文档库 最新最全的文档下载
当前位置:文档库 › 永磁同步电机的参数辨识

永磁同步电机的参数辨识

永磁同步电机的参数辨识
永磁同步电机的参数辨识

永磁同步电机的参数辨识

永磁同步电动机电磁场计算中定转子空间相对位置确定的研究

第34卷第2期2004年3月 东南大学学报( 自然科学版) JO UR NAL OF S OUTHEA ST UNIVER SITY (Natural Science Edition) Vol 134No 12 Mar.2004 永磁同步电动机电磁场计算中定转子 空间相对位置确定的研究 刘瑞芳1,3 严登俊2 胡敏强1 (1东南大学电气工程系,南京210096)(2河海大学电气工程学院,南京210098)(3北京交通大学电气学院,北京100044) 摘要:采用通用有限元软件对永磁同步电动机电磁场分析时,存在着电动机定、转子轴线相对位置未知的问题,而确定这个相对位置是任意负载下磁场计算的前提.本文通过研究电动机电磁量之间的关系找到特定内功率因数角下气隙合成电势和内功率角的特征.提出一种相当于逆问题分析的处理方法,在不同定子电流初相位下进行计算,搜寻对应于特定内功率因数角磁场分布,从而求得定转子空间的初始相对位置. 关键词:永磁同步电动机;有限元;定转子空间相对位置 中图分类号:T M351 文献标识码:A 文章编号:1001-0505(2004)022******* Investigation in determining the relative position between stator and rotor of a PMSM in electromagnetic field calculation Liu Ruifang 1,3 Yan D engjun 2 Hu Minqiang 1 (1Department of Electrical Engineering,Southeas t Univers ity,Nanjing 210096,C hina)(2C ollege of Electrical Engineering,Hohai Univers ity,Nanjing 210098,C hina)(3School of Electrical Engineering,Beijing Ji aotong University,B eiji ng 100044,Chi na) Abstract:When designing universal finite ele ment sof tw are for analyzing the per manent magnet synchronous motors (PM S Ms),the relative position of the stator and rotor a xis remains unkno wn.How ever determining the relative position is a precondition for electroma gnetic field calculation.Through analyzing the basic relationship of variables in synchronous machines the characteristics of air gap resultant E M F and inner power angle under special inner po wer factor angle can be obtained.A technique similar to inverse problem solving is proposed in this paper.A series of electromagnetic field calculation under different armature current initial phase angles are carried out firstly,then through searching the field of special inner pow er factor angles the relative position of rotor and stator can be determined subsequently.Key words:PM S M;finite element method (FE M);relative position of stator and rotor 收稿日期:2003201222. 作者简介:刘瑞芳(1971)),女,博士生;胡敏强(联系人),男,博 士,教授,博士生导师,m qhu@https://www.wendangku.net/doc/1a12116992.html,. 在永磁同步电动机通用软件设计中,存在着电动机定、转子相对位置未知的问题,而确定这个相对位置是进行永磁同步电动机负载磁场计算的前提.现有文献多采用根据具体电动机的结构和槽号 分配来判断定、转子轴线相对位置[1~3].但对通用程序,软件系统应当具有自动判断定、转子初始相对位置的功能,否则会使用户对程序的干预大大增加,不易实现程序的自动化和通用化. 1 定转子空间相对位置的确定问题 根据M axwell 方程,永磁同步电动机的二维电磁场边值问题可以表述为

永磁同步电机参数测量试验方法

一、实验目的 1. 测量永磁同步电机定子电阻、交轴电感、直轴电感、转子磁链以及转动惯量。 二、实验内容 1. 掌握永磁同步电机dq 坐标系下的电气数学模型以及机械模型。 2. 了解三相永磁同步电机内部结构。 3. 确定永磁同步电机定子电阻、交轴电感、直轴电感、反电势系数以及转动惯量。 三、拟需实验器件 1. 待测永磁同步电机1台; 2. 示波器1台; 3. 西门子变频器一台; 4. 测功机一台及导线若干; 5. 电压表、电流表各一件; 四、实验原理 1. 定子电阻的测量 采用直流实验的方法检测定子电阻。通过逆变器向电机通入一个任意的空间电压矢量U i (例如U 1)和零矢量U 0,同时记录电机的定子相电流,缓慢增加电压矢量U i 的幅值,直到定子电流达到额定值。如图1所示为实验的等效图,A 、B 、C 为三相定子绕组,U d 为经过斩波后的等效低压直流电压。I d 为母线电流采样结果。当通入直流时,电机状态稳定以后,电机转子定位,记录此时的稳态相电流。因此,定子电阻值的计算公式为: 1 ,2a d b c d I I I I I ===- (1) 23d s d U R I = (2)

