂白,环境治理,漆酶降解有害物质,工业废水处理;其他方面的应用;等等。本文进行了漆酶对废水降解的初步研究,并对染料废水的降解机理和部分影响因素进行了一定的分析探讨。 关键词:漆酶、应用、降解机理、影响因素。 漆酶是一种含铜的多酚氧化酶,和植物中的抗坏血酸氧化酶、哺乳动物的血浆铜蓝蛋白属铜蓝氧化酶家族中的同一小族,在结构和功能上存在着许多相似之处。它最早是从日本漆树的汁液中发现的,后来也发现其存在于多种植物、昆虫和高等真菌中【1】。不同来源的漆酶具有不同的催化性质.即使是相同来源,比如同一白腐菌菌种,可分泌多种具有不同性质的漆酶组分,包括氧化能力,酶蛋白分子量,最适pH值、底物的专一性等等…,因此所起的作用是各不相同的。在漆酶降解木素方面已进行了较多较深入的研究,漆酶除了能氧化木质素以外,还被证明能催化多种底物,如酚类化合物及其衍生物、芳胺及其衍生物、羧酸及甾体激素等【2】。由于许多漆酶氧化的底物为环境污染物,因此利用白腐真菌产生的漆酶处理印染废水,降解染料化合物的研究在环境保护中具有十分重要的意义。应用漆酶来实现纸浆的生物漂白正是研究的一个热点【3】;另外,漆酶还具有降解氯化有机物去除环境中有毒污染物毒性的作用,本文就漆酶的这一性质做一介绍。

1 漆酶的催化机理 一般认为生物法降解主要有两种机理在起作用:吸附和降解,以降解为主。生物降解又分为两步:一是染料分子吸附到菌体上,部分透过细胞膜进入细胞体内;二是利用微生物产生的酶催化氧化还原染料分子,破坏不饱和共轭体系,达到去色的目的,中间产物进一步氧化还原分解并最终分解为C02和水或转化为所需的营养物质,组成新的原生质【4】。 根据对漆酶光谱学、动力学和晶体衍射的研究,漆酶催化底物的方式可能如下:底物结合于酶活性中心的I型铜原子位点,通过cys.His途径将其传递给三核位点,该位点进一步把电子传递给结合到活性中心的第二底物氧分子,使之还原为水。整个反应过程需要连续的单电子氧化作用来满足漆酶的充分还原,还原态的酶分子再通过四电子转移传递给分子氧,因此漆酶又被称为分子电池。在此过程中,氧还原很可能分两步进行,两个电子转移产生过氧化氢中间体,该中间体在另两单电子作用下被还原为水。 2 漆酶的主要用途 2. 1 环境治理 生物整治包括染料脱色、工业废水处理和土壤修复等领域。因漆酶对底物的专一性要求不高,含介体的酶催化系统能氧化大范围的化合物,所以在环境污染控制中有广泛的应用。由于合成染料广泛的用于印染工业,目前已超过10,000种。合成染料被人们设计成防水、抗光照、抗氧化的生物难降解化合物,以通常的活性污泥方法处理纺织废水很难达到预期目的,同时存在着花费高和污泥再处理的问题。而筛选的染料降解细菌,对降解的染料结构有高度的专一性,不适用于化学结构多样性的纺织废水处理【5】。 由于漆酶具有降解残余木素、氧化去除有毒氯酚化台物的作用.因此不少研究者尝试将漆酶用于处理含酚的工业废水。效果还是比较显著的。木材剥皮废水中含有有色的酚型化台物,使用漆酶处理该废水。通过催化氧化聚合反应,可去除90%以上的鞣酸类和其他酚型化台物,废水经硫酸铝絮凝后,色度下降82%;同样的混台废水经漆酶处理lh随后经硫酸铝絮凝,由色谱分析证实86%的氯代酚,99%的氯代愈疮木酚和80%的氯代香草醛,92%的氯代儿荣酚可被去除掉。漆酶还可以降低造纸厂漂白车间碱抽提段废水,漆酶经固定化后,可进一步提高漆酶处理废水脱色的有效性,每一单位酶活所降低的废水色度值.就白腐菌处理废水与漆酶处理废水的脱色效果比较而言,白腐菌处理3天可使废水脱色30%-50%,与漆酶处理几小时的脱色效果相近。但随着处理时间的延长,白腐菌总的废水脱色率达到70%一80%,比用漆酶处理的废水的脱色率高20%~30%,这可能是由于白腐菌处理时,分泌出的多种酶所起的协同作用。因此结合使用两种或多种酶可能提高处理废水的效果【6】。

