文档库 最新最全的文档下载
当前位置:文档库 › 主成分分析方法综述

主成分分析方法综述

主成分分析方法综述
主成分分析方法综述

PCA主成分分析原理及应用

主元分析(PCA)理论分析及应用 什么是PCA? PCA是Principal component analysis的缩写,中文翻译为主元分析/主成分分析。它是一种对数据进行分析的技术,最重要的应用是对原有数据进行简化。正如它的名字:主元分析,这种方法可以有效的找出数据中最“主要”的元素和结构,去除噪音和冗余,将原有的复杂数据降维,揭示隐藏在复杂数据背后的简单结构。它的优点是简单,而且无参数限制,可以方便的应用与各个场合。因此应用极其广泛,从神经科学到计算机图形学都有它的用武之地。被誉为应用线形代数最价值的结果之一。 在以下的章节中,不仅有对PCA的比较直观的解释,同时也配有较为深入的分析。首先将从一个简单的例子开始说明PCA应用的场合以及想法的由来,进行一个比较直观的解释;然后加入数学的严格推导,引入线形代数,进行问题的求解。随后将揭示PCA与SVD(Singular Value Decomposition)之间的联系以及如何将之应用于真实世界。最后将分析PCA理论模型的假设条件以及针对这些条件可能进行的改进。 一个简单的模型 在实验科学中我常遇到的情况是,使用大量的变量代表可能变化的因素,例如光谱、电压、速度等等。但是由于实验环境和观测手段的限制,实验数据往往变得极其的复杂、混乱和冗余的。如何对数据进行分析,取得隐藏在数据背后的变量关系,是一个很困难的问题。在神经科学、气象学、海洋学等等学科实验中,假设的变量个数可能非常之多,但是真正的影响因素以及它们之间的关系可能又是非常之简单的。 下面的模型取自一个物理学中的实验。它看上去比较简单,但足以说明问题。如图表 1所示。这是一个理想弹簧运动规律的测定实验。假设球是连接在一个无质量无摩擦的弹簧之上,从平衡位置沿轴拉开一定的距离然后释放。

社会科学研究方法文献综述

关于商业片植入式广告发展现状及存在问题的研究——受众心理的关注及营销策略、传播方式的使用 文献综述 姓名:王丹 20090257 曾艳 20090261 杨斯琦 20090259 唐梦佳 20090256 余颂庆 20090260 张文 20090262 吴霜 20090258 班级:市场营销03班 指导老师:杨代福 时间:2012-03-10

【引言】 进入21世纪以来,由于行业竞争加剧等原因,商业片植入式广告异军突起,事实上,这种广告模式由来已久,也并非中国特色。植入式广告源于欧美,发展较为成熟,我国的植入式尚处萌芽阶段,负面问题频发,饱受舆论质疑。但不可否认的是,植入式广告不但比传统硬广告更有优势,而且也是快速收回投资成本、降低商业风险急加速媒介产业循环的好方法,作为产业链上重要一环,其存在不仅具有合理性,而且具良好的发展前景。那么,如何使商业片的植入式广告快速的进入其下一个发展阶段成为现阶段的重大问题。因此,对于影响植入式广告效果的重要因素(营销手段、传播方式以及受众心理),值得我们去研究和思考我们。 【正文】 一、植入式广告的文献研究现状 植入式广告于上世纪20年代至20年代末开始萌芽、2000年以后才真正进入蓬勃发展期,虽然相对于传统传播形式的广告,植入式广告的发展历史并不长,但是以商业片植入式广告为代表的植入式广告已经成为广告发展的一股不可抵挡的趋势,而国内外专家、学者对植入式广告发展的方方面面也进行了深入研究和探讨,呈现出一定深度和广度的理论学说及典型案例,对于植入式广告产业发展发挥了作用。从国内外的研究现状看,对于植入式广告的研究成果可归纳为以下四个方面。 1.对于植入式广告的理论体系依据研究 关于植入式广告所依据的理论体系的研究,主要集中在传播学理论的体现与运用;张金海在《20世纪广告传播理论研究》一书中指出,植入式广告在现代广告业的发展中越来越引人注目,体现了现代广告逐渐将目光放在广告传播的社会文化关注,而巧妙地利用传播学中的归因理论和“说服性传播”的效果理论,则可以将这种关注的社会化效果扩大;而吕善锟在其论文《电影中植入式广告的理论依据》中则明确提出,植入式广告之所以比传统的商业广告有更好的说服效果,正在于其运用了传播学中的归因理论、两级传播理论、“说服性传播”的效果研究、经典条件反射理论以及模仿理论等。