图1 电路等效模型 2. 直轴电感的测量 在做直流实验测量定子电阻时,定子相电流达到稳态后,永磁转子将旋转到和定子电压矢量重合的位置,也即此时的d 轴位置。测定定子电阻后,关断功率开关管,永磁同步电机处于自由状态。向永磁同步电机施加一个恒定幅值,矢量角度与直流实验相同的脉冲电压矢量(例如 U 1),此时电机轴不会旋转(ω=0),d 轴定子电流将建立起来,则d 轴电压方程可以简化为: d d d q q d di u Ri L i L dt ω=-+d d d d di u Ri L dt =+ (3) 对于d 轴电压输入时的电流响应为: ()(1)d R t L U i t e R -=- (4) 利用式(4)以及测量得到的定子电阻值和观测的电流响应曲线可以计算得到直轴电感值。 其中U /R 为稳态时的电流反应,R 为测得的电机定子电阻。由上式可知电流上升至稳态值的倍时,1d R t L - =-,电感与电阻的关系式可以写成: 0.632d L t R =? (5) 其中为电流上升至稳态值倍时所需的时间. 3. 交轴电感的测量 测出L d 之后,在q 轴方向(d 轴加90°)施加一脉冲电压矢量。电压矢量的作用时间一般选取的很短 ,小于电机的机械时间常数,保证电机轴在电压矢量作用期间不会转动。则q 轴电压方

永磁同步电机交直轴电感计算

参数化扫描的有问题,但是趋势应该差不多 《永磁电机》 永磁同步电机分为表面式和内置式。 由于永磁体特别是稀土永磁体的磁导率近似等于真空磁导率,对于表面式,直轴磁阻和交轴磁阻相等,因此交直轴电感相等,即Ld=Lq,表现出隐极性质。对于内置式,直轴磁阻大于交轴磁阻(交轴通过路径的磁导率大于直轴),因此Ld

效应,则气隙磁压降为H H=H H H=H H H0H=H H0 Φ HH H ,式中,Ф为每极磁通;δ为气隙 长度;τ为极距;La为铁心长度。 调速永磁同步电机转子结构分为表面型和内置型。由于永磁体特别是稀土永磁体的磁导率近似等于真空磁导率,对于表面式,直轴磁阻与交轴磁阻相等,因此交直轴电感相等,即Ld=Lq,表现出隐极性质。而对其他结构,直轴磁阻大于交轴磁阻,因此Ld

弧形永磁同步电机设计与优化

弧形永磁同步电机设计与优化 实验结果表明电机的力矩波动从原来的4%下降到1.8%,证明该种方法的有效性。关键词:弧形永磁同步电机;边端力矩;齿槽力矩;有限元分析;力矩波动 DOI:10.15938/j.emc.2015.07.016 中图分类号:TN957;TN273+.3 文献标志码:A 文章编号:1007-449X(2015)07-0106-05 0.引言 对于一些超大型精密测量设备,如望远镜、测量雷达、精密机床,转台的尺寸都在10m左右,传统的传动方式已经不能满足实际应用需求。主要体现在如下方面:采用蜗轮蜗杆传动方式时蜗轮的尺寸难以做得很大,而且大尺寸蜗轮精度难以得到保证,对于大型测量设备而言,传动惯量一般都很大,常常使蜗轮部分的惯量难以匹配与其啮合的蜗杆部分的惯量。当设备制动时,蜗杆副的不可逆转特性会产生很大的冲击,若采用在蜗杆轴上加重量的办法来匹配惯量消除冲击,不仅会使伺服系统的机电时间常数增大,而且会延长起动和制动时间,同时也降低了伺服系统的跟踪性能。摩擦传动虽然克服了蜗轮蜗杆传动的弱点,但其存在传动刚度差,低速爬行和滑移的缺点。低速爬行和滑移会直接影响设备的运动稳定性和传动精度,齿轮传动与蜗轮蜗杆传动类似,都属于啮合传动,同样存在反向间隙、较高齿面接触应力、高频齿形误差等问题。对于力矩电机直接传动方式而言,普通的旋转电机已经不能满足大型设备应用需求,如果设计超大型的旋转电机,将给电机的加工、运输、安装都带来巨大的困难。 基于以上原因,本世纪初,国外率先在大型光学望远镜上应用了一种基于弧形永磁同步电机

拼接的传动技术。这项传动技术已经成功应用在了8.2 m的VLT望远镜和10.4 m的望远镜上。整个拼接电机的转子是由多个扇形结构组成,整个电机定子由多块弧形定子组成,每块定子和转子可以视为一台单元电机,可以单独运转。从电机结构上分类,该种电机属于直线电机,从电机性质上分类,该种电机属于永磁同步电机。整台电机可以很方便地加工、安装和拆卸,即使单块定子出现故障,仍然不影响整台电机的运转。但是该种电机存在较大的力矩波动,力矩波动会直接影响到设备的定位和跟踪精度,因此必须采取有效措施加以优化。造成电机力矩波动的因素有很多,主要包括:反电动势谐波、电机磁阻力矩等。对于弧形永磁同步电机,造成电机磁阻力矩的主要因素包括电机的边端力矩和齿槽力矩。电机的边端力矩是由于电机的铁心长度有限,未能构成闭合磁路造成的,电机的齿槽力矩是由电机的齿槽拓扑结构造成的。本文将针对弧形电机的力矩波动采取有效措施进行优化。 感谢您的阅读!

