文档库 最新最全的文档下载
当前位置:文档库 › 高数 第七章题库 微分方程

高数 第七章题库 微分方程

高数 第七章题库 微分方程
高数 第七章题库 微分方程

第十二章 微分方程答案

一、 选择题

1.下列不是全微分方程的是 C 1

A.2()(2)0x y dx x y dy ++-=

B.2

(3)(4)0y x dx y x dy ---= C.3

2

2

2

3(23)2(2)0x xy dx x y y dy +++= D.2

2

2(1)0x x x ye dx e dy -+= 2. 若3y 是二阶非齐次线性方程(1):()()()y P x y Q x f x '''++=的一个特解,12,y y 是对应的

齐次线性方程(2)的两个线性无关的特解,那么下列说法错误的是(123,,c c c 为任意常数) C 2

A.1122c y c y +是(2)的通解

B. 113c y y +是(1)的解

C. 112233c y c y c y ++是(1)的通解

D. 23y y +是(1)的解

3.下列是方程xdx ydy +=

的积分因子的是 D 2

A.2

2x y + B.

221x y + 4.方程32

2321x x d y d y e e dx dx

++=的通解应包含得独立常数的个数为 ( B ). 1 (A) 2 (B) 3 (C) 4 (D) 0

5.已知方程'()0y p x y +=的一个特解cos 2y x =,则该方程满足初始特解(0)2y =的特解为( C ). 2

(A) cos 22y x =+ (B) cos 21y x =+ (C) 2cos 2y x = (D) 2cos y x =

6.方程32232

1x x

d y d y

e e dx dx

++=的通解应包含得独立常数的个数为 ( B ). 1 (A) 2 (B) 3 (C) 4 (D) 0

7.设线性无关的函数123,,y y y 都是微分方程''()'()()y p x y q x y f x ++=的解,则该方程的通解为 ( D ). 2

(A) 11223y c y c y y =++ (B) 1122123()y c y c y c c y =+-+ (C) 1122123(1)y c y c y c c y =+--- (D) 1122123(1)y c y c y c c y =++-- 8.设方程''2'3()y y y f x --=有特解*y ,则其通解为( B ). 1

(A) 312x x c e c e -+ (B) 312*x x

c e c e y -++ (C) 312*x x c xe c xe y -++ (D) 312*x x

c e c e y -++

9.微分方程'cot 0y y x -=的通解为(A ). 1

(A) sin y c x = (B) sin c y x =

(C) cos y c x = (D) cos c y x

= 10. 方程x y cos =''的通解为( C ) 1

(A) c c x x y 2

1sin ++-= (B) c c x x y 21sin ++= (C)

c c x x y 2

1cos ++-= (D)

c c x x y 2

1cos ++=

11. e y x

-=''的通解为( C ) 1

(A) e x -- (B) e x

-

(C) c x c e x 21++- (D)

c x c e x

21++-- 12. 微分方程

()()0

43

2=+'''+'y x y y y 的阶是( B ) 1

(A) 1 (B) 2

(C) 3 (D) 4

13. 下列微分方程中,属于可分离变量方程的是( C ) 1

(A) ()0sin =+ydy dx xy x (B) ()y x y +='ln

(C) y

x dx dy

sin = (D) ()y e y x y x 21?=+'

14.方程 02=-'y y 的通解是( C ) 1 A.x y 2sin =; B.x

e

y 24=; C.x

ce

y 2=; D.c e y x

+=。

15. 下列函数中的( D )是微分方程式 0127=+'-''y y y 的解。 1 A.3

x y =; B.2

x y =; C.x

e y 2=; D.x

e y 3=。

16. 以e x 和x e x

sin 为特解的二阶常系数齐次线性微分方程是(D ) 2

(A )02=+'-''y y y (B )422=+'-''y y y (C )0=+''y y (D )无这样的方程。

17.

122

+=+'-''x y y y 的特解y *可设为( C ) 2 (A) ()C Bx x A e y x ++=2* (B)

D Cx x B x A y +++=2

3* (C) C Bx x A y ++=2* (D)

()C Bx x A e x y x ++=2

* 18. 若t

t

y 2cos 4-=是方程t y y 2sin 4=+''的一个特解,则该方程的通解是( A )

(A )t t t t y c c 2cos 42cos 2sin 21-+= (B )t

t

t y c 2cos 42sin 1-= (C )()t

t e t y t c c 2cos 4221-+=- (D )t t

e e y t t c c 2cos 42221-+=-

19. 下列各微分方程中是一阶线性方程的是( B ) 1

(A )x y y x =+'2 (B )x xy y sin =-'

(C )x y y =' (D )

02

=+'xy y 20. 方程x y y y 2sin 52=+'+''的特解可设为( D ) 2

(A )()x a x y 2sin = (B )x a y 2sin =

(C )()x b x a x y 2cos 2sin += (D )x b x a y 2cos 2sin +=

二、 填空题

1、以()

2123t y c c t c t e =++ (123,,c c c 为任意常数)为通解的常微分方程是

3232330d y d y dy

y dt dt dt

-+-= 2 2、若24

1,,x x -是某个二阶非齐次线性常微分方程的三个特解,那么该方程的通解是

24

12(1)(1)1c x c x +++- (12,c c 为任意常数) 1

3. 微分方程xdx y dy cos 2=的通解: c

x y +-

=sin 1

1

4. 微分方程dy e y ydx xdy y 2=-的通解是:)(y

e c y x -= 1

5.

微分方程ydx+(y-x)dy=0的通解是:

