文档库 最新最全的文档下载
当前位置:文档库 › 第一章 数学起源与早期发展

第一章 数学起源与早期发展

第一章 数学起源与早期发展
第一章 数学起源与早期发展

为什么选《数学史》?有几种原因:

(1)听故事

(2)找思想

(3)解疑问

(4)补遗憾

(5)猎奇

(6)无奈(为学分)

本课程或多或少能满足以上需求.

对多数人而言,数学恐怕是花力气最多而收效甚少的一门学科。原因固然是多方面的,但僵化呆板的教科书和多年来因急功近利而形成的应试教育无疑是罪魁祸首。将定义、定理、推论一古脑地堆砌在一起是国内数学教科书一成不变的模式,似乎只有这样才能体现数学的严谨。数学家的智慧之光不见了,我们看到的只是些既不知出自谁手,又不知有何用途的空洞理论。同学们对数学的那种与生俱来的好奇心也不见了,我们看到的只是些在那无边的题海中苦苦挣扎的身影。不少同学视数学为畏途已是不争的事实,这为我们的教育工作者敲响了警钟。如何使同学们对数学有兴趣呢?捷径只有一条,那就是要让同学们了解数学的历史。

俗话说:内行看门道,外行看热闹。你可能因抽象的符号或概念而一时感到困惑,但这不能成为你拒绝这门课的理由,因为这对我们来说或许不是最重要的,重要的是历代数学家的工作和生活能给我们以什么样的启示。你或许为数学家们为克服困难而表现出的睿智而惊讶,或许为他们身处逆境但仍对事业孜孜以求的精神而感动,或许为他们因触犯传统势力而受到不公正的待遇而愤怒,或许为他们正值事业顶峰时英年早逝而唏嘘。不管你出于什么目的来到了这个课堂,相信在听完这门课之后都会重新认识数学、感悟数学。到那时,你可能会对没有选这门课的同学说:你该去听听《数学史》,那课听起来还有点儿意思。

第一章数学起源与早期发展

1.1数与形概念的形成

数的概念和计数远在有文字记载以前就发展起来了,因而对其发展方式大都只能揣测,想象它大概会是怎么发生的并不困难。我们有相当的理由说,人类在最原始的时代就有了数的意识,至少在为数不多的一些东西中增加或取出几个时,能够辨认其多寡。因为研究表明,有些动物也具有这种意识。随着社会的逐步进化,简单的计算成为必不可少的了。一个部落必须知道它有多少成员、有多少敌人;一个人也感到需要知道他羊群里的羊是否少了。或许最早的计数方法是使用简单的算筹以一一对应的原则来进行的。例如,当数羊的只数时,每有一只羊就扳一个手指头。数的概念的形成大概与火的使用一样古老,大约是在30万年以前,它对于人类文明的意义绝不亚于火的使用。

当对数的认识越来越明确时,人们感到有必要以某种方式来表达事物的这一属性,于是就导致了记数,而记数是伴随着计数的发展而发展的。最早可能是手指计数,以至手上的五个手指头可以被现成地用来表示五个以内事物的集合。两只手上的指头和在一起,可以用来表示不超过10个元素的集合。正如亚里士多得早就指出的那样,今天十进制的广泛采用,只不过是我们绝大多数人生来具有10个手指这样一个解剖学事实的结果。

当指头不够用时,就出现了石子记数等,以便表示同更多的集合元素的对应。但记数的石子堆很难长久保存信息,于是又有结绳记数和刻痕记数。中国古代文献《周易?系辞下》有“上古结绳而治,后世圣人,易之以书契”之说。“结绳而治”,即结绳记事或结绳记数,“书契”就是刻划符号。

结绳方法不仅在中国而且在世界其他许多地方都曾使用过,有些结绳

实物甚至保存下来。如美国自然史博物馆就藏有古代南美印加部落用来记

事的绳结,当事人称之为基普(quipu):在一根较粗的绳上拴系有颜色的

细绳,再在细绳上打各种各样的结,不同的颜色和结的位置、形状表示不

同的事物或数目。右图是一个基普的实物照。这种记事方法在秘鲁高原一

直盛行到19世纪,而世界上有些地方如日本的琉球岛居民至今还保持着结绳记事的传统。

迄今发现的人类刻痕记数的最早证据,是1937年在捷克的摩拉维亚(Moravia)出土的一块幼狼胫骨,如图,

其上有55道刻痕。这块狼骨的年代,据考大约在3万年前。又经历了数万年的发展,直到距今大约五千多年前,终于出现了书写记数以及相应的记数系统。以下按时代顺序列举世界

上几种古老文明的早期记数系统:

其中除了巴比伦契形数字采用六十进制、玛雅数字采用二十进制外,其他均属十进制数系。记数系的出现使数与数之间的书写运算成为可能,在此基础上初等算术便在几个古老的文明地区发展起来。

与算术的产生相仿,最初的几何知识则从人们对形的直觉中萌发出来。史前人大概首先是从自然界本身提取几何形式,并且在器皿制作、建筑设计及绘画装饰中加以再现。下图

显示了早期人类的几何兴趣,不只是对圆、三角形、正方形等一系列几何形式的认识,而且还有对全等、相似、对称等几何性质的运用。经验的几何知识随着人们的实践活动而不断扩展,不过在不同的地区,几何学的这种实践来源方向不尽相同。据考证,古埃及几何学产生于尼罗河泛滥后土地的重新丈量。“几何学”一词的希腊文γεωμετρια意为“测地”。

古代印度几何学则起源于宗教实践,公元前8世纪至5世纪形成的所谓“绳法经”,就是关于祭坛与寺庙建造中的几何问题及求解法则的记载。在古代中国,几何学起源更多的与天文观测相联系。中国最早的数学经典《周髀算经》事实上是一部讨论西周初年(公元前1100左右)天文测量中所用数学方法(“测日法”)的著作。

1.2河谷文明与早期数学

历史学家往往把起源于埃及、美索不达米亚、中国和印度等地域的古代文明称为“河谷文明”。早期数学,就是在尼罗河、底格里斯河与幼发拉底河、黄河与长江,印度河与恒河等河谷地带首先发展起来的。从可以考证的史料看,古埃及与美索不达米亚的数学在年代上更为久远,只是在公元前均告衰微,崛起稍晚的中国与印度数学则延续到纪元之后并在中世纪臻于高潮。因此为叙述连贯起见,我们在本章中主要介绍古埃及与美索不达米亚的数学,而将古代中国与印度数学放到中世纪的章节中一并讲述。

1.2.1埃及数学

肥沃的尼罗河谷,素称“世界最大沙漠中的最大绿洲”,那里的人民依靠广阔的地理屏障在不受外来侵扰的环境下独立地创造了灿烂的文明,这种文明以古老的象形文字和巨大的金字塔为象征,从公元前3100年左右美尼斯(Menes)统一上、下埃及及建立第一王朝起,到公元前332年亚历山大大帝(Alexander the Great)灭最后一个埃及(波斯)王朝(第三十一王朝)止,前后绵延约三千年。

埃及象形文字(hieroglyphic,意为“圣刻”—神圣的雕刻)产生于公元前3500年左右,约公元前2500年被简化为一种更易书写的“僧侣文(hieratic)”,后又发展为所谓“通俗文(domotic)”。长期以来,这些神秘的文字始终是不解之谜。直到1799年,拿破仑远征军的士兵在距离亚历山大城不远的古港口罗赛塔发现一块石碑,碑上刻有用三种文字—希腊文、埃及僧侣文和象形文记述的同一铭文(这块石碑后来就叫“罗赛塔石碑”),才使精通希腊文的学者找到了解读埃及古文字的钥匙。19世纪初,法国文字学家商博良(J-F.Champollion,1790-1832)和英国物理学家杨(Thomas Young,1773-1829)在这方面取得了突破,为人们通过阅读象形文或僧侣文文献认识、理解包括数学在内的埃及古代文明打开了大门。

古埃及人在一种用纸莎草压制成的草片上书写,这些纸草书有些幸存至今。我们关于古埃及数学的知识,主要就是依据了两部纸草书—莱茵德纸草书和莫斯科纸草书。

莱茵德纸草书最初发现于埃及底比斯古都废墟,1858年为苏格兰收藏家莱茵德(H.Rhind)购得,因名。该纸草书现存伦敦大英博物馆,见图

有时人们也称这部纸草书为阿姆士纸草书,以纪念一位叫阿姆士的人,他在公元前1650年左右用僧侣文抄录了这部纸草书,而根据阿姆士所加的前言可知,他抄录的是一部已经流传了两个多世纪的更古老的著作,其中涉及的数学知识一部分可能得传于英霍特普(Imhotep),此人是法老卓塞尔的御医,同时也是一位传奇式的建筑师,曾督造过这位法老的金字塔。

莫斯科纸草书又叫戈列尼雪夫纸草书,1893年由俄国贵族戈列尼雪夫在埃及购得,现藏莫斯科普希金精细艺术博物馆。据研究,这部纸草数是出自第十二王朝一位佚名作者的手笔(约公元前1890年),也是用僧侣文写成。

这两部纸草书实际上都是各种类型的数学问题集。莱茵德纸草书的主体部分由48个问题组成,莫斯科纸草书则包含了25个问题。这些问题大部分来自于现实生活,但纸草书作者将它们作为示范性例子编集在一起。这两部纸草书无疑是古埃及最重要的传世数学文献。除此之外还发现了一些零星的资料,它们也提供了关于埃及数学的一些补充信息。