真菌漆酶的研究进展及其应用前景_周雪婷

真菌漆酶的研究进展及其应用前景 周雪婷,张跃华* ,罗志文,潘亭如,缪天琳 (佳木斯大学,黑龙江佳木斯154007) 摘 要:漆酶生产菌株多为白腐真菌,常用的漆酶活性测定方法有分光光度法、ABTS 法、微量热法等,其降解工业“三废”中的有毒有害物质被认为是一种效率较高,成本较低的且最有前途的方法,其对环境保护的研究以逐渐成为国内外研究的热点,本文阐述漆酶的性质、活性中心、结构特点以及其在环境治理方面的应用。关键词:漆酶;结构;活性中心;环境修复 中图分类号:X592 文献标识码:A 基金项目:黑龙江省教育厅科学技术研究项目资助(项目编号:12521573) *为本文通讯作者 漆酶最早由Yoshi 从日本紫胶漆树(Rhus vernicifera )漆液 中发现。19世纪末,G .Betranel 首次将能够使生漆固化的活性物质进行分离,命名为“Laccuse ”,即漆酶。漆酶属蓝色多铜氧化酶家族[1,2],与抗坏血酸氧化酶和哺乳动物血浆中铜蛋白同源。人们将自然界中得到的漆酶分为漆树漆酶和真菌漆酶,其中真菌漆酶极具研究价值。漆酶在生物制浆、污水处理、防腐剂、杀虫剂等化工产品的降解效果显著,用于环境保护、环境监测等领域,在食品工业等方面也有应用[3],已逐渐成为自然科学的研究热点之一。漆酶催化氧化不同种类型的底物已达200余种,广泛用于食品、废水处理、造纸等领域。 国内外真菌漆酶研究主要是以担子菌、子囊菌、脉孢霉、柄孢壳菌和曲霉等真菌来研究漆酶的生物学活性,细菌和放线菌的研究较少,现已在细菌生脂固氮螺菌(Azospirillum lipofer -um )中发现了漆酶的存在。而高等担子菌中的研究对象包括白腐真菌、杂色云芝、平菇、变色栓菌,其中白腐真菌所产的漆酶为胞外酶,可作为主要的产酶者和研究对象。1 漆酶的性质1.1 理化性质 漆酶是一种含铜的多酚氧化酶,不同来源的漆酶铜含量也有所不同,多含有4个铜原子[4]。漆酶多为1条多肽链组成的单聚体,由500~550个氨基酸分子所组成,相对分子质量主要集中在50~80kD ,其碳水化合物约占15%~20%,等电点pI 为3~6,反应温度为30~60℃,pH 低的环境,漆酶的生物活性较高[5-7]。1.2 活性中心 漆酶催化中心根据其光谱性质,存在3种不同的功能:1.2.1 Ⅰ型铜 含铜的蓝色蛋白质,Ⅰ型铜与2个组氨酸和1个半胱氨酸配位,紫外可见光谱λ=600nm 时出现峰值,在EPR (电子顺磁共振)谱上有1个平行超精细耦合结构,Ⅰ型铜参与分子内的电子传递,将电子从底物传递到其它铜原子上。