c y y

x

=+ln 2

6.以cos 2sin 2y x x =+为一个特解的二阶常系数齐次线性微分方程是 ''40y y +=。 2

7.解形如??? ??=x y f dx dy 的微分方程,求解时可作的变量代换 u

x y =,u x u y '+=' 1

8.微分方程0y 3y 4y =+'-''的通解y=

312x x

C e C e +

1

9.微分方程y"+2y ˊ+2y=0的通解是 ()12cos sin x y x x e C C -=+ 。 1

10、微分方程03410=+'+''y y y 的通解是 )3sin 3cos (215x c x c e y x

+?=- 1

三、 计算题

1.解方程1(1)(1)x n dy

x ny e x dx ++-=+,这里n 为常数。 2 解:将方程改写为(1)1x n dy n

y e x dx x -=++。

首先求齐次方程01

dy n

y dx x -=+的通解为(1)n y c x =+

再设()(1)n

y c x x =+,于是1()(1)(1)()n n dy dc x x n x c x dx dx

-=+++,带入原方程,得

()x dc x e dx

=,即()x c x e C =+,C 为任意常数。

于是原方程通解为

()(1)x

n

y e C x =++。 5 #

2.解方程330d x

x dt

+= 2

解:特征方程为3

10λ+=,它的根为11,22

i -±。 于是原方程解为

12

123(cos sin )22

t t

z c e e c t c -=++。123,,c c c 为任意常数 4# 3.解方程

dy y y

tg dx x x

=+ 2 解:作变量代换,

y dy du u x u x dx dx ==+,则原方程变为du

x u u tgu dx

+=+。即

du dx tgu x

=,解得sin c

u e x =±,此外还有解0tgu =,即sin 0u =。于是方程通解为

sin u cx =,这里c 为任意常数。

代回原来变量,得原方程通解sin

y

cx x

= 5# 4.解方程

2

2dy y dx x y =- 2 解:将原方程改写为22dx x y dy y -=,即2dx x y dy y

=-。 先求出齐次方程

2

dx x dy y

=的通解为2x cy =。 再设2

()x c y y =,

2()2()dx dc y y c y y dy dy =+,代入原方程得()1dc y dy y

=- 解得()ln c y y C =-+,C 为任意常数。所以原方程通解为

2(ln )x y C y =- 5 #

5.解方程:(0)dy

x

y x dx

+=< 2

解:将方程改写为

(0)dy y x dx x =<,作代换,y dy du u x u x dx dx

==+,则原方程

变为 du

x

dx =dx x =。 于是得此方程通解为

ln()x c =-+,即2[ln()]u x c =-+,(ln()0)x c -+>,这里c 为任意常数。

此外方程还有解0u =。

代回原来的变量,得原方程通解2

[ln()]y x x c =-+(ln()0)x c -+>与0y = 5 #

6.解方程424220d x d x

x dt dt

++= 2

解:特征方程为2

2

(1)0λ+=,有两个二重根i ±,原方程的四个实值解分别是

cos ,cos ,sin ,sin t t t t t t 。故通解为

1234()cos ()sin x c c t t c c t t =+++,1234,,,c c c c 为任意常数 4#

7. 设二阶可微函数y 满足方程 464x y y e '''-=,y(0)=

2

1

, 1)0('=y , 求y 3

解:由题知对应齐次方程的特征方程为062

=-r r

解得 01=r , 62=r 于是对应齐次方程的通解为x e c c y 621+= 设非齐次方程的特解为:x ke Y

4*

=

把它代入所给方程,得 2

1

-=k 所以:x e Y

4*

2

1

-=

故已知方程的通解为x

x e e c c y 46212

1-+=

又1)0('=f ,f (0)=21 故==21c c 2

1

即:)1(2

146x

x e e y -+= 7 #

8. 求微分方程x e y y y -=++234'''的通解 3

解:由题知对应齐次方程的特征方程为0342

=++r r

解得 11-=r , 32-=r 于是对应齐次方程的通解为x x e c e c y 321--+= 因1-=λ是特征根,故设非齐次方程的特解为:x axe Y -=*

把它代入所给方程,得 1=a , 所以:x xe Y

-=*

故已知方程的通解为x x x xe e c e c y ---++=321 7# 9. 求微分方程x xe y y y =+-'''2的通解 3

解:由题知对应齐次方程的特征方程为0122

=+-r r ,解得 =1r 12=r 。

于是对应齐次方程的通解为x x xe c e c y 21+= 因1=λ是重特征根,故设非齐次方程的特解为:

x e x b ax Y 2*)(+=

把它代入所给方程,得 61=

a ,b=0 , 所以:x

e x Y 3*6

1=

故已知方程的通解为x

x

x e x xe c e c y 3216

1+

+= 7# 10.求微分方程''33x

y y xe +=的通解。 3 解:与所给方程对应的齐次方程为''30,y y += 它的特征方程为2

30

r +=,解的它的特征根为123, 3.

r i r i ==- 由于这里1λ=不是特征方程的根,所以应设特解为

01*().x

y b x b e

=+

把它代入所给方程,得

01001(2)3()3x x x b b b x e b x b e xe ++++=,

比较两端得系数,得

00143,

240.

b b b =??+=?

由此求得 0133,48

b b =

=-.

于是求得原方程得一个特解为3

3*().48

x

y x e =- 所以原方程的通解为

1233cos3sin 3().4

8

x

y c x c x x e =++- 7

11.求微分方程2'''2x

y y y e +-=的通解。 3

解:齐次方程2'''0y y y +-=的特征方程为2

210r r +-=,解得1122,1r r ==-,

所以对应的齐次方程的通解为2

12*x

x y c e c e -=+。

因()2x f x e =,1λ=不是特征方程的根,所以可设原方程的一个特解为x

y

be =%, 代入原方程,得

22x x x x be be be e +-=,

解得1b =,由此求得一个特解为x

y

e =%, 所以原方程的通解为

212x

x

x y c e c e

e -=++. 7#

12.求微分方程''2'5sin 2x

y y y e x -+=的通解。 3

解:所给方程对应的齐次方程为''2'50y y y -+=,它的特征方程为2

250r r -+=,其根为1,212r i =±,对应的齐次方程的通解为

12*(cos 2sin 2).x

y e c x c x =+

因为()sin 2,1,2,x

f x e x i λωλω===±是特征方程的单根,所以设特解为

(cos 2sin 2).x y xe a x b x =+%

从而有

()'[(2)cos 2(2)sin 2],

()''[(4324)cos 2(4342)sin 2],

x x

y e ax bx a x bx ax b x y e bx ax a b x ax bx a b x =+++-+=-+++---+%%

将y %代入所给非齐次方程,得

(4cos 24sin 2)sin 2.x

x

e b x a x e x -= 比较上式各同类项的系数,得1

,0.4

a b =-=

故特解为 1cos 2.4

x

y xe x =-

% 所求通解为 121

(cos 2sin 2cos 2).4

x

y e c x c x x x =+-

7# 13. 解微分方程()

112

3+=+-x y x dx dy 2 解: ()223111dx dx x x y x dx C e e -++????=++????

?

()()()()2

22111112x x dx C x x C ????=+++=+++??????