如前所述,埃及人很早就发明了象形数字记号,这是一种以十进制为基础的系统,但却没有位值概念。这种记数制以不同的特殊记号分别表示10的前六次幂:简单的一道竖线表示1,倒置的窗或骨(∩)表示10,一根套索表示100,一多莲花表示1000,弯曲的手指表示10 000,一条江鳕鱼表示100 000,而跪着的人像(可能指永恒之神)则表示1 000 000.其他数目是通过这些数目的简单累积来表示的,如数12 345则被记作

100 1 000 10 000 100 000 1000 000 12345

在两部纸草书中,象形文字被简化为僧侣文数字:

冗长的重复记号被抛弃了,引进了一些表示数字与10的乘幂的倍数的特殊记号,如4不再记成4竖线,而代之于一条横线;7也不再记成7条竖线,二是用一镰刀形符号来表示。

28在象形文字中被表示为,而在僧侣文中却被简单地写成,值得注意的是这里把代表较小数字的8(记二个4)的符号(=)置于左边而不是右边。

石器时代的人还用不到分数,但随着更先进的青铜文化的崛起,分数概念与分数记号也应运而生。埃及象形文字用一种特殊的记号来表示单位分数(即分子为一的分数)在整数上方简单地画一个长椭圆,就表示该整数的倒数。这样81记作,20

1则写成,而在纸草书中采用的僧侣文,则用一点来代替长椭圆号,例如81记作,201则写成。在多位

数的情形,则点号置于最右边的数码之上。

单位分数的广泛使用成为埃及数学一个重要而有趣的特色。埃及人将所有的真分数都表示成一些单位分数的和。为了使这种分解过程做起来更为容易,莱茵德纸草书在阿姆士的前言之后给出了一张形如

k

2(k 为从5到101的奇数)的分数分解为单位分数之和的表。利用这张表,可以把例如29

7这样的分数表成单位分数之和: .232187158124161297++++= 埃及人为什么对单位分数情有独钟,原因尚不清楚。但无论如何,利用单位分数,分数的四则运算就可以进行,尽管做起来十分麻烦。

埃及人最基本的算术运算是加法。乘法运算是通过逐次加倍的程序来实现的。如69乘以19是这样来进行的:将69加倍到138,又将这个结果加倍到276,再加倍到552,再加倍到1104,此即69的16倍。因为19=16+2+1,所以69乘以19的答数应为1104+138+69=1311。在除法运算中,加倍程序被倒过来执行,除数取代了被除数的地位而被拿来逐次加倍。

纸草书中有些问题可以被归之为我们今天所说的代数学范畴,它们相当于求解形如b ax x =+或c bx ax x =++的一次方程。埃及人称未知数为“堆”(aha,读作“何”)。如莱茵德纸草书第24题:

已知“堆”与七分之一“堆”相加为19,求“堆”的值。

纸草书作者所用的解法实质是一种算术方法,即现在所谓的“假位法”:

先假设一个特殊的数作为“堆”值(多半是假值),将其代入等号左边去运算,然后比较得数与应得结果,再通过比例方法算出正确答数。在上例中,数7作为未知数x 的试验值,于是871=+

x x ,而应得结果是19,这两个结果之比为819等于8

1412++,将7乘以(81412++)即得正确的“堆”值为812116++。这种假位法是莱茵德纸草书中普遍使用的方法。

埃及几何学是尼罗河的赠礼。古希腊历史学家希罗多德在公元5世纪曾访问考察过埃及,并在其著作《历史》一书中写道:“西索斯特里斯……在埃及居民中进行了一次土地划分。……假如河水冲毁了一个人所得的任何一部分土地,国王就会派人去调查,并通过测量来确定损失地段的确切面积。……我认为,正是由于这类活动,埃及人首先懂得了几何学,后来又把它传给了希腊人。”莱茵德纸草书和莫斯科纸草书中确实包含有许多几何性质的问题,内容大都与土地面积和谷堆体积的计算有关。现存的纸草书中可以找到正方形、矩形、

等腰梯形等图形面积的正确公式,例如莱茵德纸草书中的第52题,通过将等腰梯形转化为矩形的图形变换,得出了等腰梯形面积的正确公式。埃及人是否知道任意三角形的面积公式,这一点尚不能确定,因为它们的三角形面积算法虽然总是涉及一数与另一数的一半的相乘,但由于文字与图形的模糊不清,使人不能判明相乘的两个长度究竟是表示高与底还是代表两条边。

埃及人对圆面积给出了很好的近似。莱茵德纸草书第50题假设一直径为9的圆形土地,其面积等于边长为8的正方形面积。如果与现代公式2

r s π=相比较,就相当于取π值为1605.3)9

28(2≈?。 但没有证据表明纸草书的作者是否意识到这里的圆面积与正方形面积并非精确的相等,以及是否已经有明确的圆周率的概念。

埃及人在体积计算中达到了很高的水平,代表性例子是莫斯科纸草书中的14题。这道题给出了计算平截头方锥体积的公式,用现代符号表示相当于:

).(3

22b ab a h V ++= 这里h 是高,b a ,是底面正方形的边长。这个公式是精确的,并且具有对称的形式。在距今四千年前能够达到这样的成就是令人惊讶的,因此数学史家贝尔称莫斯科纸草书中的这个截棱锥体为“最伟大的埃及金字塔”,虽然对这一公式的来源尚存在着争议。

说到真实的金字塔,它们在建筑与定向方面的精确性也曾引起人们对埃及几何学的高度赞美。然而我们在现有的纸草书中,竟找不到任何证据说明古埃及人已经了解勾股定理哪怕是其特例。尽管如此,莱茵德纸草书中关于金字塔的一些问题具有特殊的意义,它们包括了初等三角的萌芽。在金字塔的建造中,保持斜面坡度的均匀性十分重要,这促使埃及人引进了相当于角的正切的概念。

埃及数学是实用数学。古埃及人没有命题证明的思想,不过他们常常对问题的数值结果加以验证。另外,虽然纸草书中的问题绝大部分是实用性质,但也有个别例外,例如莱茵德纸草书第79题:

“7座房,49只猫,343只老鼠,2401颗麦穗,16807赫卡特”。有人认为这是当时的一个数谜:7座房子,每座房里养7只猫,每只猫抓7只老鼠,每只老鼠吃7颗麦穗,每颗麦穗可产7赫卡特粮食,问房子、猫、老鼠、麦穗和粮食各数值总和。也有将房子、猫等解释为纸草书作者赋予不同幂次的名称,即房子表示一次幂,猫表示二次幂,等等。无论如何,这是一个没有任何实际意义的几何级数求和问题,带有虚构的数学游戏性质。

埃及文明在历代王朝的更迭中表现出一种静止的特性,这种静止特性也反映在埃及数学的发展中。莱茵德纸草书和莫斯科纸草书中的数学,就像祖传家宝一样世代相传,在数千年漫长的岁月中很少变化。加法运算和单位分数始终是埃及算术的砖块,使古埃及人的计算显得笨重繁复。古埃及人的面积、体积算法对精确公式与近似公式往往不作明确区分,这又使

它们的实用几何带上了粗糙的色彩。这一切都阻碍埃及数学向更高的水平发展。公元前4世纪希腊人征服埃及之后,这一古老的数学文化完全被蒸蒸日上的希腊数学所取代。

1.2.2美索不达米亚数学

汹涌湍急的底格里斯河与幼发拉底河索灌溉的美索不达米亚平原,也是人类文明的发祥地之一。早在公元前四千年,苏美尔人就在这里建立起城邦国家并创造了文字。与尼罗河不同的是,两河流域这片四面开放的新月沃土带,长期以来成为许多不同民族争霸称雄的战场。自公元前4世纪中叶阿卡德人第一次入侵建立阿卡德王国(约公元前2371-前2230),以后又有阿摩利人、加喜特人、伊兰人、赫梯人、亚述人、伽勒底人和波斯人等相继等上统治舞台。令人惊讶的是,两河流域在这种错综复杂的民族战乱中却维系着高度统一的文化,史称“美索不达米亚文明”,楔形文字的使用可能是这种文化统一的粘合剂。

两河流域的居民用尖芦管在湿泥板上刻写楔形文字,然后将泥板晒干或烘干,这样制成的泥板文书比埃及的纸草书易于保存。迄今已有约50万块泥板文书出土,它们成为我们了解古代美索不达米亚文明的主要文献。对楔形文字的释读比埃及文字要晚,关键的一步是在19世纪70年代迈出的,当时发现的贝希斯敦石崖,上面用三种文字记载着波斯王大流士一世的战功,这三种文字是波斯文、埃及文和巴比伦文。对波斯文的知识使人们得以揭开古巴比伦文字的奥秘。对泥板文书中数学内容的释读则一直到1926-1950年才取得突破,这主要是靠了法国人娣罗-丹金夫人和美籍德国学者诺依格包尔的开创性工作。