SPSS进行主成分分析的步骤(图文)精编版

主成分分析的操作过程 原始数据如下(部分) 调用因子分析模块(Analyze―Dimension Reduction―Factor),将需要参与分析的各个原始变量放入变量框,如下图所示:

单击Descriptives按钮,打开Descriptives次对话框,勾选KMO and Bartlett’s test of sphericity选项(Initial solution选项为系统默认勾选的,保持默认即可),如下图所示,然后点击Continue按钮,回到主对话框: 其他的次对话框都保持不变(此时在Extract次对话框中,SPSS已经默认将提取公因子的方法设置为主成分分析法),在主对话框中点OK按钮,执行因子分析,得到的主要结果如下面几张表。 ①KMO和Bartlett球形检验结果:

KMO为0.635>0.6,说明数据适合做因子分析;Bartlett球形检验的显著性P值为 0.000<0.05,亦说明数据适合做因子分析。 ②公因子方差表,其展示了变量的共同度,Extraction下面各个共同度的值都大于0.5,说明提取的主成分对于原始变量的解释程度比较高。本表在主成分分析中用处不大,此处列出来仅供参考。 ③总方差分解表如下表。由下表可以看出,提取了特征值大于1的两个主成分,两个主成分的方差贡献率分别是55.449%和29.771%,累积方差贡献率是85.220%;两个特征值分别是3.327和1.786。 ④因子截荷矩阵如下:

根据数理统计的相关知识,主成分分析的变换矩阵亦即主成分载荷矩阵U 与因子载荷矩阵A 以及特征值λ的数学关系如下面这个公式: λi i i A U = 故可以由这二者通过计算变量来求得主成分载荷矩阵U 。 新建一个SPSS 数据文件,将因子载荷矩阵中的各个载荷值复制进去,如下图所示: 计算变量(Transform-Compute Variables )的公式分别如下二张图所示:

主成分分析原理及详解

第14章主成分分析 1 概述 1.1 基本概念 1.1.1 定义 主成分分析是根据原始变量之间的相互关系,寻找一组由原变量组成、而彼此不相关的综合变量,从而浓缩原始数据信息、简化数据结构、压缩数据规模的一种统计方法。 1.1.2 举例 为什么叫主成分,下面通过一个例子来说明。 假定有N 个儿童的两个指标x1与x2,如身高和体重。x1与x2有显著的相关性。当N较大时,N观测量在平面上形成椭圆形的散点分布图,每一个坐标点即为个体x1与x2的取值,如果把通过该椭圆形的长轴取作新坐标轴的横轴Z1,在此轴的原点取一条垂直于Z1的直线定为新坐标轴的Z2,于是这N个点在新坐标轴上的坐标位置发生了改变;同时这N个点的性质也发生了改变,他们之间的关系不再是相关的。很明显,在新坐标上Z1与N个点分布的长轴一致,反映了N个观测量个体间离差的大部分信息,若Z1反映了原始数据信息的80%,则Z2只反映总信息的20%。这样新指标Z1称为原指标的第 358

一主成分,Z2称为原指标的第二主成分。所以如果要研究N个对象的变异,可以只考虑Z1这一个指标代替原来的两个指标(x1与x2),这种做法符合PCA提出的基本要求,即减少指标的个数,又不损失或少损失原来指标提供的信息。 1.1.3 函数公式 通过数学的方法可以求出Z1和Z2与x1与x2之间的关系。 Z1=l11x1+ l12x2 Z2=l21x1+ l22x2 即新指标Z1和Z2是原指标x1与x2的线性函数。在统计学上称为第一主成分和第二主成分。 若原变量有3个,且彼此相关,则N个对象在3维空间成椭圆球分布,见图14-1。 通过旋转和改变原点(坐标0点),就可以得到第一主成分、第二主成分和第三主成分。如果第二主成分和第三主成分与第一主成高度相关,或者说第二主成分和第三主成分相对于第一主成分来说变异很小,即N个对象在新坐标的三维空间分布成一长杆状时,则只需用一个综合指标便能反映原始数据中3个变量的基本特征。 359