永磁同步电机计算

永磁同步电机设计 1电机仿真模型 (a )原型电机(b )新型电机 图1PM-Y2-180-4电机整体有限元仿真模型 图2新型电机转子1/4模型 2静态有限元仿真结果比较 2.1永磁磁场分布 当永磁体单独作用时,两种电机的磁力线分布如图3所示。 (a )原型电机(b )新型电机 图3两种电机永磁磁场分布 2.2永磁气隙磁密波形 当永磁体单独作用时,两种电机一个周期范围(即一对永磁体范围)的永磁气隙磁密波形如图4所示。 (a )原型电机 (b )新型电机 (c )两种电机比较 图4两种电机永磁气隙磁密分布 3空载稳态有限元仿真结果比较 3.1空载永磁磁链、空载永磁反电势波形 空载情况下,两种电机的三相绕组电流均设置为零,电机中磁场由永磁体单独产生。设置电机稳态运行转速为n =3000r/min ,可得到两种电机的空载永磁磁链、空载永磁反电势波形分别如图5、图6所示。由于三相绕组对称,在此仅给出A 相绕组仿真结果。 图5两种电机空载永磁磁链 图6两种电机空载永磁反电势 3.2空载永磁磁链、空载永磁反电势谐波分析 利用Matlab 对图5、图6的波形进行傅里叶分析,可得到两种电机磁链及反电势的各次谐波分量,如图7所示。 (a )空载永磁磁链(b )空载永磁反电势 图7磁链及反电势谐波分量分析 通过对两种电机的空载永磁磁链和空载永磁反电势进行谐波分析,得到以下结论:(1)3次谐波分量是主要谐波分量;(2)偶次谐波分量几乎为零,奇次谐波分量相对较大;(3)采用新型电机结构可在一定程度上削弱3次谐波分量,但同时会引起5、7次谐波分量增加,总体削弱谐波效果并不明显。 4负载稳态有限元仿真结果比较 4.1电枢绕组通入三相对称电压 两种电机具有相同的参数如下:电阻R =0.0410947?,电感L =5.87143?10?5H ,额定转速n =3000r/min 。给电枢绕组通入三相对称电压: A B C 310.269sin(20035.3581/180) 310.269sin(20035.3581/1802/3)310.269sin(20035.3581/1802/3) u t u t u t ππππππππ=+=+-=++(1) 并进行有限元仿真,得到两种电机的绕组电流及转矩波形,分别如图8、图9所示。 (a )原型电机 (b )新型电机 图8两种电机绕组电流波形

永磁同步电机参数测量试验方法

永磁同步电机参数测量实验 一、实验目的 1. 测量永磁同步电机定子电阻、交轴电感、直轴电感、转子磁链以及转动惯量。 二、实验内容 1. 掌握永磁同步电机dq 坐标系下的电气数学模型以及机械模型。 2. 了解三相永磁同步电机内部结构。 3. 确定永磁同步电机定子电阻、交轴电感、直轴电感、反电势系数以及转动惯量。 三、拟需实验器件 1. 待测永磁同步电机1台; 2. 示波器1台; 3. 西门子变频器一台; 4. 测功机一台及导线若干; 5. 电压表、电流表各一件; 四、实验原理 1. 定子电阻的测量 采用直流实验的方法检测定子电阻。通过逆变器向电机通入一个任意的空间电压矢量U i (例如U 1)和零矢量U 0,同时记录电机的定子相电流,缓慢增加电压矢量U i 的幅值,直到定子电流达到额定值。如图1所示为实验的等效图,A 、B 、C 为三相定子绕组,U d 为经过斩波后的等效低压直流电压。I d 为母线电流采样结果。当通入直流时,电机状态稳定以后,电机转子定位,记录此时的稳态相电流。因此,定子电阻值的计算公式为: 1 ,2 a d b c d I I I I I ===- (1) 23d s d U R I = (2) 图1 电路等效模型 2. 直轴电感的测量 在做直流实验测量定子电阻时,定子相电流达到稳态后,永磁转子将旋转到和定子电压矢量重合的位置,也即此时的d 轴位置。测定定子电阻后,关断功率开关管,永磁同步电机处于自由状