现存泥板文书中大约有300块是数学文献。奇怪的是它们主要分属两个相隔遥远的时期:有一大批是公元前两千纪头几个世纪(古巴比伦王国时代)的遗物,还有许多泥板文书则来自公元前一千纪的后半期(新巴比伦王国和波斯塞琉古时代),对这些泥板文书的研究揭示了一个远比古埃及人先进的美索不达米亚早期数学文化。大多数文明普遍采用十进制,但美索不达米亚人却创造了一套以60进制为主的楔形文记数系统。这种记数制对60以内的整数采用简单十进累记法,例如59记作。对于大于59的数,美索不达米亚人则采用六十进制的位制记法。同一个记号,根据它在数字表示中的相对位置而赋予不同的值,这种位值原理是美索不达米亚数学的一项突出成就。位置的区分是靠在不同楔形记号组之间留

空。例如

这一写法中,右边的表示两个单位;中间的 表示基数(60)的2倍;而左边的则表示基数(60)的平方的2倍,因此这个数字是指2)60(2)60(22+?+?,用十进制写出来就是7322。这种位值制是不彻底的,因为其中没有零号。这样,美索不达米亚人表示122和7202的形式是相同的,人们只能根据上、下文来消除二义性。不过在公元前3世纪的泥板文书中开始出现一个专门的记号,用来表示没有数字的空位。这记号是由两个斜置的小楔形组成。有了这个空位记号,人们就很容易将数

)2)60(0)60(2(2++与

(2(60)+2)区分开来了。当然,这样的“准”零号并未能彻底消除混乱,因为在现存的泥板文书中没有发现零号置于尾端的情形。因此,这个记号仍然可以表示形如1()

60(2)60(21≥+-k k k 为整数)的无限多个数中的任何一个。美

索不达米亚人从未实施过绝对的位值制。

美索不达米亚人的记数制远远胜于埃及象形数字之处,还在于他们巧妙地将位值原理推

广应用到整数以外的分数。这就是说,不仅表示2)60(2+,同时也可以表示211)60(2)60(2,)60(22---++以及其他取相似形式的分数。因此,美索不达米亚人对分数能够跟对整数一样运算自如,而不像古埃及人那样受着单位分数的束缚。

美索不达米亚人长于计算,这不只是与他们优良的记数系统有关。美索不达米亚的学者还表现出发展程序化算法的熟练技巧。他们创造了许多成熟的算法,开方根计算就是有代表性的例子之一。这种开方程序既简单又有效:设a x =是所求平方根,并设1a 是这根的首次近似;由方程11/a a b =求出第二次近似1b ,若1a 偏小,则1b 偏大,反之亦然。取算术平均值)(2

1112b a a +=

为下一步近似,因为2a 总是偏大,再下一步近似22/a a b =必偏小,取算术平均值)(21223b a a +=将得到更好的结果。这一程序实际上可以无限继续下去。耶鲁大学收藏的一块古巴比伦泥板(编号7289),其上载有2的近似值,结果准确到六十进制三位小数,用现代符号写出来是1.414 213,是相当精确的逼近。

美索不达米亚人还经常利用各种数表来进行计算,使计算更加简捷。例如,他们做除法不是用埃及人那样的倒加倍方法,而是采用了将被除数乘以除数的倒数这一途径,倒数则通过查表而得。在现有的300多块数学泥板文书中,就有200多块是数学用表,包括乘法表、倒数表、平方表、立方表、平方根表、立方根表,甚至还有指数(对数)表。

美索不达米亚数学在代数领域内达到了相当的高度。埃及代数主要是讨论线性方程,对于二次方程则只涉及到最简单的情形)(2b ax =。而来自古巴比伦时代的一些泥板文书则表明,已能卓有成效地处理相当一般的三项二次方程。例如,耶鲁大学收藏的一块泥板文书中有这样的问题:

“已知依几布姆(igibum)比依古姆(igum)大7。问依几布姆和依古姆各为多少?”

这里igibum 和igum 是古巴比伦数学文献中表示互为倒数的两个数的专有术语,在十进制中则相当于乘积为六十之幂的两个数。若以x 表示igibum ,y 表示igum ,则该题相当于求解方程组

???=-=7

0,1y x xy 这又相当于先求解一个一元二次方程

.00,172=--x x

题中给出的算法相当于

,122

70,1)27(2=++=x 也就是今天熟知的二次方程02=--q px x 的求根公式

.2

)2(2p q p x ++= 由于正系数二次方程没有正根,因此在古代与中世纪,甚至在近代早期,二次方程一直是被分成以下三类(其中0,0>>q p ):

(i) q px x =+2 (ii) q px x +=2 (iii) px q x =+2

来研究。所有这三类方程在古巴比伦泥板文书中都可以找到,并都给出了正确的解算程序。

古埃及人没有留下解三次方程的纪录,美索不达米亚泥板文书中却不乏三次方程的例子。像x =3这样的纯三次方程,主要是通过查立方表或立方根表来求解。形如a x x =+23的混合三次方程也是籍现成的表来求解。巴比伦人编有专门的23n n +的数值表(其中n 为整数)。对于更一般的三次方程如21121442

3=+x x ,巴比伦数学家运用了代换的方法去求解:用12乘方程两端,并设x y 12=,方程就化为 ,12,423=+y y

查表得6=y ,因此30;0=x 。在没有现代符号的情况下,能够认识到方程与方程本质上属于同一类型,这种初等的代换变换思想,在当时是了不起的成就。

美索不达米亚几何也是与测量等实际问题相联系的数值计算。美索不达米亚学者以掌握三角形、梯形等平面图形和棱柱、平截头方锥等一些立体图形体积的公式。他们还知道并利用图形的相似性概念。

美索不达米亚几何与埃及几何有一个相同的缺陷,即对准确公式与近似公式混淆不分。一个有趣的巧合是:巴比伦人的四边形面积公式也是两组对边边长算术平均值之积。巴比伦人甚至对平截头体积计算有时也采用近似公式,如等于上、下面积的算术平均乘以高。不过对于上下底面积分别为2a 和2

b 的平截头方锥,有的泥板文书上也记载了相当于下式的计算法则: ??

????-++=22)2(31)2(b a b a h V , 这是一个准确的公式,并可化为埃及人的形式。

在美索不达米亚河谷地区,圆面积通常被取作半径平方的三倍,也就是说取圆周率π为3,其精确度自然在埃及人之下。但也有学者采用8

13

作为π的近似值,与埃及人至少是旗鼓相当。

即使是古巴比伦时代的泥板文书也都说明勾股定理在当时的美索不达米亚地区已广泛使用。

有一些泥板文书上的数学问题说明美索不达米亚数学除了实用的动机外,有时也表现出理论兴趣。这方面最典型的例子是一块叫“普林顿322”的泥板文书。该泥板文书最初来源不明因曾被一位叫普林顿(G.A.Plimpton)的人收藏而得名(322是普林顿的收藏编号),现存美国哥伦比亚大学图书馆,如图

.

普林顿322是一块更大的泥板文书的右半部分,其左边缘断裂处有现代胶水痕迹,说明缺损的左半部分是在出土后丢失的。现存部分,上面记载的文字属古巴比伦语,因此其年代当在公元前1600年以前。

普林顿322实际上是一张表格,由4列15行六十进制数字组成:(见表格)

在相当长的时间内,普林顿322 一直被认为是一张商业账目表而未受重视。1945年,诺依格包尔首先揭示了普林顿322的数论意义,从而引起了人们对它的极大兴趣。

根据诺依格包尔等人的研究,普林顿322数表与所谓“整勾股数”有关。满足关系式2

2c

2

+的一组整数)

b

a=

a叫整勾股数,西方文献中也成“毕达哥拉斯数”。从几何上

b

,

(c

,

看,每组毕达哥拉斯数皆构成某个所谓“毕达哥拉斯三角形”(即具有整数边长的直角三角形)的三条边长。计算表明:普林顿322数表第Ⅱ、Ⅲ列的相应数字,恰好构成了毕达哥拉

斯三角形中的斜边c 与直角边b 。如第一行59,1,49,2==b c ,在十进制下,.119,169==b c 易见.12014400222==-b c 只有四处例外,即第2,9,14,15行。诺依格包尔将它们解释为某种笔误,并将表中相应行中带*的数字(3,12,1)、(9,1)、(7,12,1)和53分别修正为(1,20,25)、(8,1)、(2,41)和(1,46)。

至于第Ⅳ列数字(以下记作s ),诺依格包尔在恰当补出空缺数字后发现有如下关系:,)(2a

c s =即s 相当于b 边所对应的正割平方。进一步计算还表明:第Ⅳ数字实际上给出了一张从 31至

45的正割三角函数表,这可能是为了天文或工程计算的需要而设计的,但为什么用正割平方而不用正割本身,这一点仍然是一个疑案。

普林顿322是古代巴比伦最异彩夺目却又相对孤立的一块数学泥板文书。对它的解释带有推测的成分并存在争议。对美索不达米亚数学的理论水平不易过分渲染。总的来说,古代美索不达米亚数学与埃及数学一样主要是解决各类具体问题的实用知识,处于原始算法积累时期。几何学作为一门独立的学问甚至还不存在。埃及纸草书和巴比伦泥板文书中汇集的各种几何图形面积、体积的计算法则,本质上属于算术的应用。当然,古代实用算法积累到一定阶段,对他们进行系统整理与理论概括必然形成趋势,但这一任务并不是由早期河谷文明本身来担当的。向理论数学的过渡,是大约公元前6世纪在地中海沿岸开始的,那里一个崭新的、更加开放的文明—历史学家常称“海洋文明”,带来了初等数学的第一个黄金时代—以论证几何为主的希腊数学时代。