? 5 # 14.求微分方程e y y y x

232-=+'-''的通解。 3

解:该微分方程的特征方程为022

=+-r r r ,特征根为重根121==r r 齐次方程的通解为()e c x c y x

21+=。

又2-=λ不是特征根,故设方程的特解为e A x

y 2*

-=

则有

e

A x

y 2*2-'

-=,

e A x

y 2*4-'

'=

代入原方程有:e e A e A e A x x x x

2222344----=++

31=

A ,所以方程的特解为e

x y 2*31-=

由此得方程的通解为()e e c x c y x

x 22131

-++= 7

15.解微分方程:()e

y y e x

x

='+1 2

解:()()

22

1 ln 1ln 122ln 1x

x

x

x dx e ydy C y e e C y e ==+++=+ 4

16.求微分方程2

39x y y =-''的通解. 3 解:原方程对应的齐次方程的特征方程为 092

=-λ, 特征根为 31-=λ,32=λ,故齐次方程的通解为

x x

C C y 3231e e

+=- ,其中21,C C 为任意常数. 设原方程的一个特解为C Bx Ax y ++=*2

,代入原方程得 2

2

3)(92x C Bx Ax A =++-

比较系数得??

?

??=-==-0

9203

9C A B A ,解得31-=A ,0=B ,272-=C .

由此得原方程的通解为 x x C C x y 32312e e 27

231++--=-。 7# 17、求微分方程

1232+=-'-''x y y y 的通解。 3

212312312122331031*,*,*0

21

23321,,,3921

.(,39x x

x x y C e C e y Ax B y A y A Ax B x A B x y C e C e C C λλλλλλ----=-+===-=+'''=+==----=+=

==+-+解:()(),,设通解:为任意常数)

7 #

18. 求微分方程x

x

e y y e ='+)1(满足y (0)=1的特解。 2 解:

.

2ln 21)1ln(2,)1ln(2

,122

-++=++=+=x x x

x e y C e y e dx e ydy 特解为: 5# 19.求微分方程x

e y y y +=-+132/

//

的通解。 3 解:由2122303,1r r r r +-==-=解得 齐次通解为312x x y C e C e -=+ 设两个特解为*

*

12, x a Ax y y e ==

求导代入原方程得11, 3

4a A =-=

,则两特解为**

1211, 34x x y y e =-= 原方程的通解为31211

34

x x x y x C e C e e -=+-+ 7 #

20.求微分方程()0212

='-''+y x y x 的通解。 2

解:设p y =',则p y '=''

代入方程为:()0212

=-'+xp p x

分离变量:122

+=x xdx p

dp 积分:()

c x p ln 1ln ln 2

++=

则()12+='=x c y p

所以c cx x c y 1

331

++= 6 #

21、解微分方程1

|

1

2==-'=x x y e x y y x 2

解:()

C e x C dx e e x e y x dx x x dx x +=?

?

????+??=?

-1

1

代入1 |

1

==x y

()e e x y x -+=1 5 #

22、求方程333x y y e -'''+=的通解。 3 解:230,0,3r r r r +===-得 齐次通解为312x y C C e -=+

又3λ=-为特征单根,故设特解为*3x Ax y e -=,*333x x A Ax y e e --'=-

*

3369x x A Ax y e e --''=-+

代入原方程得1A =-则特解为*

3x x y e -=-

所以原方程通解为3312x x y x C C e e --=+- 7 #

高等数学第七章微分方程习题

第七章 微分方程与差分方程 习题7-1(A ) 1. 说出下列微分方程的阶数: ;02)()1(2=+'-'x y y y x ;0)2(2=+'+'''y y x y x .0)32()67()3(=++-dy y x dx y x 2. 下列函数是否为该微分方程的解: x e x y y y y 2; 02)1(==+'-'' )(2; 0)()2(2为任意常数C x x C y xdy dx y x -==++ ),(cos sin ; 0) 3(212122 2为任意常数C C ax C ax C y y a dx y d +==+ )(ln ; 02)()4(2xy y y y y y x y x xy =='-'+'+''+ 3. 在下列各题中,确定函数关系式中所含的参数,写出符合初始条件的函数: ;5, )1(0 22==-=x y C y x ;1,0,)()2(0 221=' =+===x x x y y e x C C y . 0,1, )(sin )3(21='=-===ππx x y y C x C y 4. 写出下列条件确定的曲线所满足的微分方程: 点横坐标的平方。 处的切线的斜率等于该曲线在点),()1(y x 轴平分。被,且线段轴的交点为处的法线与曲线上点y PQ Q x y x P ),()2( 习题7-1(B ) 1.在下列各题中,对各已知曲线族(其中 C 1, C 2, C 3 都是任意常数)求出相应的微分方程: ; 1)()1(22=+-y C x . )2(21x x e C e C xy -+= 2.用微分方程表示下列物理问题: 平方成反比。温度的成正比,与的变化率与气压对于温度某种气体的气压P T P )1( 。 速度成反比(比例系数同时阻力与, 成正比(比例系数与时间用在它上面的一个力的质点作直线运动,作一质量为)))2(11k k t m 习题7-2(A ) 1.求下列微分方程的通解: ;0ln )1(=-'y y y x ;0553)2(2='-+y x x ; )()3(2y y a y x y '+='-'

(完整版)高等数学微分方程试题

第十二章 微分方程 §12-1 微分方程的基本概念 一、判断题 1.y=ce x 2(c 的任意常数)是y '=2x 的特解。 ( ) 2.y=(y '')3是二阶微分方程。 ( ) 3.微分方程的通解包含了所有特解。 ( ) 4.若微分方程的解中含有任意常数,则这个解称为通解。 ( ) 5.微分方程的通解中任意常数的个数等于微分方程的阶数。 ( ) 二、填空题 1. 微分方程.(7x-6y)dx+dy=0的阶数是 。 2. 函数y=3sinx-4cosx 微分方程的解。 3. 积分曲线y=(c 1+c 2x)e x 2中满足y x=0=0, y ' x=0=1的曲线是 。 三、选择题 1.下列方程中 是常微分方程 (A )、x 2+y 2=a 2 (B)、 y+0)(arctan =x e dx d (C)、22x a ??+22y a ??=0 (D ) 、y ''=x 2+y 2 2.下列方程中 是二阶微分方程 (A )(y '')+x 2y '+x 2=0 (B) (y ') 2+3x 2y=x 3 (C) y '''+3y ''+y=0 (D)y '-y 2=sinx 3.微分方程2 2dx y d +w 2 y=0的通解是 其中c.c 1.c 2均为任意常数 (A )y=ccoswx (B)y=c sinwx (C)y=c 1coswx+c 2sinwx (D)y=c coswx+c sinwx 4. C 是任意常数,则微分方程y '=3 23y 的一个特解是 (A )y-=(x+2)3 (B)y=x 3+1 (C) y=(x+c)3 (D)y=c(x+1)3 四、试求以下述函数为通解的微分方程。 1.2 2 C Cx y +=(其中C 为任意常数) 2.x x e C e C y 3221+=(其中21,C C 为任意常数) 五、质量为m 的物体自液面上方高为h 处由静止开始自由落下,已知物体在液体中受的阻力与运动的速度成正比。用微分方程表示物体,在液体中运动速度与时间的关系并写出初始条件。