1.2.2 Ⅱ型铜 II 型铜与2个组氨酸和1个水分子配位,形成T 型几何结构,没有明显的可见吸收光谱,但有EPR (电子顺磁共振)信号。1.2.3 Ⅲ型铜 与漆酶的催化作用密切相关,经实验研究其为活性中心, 由2个铜原子通过1个-OH 桥配位连接起来组成四面扭曲的四方立体双核铜区结构,铜原子之间具有抗磁性,其距离是0.38n m 。在紫外可见光谱λ=330nm 处有最大吸收峰,在EPR 上无谱带[8~14];为了测定漆酶活性中心,将其经过抑制剂处理后,Ⅲ型铜在EPR 上出现有裂分峰,表明外源性配体与Ⅲ型铜发生了配位,1个Ⅱ型铜和2个Ⅲ型铜形成三核铜簇,双氧还原的反应位置在三核铜簇,此时Ⅲ型铜已结合5个配体,使其氧化性降低,限制了还原,同时也抑制O 进入三核中心区。 另有实验表明,将漆酶晶型结构被完全还原,Ⅰ和Ⅱ型铜的配位环境不变,Ⅲ型铜的-OH 桥配体则在反应中消耗,2个Ⅲ型铜之间距离亦增加[15]。1.3 检测方法 检测漆酶活性方法有分光光度法[16]、ABTS 法、微量热法、测O 2法、高效液相色谱法[17]、极谱法[18]等。AB TS 法测定漆酶,常用醋酸钠溶液作为缓冲溶液,反应体系内ABTS 的浓度为0.5mmol /L 。漆酶对不同种底物的亲和力也有显著地差异,但其对ABTS 的亲和力和催化能力普遍很高,测得的酶活性值也高,此方法反应条件不高,使用安全,常温下性质稳定,测定的OD 值相对稳定而准确[19]。微量热法测定漆酶的活性,利用LKB -2107Batch 型微量热系统,将其温度调至298K ,pH 调至7.4,此方法漆酶的提取物样品用量较少,可直接对酶的悬浮液进行测定,其对反应体系没有任何限制或干扰,适合研究酶促反应中的酶活。分光光度法测定漆酶酶活的基本原理是选定某种漆酶作用的底物,底物在漆酶催化作用下首先形成底物自由基,底物自由基浓度与吸光值成正相关,其在一定的光波波长下存在吸光系数的最大值,依据吸光值随时间变化的关系计算出酶活。分光光度法因其操作简单、快速、较准确、无需配备昂贵仪器设备等特点,得以在漆酶测定实验中广泛应用[20]。 2 漆酶的应用2.1 工业污水治理 真菌降解木质素目前主要集中于生物制浆方面。传统的氯法漂白,在去除纤维原料中木质素的过程中,仍有3%~12%的残留。在漂白废水中会产生大量有毒、有害物质,严重污染 农业与技术 第32卷 第9期 2012年9月 2 AG RIC ULTURE AND LTECHNOLOG Y