文化的起源及其发展

第三章文化的起源及其发展 1.如何理解人类文化起源的生物性基础? 2.人类起源与文化起源具有怎样的内在逻辑关系? 3.人类不同的文化发展阶段具有何种不同的社会类型? 1】采集—狩猎社会与文化 2】园艺—游牧社会与文化 3】农耕社会与文化 4】工业社会与文化 5】全球化时代社会与文化 4.文化累积的本质及意义与文化累积的方式及路径各是什么? 1】文化累积的本质是指在文化传承的基础上创造新文化 2】路径:其一是本民族内部文化的累积其二是吸收外来文化的累积 5.文化累积与文化创新之间的关系是什么? 第四章文化的基本特征和功能 1.为什么说文化既是“自然性与超自然性的统一”,也是“个体性与超个体性的统一”? 2.如何理解文化既是“普遍性与民族性的统一”,也是“阶级性与时代性的统一”? 3.如何理解文化的累积性与变异性之间的辩证关系? 1】累积性是文化发展的前提和条件 2】变异性是文化发展的环节和契机 3】累积性与变异性是文化发展过程中的矛盾统一体 4.文化在满足人类生存和需要方面具有哪些主要功能? 1】满足需要的功能 2】认知的功能 3】规范的功能 4】凝聚的功能 5】调控的功能 5.文化在处理人与自然以及人与社会的相互关系上具有何种价值? 第五章文化学的研究方法 1.田野调查法具有哪些基本步骤?其各个步骤的具体内容是什么? (1)田野调查的准备工作 第一,选择和确定专题研究内容 第二,查阅和摘录田野背景材料

第三,制定详细的田野调查计划第四,做好调查成员和物品的准备(2)田野调查的方式 第一,参与观察法 第二,采访调查法 第三,搜集田野材料 (3)田野调查的尾声 2.

数学的起源

高思网校_腾讯公开课_高思数学趣味论坛: 第一讲,数学的起源 数 第一篇产生篇: ●外国古代神话故事: 故事发生在古埃及的洛克拉丁(区域),在那里住着一位老神仙,他的名字叫赛斯(theuth),对于赛斯来说,朱鹭是神鸟,他在朱鹭的帮助下发明了数,计算、几何学和天文学,还有棋类游戏等。 ●中国古代的神话故事:河图洛书 相传,上古伏羲时期,洛阳东北孟津县境内的黄河中浮出龙马,背负“河图”,献给伏羲。伏羲依此而演成八卦。 又相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮“洛书”,献给大禹。大禹依此治水成功,遂划天下为九州。又依此定九章大法,治理社会,流传下来收入《尚书》中,名《洪范》 有一天,伏羲在蔡河里捕鱼,捉到一只白龟,他赶快挖了一个大水池,把白龟养了起来。一天,伏羲正在往白龟池里放食物,有人跑来说蔡河里出了怪物。他来到蔡河边一看,只见那怪物说龙不像龙,说马不像马,在水面上走来走去,如履平地。伏羲走近水边,那怪物竟然来到伏羲面前,老老实实地站那儿一动不动。伏羲仔细审视,见那怪物背上长有花纹:一六居下,二七居上,三八居左,四九居右,五十居中。伏羲薅一节蓍草梗,在一片大树叶上照着龙马背上的花纹画下来。他刚画完,龙马大叫一声腾空而起,转眼不见了。大家围住伏羲问∶“这是个啥怪物呀?”伏羲说:“它像龙又像马,就叫它龙马吧。” 伏羲拿着那片树叶,琢磨上面的花纹,怎么也解不开其中的奥妙。这天他坐在白龟池边思考,忽听池水哗哗作响,定睛一看,白龟从水底游到他面前,两眼亮晶晶地看着他,接着向他点了三下头,脑袋往肚里一缩,卧在水边不动了。他面对白龟聚精会神地观察起来。渐渐地,他发现白龟盖上的花纹中间五块,周围八块,外圈儿十二块,最外圈儿二十四块,顿时心里亮堂了,悟出了天地万物的变化规律惟一阴一阳而已。伏羲画出了八种不同图案即八卦图 据说中国在古代闹过一次大水灾,那水势的浩大,灾害的严重,简直使人难以想象。大地一片汪洋,庄稼淹没了房屋冲塌了,人们扶老携幼,都逃到山上或大树上去。有的人虽然逃到

数学的起源与早期发展

第一讲数学的起源与早期发展 主要内容:数与形概念的产生、河谷文明与早期数学、西汉以前的中国数学。 1、数与形概念的产生 从原始的“数”到抽象的“数”概念的形成,是一个缓慢、渐进的过程。原始社会末期,人们对数的概念比较模糊,因而在进行物物交换时显得很不方便,“数”概念的形成就显得非常迫切。也就是说,人从社会生产活动中认识到了具体的数,导致了记数法。“屈指可数”表明人类记数最原始、最方便的工具是手指。 如,手指计数(伊朗,1966),结绳计数(秘鲁,1972)(美国自然史博物馆藏有古代南美印加部落用来记事的绳结,当时人称之为基普),文字5000年(伊拉克,2001)(楔形数字),西安半坡遗址出土的陶器残片。 早期几种记数系统,如古埃及、古巴比伦、中国甲骨文、古希腊、古印度、玛雅(玛雅文明诞生于热带丛林之中,玛雅是一个地区、一支民族和一种文明,分布在今墨西哥的尤卡坦半岛、危地马拉、伯利兹、洪都拉斯和萨尔瓦多西部)等。 世界上不同年代出现了五花八门的进位制和眼花缭乱的记数符号体系,足以证明数学起源的多元性和数学符号的多样性。 2、河谷文明与早期数学 2.1 古代埃及的数学 背景:古代埃及简况 埃及文明上溯到距今6000年左右,从公元前3500年左右开始出现一些小国家,公元前3000年左右开始出现初步统一的国家。 古代埃及可以分为5个大的历史时期:早期王国时期(公元前3100-前2688年)、古王国时期(前2686-前2181年)、中王国时期(前2040-前1768年)、新王国时期(前1567-前1086年)、后期王国时期(前1085-前332年)。 (1)古王国时期:前2686-前2181年。埃及进入统一时代,开始建造金字塔,是第一个繁荣而伟大的时代。 (2)新王国时期:前1567-前1086年。埃及进入极盛时期,建立了地跨亚非两洲的大帝国。

数学符号的起源

数学符号的起源 一、数学符号的起源 (包括):1.“+”号 2.“-”号 3.“X”号 4.平方根号 5.“÷”号 6.“=”号 7.“>、<”号8.任意号 二、符号种类 (包括):1.几何符号 2.代数符号 3.运算符号 4.集合符号 5.特殊符号 6.推理符号 7.数量符号 8.关系符号 9.结合符号10.性质符号11.省略符号 12.排列组合符号13.离散数学符号

数学符号的起源 数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。 例如加号曾经有好几种,现在通用"+"号。 "+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"κ"最后都变成了"+"号。 "-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。 到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。 乘号曾经用过十几种,现在通用两种。一个是"×",最早是英国数学家奥屈特1631年提出的;一个是"·",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"×"号象拉丁字母"X",加以反对,而赞成用"·"号。他自己还提出

用"п"表示相乘。可是这个符号现在应用到集合论中去了。 到了十八世纪,美国数学家欧德莱确定,把"×"作为乘号。他认为"×"是"+"斜起来写,是另一种表示增加的符号。 平方根号曾经用拉丁文“Radix”(根)的首尾两个字母合并起来表示,十七世纪初叶,法国数学家笛卡儿在他的《几何学》中,第一次用“√”表示根号。“√”是由拉丁字线“r”变,“——”是括线。 "÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号。 十六世纪法国数学家维叶特用"="表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。 1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"?"表示相似,用"≌"表示全等。

第一章 数学起源与早期发展

为什么选《数学史》?有几种原因: (1)听故事 (2)找思想 (3)解疑问 (4)补遗憾 (5)猎奇 (6)无奈(为学分) 本课程或多或少能满足以上需求. 对多数人而言,数学恐怕是花力气最多而收效甚少的一门学科。原因固然是多方面的,但僵化呆板的教科书和多年来因急功近利而形成的应试教育无疑是罪魁祸首。将定义、定理、推论一古脑地堆砌在一起是国内数学教科书一成不变的模式,似乎只有这样才能体现数学的严谨。数学家的智慧之光不见了,我们看到的只是些既不知出自谁手,又不知有何用途的空洞理论。同学们对数学的那种与生俱来的好奇心也不见了,我们看到的只是些在那无边的题海中苦苦挣扎的身影。不少同学视数学为畏途已是不争的事实,这为我们的教育工作者敲响了警钟。如何使同学们对数学有兴趣呢?捷径只有一条,那就是要让同学们了解数学的历史。 俗话说:内行看门道,外行看热闹。你可能因抽象的符号或概念而一时感到困惑,但这不能成为你拒绝这门课的理由,因为这对我们来说或许不是最重要的,重要的是历代数学家的工作和生活能给我们以什么样的启示。你或许为数学家们为克服困难而表现出的睿智而惊讶,或许为他们身处逆境但仍对事业孜孜以求的精神而感动,或许为他们因触犯传统势力而受到不公正的待遇而愤怒,或许为他们正值事业顶峰时英年早逝而唏嘘。不管你出于什么目的来到了这个课堂,相信在听完这门课之后都会重新认识数学、感悟数学。到那时,你可能会对没有选这门课的同学说:你该去听听《数学史》,那课听起来还有点儿意思。