SFA方法综述

SFA方法和因子分析法综述 (姬晓鹏,管理科学与工程,1009209018) 1.1DEA方法和SFA方法的区别 1.数据包络分析(DEA) 数据包络分析(data envelopment analysis)简称DEA,采用线性规划技术,是最常用的一种非参数前沿效率分析法。它由A.Charnes和W.W.Cooper[1]等人于1978年创建的,以相对效率为基础对同一类型的部门的绩效进行评价。 该方法将同一类型的部门或单位当作决策单元(DMU),其评价依据的是所能观测到的决策单元的输入数据和输出数据。输入数据是指决策单元在某种活动中所消耗的某些量,如投入资金量、原料量等,输出数据是指决策单元消耗这些量所获得的成果和产出,如产品产量、收入金额等。将各决策单元的输入输出数据组成生产可能集所形成的生产有效前沿面,通过衡量每个决策单元离此前沿面的远近,来判断该决策单元的投入产出的合理性,即技术效率[2]。 一般的评价方法比较同一类型的决策单元的效率,需要先对决策单元的输入输出指标进行比较,并通过加权得到一个综合评分,然后通过各个决策单元的评分来反映其效益优劣。数据包络分析法则巧妙地构造了目标函数,并通过Charnes -Cooper变换(称为2 C-变换)将分式规划问题转化为线性规划问题,无需统一指标的量纲,也无需给定或者计算投入产出的权值,而是通过最优化过程来确定权重,从而使对决策单元的评价更为客观。对建筑设计企业进行评价的问题,很适于数据包络分析法的评价模型。 DEA方法也存在着一些缺点:首先,当决策单元总数与投入产出指标总数接近时,DEA方法所得的技术效率与实际情况偏差较大;其次,DEA方法对技术有效单元无法进行比较;此外,由于未考虑到系统中随机因素的影响,当样本中存在着特殊点时,DEA方法的技术效率结果将受到很大影响。彭晓英等用因子分析法对指标进行筛选和综合,再采用DEA方法进行评价,解决了DEA方法对指标数量限制的问题,并对煤炭资源型城市的生态经济发展进行了评价[3]。 SFA与DEA方法都是前沿效率评价方法,它们都是通过构造生产前沿面来计算技术效率的。与DEA方法相比,SFA方法利用生产函数来构造生产前沿面,并采用技术无效率项的条件期望来作为技术效率,其结果受特殊点的影响较小且

SPSS主成分分析操作步骤,详细的很啊^_^==

SPSS主成分分析操作步骤,详细的很啊^_^ SPSS在调用Factor Analyze过程进行分析时,SPSS会自动对原始数据进行标准化处理,所以在得到计算结果后指的变量都是指经过标准化处理后的变量,但SPSS不会直接给出标准化后的数据,如需要得到标准化数据,则需调用Descriptives过程进行计算。 图表 3 相关系数矩阵

图表 4 方差分解主成分提取分析表 主成分分析在SPSS中的操作应用(3) 图表 5 初始因子载荷矩阵

从图表3可知GDP与工业增加值,第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、地方财政收入这几个指标存在着极其显著的关系,与海关出口总额存在着显著关系。可见许多变量之间直接的相关性比较强,证明他们存在信息上的重叠。 主成分个数提取原则为主成分对应的特征值大于1的前m个主成分。注:特征值在某种程度上可以被看成是表示主成分影响力度大小的指标,如果特征值小于1,说明该主成分的解释力度还不如直接引入一个原变量的平均解释力度大,因此一般可以用特征值大于1作为纳入标准。通过图表4(方差分解主成分提取分析)可知,提取2个主成分,即m=2,从图表5(初始因子载荷矩阵)可知GDP、工业增加值、第三产业增加值、固定资产投资、基本建设投资、社会消费品零售总额、海关出口总额、地方财政收入在第一主成分上有较高载荷,说明第一主成分基本反映了这些指标的信息;人均GDP和农业增加值指标在第二主成分上有较高载荷,说明第二主成分基本反映了人均GDP和农业增加值两个指标的信息。所以提取两个主成分是可以基本反映全部指标的信息,所以决定用两个新变量来代替原来的十个变量。但这两个新变量的表达还不能从输出窗口中直接得到,因为“Component Matrix”是指初始因子载荷矩阵,每一个载荷量表示主成分与对应变量的相关系数。用图表5(主成分载荷矩阵)中的数据除以主成分相对应的特征值开平方根便得到两个主成分中每个指标所对应的系数[2]。将初始因子载荷矩阵中的两列数据输入(可用复制粘贴的方法)到数据编辑窗口(为变量B1、B2),然后利用“TransformàCompute Variable”,在Compute Variable对话框中输入“A1=B1/SQR(7.22)” [注:第二主成分SQR后的括号中填1.235],即可得到特征向量A1(见图表6)。同理,可得到特征向量A2。将得到的特征向量与标准化后的数据相乘,然后就可以得出主成分表达式[注:因本例只是为了说明如何在SPSS进行主成分分析,故在此不对提取的主成分进行命名,有兴趣的读者可自行命名]: F 1=0.353ZX 1 +0.042ZX 2 -0.041ZX 3 +0.364ZX 4 +0.367ZX 5 +0.366ZX 6 +0.352ZX 7 +0.364ZX 8+0.298ZX 9 +0.355ZX 10