高数公式大全(全)

高数公式大全 1.基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  一些初等函数: 两个重要极限: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππx x arthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x x x x x x x -+=-+±=++=+-==+= -=----11ln 21)1ln(1ln(:2 :2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e x x x x x x

高等数学 微分方程

第十二章 微分方程 § 1 微分方程的基本概念 1、由方程x 2-xy+y 2=C 所确定的函数是方程( )的解。 A. (x-2y)y '=2-xy '=2x-y C.(x-2)dx=(2-xy)dy D.(x-2y)dx=(2x-y)dy 2、曲线族y=Cx+C 2 (C 为任意常数) 所满足的微分方程 ( ) 4.微分方程y '=y x 21-写成以 y 为自变量,x 为函数的形式为( ) A.y x 21dx dy -= B.y x 21dy dx -= '=2x-y D. y '=2x-y §2 可分离变量的微分方程 1.方程P(x,y)dx+Q(x,y)dy=0是( ) A.可分离变量的微分方程 一阶微分方程的对称形式, C.不是微分方程 D.不能变成 ) y ,x (P ) y ,x (Q dy dx -= 2、方程xy '-ylny=0的通解为( ) A y=e x B. y=Ce x cx D.y=e x +C 3、方程满足初始条件:y '=e 2x-y , y|x=0=0的特解为( ) A. e y =e 2x +1 2 1 e ln x 2+= C. y=lne 2x +1-ln2 D. e y =21e 2x +C 4、已知y=y(x)在任一点x 处的增量α+?+=?x x 1y y 2 ,且当?x →0时,α是?x 高阶无穷小,y(0)=π,则y(1)=( ) A. 2π B. π C. 4 e π 4e ππ 5、求特解 cosx sinydy=cosy sinxdx , y|x=0=4 π 解:分离变量为tanydy=tanxdx ,即-ln(cosy)=-ln(cosx)-lnC ,cosy=ccosx 代入初始条件:y|x=0= 4π 得:2 2C =特解为:2cosy=cosx 6、求微分方程()2 y x cos y x 2 1cos dx dy +=-+满足y(0)=π的特解。

高等数学微分方程试题及答案.docx

第九章常微分方程一.变量可分离方程及其推广 1.变量可分离的方程 ( 1)方程形式:dy P x Q y Q y0通解 dy P x dx C dx Q y (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加) ( 2)方程形式:M1x N1 y dx M 2x N 2y dy0 通解M 1x dx N 2 y dy C M 2 x 0, N 1 y 0 M 2x N 1y 2.变量可分离方程的推广形式 dy f y ( 1)齐次方程 x dx 令y u ,则 dy u x du f u f du dx c ln | x | c x dx dx u u x 二.一阶线性方程及其推广 1.一阶线性齐次方程 dy P x y0 它也是变量可分离方程,通解y Ce P x dx ,(c为任意常数)dx 2.一阶线性非齐次方程 精品文档令 z y1把原方程化为dz1P x z 1Q x 再按照一阶线性 dx 非齐次方程求解。 dy1可化为 dx P y x Q y y x 以为自变量,.方程: P y x dy dx Q y 为未知函数再按照一阶线性非齐次方程求解。 三、可降阶的高阶微分方程 方程类型解法及解的表达式 通解 y n C 2 x n 2C n 1 x C n y n f f x dx C1 x n 1 x n次 令 y p ,则 y p ,原方程 y f x, y f x, p ——一阶方程,设其解为p g x, C1 p, 即y g x, C1,则原方程的通解为y g x, C1dx C2。 令 y p ,把p看作y的函数,则 y dp dp dy p dp dx dy dx dy y f 把 y, y 的表达式代入原方程,得 dp1 f y, p—一阶方程, y, y dy p dy dx P x y Q x用常数变易法可求出通解公式设其解为 p g y, C 1 , 即 dy g y, C1,则原方程的通解为 dx 令 y C x e P x dx代入方程求出 C x 则得ye P x dx Q x e P x dx dx C 3.伯努利方程 dy Q x y0,1 P x y dx dy x C2。 g y, C1

高等数学微分方程练习题

(一)微分方程的基本概念 微分方程:含未知函数的导数或微分的方程,称为微分方程、 微分方程的阶:微分方程所含未知函数的最高阶导数或微分的阶数称为微分方程的阶数、 1、不就是一阶微分方程. A、正确 B、不正确 2、不就是一阶微分方程. A、正确 B、不正确 一阶线性微分方程:未知函数及其导数都就是一次的微分方程d ()() d y P x y Q x x +=称为一阶 线性微分方程、 微分方程的解:如果一个函数代入微分方程后,方程两边恒等,则称此函数为微分方程的解、通解:如果微分方程的解中所含独立任意常数C的个数等于微分方程的阶数,则此解称为微分方程的通解、 特解:在通解中根据附加条件确定任意常数C的值而得到的解,称为特解、 1、就是微分方程的解. A、正确 B、不正确 2、就是微分方程的解. A、正确 B、不正确 3、就是微分方程的通解. A、正确 B、不正确 4、微分方程的通解就是( ). A、 B、 C、 D、

(二)变量可分离的微分方程:()()dy f x g y dx = 一阶变量可分离的微分方程的解法就是: (1)分离变量:1221()()()()g y f x dy dx g y f x =;(2)两边积分:1221()()()()g y f x dy dx g y f x =?? 左边对y 积分,右边对x 积分,即可得微分方程通解、 1、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 2、微分方程的通解就是( ). A 、 B 、 C 、 D 、 3、微分方程的通解就是( ). A 、 B 、 C 、 D 、 4、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 5、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 6、微分方程的通解( ). A 、 B 、 C 、 D 、 7、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 8、 x y dy e dx -=就是可分离变量的微分方程. A 、正确 B 、不正确