态。向永磁同步电机施加一个恒定幅值,矢量角度与直流实验相同的脉冲电压矢量(例如U 1),此时电机轴不会旋转(ω=0),d 轴定子电流将建立起来,则d 轴电压方程可以简化为: d d d q q d di u Ri L i L dt ω=-+d d d d di u Ri L dt =+ (3) 对于d 轴电压输入时的电流响应为: ()(1)d R t L U i t e R -=- (4) 利用式(4)以及测量得到的定子电阻值和观测的电流响应曲线可以计算得到直轴电感值。 其中U /R 为稳态时的电流反应,R 为测得的电机定子电阻。由上式可知电流上升至稳态值的0.632倍时,1d R t L - =-,电感与电阻的关系式可以写成: 0.632d L t R =? (5) 其中t 0.632为电流上升至稳态值0.632倍时所需的时间. 3. 交轴电感的测量 测出L d 之后,在q 轴方向(d 轴加90°)施加一脉冲电压矢量。电压矢量的作用时间一般选取的很短,小于电机的机械时间常数,保证电机轴在电压矢量作用期间不会转动。则q 轴电压方程可以简化为: q q q d d q di u Ri L i L dt ωωψ=+++ q q q q di u Ri L dt =+ (6) q 轴电流将按如下的指数形式建立: ()(1)q R t L U i t e R -=- (7) 利用测量直轴电感的方法同样可以测量交轴电感。 此外,由于没有正好超前d 轴90°的电压矢量,需要施加一个60°和120°合成矢量来完成等效q 轴电压矢量的施加过程。并且在进行脉冲电压实验的过程中,电压幅值和作用时间 应选择适当。电压幅值选择太小,影响检测精度,过大可能使电流超过系统限幅值影响系统安全。作用时间过短,采样点少,获取的电流信息少,也会影响检测精度,作用时间过长,电流同样可能过大影响系统安全,并且电机容易发生转动。 4. 反电势系数的测量 采用空载实验法,即用测功机带动被测永磁同步电机以一定的转速旋转,同时保持被测电机负载开路,测试此时的电机空载相电压,即为反电势电压。结合转速、反电势可以计算得出相应的反电势系数,计算公式如下: 1000e E K n = ? (8) 式中:E 为反电势,n 为转速。电机的反电势系数,其定义为每1000PRM 时电机每相绕组上的反电势电压的有效值(请注意不是线线电压,是线到中性线的电压,单位为:V/KRPM/相) 这种方法需要将被测电机运行至发电状态,并且需要负载开路手动测试反电势。

在线辨识永磁同步电动机参数

永磁同步电机参数在线辨识:模型参考与EKF 的比较 摘要:本文基于模型参考在线辨识的方法,对永磁同步电机进行参数辨识。运用李雅普诺夫第二方法和奇异扰动理论对增广系统的全局稳定性进行了分析。结果表明,该方法应用的解耦控制技术,改善了系统的收敛性和稳定性. 把这种方法与扩展卡尔曼滤波(EKF)的在线识别方法比较,结果表明,尽管基于扩展卡尔曼滤波(EKF)的在线辨识法在实现的复杂性上相对于所提出的方法更简单,但是该方法与所提出的方法相比不能给出更好的结果. 仿真结果以及对隐极式永磁同步电机实验的分析,证实了所提出方法的有效性。 永磁同步机因为他们的高效率和良好的可控性成功的应用于不同的领域。永磁同步机的控制主要是通过高性能的矢量控制实现的。控制变量如(速度,位置,或转矩),主要的困难在于控制转矩,这说明了控制定子电流的必要性。在矢量控制中,如果想实现这一点,定子电流和电压矢量需在d-q 坐标系下进行分析研究。为了控制定子电流,必须先控制其直轴电感(d)和正交电感(q)。永磁同步电机在d-q 坐标下的电气模型是一个两输入-两输出系统,如下: f q d e e ψ==,0 f K =ω Ω是反电动势矢量d-q 分量;q d q d i i v v ,,,是d-q 轴电压和电流,Ω=P ω是转子电角速度,Ω是转子机械角速度,P 是极对数量。系统的输入是q d v v ,,输出是q d i i ,。根据适当的控制律控制这些电流,是定子电压通过电压源逆变器得到应用。逆变器通常根据一个恒定增益v G 来建模。我们可以得到qr v q dr v d v G v v G v ==,,qr dr v v ,是电流调节器的输出。他们用于调节d-q 坐标系的电流。隐极永磁同步电机,d 轴基准电流通常固定为零,电机转矩和转度由q 轴基准电流控制。d q s f L L R ,,,ψ是参考模型的参数。电机时间常数是 s q q s d d R L R L /,/==ττ。 事实上,这些参数是不准确的,他们会慢慢的发生变化。这些变化可能是由于一个故障或一个变化的操作点[2]。他们有时对控制系统是致命的并可能损坏驱动器。在这些情况下,一个在线辨识算法是必要的。该算法对电机参数进行辨识,用于控制算法或检测故障中。