数学建模主成分分析方法

主 成分分析方法 地理环境是多要素的复杂系统,在我们进行地理系统分析时,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息事实上,这种想法是可以实现的,这里介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。 一、主成分分析的基本原理 主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。假定有n个地理样本,每个样本共有p个变量描述,这样就构成了一个n×p阶的地理数据矩阵:

111212122212p p n n np x x x x x x X x x x ???=????L L L L L L L (1) 如何从这么多变量的数据中抓住地理事物的内在规律性呢要解决这一问题,自然要在p 维空间中加以考察,这是比较麻烦的。为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。那么,这些综合指标(即新变量)应如何选取呢显然,其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。 如果记原来的变量指标为x 1,x 2,…,x p ,它们的综合指标——新变量指标为z 1,z 2,…,zm (m≤p)。则 11111221221122221122,,......................................... ,p p p p m m m mp p z l x l x l x z l x l x l x z l x l x l x =+++??=+++????=+++?L L L (2)

主成分分析计算方法和步骤

主成分分析计算方法和步骤: 在对某一事物或现象进行实证研究时,为了充分反映被研究对象个体之间的差异, 研究者往往要考虑增加测量指标,这样就会增加研究问题的负载程度。但由于各指标都是对同一问题的反映,会造成信息的重叠,引起变量之间的共线性,因此,在多指标的数据分析中,如何压缩指标个数、压缩后的指标能否充分反映个体之间的差异,成为研究者关心的问题。而主成分分析法可以很好地解决这一问题。 主成分分析的应用目的可以简单地归结为: 数据的压缩、数据的解释。它常被用来寻找和判断某种事物或现象的综合指标,并且对综合指标所包含的信息给予适当的解释, 从而更加深刻地揭示事物的内在规律。 主成分分析的基本步骤分为: ①对原始指标进行标准化,以消除变量在数量极或量纲上的影响;②根据标准化后的数据矩阵求出相关系数矩阵 R; ③求出 R 矩阵的特征根和特征向量; ④确定主成分,结合专业知识对各主成分所蕴含的信息给予适当的解释;⑤合成主成分,得到综合评价值。 结合数据进行分析 本题分析的是全国各个省市高校绩效评价,利用全国2014年的相关统计数据(见附录),从相关的指标数据我们无法直接评价我国各省市的高等教育绩效,而通过表5-6的相关系数矩阵,可以看到许多的变量之间的相关性很高。如:招生人数与教职工人数之间具有较强的相关性,教育投入经费和招生人数也具有较强的相关性,教工人数与本科院校数之间的相关系数最高,到达了0.963,而各组成成分之间的相关性都很高,这也充分说明了主成分分析的必要性。 表5-6 相关系数矩阵 本科院校 数招生人数教育经费投入 相关性师生比0.279 0.329 0.252 重点高校数0.345 0.204 0.310 教工人数0.963 0.954 0.896 本科院校数 1.000 0.938 0.881 招生人数0.938 1.000 0.893