高等数学第九章微分方程试题及答案

第九章 常微分方程 一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: ()()()()0≠=y Q y Q x P dx dy 通解() ()? ?+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意 常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()() C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令 u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln 二.一阶线性方程及其推广 1.一阶线性齐次方程 ()0=+y x P dx dy 它也是变量可分离方程,通解()?-=dx x P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程 ()()x Q y x P dx dy =+ 用常数变易法可求出通解公式 令()()?-=dx x P e x C y 代入方程求出()x C 则得 ()()()[] ?+=??-C dx e x Q e y dx x P dx x P 3.伯努利方程 ()()()1,0≠=+ααy x Q y x P dx dy 令α-=1y z 把原方程化为()()()()x Q z x P dx dz αα-=-+11 再按照一阶线性非齐次方程求解。 4.方程: ()()x y P y Q dx dy -=1可化为()()y Q x y P dy dx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。 三、可降阶的高阶微分方程

第五章 高等数学(理专) 微分方程试题库1

第五章 微分方程 试题库一 1.填空题 (1) 微分方程0),,,()4(='y y y x F 是 阶微分方程. (2)通过点)1,1(处,且在任意一点),(y x P 处的切线斜率为x 的曲线方程为 . (3) 微分方程054=-'-''y y y 的特征方程为 . (4) 微分方程03='-''y y 的通解为 . (5) 微分方程09=-''y y 的通解为 . (6) 微分方程y x x y -=e d d 的通解为 . (7) 微分方程054=-'+''y y y 的通解为 . (8) 微分方程20yy x '+=的通解为 . (9)微分方程560y y y '''-+=的特征方程为 . (10) 微分方程440y y y '''-+=的通解为 . 2.选择题 (1) 微分方程0))(,,,(24='''y y y x F 的通解中含有的相互独立的任意常数的个数是( ). A.1; B.2; C.3; D.4. (2) 下列微分方程中是可分离变量的微分方程的是( ). A.y xy x y +=d d ; B. y x y xy sin e d d =; C. 2d d y xy x y +=; D. 22d d y x x y +=. (3) 下列微分方程中是一阶线性非齐次微分方程的是( ). A. 2d d y xy x y +=; B.x xy y =+''; C.x xy y =+'; D. 02=+'xy y . (4) 微分方程x y e =''的通解为( ). A. x y e =; B. C y x +=e ; C. Cx y x +=e ; D. 21e C x C y x ++=.

高数 第七章题库 微分方程

第十二章 微分方程答案 一、 选择题 1.下列不是全微分方程的是 C 1 A.2()(2)0x y dx x y dy ++-= B.2 (3)(4)0y x dx y x dy ---= C.3 2 2 2 3(23)2(2)0x xy dx x y y dy +++= D.2 2 2(1)0x x x ye dx e dy -+= 2. 若3y 是二阶非齐次线性方程(1):()()()y P x y Q x f x '''++=的一个特解,12,y y 是对应的 齐次线性方程(2)的两个线性无关的特解,那么下列说法错误的是(123,,c c c 为任意常数) C 2 A.1122c y c y +是(2)的通解 B. 113c y y +是(1)的解 C. 112233c y c y c y ++是(1)的通解 D. 23y y +是(1)的解 3.下列是方程xdx ydy += 的积分因子的是 D 2 A.2 2x y + B. 221x y + 4.方程32 2321x x d y d y e e dx dx ++=的通解应包含得独立常数的个数为 ( B ). 1 (A) 2 (B) 3 (C) 4 (D) 0 5.已知方程'()0y p x y +=的一个特解cos 2y x =,则该方程满足初始特解(0)2y =的特解为( C ). 2 (A) cos 22y x =+ (B) cos 21y x =+ (C) 2cos 2y x = (D) 2cos y x = 6.方程32232 1x x d y d y e e dx dx ++=的通解应包含得独立常数的个数为 ( B ). 1 (A) 2 (B) 3 (C) 4 (D) 0 7.设线性无关的函数123,,y y y 都是微分方程''()'()()y p x y q x y f x ++=的解,则该方程的通解为 ( D ). 2 (A) 11223y c y c y y =++ (B) 1122123()y c y c y c c y =+-+ (C) 1122123(1)y c y c y c c y =+--- (D) 1122123(1)y c y c y c c y =++-- 8.设方程''2'3()y y y f x --=有特解*y ,则其通解为( B ). 1

(完整版)高等数学第七章微分方程试题及答案

第七章 常微分方程 一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: ()()()()0≠=y Q y Q x P dx dy 通解() ()? ?+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()() C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令 u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln 二.一阶线性方程及其推广 1.一阶线性齐次方程 ()0=+y x P dx dy 它也是变量可分离方程, 通解()?-=dx x P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程 ()()x Q y x P dx dy =+ 用常数变易法可求出通解公式 令()()?-=dx x P e x C y 代入方程求出()x C 则得 ()()()[] ?+=??-C dx e x Q e y dx x P dx x P 3.伯努利方程 ()()()1,0≠=+ααy x Q y x P dx dy 令α -=1y z 把原方程化为()()()()x Q z x P dx dz αα-=-+11 再按照一阶线性 非齐次方程求解。 4.方程: ()()x y P y Q dx dy -=1可化为()()y Q x y P dy dx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。

高等数学——微分方程

第八章 常微分方程 一、本章学习要求与内容提要 (一)基本要求 1.了解微分方程和微分方程的阶、解、通解、初始条件与特解等概念. 2.掌握可分离变量的微分方程和一阶线性微分方程的解法. 3.了解二阶线性微分方程解的结构. 4.掌握二阶常系数齐次线性微分方程的解法. 5.会求自由项为x m x P λe )(或x x P x m βαcos e )(,x x P x m βαsin e )(时的二阶常系数非 齐次线性微分方程的解. 6. 知道特殊的高阶微分方程()()(x f y n =,),(y x f y '='',),(y y f y '='')的降阶法. 7.会用微分方程解决一些简单的实际问题. 重点 微分方程的通解与特解等概念,一阶微分方程的分离变量法,一阶线性微分方程的常数变易法,二阶线性微分方程的解的结构,二阶常系数非齐次线性微分方程的待定系数法。 难点 一阶微分方程的分离变量法,一阶线性微分方程的常数变易法,二阶常系数非齐次线性微分方程的待定系数法,高阶微分方程的降阶法,用微分方程解决一些简单的实际问题. (二)内容提要 ⒈ 微分方程的基本概念 ⑴ 微分方程的定义 ①凡是含有未知函数的导数(或微分)的方程,称为微分方程. ②未知函数是一元函数的微分方程称为常微分方程,未知函数是多元函数的微分方程称为偏微分方程.本书只讨论常微分方程,简称微分方程. ⑵ 微分方程的阶、解与通解 微分方程中出现的未知函数最高阶导数的阶数,称为微分方程的阶.如果把函数 )(x f y =代入微分方程后,能使方程成为恒等式,则称该函数为该微分方程的解.若微分方 程的解中含有任意常数,且独立的任意常数的个数与方程的阶数相同,则称这样的解为微分方程的通解. ⑶ 初始条件与特解 用未知函数及其各阶导数在某个特定点的值作为确定通解中任意常数的条件,称为初始条件.满足初始条件的微分方程的解称为该微分方程的特解. ⑷ 独立的任意常数 ①线性相关与线性无关 设)(),(21x y x y 是定义在区间),(b a 内的函数,若存在两个不全为零的数21,k k ,使得对于区间),(b a 内的任一x ,恒有 0)()(2211=+x y k x y k