PMSM电机Ld Lq参数测量方法

哇哈哈 PMSM 参数测量实验 测量永磁同步电机定子电阻、交轴电感、直轴电感、转子磁链以及转动惯量。 1. 定子电阻的测量 采用直流实验的方法检测定子电阻。通过逆变器向电机通入一个任意的空间电压矢量U i (例如U 1)和零矢量U 0,同时记录电机的定子相电流,缓慢增加电压矢量U i 的幅值,直到定子电流达到额定值。如图1所示为实验的等效图,A 、B 、C 为三相定子绕组,U d 为经过斩波后的等效低压直流电压。I d 为母线电流采样结果。当通入直流时,电机状态稳定以后,电机转子定位,记录此时的稳态相电流。因此,定子电阻值的计算公式为: 1,2a d b c d I I I I I ===- (1) 23d s d U R I = (2) 图1 电路等效模型 2. 直轴电感的测量 在做直流实验测量定子电阻时,定子相电流达到稳态后,永磁转子将旋转到和定子电压矢量重合的位置,也即此时的d 轴位置。测定定子电阻后,关断功率开关管,永磁同步电机处于自由状态。向永磁同步电机施加一个恒定幅值,矢量角度与直流实验相同的脉冲电压矢量(例如U 1),此时电机轴不会旋转(ω=0),d 轴定子电流将建立起来,则d 轴电压方程可以简化为: d d d q q d di u Ri L i L dt ω=-+d d d d di u Ri L dt =+ (3) 对于d 轴电压输入时的电流响应为: ()(1)d R t L U i t e R -=- (4) 利用式(4)以及测量得到的定子电阻值和观测的电流响应曲线可以计算得到直轴电感值。 其中U /R 为稳态时的电流反应,R 为测得的电机定子电阻。由上式可知电流上升至稳态值的0.632倍时,1d R t L -=-,电感与电阻的关系式可以写成:

永磁电机的电参数特性(精)

关于稀土永磁电机 一般所说的稀土永磁电机都是指第三代稀土永磁电机,出于这种永磁材料优异的使用功效,价格对比同等材料较廉价,因而比第一代或第二代稀土永磁材料更有市场需求前景。例如钦铁硼永磁电机,作为新生代的永磁电机具有很大的展开潜力, 在电机界的权威专家看来, 钱铁硼的展开方向一方面是逐步代替其他永磁材料的永磁电机,另一方面是代替一部分电励磁电机。近年来由于电机界研讨者的作业,现已取得了很大的效果。 稀土永磁无刷电动机跟着电力电子技术的迅猛展开和元器件价格下降,人们现已和正在研制各种不同变频供电电源的永磁同步电动机, 加上转子方位闭环控制体系而构成自同步的永磁电动机,这种电动机一般称为无刷直流电动机。这种电动机既具备电励磁直流电动机的优异调速特性,又实现了无刷结构,这在处于要求高控制精度和高可靠性场合使用中,如航空航天、数控机床、加工中心、机器人、计算机外部设备、家用电器等方面取得广泛的运用。这其间反电动势波形和供电波形都是矩形波的电动机称为无刷直流电动机;反电动势波形及供电波形都是正弦波的电动机称同步电动机,在这里我们统称为永磁无刷直流电动机。在日常家用电器中,如空调、电冰箱、洗衣机、吸尘器、电扇等既是耗电大件,又是噪声来历。如果用无刷电动机逐步代替有刷电动机, 不光为人们节约能源, 而且又使生活条件得到改进。由于稀土永磁材料具备高富余磁感应强度、高矫顽力和高磁能积的特色,它可以研制成具有较大气隙长度和较高气隙磁感应强度的电机, 根据市场份额的需要,可以制成无齿槽的盘式电动机、无槽电机、无铁心电机等无刷直流电机,这些电机因所具备的无齿槽结构的原因, 既可以减少电机的重量和转动惯量,前进电机呼应即时灵敏度,能有效减少电机中电磁谐波成分, 减少电机脉动转矩, 增加工作的平稳性, 一起简化制造工艺,因而在高准确控制场合使用流程,如计算机外部设备、办公设备等中得到了广泛的运用。汇总而言,因高功用的稀土永磁材料的呈现给予永磁电机功用更优化、结构更简化及大型化供给了必要条件设施,使电机向更高层次展开。

内转子永磁同步电机仿真设计计算结果1-优化

ADJUSTABLE-SPEED PERMANENT MAGNET SYNCHRONOUS MOTOR DESIGN File: Setup1.res GENERAL DATA Rated Output Power (kW): 5.5 Rated Voltage (V): 380 Number of Poles: 8 Frequency (Hz): 33.3333 Frictional Loss (W): 66 Windage Loss (W): 80 Rotor Position: Inner Type of Circuit: Y3 Type of Source: Sine Domain: Time Operating Temperature (C): 75 STATOR DATA Number of Stator Slots: 48 Outer Diameter of Stator (mm): 260 Inner Diameter of Stator (mm): 180 Type of Stator Slot: 2 Dimension of Stator Slot hs0 (mm): 0.8 hs1 (mm): 0.59 hs2 (mm): 22.0439 bs0 (mm): 3.2 bs1 (mm): 6.11469 bs2 (mm): 9.00436 Top Tooth Width (mm): 5.85092 Bottom Tooth Width (mm): 5.85092 Skew Width (Number of Slots): 1 Length of Stator Core (mm): 60 Stacking Factor of Stator Core: 0.99 Type of Steel: DW465_50 Slot Insulation Thickness (mm): 0.3 Layer Insulation Thickness (mm): 0 End Length Adjustment (mm): 0