多组分分析方法综述

重金属多组分分析的研究现状 近年来,随着科技的进步,单组分重金属的检测技术已经非常成熟,但是在实际污染体系中重金属离子种类繁多,且它们之间往往存在相互干扰,传统的化学分析方法和化学分析仪器难以一次性精确的检测出各个重金属离子的浓度,需要对共存组分进行同时测定。 对共存组分进行同时测定,传统的化学分析方法是首先通过加入各种掩蔽剂进行组分的预分离,然后采用单组分重金属检测技术进行分析检测。这种方法的分离过程往往冗长繁琐,实验条件苛刻,费时费力,而且检测精度低,无法应用于污染现场的检测。 随着计算机科学技术、光谱学和化学信息学的发展,复杂体系的多组分分析已成为当今光谱技术的研究热点,应用范围涉及环境监测、石油化工、高分子化工、食品工业和制药工业等领域,而且需求日益显著。由于多重金属离子共存时会产生重金属离子间的相互作用,因此在用化学分析仪器检测时会产生相干数据干扰,对实验结果产生影响,为了使测试结果更加准确,需要在实验的基础上建立数学模型,用于数据处理,消除各重金属离子共存时产生的相干数据干扰。近年来,引入化学计量学手段,用“数学分离”部分代替复杂的“化学分离”,从而达到重金属离子的快速、简便分析测定[1]。 化学计量学是一门通过统计学或数学方法将对化学体系的测量值与体系的状态之间建立联系的学科,它应用数学、统计学和其他方法和手段(包括计算机)选择最优试验设计和测量方法,并通过对测量数据的处理和解析,最大限度地获取有关物质系统的成分、结构及其他相关信息。目前,已有许多化学计量学方法从不同程度和不同方面解决了分析化学中多组分同时测定的问题,如偏最小二乘法(PLS)、主成分回归法(PCR)、Kalman滤波法、多元线性回归(MLR)等,这些方法减少了分离的麻烦,并使试验更加科学合理。 (1) 光谱预处理技术 这些方法用来降噪、消除无关信息。 ①主成分分析法 在处理多元样本数据时,假设总体为X=(x1,x1,x3…xn),其中每个xi (i=1,2,3,…n)为要考察的数量指标,在实践中常常遇到的情况是这n个指标之间存在着相关关系。如果能从这n个指标中构造出k个互不相关的所谓综合指标(k

情感识别综述

龙源期刊网 https://www.wendangku.net/doc/1a2672867.html, 情感识别综述 作者:潘莹 来源:《电脑知识与技术》2018年第08期 摘要:情感交互在人机自然交互的研究中受到了很大的重视,而情感识别是人机情感交互的关键,其研究目的是让机器感知人类的情感状态,提高机器的人性化水平。该文首先对情感识别理论进行了概述,继而对情感识别的研究方法进行了分类描述,接着简述了情感识别的应用领域,最后对情感识别的发展进行了展望。 关键词:情感识别;综述;多模态融合;特征提取;情感分类 中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2018)08-0169-03 1引言 随着智能技术的迅猛发展以及智能机器在各领域的广泛应用,人们渴望对机器进行更深层次地智能化开发,使机器具备和人一样的思维和情感,让机器能够真正地了解用户的意图,进而让机器更好地为人类提供智能化的服务。在智能机器研究中,自然和谐的人机交互能力受到很大的重视。情感识别作为人机情感交互的基础,能够使机器理解人的感性思维,影响着机器智能化的继续发展,成为人机自然交互的关键要素。同时,情感识别融多学科交叉为一体,其发展将会带动多学科共同发展,其应用也会带来巨大的经济效益和社会效益。因而,情感识别技术的研究具有很大的发展前景和重要的学术价值。 2情感识别概述 情感是一种综合了行为、思想和感觉的状态。情感信息主要表现在内外两个层面:一是外在情感信息,是指通过外表能自然观察到的信息,如面部表情、唇动、声音、姿势等,二是内在情感信息,是指外部观察不到的生理信息,如心率、脉搏、血压、体温等。 情感识别本质上也是一种模式识别,它是指利用计算机分析各种情感信息,提取出描述情感的情感特征值,建立特征值与情感的映射关系,然后对情感信息进行分类,从而推断出情感状态的过程。 3情感识别的研究方法 情感识别的研究方法主要有:面部表情识别、语音情感识别、姿态表情识别、文本识别、生理模式识别和多模态情感识别。情感识别过程一般包括四个部分:数据获取、数据预处理、情感特征提取、情感分类。情感特征提取过程一般包括:特征提取、特征降维和特征选择。其中,特征提取的方式各有不同,而特征降维和选择的方式大致相同。