高等数学微分方程试题汇编

第十二章微分方程 §2-1 微分方程的基本概念 一、 判断题 1. y=ce 2x (c 的任意常数)是y ' =2x 的特解。 ( ) 2. y=( y )3是二阶微分方程。 ( ) 3. 微分方程的通解包含了所有特解。 ( ) 4. 若微分方程的解中含有任意常数,则这个解称为通解。 ( ) 5. 微分方程的通解中任意常数的个数等于微分方程的阶数。 ( ) 二、 填空题 微分方程.(7x-6y)dx+dy=0的阶数是 _______________ 。 2. 函数y=3sinx-4cosx ___________ 微分方程的解。 3. 积分曲线y=(c 1 +c 2x)e 2x 中满足 y x=o =O, y" x=o =1的曲线是 _________________ 。 三、选择题 1. _________________ 下列方程中 是常微分方程 _2 _2 2 2 2 d arctan x 3 '3 2 2 (A )、x+y =a (B)、 y+——(e ) = 0 (C)、—2 +— =0 ( D )、y =x +y dx ex cy 2. _______________ 下列方程中 是二阶微分方程 2 y 2 i-2 2 3 2 (A ) ( y ) +x +x =0 (B) ( y ) +3x y=x (C) y +3 y +y=0 (D) y -y =sinx (A ) y=ccoswx (B)y=c sinwx (C)y=c i coswx+c 2sinwx (D)y=c coswx+c sinwx 2 4. C 是任意常数,则微分方程 y =3y 3的一个特解是 ______________ 3 3 3 3 (A ) y-=(x+2) (B)y=x +1 (C) y=(x+c) (D)y=c(x+1) 四、试求以下述函数为通解的微分方程。 2 2 2x 3x 1. y =Cx C (其中C 为任意常数) 2.y =C i e C 2e (其中C-C ?为任意常数) 五、质量为 m 的物体自液面上方高为 h 处由静止开始自由落下,已知物体在液体中受的阻 力与运 3.微分方程 穿+w2y =0的通解是 ______ 中c.c i.c 2均为任意常数

高等数学微分方程练习题

高等数学微分方程练习 题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

(一)微分方程的基本概念 微分方程:含未知函数的导数或微分的方程,称为微分方程. 微分方程的阶:微分方程所含未知函数的最高阶导数或微分的阶数称为微分方程的阶数. 1.不是一阶微分方程. A.正确 B.不正确 2.不是一阶微分方程. A.正确 B.不正确 一阶线性微分方程:未知函数及其导数都是一次的微分方程d ()() d y P x y Q x x += 称为一阶线性微分方程. 微分方程的解:如果一个函数代入微分方程后,方程两边恒等,则称此函数为微分方程的解. 通解:如果微分方程的解中所含独立任意常数C的个数等于微分方程的阶数,则此解称为微分方程的通解. 特解:在通解中根据附加条件确定任意常数C的值而得到的解,称为特解. 1.是微分方程的解. A.正确 B.不正确 2.是微分方程的解. A.正确 B.不正确 3.是微分方程的通解. A.正确 B.不正确

4.微分方程 的通解是( ). A. B. C. D. (二)变量可分离的微分方程:()()dy f x g y dx = 一阶变量可分离的微分方程的解法是: (1)分离变量:1221()()()() g y f x dy dx g y f x =;(2)两边积分:1221()()()()g y f x dy dx g y f x =?? 左边对y 积分,右边对x 积分,即可得微分方程通解. 1.微分方程 的通解是( ). A. B. C. D. 2.微分方程 的通解是( ). A. B. C. D. 3.微分方程的通解是( ). A. B. C. D. 4.微分方程的通解是( ).

高数知识汇总之微分方程.docx

第六章微分方程 6.1 微分方程的基本概念 微分方程: 含有未知函数的导数(或微分)的等式称为微分方程。 微分方程的阶: 微分方程中,所含未知函数的导数的最高阶数称为微分方程的阶。 微分方程的通解: 如果微分方程的解这中含有任意常数,且任意个不相关的常数的个数与微分方程的阶数相同,这样的解称为微分方程的通解。 微分方程的特解: 在通解中给予任意常数以确定的值而得到的解,称为特解。 初始条件: 用于确定通解中的任意常数而得到特解的条件称为初始条件。 积分曲线: 微分方程的特解的图形是一条曲线,叫做微分方程的积分曲线。 6.2 一阶微分方程的求解方法 6.2.1分离变量法 可分离变量的微分方程: 形如dy f ( x) g ( y) 的微分方程,称为可分离变量的微分方程。dx 特点: 等式右边可以分解成两个函数之积,其中一个是只含有x 的函数,另一个是只含有y 的函数.解法: 当 g( y)0 时,把dy f ( x) g( y) 分离变量为dy f ( x)dx, ( g ( y) 0) 对上式两边积dx g( y) 分,得通解为 dy f ( x)dx C g( y) (这里我们把积分常数 C 明确写出来,而把dy , f ( x)dx 分别理解为 1 和f (x)的g( y)g( y) 一个确定的原函数。) 6.2.2齐次方程和可化为齐次方程的一阶方程不考。 6.2.3一阶线性微分方程 一阶线性微分方程: 如果一阶微分方程 F (x, y, y ) 0 可以写为 y p( x) y q( x) 则称之为一阶线性微分方程,