永磁同步电机参数测量试验方法.docx

一、实验目的 1.测量永磁同步电机定子电阻、交轴电感、直轴电感、转子磁链以及转动惯量。 二、实验内容 1.掌握永磁同步电机 dq 坐标系下的电气数学模型以及机械模型。 2.了解三相永磁同步电机内部结构。 3.确定永磁同步电机定子电阻、交轴电感、直轴电感、反电势系数以及转动惯量。 三、拟需实验器件 1.待测永磁同步电机 1 台; 2.示波器 1 台; 3.西门子变频器一台; 4.测功机一台及导线若干; 5.电压表、电流表各一件; 四、实验原理 1.定子电阻的测量 采用直流实验的方法检测定子电阻。通过逆变器向电机通入一个任意的空间电压矢量U i(例如 U1)和零矢量U0,同时记录电机的定子相电流, 缓慢增加电压矢量U i的幅值,直到定子电流达到额定值。如图 1 所示为实验的等效图,A 、B、C 为三相定子绕组, U d为经过斩波后的等效 低压直流电压。 I d为母线电流采样结果。当通入直流时,电机状态稳定以后,电机转子定位,记录此时的稳态相电流。因此,定子电阻值的计算公式为: I a I d , I b I c 1 (1) I d 2 2U d (2) R s 3I d

I d A O U d B C 图 1 电路等效模型 2.直轴电感的测量 在做直流实验测量定子电阻时, 定子相电流达到稳态后, 永磁转子将旋转到和定子电压矢量 重合的位置 , 也即此时的 d 轴位置。测定定子电阻后, 关断功率开关管, 永磁同步电机处于自 由状态。向永磁同步电机施加一个恒定幅值, 矢量角度与直流实验相同的脉冲电压矢量( 例如U1),此时电机轴不会旋转( ω=0),d轴定子电流将建立起来,则 d 轴电压方程可以简化为: di d u d Ri d di d u d Ri d L q i q L d dt L d dt (3)对于 d 轴电压输入时的电流响应为: i (t) R t U (1 e L d )(4) R 利用式 (4) 以及测量得到的定子电阻值和观测的电流响应曲线可以计算得到直轴电感值。 其中 U/ R为稳态时的电流反应,R 为测得的电机定子电阻。由上式可知电流上升至稳态值的 倍时,R t1,电感与电阻的关系式可以写成: L d L d t 0.632 ? R (5) 其中为电流上升至稳态值倍时所需的时间. 3.交轴电感的测量 测出 L d之后,在q轴方向(d轴加90°)施加一脉冲电压矢量。电压矢量的作用时间一般选取 的很短 , 小于电机的机械时间常数, 保证电机轴在电压矢量作用期间不会转动。则q轴电压方

宽转速永磁同步电动机电磁参数优化设计

龙源期刊网 https://www.wendangku.net/doc/1a12116992.html, 宽转速永磁同步电动机电磁参数优化设计 作者:孙建锐于万娟 来源:《中国新技术新产品》2016年第02期 摘要:永磁同步电动机在近些年受到越来越多的欢迎。特别是电动汽车领域,永磁同步 电动机的使用可以有效的增加电动汽车的驱动性能。不过,基于自身条件的限制,永磁同步电动机在使用过程中存在一些问题,本文首先对永磁同步电动机的基本结构、数学模型以及控制原理做简要介绍,然后介绍永磁同步电动机的弱磁扩速措施以及与弱磁扩速有关的电磁参数。 关键词:永磁同步电动机;问题;措施;电磁参数 中图分类号:TM351 文献标识码:A 永磁同步电动机具有体积小、效率高、性能优异等特点,在近些年受到越来越多的欢迎。特别是在电动汽车领域,永磁同步电动机的使用可以有效增加电动汽车的驱动性能。不过,永磁同步电动机在使用过程中采用永磁体励磁,这种方式无法灵活调节励磁强度。此外,永磁体励磁会对直流母线的电压和逆变器的饱和度进行限制,永磁同步电动机在运行过程中的转矩和功率会快速下降,从而影响电动机的正常运转。本文首先对永磁同步电动机的基本结构、数学模型以及控制原理做简要介绍,然后介绍永磁同步电动机的弱磁扩速措施以及与弱磁扩速有关的电磁参数。 一、基本结构及数学模型 (一)永磁同步电动机结构特点 永磁同步电动机,顾名思义,其采用的是永磁体励磁。这种励磁方式的电动机的转子磁路会有所不同,一般有表面式和内置式两种。表面式转子磁路的永磁体位于转子的外表面,这样永磁体就可以充分地和空气接触,让永磁体的磁导率和空气相近,抑制弱磁的扩速作用。内置式转子磁路的永磁体位于转子内部,这种方式比较容易产生弱磁扩速。 (二)永磁同步电动机dq轴数学模型 永磁同步电动机的转轴运动是建立在dq轴数学模型基础上的,该模型的电压方程为: (1) 磁链方程为: (2)