第一章数学起源与早期发展 1.1数与形概念的形成 数的概念和计数远在有文字记载以前就发展起来了,因而对其发展方式大都只能揣测,想象它大概会是怎么发生的并不困难。我们有相当的理由说,人类在最原始的时代就有了数的意识,至少在为数不多的一些东西中增加或取出几个时,能够辨认其多寡。因为研究表明,有些动物也具有这种意识。随着社会的逐步进化,简单的计算成为必不可少的了。一个部落必须知道它有多少成员、有多少敌人;一个人也感到需要知道他羊群里的羊是否少了。或许最早的计数方法是使用简单的算筹以一一对应的原则来进行的。例如,当数羊的只数时,每有一只羊就扳一个手指头。数的概念的形成大概与火的使用一样古老,大约是在30万年以前,它对于人类文明的意义绝不亚于火的使用。 当对数的认识越来越明确时,人们感到有必要以某种方式来表达事物的这一属性,于是就导致了记数,而记数是伴随着计数的发展而发展的。最早可能是手指计数,以至手上的五个手指头可以被现成地用来表示五个以内事物的集合。两只手上的指头和在一起,可以用来表示不超过10个元素的集合。正如亚里士多得早就指出的那样,今天十进制的广泛采用,只不过是我们绝大多数人生来具有10个手指这样一个解剖学事实的结果。 当指头不够用时,就出现了石子记数等,以便表示同更多的集合元素的对应。但记数的石子堆很难长久保存信息,于是又有结绳记数和刻痕记数。中国古代文献《周易?系辞下》有“上古结绳而治,后世圣人,易之以书契”之说。“结绳而治”,即结绳记事或结绳记数,“书契”就是刻划符号。 结绳方法不仅在中国而且在世界其他许多地方都曾使用过,有些结绳 实物甚至保存下来。如美国自然史博物馆就藏有古代南美印加部落用来记 事的绳结,当事人称之为基普(quipu):在一根较粗的绳上拴系有颜色的 细绳,再在细绳上打各种各样的结,不同的颜色和结的位置、形状表示不 同的事物或数目。右图是一个基普的实物照。这种记事方法在秘鲁高原一 直盛行到19世纪,而世界上有些地方如日本的琉球岛居民至今还保持着结绳记事的传统。 迄今发现的人类刻痕记数的最早证据,是1937年在捷克的摩拉维亚(Moravia)出土的一块幼狼胫骨,如图, 其上有55道刻痕。这块狼骨的年代,据考大约在3万年前。又经历了数万年的发展,直到距今大约五千多年前,终于出现了书写记数以及相应的记数系统。以下按时代顺序列举世界

浅谈我国数学符号的起源与发展

宁波大学考核答题纸 (2014—2015学年第二学期) 课号:081L21RA1 课程名称:数学的发展与应用改卷教师:徐晨东 学号:146520037 姓名:梁彩虹得分: 浅谈我国数学符号的起源与发展 摘要:数学符号是数学科学专门使用的特殊符号,是一种含义高度概括、形体高度浓缩的抽象的科学语言。数学符号发展所遵循的方向大多是由复杂到简单,由形象到抽象,数学符号的发展史是相当长的。 关键字:数学符号的早期使用记数 正文: 符号是某种事物的记号。人们总是探索用简单的记号代表复杂的事物,于是产生了各种符号。学过数学的人都应该知道数学符号对于研究数学的重要性,可以说没有数学符号我们的数学研究就没办法进行,数学符号是数学科学专门使用的特殊符号,是一种含义高度概括、形体高度浓缩的抽象的科学语言。 具体地说,数学符号是产生于数学概念、演算、公式,命题、推理和逻辑关系等整个形成的特殊的数学语言。我国数学史家梁宗巨曾说:“使用符号,是数学史上一件大事。一套合适的符号,绝不仅仅是起速记、节省时间的作用。他能够精确、深刻地表达某种概念、方法和逻辑关系。”(引自《世界数学史简编》。从中我们便能知道数学符号对数学的研究和发展起的重要作用,那么我们今天所熟知的数学符号是怎样起源以及怎样发展而来的呢? 现在一部分数学符号的使用在世界范围内已经统一,但是也有很多未能统一,这就和每个国家的数学上的发展息息相关了,而在我们已经统一的数学符号中并不是所有都起源于某一个国家或地区,也不是就用某一个民族的语言文字就能表示的,这些数学符号来自于世界各个民族的语言文字表达,它们综合世界语言文字的表达慢慢发展而确定下来的,当然这些符号在使用时具有一定的优势才会被世界所公认,并从发明之日一直沿用下来,其中有一些符号是由于某些著名而又有影响力的数学家以及科学家在他们发表的期刊和著作中使用了一些符号来表示相应的计算,后人就在此基础上加以改造使用这些符号,或者就直接使用这些符号的,当遇到几种不同的表达形式时当然就择优选用了,也有一些数学符号的确定是由它最早出现的表达形式来确定,这个就与使用者是不

数学的发展历史

七年级九班 李蕙茹 一、探究背景: 研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。数学史研究所使用的方法主要是历史科学的方法,在这一点上,它与通常的数学研究方法不同。它研究的对象是数学发展的历史,因此它与通常历史科学研究的对象又不相同,所以,我们既可以在数学中学到历史,又可以在历史中学到数学。数学是研究现实世界的图形和数量关系的科学,包括代数、几何、三角、微积分等。它来源于生产,服务于生活,并不是空中楼阁,而是人类智慧的结晶。 二、目的意义: 对数学产生兴趣,轻松学好数学。通过查找名人趣事、数学常识等资料,对数学的功用问题有一个正确的认识,从而让我们对数学产生兴趣,提高数学成绩,开发我们的脑力,使自己不断提高能力,从而达到事倍功半的效果。 三、探究方法: 1、历史研究法,又叫历史考证法。数学自东汉以来的《九章算术》到现代的《微积分》,上上下下经历了几千年的时间,与现代数学联系起来,对数学历史的考证有巨大的作用。 2,自主探究法。所谓自主探究,就是通过各种途径找到对自己有用

的资料,进行整理,这是一种比较常见的方法。 四、探究结果: (一)数学的起源与早期发展 据《易?系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。 算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。 用算筹记数,有纵、横两种方式: 表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间〔法则是:一纵十横,百立千僵,千、十相望,万、百相当〕,并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。 筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。 在几何学方面《史记?夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现「勾三股四弦五」这个勾股定理〔西方称勾股定理〕的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。

微积分中数学符号的由来

龙源期刊网 https://www.wendangku.net/doc/18771701.html, 微积分中数学符号的由来 作者:梁海滨 来源:《中小企业管理与科技·上旬刊》2013年第11期 摘要:介绍了积分符号∫、无穷大符号∞、极限符号lim、数集符号、判别式符号?驻、自然对数底数符号e、属于符号∈等微积分中常见数学符号的由来,帮助学生更好地掌握这一学科知识,激发学生学习兴趣,培养学生的数学素质。 关键词:微积分数学符号由来 “使用符号,是数学史上的一件大事。一套合适的符号,绝不仅仅是起速记、节省时间的作用。它能够精确、深刻地表达某种概念、方法和逻辑关系。一个较复杂的公式,如果不用符号而用日常语言来叙述,往往十分冗长而且含糊不清。”(引自我国数学史家梁宗巨的《世界数学史简编》)。 1 积分符号∫的由来 积分的本质是无穷小的和,拉丁文中“Summa”表示“和”的意思。将“Summa”的头一个字母“S”拉长就是∫。 发明这个符号的人是德国数学家莱布尼茨(Friedrich , Leibniz)。莱布尼兹具有渊博的 知识,在数学史上他是最伟大的符号学者,并且具有符号大师的美誉。莱布尼兹曾说:“要发明,就要挑选恰当的符号,要做到这一点,就要用含义简明的少量符号来表达和比较忠实地描绘事物的内在本质,从而最大限度地减少人的思维劳动。”莱布尼兹创设了积分、微分符号,以及商“a/b”,比“a:b”,相似“∽”,全等“≌”,并“∪”,交“∩”等符号。 牛顿和莱布尼茨在微积分方面都做出了巨大贡献,只是两者在选择的方法和途径方面存在一定的差异。在研究力学的基础上,牛顿利用几何的方法对微积分进行研究;在对曲线的切线和面积的问题进行研究的过程中,莱布尼兹采用分析学方法,同时引进微积分要领。在研究微积分具体内容的先后顺序方面,牛顿是先有导数概念,后有积分概念;莱布尼兹是先有求积概念,后有导数概念。在微积分的应用方面,牛顿充分结合了运动学,并且造诣较深;而莱布尼兹则追求简洁与准确。另外,牛顿与莱布尼兹在学风方面也迥然不同。牛顿作为科学家,具有严谨的治学风格。牛顿迟迟没有发表他的微积分著作《流数术》的原因,主要是他没有找到科学、合理的逻辑基础,另外,可能也是担心别人的反对。与此相反,莱布尼兹作为哲学家,富于想象,比较大胆,勇于推广,主要表现为,在创作年代方面:牛顿比莱布尼兹领先10年,然而在发表时间方面,莱布尼兹却领先牛顿3年。对于微积分的研究,虽然牛顿和莱布尼兹采用的方法不同,但是却殊途同归,并且各自完成了创建微积分的盛业。 2 无穷大符号∞的由来