其中 p(x) 、 q(x) 为连续函数.当q( x)0 时,此方程为dy 0 ,称它为对应于 p(x) y dx 非齐次线性方程的齐次线性微分方程;当 q(x)0 时,称为非齐次线性微分方程。 解法: 用常数变易法可得其通解为: p( x) dx p( x) dx c) y e( q(x)e dx (注:其中每个积分,不再加任意常数C。)6.4可降阶的二阶微分方程 6.4.1不显含未知函数y 的二阶方程:y f ( x, y ) 解法: 令 y p p( x) ,则 y dp dp ,方程变为 dx dx yp( x)dx ,即得通解。 6.4.2不显含自变量 x 的二阶方程 : y f ( y, y )解法: 令 y= p = p( y) ,则y dp p ,方程变为p dp dy dy 解。f ( x, p) f ( y, p) ,解之得p ,再积分得 ,解之得p ,再积分得通 6.5二阶线性微分方程 6.5.1二阶线性微分方程的解的结构 二阶线性微分方程: 形如y p(x) y q( x) y f(x) 的方程,称为二阶线性微分方程。若 f ( x) 0,称之为二阶齐次线性微分方程;若 f ( x)0 ,称之为二阶非齐次线性微分方程。 齐次线性方程解的叠加原理: 如果函数 y1, y2是齐次方程y p( x) y q(x) y 0 的两个解,则y C1 y1C2 y2也是方程 y p(x) y q( x) y0的解 ,其中C ,C均为任意常数。 12 齐次线性方程的通解结构: 如果函数 y1 ( x) , y2 (x) 是齐次方程y p(x) y q(x)y 0的两个线性无关解 ,则函数y C y C y C C y p( x) y q(x) y0

高数一试题库

南京工业大学继续教育学院南京高等职业技术学校函授站 《高等数学一》课程复习题库 一. 选择题 1. 0sin 3lim x x x →=( ) A.0 B. 1 3 C.1 D.3 2. 0sin lim 22x ax x →=,则a =( ) A.2 B. 12 C.4 D. 1 4 3. 0sin 5sin 3lim x x x x →-?? ??? =( ) A.0 B. 1 2 C.1 D.2 4. 极限0tan 3lim x x x →等于( ) A 0 B 3 C 7 D 5 5.设()2,0 ,0x x x f x a x ?+<=?≥?,且()f x 在0x =处连续,则a =( ) A.0 B. 1- C.1 D.2 6. 设()21,1 0,1ax x f x x ?+<=?≥?,且()f x 在1x =处连续,则a =( ) A.1 B. 1- C.-2 D. 2 7. 设()2 1,02,0,0x x f x a x x x ???在0x =处连续,则a =( ) A.1 B. 1- C.0 D. 12 8.设2cos y x =,则y '=( ) A. 2sin x B. 2sin x - C. 22sin x x - D. 22sin x x

9. 设21y x -=+,则y '= ( ) A.32x - B.12x -- C.32x -- D.121x --+ 10.设5sin y x x -=+则y '=( ) A .65cos x x --+ B 45cos x x --+ C.45cos x x --- D.65cos x x --- 11. 设5 1 y x = ,则dy =( ) A.45x - .B.45x dx -- C. 45x dx D.45x dx - 12. 设1cos 2,y x =-则dy =( ) A .sin 2xdx B sin 2xdx - C.2sin 2xdx D.2sin 2xdx - 13. 设() 2ln 1,y x =+则dy =( ) A . 21dx x + B 21dx x -+ C.221xdx x + D.2 21xdx x -+ 14. ()1 lim 1x x x →-=( ) A. e B. 1e - C. 1e -- D. e - 15.()x x x 21 21lim +→ =( ) A 0 B ∞ C e D 2e 16. 0 1lim 1x x x →?? += ??? ( ) A. e B. 1e - C.0 D. 1 17.226 lim 2 x x x x →+--=( )

高等数学微分方程试题及答案

第九章 常微分方程 一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: ()()()()0≠=y Q y Q x P dx dy 通解() ()? ?+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意 常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()() C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令 u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln 二.一阶线性方程及其推广 1.一阶线性齐次方程 ()0=+y x P dx dy 它也是变量可分离方程,通解()?-=dx x P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程 ()()x Q y x P dx dy =+ 用常数变易法可求出通解公式 令()()?-=dx x P e x C y 代入方程求出()x C 则得 ()()()[] ?+=??-C dx e x Q e y dx x P dx x P 3.伯努利方程 ()()()1,0≠=+ααy x Q y x P dx dy 令α-=1y z 把原方程化为()()()()x Q z x P dx dz αα-=-+11 再按照一阶线性非齐次方程求解。 4.方程: ()()x y P y Q dx dy -=1可化为()()y Q x y P dy dx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。 三、可降阶的高阶微分方程

(完整版)高等数学微分方程试题.doc

专业班级学号姓名成绩时间174 第十二章微分方程 §12-1 微分方程的基本概念 一、判断题 1.y=ce 2 x (c 的任意常数 )是y =2x 的特解。( ) 2.y=( y ) 3是二阶微分方程。( ) 3.微分方程的通解包含了所有特解。( ) 4.若微分方程的解中含有任意常数,则这个解称为通解。() 5.微分方程的通解中任意常数的个数等于微分方程的阶数。() 二、填空题 1. 微分方程 .(7x-6y)dx+dy=0 的阶数是。 2. 函数 y=3sinx-4cosx 微分方程的解。 3. 积分曲线 y=(c 1 +c 2 x)e 2 x 中满足 y x=0=0, y x=0=1的曲线是。 三、选择题 1.下列方程中是常微分方程 ( A )、 x2+y 2=a2 d (e arctan x ) 0 (C)、 2 a 2 a =0 ( D)、y =x 2+y 2 (B) 、 y+ 2 + 2 dx x y 2.下列方程中是二阶微分方程 ( A )(y)+x 2 y +x 2=0(B) ( y ) 2+3x 2y=x 3 (C) y +3 y +y=0 (D) y -y2=sinx d 2 y 2 1. 2 3.微分方程 dx2 +w y=0 的通解是其中 c.c c 均为任意常数 ( A )y=ccoswx (B)y=c sinwx (C)y=c 1coswx+c 2sinwx (D)y=c coswx+c sinwx 2 4. C 是任意常数,则微分方程y = 3y3 的一个特解是 ( A )y-=(x+2) 3 (B)y=x 3+1 (C) y=(x+c) 3 (D)y=c(x+1) 3 四、试求以下述函数为通解的微分方程。 1.y Cx2 C 2 (其中 C 为任意常数) 2. y C1e2 x C 2e3x (其中 C1 ,C2 为任意常数) 五、质量为m 的物体自液面上方高为h 处由静止开始自由落下,已知物体在液体中受的阻力与 运动的速度成正比。用微分方程表示物体,在液体中运动速度与时间的关系并写出初始条件。