基于最小二乘法的永磁同步电机参数辨识综述

基于最小二乘法的永磁同步电机参数辨识综述 姓名:张清路学号:S201102222 专业:控制工程 摘要:与传统电机相比,永磁同步电机具有诸多优点,因而应用非常广泛,而电机的 参数是否准确在电机的控制中具有重要意义,因此对于电机参数辨识的研究既是一个理论课题,也是一个实际应用课题。有关这方面的研究,很多科研人员做了大量工作,有参数的离线辨识和在线辨识,有在假定理想的线性状态下的辨识,也有考虑到实际情况的非线性因素下的参数辨识等等。其中频域响应法,Kalman滤波等方法都是应用比较广泛的电机参数辨识方法,但这些方法在实际应用中有不少限制条件和实现的困难。本文以系统辨识理论为基础,介绍了基于最小二乘的电机参数辨识方法。 1引言 系统辨识是研究如何利用系统试验或运行的、含有噪声的输入输出数据来建立被研究对象数学模型的一种理论和方法。系统辨识与控制理论有着密切的关系,随着计算机技术的发展和对系统控制技术要求的提高,控制理论得到了广泛的应用。在控制理论的应用中,要想获得理想的使用效果,则与能获得被控对象精确的数学模型是分不开的。但是,在很多情况下,被控对象的数学模型是不知道的,有时,系统的正常运行期间的数学模型的参数也会发生变化,这就使得依赖这个模型运行的系统控制效果大打折扣,甚至能使系统失控。因此,在应用控制理论进行控制时,建立控制对象的数学模型是基础,这是控制理论能否应用成功的关键所在。所谓通过系统辨识建立对象数学模型的依据是:研究表明,从外部对系统的认识,是通过其输入输出数据来实现的,而数学模型是表述系统动态特性的一种描述方式,系统的动态特性的表现必然蕴含在它变化的输入输出数据中。所以,通过记录系统在正常运行时的输入输出数据,或通过测量系统在人为输入作用下的输出响应,然后对这些数据进行适当的系统处理、数学计算和归纳整理,提取数据中包含的系统信息,从而建立被控对象的数学描述,这就是系统辨识。即系统辨识就是利用数学的方法从输入输出数据中提取对象数学模型的方法。 2 系统辨识 2.1定义 系统辨识是在已知和测得系统输入和输出的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。要素为:数据:指系统过程的输入数据和输出数据,塔是辨识的基础。模型类:指各种已知的系统过程模型集合,它是辨识时寻找模型的范围。等价准则:指系统行为相似性、系统效用等同性的识别标准,它是辨识优化的目标。辨识的实质就是按某种准则,从一组已知模型类中选择一个模型,使之能最好地拟合实际过程的动态特性。观测数据含有噪声,因此辨识建模实际上是一种实验统计的方法,所获得的模型只是与实际过程的外特性等价的一种近似描述。 2.2 系统辨识的误差准则 误差准则是辨识问题中不可缺少的三大要素之一,它是用来衡量模型接近实际过程的准则,它通常被表示为一个误差的泛函。因此误差准则也称为等价准则、损失函数、准则函数、误差准则函数等。这里的误差函数应该广义地理解为模型与实际过程之间的“误差”,也可以是输出误差、输入误差和广义误差。当扰动是作用在系统输出端的白噪声时,一般选择输出误差形式。但是,输出误差通常是模型参数的非线性函数,因而在这种误差准则意义

2 永磁同步电机的公式推导

2 永磁同步电机的公式推导 2.1 永磁同步电机的能量转换过程推导 永磁同步电机电压平衡方程: (2-1) 其中,t θ = Ω ,θ为转子机械角位移,Ω为转子机械角速度,电机稳定运行时为常数,即const Ω=。则有 d d i L u Ri L i t θ?=++Ω? (2-2) 其中,Ri 为电阻压降,d d i L t 表示感应电动势,L E i θΩ?=Ω?成为运动电动势。 转矩平衡方程: 22d d m mec J R mec T T T T d T J R dt t θθ Ω =++=++ (2-3) 其中,m T 为电机电磁转矩,mec T 为输出机械转矩,22J d T J dt θ =为惯性转矩, d d R T R t θ Ω=为阻力转矩;理想情况下,电机阻力力矩近似为常数,稳定运行时机 械加速度为零,所以输出的机械转矩mec m R T T T =-,由于电机阻力力矩近似为常数,电磁功率可近似看作输出机械功率。 磁能的表达式: '1112n n m m j jk k j k W W i L i ====∑∑ (2-4) 由磁能与电磁转矩之间的关系m m W T d θ=?,则: 111122n n jk m m j k t j k L W L T i i i i θθθ ==???===???∑∑ (2-5) 其中,t i 表示电流矩阵的转置。 则电磁功率为:

1122 m m t t L P T i i i E θΩ?=Ω= Ω=? (2-6) 由公式两边同时乘以t i ,则: d d 1d 12d 2t t t t t t t t i i u i Ri i L i E t i i Ri i E i L i E t ΩΩΩ=++?? =+++ ? ?? (2-7) 由式(2.7)可知,等式左边t i u 为电机输入功率;等式右边t i Ri 为电阻损耗 功率,1 2 t i E Ω是电磁功率,即电功率转换成机械功率输出的那一部分,表明从电 磁耦合场中获得的一半能量转换成了机械能输出;d 1 d 2 t t i i L i E t Ω+是输入功率除去 输出的和内阻损耗功率之后的功率,即为磁场功率。稳态运行时,一个周期内磁场功率应为零,即一个周期内磁场转化的功率与释放的功率相同。 2.2 坐标变换 (1)0abc dq -变换(Clark 变换) 设三相绕组和两相绕组每相的绕组匝数分别为N 1,N 2,将两组磁动势分别投影到α轴和β轴上: 121211 () 22) a b c b c N i N i i i N i N αβ=--=- (2-8) 前后保持功率不变, 可进一步推倒出此时 21N N = ,所以,三相静止坐标系到两相静止坐标系(3s/2s )的“等功率”变换矩阵为: 3/2111220s s C ?--?=? (2)0dq αβ-变换(Park 变换) 同样遵照磁效应等效原则,同一时刻、同一方向上的瞬时磁动势相等,再由

永磁同步电机计算

永磁同步电机设计1电机仿真模型 N S N S N S N S (a)原型电机(b)新型电机 图1 PM-Y2-180-4电机整体有限元仿真模型 图2 新型电机转子1/4模型 2静态有限元仿真结果比较 2.1永磁磁场分布 当永磁体单独作用时,两种电机的磁力线分布如图3所示。 (a)原型电机(b)新型电机 图3 两种电机永磁磁场分布

2.2 永磁气隙磁密波形 当永磁体单独作用时,两种电机一个周期范围(即一对永磁体范围)的永磁气隙磁密波形如图4所示。 (a )原型电机 (b )新型电机 50100 150200250300 -1.25 -1-0.75-0.5-0.2500.250.50.7511.25Distance/mm B r /T 原型电机新型电机 (c )两种电机比较 图4 两种电机永磁气隙磁密分布 3 空载稳态有限元仿真结果比较 3.1 空载永磁磁链、空载永磁反电势波形 空载情况下,两种电机的三相绕组电流均设置为零,电机中磁场由永磁体单独产生。设置电机稳态运行转速为n =3000r/min ,可得到两种电机的空载永磁磁链、空载永磁反电势波形分别如图5、图6所示。由于三相绕组对称,在此仅给出A 相绕组仿真结果。

48 121620 -0.6-0.4-0.200.20.4 0.6 时间/ms 空载永磁磁链/W b 原型电机 新型电机 图5 两种电机空载永磁磁链 48 121620 -400 -300-200-1000100200 300400时间/ms 空载反电势/V 原型电机新型电机 图6 两种电机空载永磁反电势 3.2 空载永磁磁链、空载永磁反电势谐波分析 利用Matlab 对图5、图6的波形进行傅里叶分析,可得到两种电机磁链及反电势的各次谐波分量,如图7所示。 23456789101112131415 1 2 3 4 谐波次数 相对于基波分量百分比/% 原型电机 新型电机 23456789101112131415 24681012 谐波次数 相对于基波分量百分比/% 原型电机新型电机 (a )空载永磁磁链 (b )空载永磁反电势 图7 磁链及反电势谐波分量分析 通过对两种电机的空载永磁磁链和空载永磁反电势进行谐波分析,得到以下结论:(1)3次谐波分量是主要谐波分量;(2)偶次谐波分量几乎为零,奇次谐波分量相对较大;(3)采用新型电机结构可在一定程度上削弱3次谐波分量,但同时会引起5、7次谐波分量增加,总体削弱谐波效果并不明显。

永磁同步电机交直轴电感计算

参数化扫描的有问题,但是趋势应该差不多 《永磁电机》 永磁同步电机分为表面式和内置式。 由于永磁体特别是稀土永磁体的磁导率近似等于真空磁导率,对于表面式,直轴磁阻和交轴磁阻相等,因此交直轴电感相等,即Ld=Lq ,表现出隐极性质。对于内置式,直轴磁阻大于交轴磁阻(交轴通过路径的磁导率大于直轴),因此Ld

相关文档
相关文档 最新文档