主成分分析法及其在SPSS中的操作

一、主成分分析基本原理 概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。从数学角度来看,这是一种降维处理技术。 思路:一个研究对象,往往是多要素的复杂系统。变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。 原理:假定有n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵, 记原变量指标为x 1,x 2,…,x p ,设它们降维处理后的综合指标,即新变量为 z 1,z 2,z 3,… ,z m (m ≤p),则 系数l ij 的确定原则: ①z i 与z j (i ≠j ;i ,j=1,2,…,m )相互无关; ②z 1是x 1,x 2,…,x P 的一切线性组合中方差最大者,z 2是与z 1不相关的x 1,x 2,…,x P 的所有线性组合中方差最大者; z m 是与z 1,z 2,……,z m -1都不相关的x 1,x 2,…x P , 的所有线性组合中方差最大者。 新变量指标z 1,z 2,…,z m 分别称为原变量指标x 1,x 2,…,x P 的第1,第2,…,第m 主成分。 从以上的分析可以看出,主成分分析的实质就是确定原来变量x j (j=1,2 ,…, p )在诸主成分z i (i=1,2,…,m )上的荷载 l ij ( i=1,2,…,m ; j=1,2 ,…,p )。 ?????? ? ???????=np n n p p x x x x x x x x x X 2 1 2222111211 ?? ??? ? ?+++=+++=+++=p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z 22112222121212121111............

主成分分析原理

主成分分析原理 (一)教学目的 通过本章的学习,对主成分分析从总体上有一个清晰地认识,理解主成分分析的基本思想和数学模型,掌握用主成分分析方法解决实际问题的能力。 (二)基本要求 了解主成分分析的基本思想,几何解释,理解主成分分析的数学模型,掌握主成分分析方法的主要步骤。 (三)教学要点 1、主成分分析基本思想,数学模型,几何解释 2、主成分分析的计算步骤及应用 (四)教学时数 3课时 (五)教学内容 1、主成分分析的原理及模型 2、主成分的导出及主成分分析步骤 在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。 第一节主成分分析的原理及模型 一、主成分分析的基本思想与数学模型 (一)主成分分析的基本思想 主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。

主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。 (二)主成分分析的数学模型 对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为: ?? ? ? ? ? ? ??=np n n p p x x x x x x x x x X 2 1 22221 11211 ()p x x x ,,21= 其中:p j x x x x nj j j j ,2,1, 21=???? ?? ? ??= 主成分分析就是将 p 个观测变量综合成为p 个新的变量(综合变量),即 ?? ???? ?+++=+++=+++=p pp p p p p p p p x a x a x a F x a x a x a F x a x a x a F 22112222121212121111 简写为: p jp j j j x x x F ααα+++= 2211 p j ,,2,1 = 要求模型满足以下条件:

主成分分析法的步骤和原理 (1)

(一)主成分分析法的基本思想 主成分分析(Principal Component Analysis )是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。[2] 采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。 (二)主成分分析法代数模型 假设用p 个变量来描述研究对象,分别用X 1,X 2…X p 来表示,这p 个变量构成的p 维随机向量为X=(X 1,X 2…X p )t 。设随机向量X 的均值为μ,协方差矩阵为Σ。对X 进行线性变化,考虑原始变量的线性组合: Z 1=μ11X 1+μ12X 2+…μ1p X p Z 2=μ21X 1+μ22X 2+…μ2p X p …… …… …… Z p =μp1X 1+μp2X 2+…μpp X p 主成分是不相关的线性组合Z 1,Z 2……Z p ,并且Z 1是X 1,X 2…X p 的线性组合中方差最大者,Z 2是与Z 1不相关的线性组合中方差最大者,…,Z p 是与Z 1,Z 2 ……Z p-1都不相关的线性组合中方差最大者。 (三)主成分分析法基本步骤 第一步:设估计样本数为n ,选取的财务指标数为p ,则由估计样本的原始数据可得矩阵X=(x ij )m ×p ,其中x ij 表示第i 家上市公司的第j 项财务指标数据。 第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。 第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。R 为实对称矩阵 (即R ij =R ji ),只需计算其上三角元素或下三角元素即可,其计算公式为: 2211)()() ()(j kj n k i kj j kj n k i kj ij X X X X X X X X R -=--=-=∑∑ 第四步:根据协方差矩阵R 求出特征值、主成分贡献率和累计方差贡献率,确定主成分个数。解特征方程0=-R E λ,求出特征值λi (i=1,2,…,p )。 因为R 是正定矩阵,所以其特征值λi 都为正数,将其按大小顺序排列,即λ1≥λ2≥…≥λi ≥0。特征值是各主成分的方差,它的大小反映了各个主成分的影响力。主成分Z i 的贡献率W i =∑=p j j j 1λλ,累计贡献率为