同济大学(高等数学)-第三篇-常微分方程

第三篇 常微分方程 第六章 常微分方程 函数是研究客观事物运动规律的重要工具,找出函数关系,在实践中有重要意义.但是在许多问题中,常常不能直接找出这种函数关系,但却能根据问题所处的环境,建立起这些变量和它们的导数(或微分)之间的方程,这样的方程称为微分方程. 在本章中,主要介绍常微分方程的基本概念和几种常用的常微分方程的解法. 第一节 微分方程的概念 下面我们通过两个例子来说明常微分方程的基本概念. 1.1 引例 引例1 一曲线通过点(1,2),且在该曲线上任一点),(y x P 处的切线斜率为x 2,求这条曲线方程. 解 设所求曲线方程为()y f x =,且曲线上任意一点的坐标为),(y x .根据题意以及导数的几何意义得 x dx dy 2=. 两边同时积分得 2y x c =+ (c 为任意常数). 又因为曲线通过(1,2)点,把1x =,2y =代入上式,得1=c .故所求曲线方程为 21y x =+. 引例2 将温度为C ο100的物体放入温度为C ο0的介质中冷却,依照冷却定律,冷却的速度与温度T 成正比,求物体的温度T 与时间t 之间的函数关系. 解 依照冷却定律,冷却方程为 kt dt dT -= (k 为比例常数), 所求函数关系满足0t =,100T =. 以上我们仅以几何、物理上引出关于变量之间微分方程的关系. 下面我们介绍有关微分方程基本概念. 1.2 微分方程的基本概念

定义1 含有未知函数以及未知函数的导数(或微分)的方程称为微分方程.在微分方程中,若未知函数为一元函数的微分方程称为常微分方程.若未知函数为多元函数的微分方程称为偏微分方程. 例如 下列微分方程中, (1) 13=-'x y ; (2)sin 0dy y xdx +=; (3)21 ()20y y x '''+ += (4)22221u u x y ??+=??; (5)cos 3dy y x dx +=. 都是微分方程,其中(1)、(2)、(3)、(5)是常微分方程,(4)是偏微分方程. 本课程只讨论常微分方程. 定义2 微分方程中含未知函数的导数的最高阶数称为微分方程的阶. 在上例中,(1)、(2)、(5)是一阶常微分方程,(3)是二阶常微分方程. 一般地,n 阶微分方程记为: 0) , , , ,()(='n y y y x F . 定义3 若将()y f x =代入微分方程中使之恒成立,则称()y f x =是微分方程的解(也称显式解);若将0),(=y x ?代入微分方程中使之恒成立,则称关系式0),(=y x ?是微分方程的隐式解. 定义4 微分方程的解中含有任意常数,并且任意常数的个数与微分方程的阶数相同,这样的解称为微分方程的通解. 引例1中,积分后得到C x y +=2为微分方程的通解,由于通解中含有任意常数,所以它不能完全确定地反映客观事物的规律性,必须确定这些常数,为此,要根据实际问题,提出确定通解中的常数的条件. 设微分方程中未知函数)(x y y =,如果微分方程是一阶的,确定任意常数的条件是 00 y y x x ==;如果微分方程是二阶的确定任意常数的条件是00 y y x x ==,10 y y x x ='=,上述 这些条件叫做初始条件. 定义 5 求解微分方程),(y x f y ='满足初始条件00 y y x x ==的特解问题称为一阶微分 方程的初值问题.记作 ?????=='=00 ) ,(y y y x f y x x . 例1 验证at c at c x sin cos 21+=是微分方程 02=+''x a x 的解.

高等数学微分方程试题及答案

精品文档 . 第九章 常微分方程 一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: ()()()()0≠=y Q y Q x P dx dy 通解() ()? ?+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意 常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()() C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令 u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln 二.一阶线性方程及其推广 1.一阶线性齐次方程 ()0=+y x P dx dy 它也是变量可分离方程, 通解()?-=dx x P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程 ()()x Q y x P dx dy =+ 用常数变易法可求出通解公式 令()()?-=dx x P e x C y 代入方程求出()x C 则得 ()()()[] ?+=??-C dx e x Q e y dx x P dx x P 3.伯努利方程 ()()()1,0≠=+ααy x Q y x P dx dy 令α -=1y z 把原方程化为 ()()()()x Q z x P dx dz αα-=-+11 再按照一阶线性非齐次方程求解。 4.方程: ()()x y P y Q dx dy -=1可化为()()y Q x y P dy dx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。 三、可降阶的高阶微分方程

高等数学基本公式整理(微分方程部分)

微分方程的相关概念: 即得齐次方程通解。 ,代替分离变量,积分后将,,,则设的函数,解法:,即写成程可以写成 齐次方程:一阶微分方称为隐式通解。 得:的形式,解法: 为:一阶微分方程可以化可分离变量的微分方程 或 一阶微分方程:u x y u u du x dx u dx du u dx du x u dx dy x y u x y y x y x f dx dy C x F y G dx x f dy y g dx x f dy y g dy y x Q dx y x P y x f y -=∴=++====+====+='??)()(),(),()()()()()()(0 ),(),(),(???一阶线性微分方程: )1,0()()(2))((0)(,0)()()(1)()()(≠=+?+? =≠? ===+?--n y x Q y x P dx dy e C dx e x Q y x Q Ce y x Q x Q y x P dx dy n dx x P dx x P dx x P ,、贝努力方程:时,为非齐次方程,当为齐次方程,时当、一阶线性微分方程: 全微分方程: 通解。 应该是该全微分方程的,,其中:分方程,即: 中左端是某函数的全微如果C y x u y x Q y u y x P x u dy y x Q dx y x P y x du dy y x Q dx y x P =∴=??=??=+==+),(),(),(0),(),(),(0),(),( 二阶微分方程: 时为非齐次 时为齐次,0)(0)()()()(22≠≡=++x f x f x f y x Q dx dy x P dx y d 二阶常系数齐次线性微分方程及其解法: 2 122,)(2,,(*)0)(1,0(*)r r y y y r r q pr r q p qy y p y 式的两个根、求出的系数; 式中的系数及常数项恰好是,,其中、写出特征方程:求解步骤: 为常数; ,其中?'''=++?=+'+''式的通解:出的不同情况,按下表写、根据(*),321r r

相关文档
相关文档 最新文档