小学数学起源

数学发展史 此书记录了世界初等数学的发展与变迁。可大体分为“数的出现”、“数字与符号的起源与发展”、“分数”、“代数与方程”、“几何”、“数论”与“名著录”七大项,跨度千万年。可让读者了解数学的光辉历史与发展。是将历史与数学结合出的趣味百科读物。 数的出现 一、数的概念出现 人对于“数”的概念是与身俱来的。从原始人开始,人就能分出一与二与三的区别,从而,就有了对数的认识。而为了表示数,原始人就创造并使用了一种古老却笨拙且不太实用的方法——结绳计数。通过在绳子上打结来表示所指物体的数量,而为了辨认数量,也就出现了数数这一重要的方法。这一方法如今看来十分笨拙,但却是人对数学的认识由零到一的关键一步。从这笨拙的一步人们也意识到:对数学的阐述必须要尽量得简洁清楚。这是一个从那时开始便影响至今的人类第一个数学方面的认识,这也是人类为了解数学而迈出的关键性一步。 数字与符号的起源与发展 一、数的出现 很快,人类就又迈出了一大步。随着文字的出现,最原始的数字就出现了。且更令人高兴的是,人们将自己的认识代入了设计之中,他们想到了“以一个大的代替多个小的”这种方法来设计,而在字符表示之中,就是“进位制”。在众多的数码之中,有古巴比仑的二十进制数码、古罗马字符,但一直流传至今的,世界通用的阿拉伯数字。它们告诉了我们:简洁的,就是最好的。 而现在,又出现了“二进制数”、“三进制数”等低位进制数,有时人们会认为它们有些过度的“简洁”,使数据会过多得长,而不便书写,且熟悉了十进制的阿拉伯数字后,改变进制的换算也十分麻烦。其实,人是高等动物,理解能力强,从古至今都以十为整,所以习惯了十进制。可是,不是所有的东西都有智商,而且不可能智商高到能明显区分1-10,却能通过明显相反的方式表达两个数码。于是,人类创造了“二进制数”,不过它们不便书写,只适用于计算机和某些智能机器。但不可否认的是,它又创造了一种新的数码表示方法。 二、符号的出现 加减乘除〈+、-、×(·)、÷(∶)〉等数学符号是我们每一个人最熟悉的符号,因为不光在数学学习中离不开它们,几乎每天的日常的生活也离不开它们。别看它们这么简 单,直到17世纪中叶才全部形成。 法国数学家许凯在1484年写成的《算术三篇》中,使用了一些编写符号,如用D表示加法,用M表示减法。这两个符号最早出现在德国数学家维德曼写的《商业速算法》中,他用“+”表示超过,用“-”表示不足。

数学名称的由来

数学名称的由来 古希腊人在数学中引进了名称,概念和自我思考,他们很早就开始猜测数学是如何产生的。虽然他们的猜测仅是匆匆记下,但他们几乎先占有了猜想这一思考领域。古希腊人随意记下的东西在19世纪变成了大堆文章,而在20世纪却变成了令人讨厌的陈辞滥调。在现存的资料中,希罗多德(Herodotus,公元前484--425年)是第一个开始猜想的人。他只谈论了几何学,他对一般的数学概念也许不熟悉,但对土地测量的准确意思很敏感。作为一个人类学家和一个社会历史学家,希罗多德指出,古希腊的几何来自古埃及,在古埃及,由于一年一度的洪水淹没土地,为了租税的目的,人们经常需要重新丈量土地;他还说:希腊人从巴比伦人那里学会了日晷仪的使用,以及将一天分成12个时辰。希罗多德的这一发现,受到了肯定和赞扬。认为普通几何学有一个辉煌开端的推测是肤浅的。 柏拉图关心数学的各个方面,在他那充满奇妙幻想的神话故事《费德洛斯篇》中,他说: 故事发生在古埃及的洛克拉丁(区域),在那里住着一位老神仙,他的名字叫赛斯(Theuth),对于赛斯来说,朱鹭是神鸟,他在朱鹭的帮助下发明了数,计算、几何学和天文学,还有棋类游戏等。 柏拉图常常充满了奇怪的幻想,原因是他不知道自己是否正亚里士多德最后终于用完全概念化的语言谈论数学了,即谈论统一的、有着自己发展目的的数学。在他的《形而上学》(Meta-physics)第1卷第1章中,亚里士多德说:数学科学或数学艺术源于古埃及,因为在古埃及有一批祭司有空闲自觉地致力于数学研究。亚里士多德所说的是否是事实还值得怀疑,但这并不影响亚里士多德聪慧和敏锐的观察力。在亚里士多德的书中,提到古埃及仅仅只是为了解决关于以下问题的争论:1.存在为知识服务的知识,纯数学就是一个最佳的例子:2.知识的发展不是由于消费者购物和奢华的需要而产生的。亚里士多德这种“天真”的观点也许会遭到反对;但却驳不倒它,因为没有更令人信服的观点. 就整体来说,古希腊人企图创造两种“科学”的方法论,一种是实体论,而另一种是他们的数学。亚里士多德的逻辑方法大约是介于二者之间的,而亚里士多德自己认为,在一般的意义上讲他的方法无论如何只能是一种辅助方法。古希腊的实体论带有明显的巴门尼德的“存在”特征,也受到赫拉克利特“理性”的轻微影响,实体论的特征仅在以后的斯多葛派和其它希腊作品的翻译中才表现出来。数学作为一种有效的方法论远远地超越了实体论,但不知什么原因,数学的名字本身并不如“存在”和“理性”那样响亮和受到肯定。然而,数学名称的产生和出现,却反映了古希腊人某些富于创造的特性。下面我们将说明数学这一名词的来源。 “数学”一词是来自希腊语,它意味着某种‘已学会或被理解的东西’或“已获得的知识”,甚至意味着“可获的东西”,“可学会的东西”,即“通过学习可获得的知识”,数学名称的这些意思似乎和梵文中的同根词意思相同。甚至

数学的起源

数学大世界 数学史话 数学的起源 相传,在非常遥远的古代,有一天,从黄河中忽然跳出一匹“龙马”,马背上驮着一幅图,图上画着许多神秘的数学符号;后来,从奔腾的洛水中又爬出一只“神龟”来,龟背上驮着一卷书,书中写的是数的排列方法。 出现了“河图洛书”之后,数学也就诞生了。 小朋友,这个神奇的传说有趣吗?不过,它只是个传说而已。 那么,数学是怎样产生的呢?远古时代人类以打猎、采野果为生。在狩猎中,他们发现只有人比兽多,才有可能对付那些猛兽;采果时,他们发现只有当野果堆得老高时,才有可能帮助他们度过漫长的冬天,这样的实践中,他们才逐步领悟了“多”与“少”的概念。 分配食物时,由于人们通常用一只手拿一件物品,这样就把“一”从“多”的概念中分离出来。有了“一”,人们又逐渐形成了“二”的概念,这可能是因为人的双手各拿一件物品吧!那怎样表示“三”呢?人们并没有三只手呀!后来人们用“巧妙”的办法:把第三件物品放在自己的脚边,这样问题不就解决了! 从一些出土的原始社会的文物中也可以看到一些与数目有关的内容,如陶器上有两只耳朵,三只脚等。 形成“一”、“二”、“三”这些数的概念经历了很长的时间。但那时人类还没有表示数的名称,他们表示数时,是靠手势和相应的身体动作。小朋友,你看这多不方便呀! 怎样解决这个问题呢?请看看下节“最美妙的数学发明”。 最美妙的数学发明 远古的人类用手建立了“一”、“二”、“三”等数的概念。但是因为要用手去干别的活,不能老拿着物品记数呀,于是人们就变着法用别的物体来代替要记的事物,

绳结呀,石子呀,都成了他们记数的工具。例如,打了两只羊,结两个绳结;采两堆野果摆两个小石子,等等。在他们打绳结,摆石子的时候,数学就发生了第一次抽象!可以说这是最美妙的数学发明。 随着生产的发展,人们感觉到摆石子,打绳结太麻烦,就去寻找更方便的方法来记数。后来人们用刻画符号来代替结绳,如在青海发现的带有刻口的骨片。我国的少数民族和汉族一样,在没有文字以前也都是采用结绳和刻划记数法。(云南澜沧拉枯族自治县的拉祜族人,直到1957年还用木刻记载家禽家畜的帐目呢!)这样就产生了最初的文字,产生了最初的数学符号。 随着生产的发展,人们创造出了愈来愈多的产品,因而需要发明更多的数字符号来记录。我国古时候的人在龟甲和兽骨上刻字,后人把它叫做甲骨文。 小朋友,从朦胧的“多”和“少”的概念到最初的数学符号,可不是神灵展示的奇迹,而是原始人类极其艰辛的创造性劳动的产物。为了获得这些原始的数学的概念,人类至少经历了数万年的漫长岁月! 记数法是最美妙的数学发明,下节要讲的“十进位值制记数法和筹算”更是锦上添花! 十进位值制记数法和簿算 我国是世界上最早发明“十进位值制记数法”的国家。“位值制”是千百年来人类智慧的结晶,它使人们能用少数简单的记号代替复杂难记的符号,能用少数的记号表示全部的数,为进一步研究事物的数量关系创造了有利的条件。“十进位值制”更是精彩!它有两个特点:①十进制。即“逢十进一”,也就是说十个一记成十,十个十记成百等;②位值制,即一个数码表示什么数要由它所处的位置来决定。比如487,4在百位上,表示有4个百,8在十位上表示有8个十。 “十进位值制记数法”是当时世界上最先进的! 人类在长期的生产实践中发明了数字,发明了十进位值制记数系统,随之而来的必然有计算方法的发展。世界上最早的计算方法——筹算,也是我国古代人们发明的。中国人用算筹来记数,十进位值制就更加明确了。“筹”是一种小棍或其它材料制成的小棍,在没有发明纸张和珠算之前,它是我国古代的计算工具。 用算筹记数有纵横两种摆法:

湖湘文化的起源与发展

湖湘文化的起源与发展集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

湖湘文化的起源与发展 是的支脉,是湖南各族人民长期积累的具有特色的民风、民俗、民族性格、、等因素的总和。的历史,它的历史源头是。战国时期的长沙已是聚居、人口稠密、和商业都相当发达的城。反映的文献有中的《》、《》、《》、和长沙子弹库楚墓中出土的,以及各种习俗的考古资料。此外,由与湖南共同创造的文学艺术,包括诗歌、散文、音乐、绘画、雕塑、等,在春秋战国时都已经达到相当的程度与水准。隶属中国传统儒家。其重要特点是“思想、文化、道德、理想、信念融于现实中,并为政治服务。 在宋代,湖南出现了理学开山祖—,他创建的理学,就是以为核心,吸收了道学、而形成的,在中国古代思想史上,开“”的先河。理学又称道学、,是后来出现的“”的思想渊源。 “”的奠基人,曾在创办文定书院,他于1138年春在湖南去世,安葬于。 明清之际,湖南出现了理学,从而使湖南成为理学思潮形成和发展的,而这一时期在大地建立了闻名全国的、则成为理学思潮的主要学术文化基地。湖湘文化,是指一种具有鲜明特征、相对稳定并有传承关系的形态。先秦、两汉时期的文化应该纳入到另外一个历史文化形态——楚文化中。的诗歌艺术、的历史文物,均具有鲜明的楚文化特征。而及唐宋以来,由于历史的变迁发展,特别是经历了宋、元、明的几次大规模的移民,使湖湘士民在人口、、、观念上均发生了重要变化,先后产生了理学鼻祖,主张经世致用而反对程朱理学的,以及“睁眼看世界”的等一系列思想家,从而组合、建构出一种新的区域文化形态,称之为湖湘文化。先秦、两汉的楚文化对两宋以后建构的湖湘文化有着重要的影响,是湖湘文化的源头之一。湖湘文化在历经先秦湘楚文化的孕育,宋明中原文化等的洗练之后,在近代造就了“湖南人材半国中”、“中兴将相,什九湖湘”、“半部中国近代史由湘人写就”、“无湘不成军”等盛誉。 根据考古发掘和先秦文献中许多史实记载的惊人暗合,人们对湖湘文化的历史长河产生了再认识:湖湘文化不仅源自千年,而且缘于炎黄文化和前炎帝神农文化。尽管炎帝与远古湖湘文明的渊源难以考证,在近代上却一直是最可信的故地,具有最浓厚的文化氛围。早在公元976年就“立庙陵前”,1371年明洪武帝又“考君陵墓在此”,到清年间祭道旁刻下“邑有圣陵”的石刻,而1993年国家主席江泽民又亲笔题写了“”,至此,鹿原陂作为始祖长眠之地(“茶乡之尾”)的历史地位就更趋稳定。从等资料记载可以看出,舜帝传说很可能源自湖湘一带,史记记载舜帝“崩于之野,葬于江南九嶷”,《》记载了“湘水出,舜葬东南陬”。在流放楚国,留下不少千古绝唱,《》,《》,《》,这些很可能源自湖湘地域的民间传说,尤其是《》,可以肯定是源自当时“二妃寻夫”的传说。公元前210年到洞庭湖望祭,到718年委派张九龄遣祭,再到2004年世界舜裔宗亲联谊会在拜祭,2006年公祭舜帝大典在九嶷山举行,悠久的祭舜历史和繁多的舜陵祭文似乎已将“根在九嶷”的传说化作了无可争辩的史实。

数学符号的起源

数学符号的起源 数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系.数学符号的发明和使用比数字晚,但是数量多得多.现在常用的有200多个,初中数学书里就不下20多种.它们都有一段有趣的经历.例如加号曾经有好几种,现在通用“+”号.“+”号是由拉丁文“et”(“和”的意思)演变而来的.十六世纪,意大利科学家塔塔里亚用意大利文“più”(加的意思)的第一个字母表示加,草为“μ”最后都变成了“+”号. “-”号是从拉丁文“minus”(“减”的意思)演变来的,简写m,再省略掉字母,就成了“-”了.也有人说,卖酒的商人用"-"表示酒桶里的酒卖了多少.以后,当把新酒灌入大桶的时候,就在“-”上加一竖,意思是把原线条勾销,这样就成了个“+”号.到了十五世纪,德国数学家魏德美正式确定:“+”用作加号,“-”用作减号. 乘号曾经用过十几种,现在通用两种.一个是“×”,最早是英国数学家奥屈特1631年提出的;一个是“·”,最早是英国数学家赫锐奥特首创的.德国数学家莱布尼茨认为:“×”号象拉丁字母“X”,加以反对,而赞成用“·”号.他自己还提出用“п”表示相乘.可是这个符号现在应用到集合论中去了. 到了十八世纪,美国数学家欧德莱确定,把“×”作为乘号.他认为“×”是“+”斜起来写,是另一种表示增加的符号. “÷”最初作为减号,在欧洲大陆长期流行.直到1631年英国数学家奥屈特用“:”表示除或比,另外有人用“-”(除线)表示除.后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将“÷”作为除号. 平方根号曾经用拉丁文“Radix”(根)的首尾两个字母合并起来表示,十七世纪初叶, 法国数学家笛卡儿在他的《几何学》中,第一次用“”表示根号.十六世纪法国数学家 维叶特用“=”表示两个量的差别.可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号“=”就从1540年开始使用起来.1591年,法国数学家韦达大量使用这个符号,才逐渐为人们接受.十七世纪德国莱布尼茨广泛使用了“=”号,他还在几何学中用“∽”表示相似,用“≌”表示全等. 大于号“>”和小于号“<”,是1631年英国著名代数学家赫锐奥特创用.至于“≯”“≮”、“≠”这三个符号的出现,是很晚的事了. 大括号“{ }”和中括号“[ ]”是代数创始人之一魏治德创造的.

第一讲:数学的起源与发展

一、数学史研究什么?为什么要学习数学史? 数学史研究数学概念、数学方法和数学思想的起源与发展,及其与社会、经济和一般文化的联系。对于深刻认识作为科学的数学本身,及全面了解整个人类文明的发展都具有重要的意义。 庞加莱(法,1854-1912 年)语录:如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状。 萨顿(比——美,1884-1956 年):学习数学史倒不一定产生更出色的数学家,但它产生更温雅的数学家,学习数学史能丰富他们的思想,抚慰他们的心灵,并且培植他们高雅的质量。 二、关于数学的论述 培根说:数学是思维的体操 恩格斯说:“要辩证而又唯物地了解自然,就必须掌握数学。” 英国著名哲学家培根说:“数学是打开科学大门的钥匙。” 著名数学家霍格说:“如果一个学生要成为完全合格的、多方面武装的科学家,他在其发展初期就必定来到一扇大门并且通过这扇门。在这扇大门上用每一种人类语言刻着同样一句话:‘这里使用数学语言。'” 数学是一门逻辑性很强的基础科学,人们通过运用数学推导出了种种概念、原理与规律指导日常生活。有人把数学对于人类的意义比作生活中不能缺少盐。 数学是盐,所以,离开了数学,人们的生活将寸步难行。 数学是盐,所以,它将自己融化在生活的水里,让人们很难一眼看出它的存在,但是细细品味和体会,数学又是无处不在的,它对于生活的各个方面都有潜在的影响,当然,这种影响是用思维来实现的。 数学有一个美誉叫做“思维体操” ,多做一些“枯燥”的数学题, 能够提高人的逻辑思维能力。 康托尔说:“数学的本质在于它的自由。”数学是一门艺术,是一种生活工具,是一门让我们的头脑变得更灵敏的科学。