白腐真菌在环境保护中研究与应用进展

摘要综述了近年来白腐真菌在环境保护中的研究进展,主要包括在多种工业废水处理、垃圾堆肥及其渗滤液处理、煤炭脱硫、作物秸秆发酵、土壤生物修复等方面的应用。关键词 白腐真菌 环境保护 应用 中图分类号 X703.1TQ085+.413 白腐真菌在环境保护中研究与应用进展 吴林林 阮宇鹰 武琳慧黄民生 华东师范大学环境科学系(上海 200062) 环境保护 0前言 环境中难降解有机污染物日积月累并持久存在 的结果已严重危害生态系统的健康和人类社会的可持续发展。这些污染物产生于各种工农业生产及人类生活活动中,除难以降解外它们还具有较高的生物毒性和致癌、致畸、致突变危害性,是环境治理与保护工作的重点和难点。白腐真菌通过木质素过氧化物酶、锰过氧化物酶、漆酶等关键酶催化自由基链式反应,对环境中难降解有机污染物具有高效、广谱的降解功能。自20世纪80年代以来,国内外许多学者开始应用白腐真菌进行环境治理与修复的实验和应用研究。本文对白腐真菌在多种工业废水处理、垃圾及其渗滤液处理、煤炭脱硫、作物秸秆发酵、土壤生物修复等方面的研究与应用进展进行了综述。 1 白腐真菌在工业废水处理中的研究与应用 1.1 造纸废水处理 吴涓等研究了不同白腐真菌对灰法造纸黑液废 水的处理效果,考察了黑液废水浓度和碳氮源添加量对黑液脱色及CODCr去除率的影响。研究结果表明,变色栓菌(Trametesverscolor)对黑液废水的 CODCr和色度的去除率分别达到64.25%和47.31%, 在添加0.2%纤维二糖和0.02%天冬酰胺的情况下应用自行分离、筛选的白腐真菌(AH28-2)处理黑液废水时CODCr去除率也达到了60%以上。该研究还发现,锰过氧化物酶(MnP)和木质素过氧化物酶(LiP)酶活相对比值对造纸黑液的CODCr去除率有明显影响,MnP/LiP酶活比值越高时CODCr去除率也越高,说明在该降解系统中MnP起到主要作用[1]。 Marwaha等分别采用黄麻绳、棉花和小麦作为黄孢 原毛平革菌(Phanerochaetechrysosporium,简称PC菌,下同)生长、挂膜载体在厌氧条件下对造纸黑液进行预处理,结果表明,以黄麻绳为载体时废水的脱色率和CODCr去除率最高,相应的运行参数为温度40℃、pH5.5、 菌丝体负荷340mg、外加葡萄糖浓度1%(m/v)、 停留时间72h。Joyce等应用PC菌构建新型生物转盘(MyCoR反应器,即真菌生物转盘反应器)来处理纸厂漂白废水。实验结果表明,这种生物转盘能够有效降低白水的CODCr和BOD5并使氯化木质素脱氯。秦文娟等[2]将几种不同的白腐真菌菌丝悬浮液与海藻酸钠、氯化钙混合后凝固成球状,用于造纸E段氯漂废水的脱色处理,结果发现Polystic- tusversicolor和Phlebiaradiate两种PC菌对废水的 脱色效果最好(24h内废水色度下降50%左右)。王双飞等在8%PVA、0.5%海藻酸钠、3%细胞浓度的条件下制备固定化PC菌间歇式处理造纸E段氯漂废水。实验结果表明,在连续运行1个月内,处理效果稳定,废水的脱色率保持50%左右,TOC去除率分别保持50%~58%,比游离态PC菌间歇式连续处理分别高出17%和12%。 1.2染料及印染废水处理 张朝晖等应用PC菌生物膜反应器进行酸性染 料卡布龙红和弱酸大红的降解实验。结果表明,在限碳培养条件下挂膜培养5d后,木素过氧化物酶活力达到最高,此时分别加入酸性染料卡布龙红和弱酸大红,质量浓度分别为25、50、100mg/L和12.5、 25、50mg/L,48h后培养液基本脱色,较高浓度下菌膜上有少量吸附的残余染料,5d后染料质量降解 率分别为100%、88%、92%和58%、65%、38%[3]。 李慧第一作者简介:吴林林男1981年生华东师范大学环境科学系在读硕士主要从事水污染控制与生物修复研究 Vol.31No.1Jan.2006 上海化工 ShanghaiChemicalIndustry 8??