茶馆文化的起源和发展

茶馆文化的起源和发展 学生:许杨 (园艺园林学院茶学一班班级,学号200941736108) 摘要:我国的茶馆文化历史悠久,茶馆是茶文化的载体,是民俗文化的体现,在这种条件下茶馆文化得以很好的继承和发扬,茶馆文化理念也更深刻的透到人们心中。本文通过对不同时期中国茶馆的分析、对茶馆文化功能的演变以及各地茶馆风格的阐述,期待中国茶馆业得以更好的发展。 关键词:茶馆;文化;起源;发展;派别 茶馆是爱茶者的乐园,也是人们休息、消遣和交际的场所;茶馆是一个古老的行业,它经过历史的积淀,具有深厚的文化底蕴。中国的茶馆由来已久,据记载两晋时已有了茶馆。自古以来,品茗场所有多种称谓,茶馆的称呼多见于长江流域;两广多称为茶楼;京津多称为茶亭。此外,还有茶肆、茶坊、茶寮、茶社、茶室、茶屋等称谓。茶摊没有固定的场所,是季节性的、流动式的,主要是为过往行人解渴提供方便;茶馆设有固定的场所,人们在这里品茶、休闲等。“茶之为饮,发乎神农,闻于鲁周公” ,这是唐代陆羽在世界上第一部茶叶专著《茶经》中的一种观点。茶馆的产生和兴盛以饮茶之风的盛行为前提,在茶馆初步形成之前,是漫长的饮茶发展史。 1.茶馆文化的历史渊源 1.1古代茶馆文化 在茶作为药用时,由于茶叶产量低价格昂贵,它只限于贵族、富豪使用。随着茶叶种植、生产和饮用相对普及后,茶才可能成为普通民众的消费之物。一开始与普通民众的生活发生密切联系的不是茶馆而是茶摊,自唐朝开元年间,在许多城市已有煎茶,卖给茶的店铺,只要投钱,即可自取随饮。 公元780 年,陆羽《茶经》的问世,是中国茶文化形成的标志。从此唐代饮茶之风盛行,茶文化已形成一定的气势,茶馆已出现并有一定的发展,但茶馆并未普及和完善。从发展阶段上可以这样归纳:东晋是原始型茶馆的发展阶段,南北朝时形成初级型的茶寮,唐代是茶馆的正式形成时期。从此,茶馆正式在中国包括城市乡镇的土地上有了广泛的立足之地,并发展为全国性、商业性、集体性的饮茶场所。唐代的茶馆主要以卖茶为主,设备简单,这个“土店”,很可能

“数学”简介、含义、起源、历史与发展

---------------------------------------------------------------最新资料推荐------------------------------------------------------ “数学”简介、含义、起源、历史与发展数学数学是研究现实世界中数量关系和空间形式的,简单地说,是研究数和形的科学。 由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。 在中国,至迟在商代,即已出现用十进制数字表示大数的方法;又至迟至秦汉之际,即已出现完满的十进位值制。 在成书不迟于 1 世纪的《九章算术》中,已载有只有位值制才有可能的开平、立方的计算法则,并载有分数的各种运算以及解线性联立方程组的方法,还引入了负数概念。 刘徽在他注解的《九章算术》(3 世纪)中,还提出过用十进小数表示无理数平方根的奇零部分,但直至唐宋时期(欧洲则在 16 世纪 S.斯蒂文以后)十进小数才获通用。 在这本著作中,刘徽又用圆内接正多边形的周长逼近圆周长,成为后世求圆周率更精确值的一般方法。 虽然中国从来没有过无理数或实数的一般概念,但在实质上,那时中国已完成了实数系统的一切运算法则与方法,这不仅在应用上不可缺,也为数学初期教育所不可少。 至于继承了巴比伦、埃及、希腊文化的欧洲地区,则偏重于数的性质及这些性质间的逻辑关系的研究。 早在欧几里得的《几何原本》中,即有素数的概念和素数个数 1 / 9

无穷及整数惟一分解等论断。 古希腊发现了有非分数的数,即现称的无理数。 16 世纪以来,由于解高次方程又出现了复数。 在近代,数的概念更进一步抽象化并依据数的不同运算规律而对一般的数系统进行独立的理论探讨,形成数学中的若干不同分支。 开平方和开立方是解最简单的高次方程。 在《九章算术》中,已出现解某种特殊形式的二次方程。 发展至宋元时代,引进了天元(即未知数)的明确观念,出现了求高次方程数值解与求多至四个未知数的高次代数联立方程组的解的方法,通称为天元术与四元术。 与之相伴出现的多项式的表达、运算法则以及消去方法,已接近于近世的代数学。 在中国以外, 9世纪阿拉伯的花拉子米的著作阐述了二次方程的解法,通常被视为代数学的鼻祖,其解法实质上与中国古代依赖于切割术的几何方法具有同一风格。 中国古代数学致力于方程的具体求解,而导源于古希腊、埃及传统的欧洲数学则不同,一般致力于探究方程解的性质。 16 世纪时, F.韦达以文字代替方程系数,引入了代数的符号演算。 对代数方程解的性质的探讨,则从线性方程组导致行列式、矩阵、线性空间、线性变换等概念与理论的出现;从代数方程导致复数、对称函数等概念的引入以至伽罗瓦理论与群论的创立。

中国数学的起源与早期发展

中国数学的起源与早期发展 据《易·系辞》记载:「上古结绳而治,后世圣人易之以书契」.在殷墟出土的甲骨文卜辞中有很多记数的文字.从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万.算筹是中国古代的计算工具,而这种计算方法称为筹算.算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍. 用算筹记数,有纵、横两种方式: 表示一个多位数字时,采用十进位值制,各位值的数目从左到右 排列,纵横相间﹝法则是:一纵十横,百立千僵,千、十相望,并以空位表示零.算筹为加、减、乘、除等运算建立起良好的条件. 筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的. 在几何学方面《史记·夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现「勾三股四弦五」这个勾股定理(西方称勾股定理)的特例.战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念. 战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念.著名的有《墨经》中关于某些几何名词的定义和命题,例如:「圆,一中同长也」、「平,同高也」等等.墨家还给出有穷和无穷的定义.《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如「至大无外谓之大一,至小无内谓之小一」、「一尺之棰,日取其半,万世不竭」等.这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展.

“数学”简介含义起源历史与发展

数学 数学是研究现实世界中数量关系和空间形式的,简单地说,是研究数和形的科学。 由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。在中国,至迟在商代,即已出现用十进制数字表示大数的方法;又至迟至秦汉之际,即已出现完满的十进位值制。在成书不迟于1世纪的《九章算术》中,已载有只有位值制才有可能的开平、立方的计算法则,并载有分数的各种运算以及解线性联立方程组的方法,还引入了负数概念。刘徽在他注解的《九章算术》(3世纪)中,还提出过用十进小数表示无理数平方根的奇零部分,但直至唐宋时期(欧洲则在16世纪S.斯蒂文以后)十进小数才获通用。在这本着作中,刘徽又用圆内接正多边形的周长逼近圆周长,成为后世求圆周率更精确值的一般方法。虽然中国从来没有过无理数或实数的一般概念,但在实质上,那时中国已完成了实数系统的一切运算法则与方法,这不仅在应用上不可缺,也为数学初期教育所不可少。至于继承了巴比伦、埃及、希腊文化的欧洲地区,则偏重于数的性质及这些性质间的逻辑关系的研究。早在欧几里得的《几何原本》中,即有素数的概念和素数个数无穷及整数惟一分解等论断。古希腊发现了有非分数的数,即现称的无理数。16世纪以来,由于解高次方程又出现了复数。在近代,数的概念更进一步抽象化并依据数的不同运算规律而对一般的数系统进行独立的理论探讨,形成数学中的若干不同分支。 开平方和开立方是解最简单的高次方程。在《九章算术》中,已出现解某种

特殊形式的二次方程。发展至宋元时代,引进了“天元”(即未知数)的明确观念,出现了求高次方程数值解与求多至四个未知数的高次代数联立方程组的解的方法,通称为天元术与四元术。与之相伴出现的多项式的表达、运算法则以及消去方法,已接近于近世的代数学。在中国以外,9世纪阿拉伯的花拉子米的着作阐述了二次方程的解法,通常被视为代数学的鼻祖,其解法实质上与中国古代依赖于切割术的几何方法具有同一风格。中国古代数学致力于方程的具体求解,而导源于古希腊、埃及传统的欧洲数学则不同,一般致力于探究方程解的性质。16世纪时,F.韦达以文字代替方程系数,引入了代数的符号演算。对代数方程解的性质的探讨,则从线性方程组导致行列式、矩阵、线性空间、线性变换等概念与理论的出现;从代数方程导致复数、对称函数等概念的引入以至伽罗瓦理论与群论的创立。而近代极为活跃的代数几何,则无非是高次联立代数方程组解所构成的集体的理论研究。 形的研究属于几何学的范畴。古代民族都具有形的简单概念而往往以图画来表示,形之成为数学对象是由工具的制作与测量的要求所促成。规矩以作圆方,中国古代夏禹治水时即已有规、矩、准、绳等测量工具。《墨经》中对一系列的几何概念,有抽象概括,作出了科学的定义。《周髀算经》与刘徽《海岛算经》给出了用矩观天测地的一般方法与具体公式。在《九章算术》及刘徽注解的《九章算术》中,除勾股理论外,还提出了若干一般原理以解多种问题。例如出入相补原理以求任意多边形面积;阳马鳖臑的二比一原理(刘徽原理)以求多面体的体积;5世纪祖暅提出“幂势既同则积不容异”的原理以求曲形体积特别是球的体积;还有以内接正多边形逼近圆周长的极限方法(割圆术)。但自五代(约10世纪)以后,中国在几何学方面的建树不多。中国几何学以测量与面积体积的量度为中心,古

相关文档
相关文档 最新文档