漆酶结构与催化机理

漆酶结构与催化机理 万云洋杜予民# (中国石油大学(北京)资源与信息学院北京 102249 #武汉大学资源与环境科学学院武汉 430079) 摘要本文阐述了漆酶的研究进展,对漆酶研究中的铜离子活性中心、三维结构和催化机理研究作重点阐述。 关键词漆酶金属酶三维结构三核中心催化机理 Structure and Catalytic Mechanism of Laccases Wan Yunyang, Du Yumin# (Faculty of Natural Resources and Information Technology, China University of Petroleum, Beijing, 102249; # College of Resource and Environmental Sciences, Wuhan University, Wuhan 430079) Abstract The progress on the research of laccases is reviewed the active centre of copper ions, the three-dimensional structure of protein, and catalytic mechanism are emphasized in this paper. Key words Rhus laccase, Metal enzyme, Three dimensional structure, Trinuclear centre, Catalytic mechanism 漆酶(EC1.10.3.2),(对)-二酚:双氧氧化还原酶,是多铜氧化酶中的一种含铜的糖蛋白氧化酶(表1),按照来源大致可以分为植物漆酶、微生物(包括真菌和细菌)漆酶和动物漆酶[1]。从首次在生漆液成份中发现这种酶成份(1883年)、漆酶(laccase)概念的提出(1898年)与沿用、真菌漆酶的发现、含铜蛋白质和铜活性中心地位的确立,到第一种工业微生物漆酶制剂的应用(1997年)[2],及对漆酶分离纯化[3,4]、晶体结构[5,6]等的研究,已有一百多年的历史,并一直经久不衰,几乎涉及到化学、分析、食品、医疗、生物和环保等各个领域,同时预计它在新兴的蛋白质组学对糖蛋白的研究中也会有一席之地。本文结合自身工作实践,对漆酶研究中的难点热点之一的铜离子中心和高级结构以及其多样化的应用研究作一综述,以期推动漆酶(尤其是植物漆酶)研究的深入发展。 表1 几种益多铜酶 Table 1. Several kinds of blue multicopper enzymes 铜酶作用原子数分子量主要来源 tyrosinase 底物氧化 4 116,000~128,000 植物真菌细菌 Laccase 底物氧化 4 101,000~140,000 50,000~90,000 植物 真菌 Ascorbate oxidase 底物氧化 8 ~140,000 植物 ceruloplasmin Fe2+氧化 8 ~151,000 动物 1漆酶的结构与功能 植物漆酶与其他来源的漆酶有共性也有区别(表1、表2),特别由于真菌漆酶研究的飞速发展,比较借鉴它们的相互特性,对植物漆酶、尤其是漆树漆酶的研究无疑是有益的。从目前的发展来看,由于漆树漆酶本身存在的一些问题,目前尚难以解决,所以漆树漆酶还须同真菌漆酶结合起来研究。比如从表2可见,在底物专一性、pH、p I和分子量上两者都有差异,但一些抑制剂对它们的作用却类似。从目前的研究来看,它们最大的共性可能是具有4个铜离子(但不是绝对)的活性中心相对保守的结构组成。而在氨基酸和糖成分组成上存在着较大的区别。这在下面的论述中也有提及,包括氨基酸,糖链及其组成和空 2006-09-27收稿,2007-04-09接受

漆酶来源与应用

漆酶来源与应用 万云洋1,2,杜予民2 1.中国石油大学(北京)资源与信息学院,北京(102249) 2.武汉大学资源与环境科学学院,武汉(430079) E-mail :yunyangwan@https://www.wendangku.net/doc/1818745741.html, 摘 要:本文对漆酶来源,包括动物、微生物和植物,尤其是我国的特产资源漆树及其他植 物漆酶,酶的稳定化及固定化,生物整治、对木质素的作用以及其各方面的应用作一综述。 关键词:漆酶,漆树,生物整治,木质素,固定化 漆酶(EC1.10.3.2),对-二酚:(双)氧氧化还原酶,又名酚酶,多酚氧化酶,漆酚氧化酶 和等,是一种含铜的糖蛋白氧化酶,是多铜氧化酶的一种[1]。对漆酶的研究已有一百多年的 历史,是有记载以来开发最早的酶之一:1883年,日本人吉田在研究生漆液成份时发现这 种酶成份,但当时他误为淀粉酶物质(diastatic matter),1898年,法国人Bertrand 在研究越南 产漆液的时候,首次提出了漆酶(laccase)的概念并沿用至今[2-5];Reinhammar 等[6;7]、杜予民 等[8-12]对漆酶及漆树液全成份的分离纯化作了很好的工作;另外,熊野等[13;14]对漆酶反应机 理,黄葆同、甘景镐[15]等对中国漆酶化学的发展,Morpurgo(意大利)[16;17],Solomon(美国) 等[18-24]对漆酶铜原子中心的研究作出了各自的贡献。 漆酶虽然是研究史中的老酶,但其各种新功能也正在被发现和挖掘。本文结合自身工作实践,专门就漆酶来源、特别是植物漆酶来 源和其各方面的应用研究作一综述,进一步推动漆酶(尤其是植物漆酶)研究的发展。 Figure 1. Dominating distribution of lacquer trees in the world. 1. 漆酶的来源 1.1植物漆酶 由上述可知,对漆酶的研究首先就是从漆树来源开始的。漆树(Rhus vernicifera ) 种属于 75 90 105120135 15015 30 45

相关文档