结构非线性动力分析方法综述_周文峰

·自然科学研究· 结构非线性动力分析方法综述 周文峰 郭 剑 (攀枝花学院土木工程学院,四川攀枝花 617000) 摘 要 时程分析法是一种计算机模拟分析方法,其优势在于能模拟出结构进入非弹性阶段的受力性能。该 方法主要包括结构分析模型、单元模型和恢复力模型三个重要方面。本文从这三个方面简单介绍了结构非线 性动力反应分析方法。 关键词 非线性;动力分析;模型 结构抗震设计方法经历了静力阶段、反应谱阶段和动力阶段。从本质上说,前二者所采用的方法均为静力法,且只能进行弹性分析。动力阶段的形成建立在计算机的普及和数值分析方法的出现基础之上,其分析方法称为时程分析法。时程分析法本质上是一种计算机模拟分析方法,能够计算出结构地震反应的全过程,该方法的突出优势在于能模拟出结构进入非弹性阶段的受力性能。 时程分析法的出现促进了结构非线性地震反应分析的发展。它主要包括结构分析模型、单元模型和恢复力模型三个重要方面,下面从这三个方面进行简单介绍。 1 结构分析模型 结构的模型化是非线性动力反应分析的第一步,结构模型的模拟应着重于其动力特性的模拟。因此体系恢复力、质量、阻尼模型的准确性是模拟精度的前提。目前的结构分析模型可分为以下几类: 1.1 层间模型 考虑到框架结构质量的分布规律,很容易形成以楼层为单元的多质点体系的思路,故将这种模型称之为层间模型。在研究框架结构动力反应时,层间模型中采用得最多的是层间剪切型模型。该模型假定框架结构层间变形以剪切变形为主,忽略其它形式变形的影响,故而比较适用于高跨比不大、层数不多的框架。为了进一步拓宽此模型的适用范围,在此模型基础上又发展了层间剪弯型模型,使之能适用于层数较多和高跨比较大的框架。 但是层间模型在实际使用中却存在比较大的困难,这主要反映在如何具体确定层间的剪切刚度及弯曲刚度的问题上,而且这二者之间又是耦合在一起的。这一问题层间模型自身是无法解决的。目前,层间模型只是对于常见的层数不多且平面布置十分简单、规则、对称并且能简化为平面结构的框架有一定的实用性,也就是说对于这类框架通常能根据经验进行适当的假设后进行简单推导得到层间单元刚度。 1.2 杆系模型 杆系模型是将整体结构离散为梁、柱单元进行分析。杆系分析模型的出现不仅解决了层间模型所面临的层间刚度无法确定的困难,而且它还解决了层间模型所固有的另外两个缺陷。其一,如果说层间模型从宏观(层单元)角度展示了结构总体动力反应规律,那么由于框架各杆进入非弹性阶段的先后次序不同所造成的整个框架动力反应规律的不同,则是层间模型所不能解释、反映的。其二,无论从抗震研究还是设计角度来看,框架结构的梁、柱构件在地震作用下的反应规律到底如何也是人们所关心的,因为结构的设计最终要落实到构件的设计。如柱端弯矩增大系数应如何取值等,这些问题采用层间模型是无法回答的,从这个角度看也必须将框架结构细化到至少是构件层次才有可能解决这些问题。 杆系分析模型分为两大类,平面杆系分析模型与空间杆系分析模型。目前,平面杆系分析模型的研究相对较为成熟,国内外已开始将注意力转向空间杆系分析模型的研究上。 2 单元模型 对于杆系分析模型,目前用于模拟单元滞回性能的模型已有很多,这些单元分析模型可采取分类的方式加以比较考察。这些模型大致可分为两大类若干小类。 2.1 集中塑性铰模型 单分量模型是集中塑性铰模型中最简单的一类,该模型将杆单元的非弹性性能用非线性弹簧反映,而不对非弹性变· 109·第23卷第4期 攀枝花学院学报 2006年8月V o l .23.N o .4 J o u r n a l o f P a n z h i h u a U n i v e r s i t y A u g .2006

主成分分析操作步骤

主成分分析操作步骤 1)先在spss中录入原始数据 袁幌0 KMCi 删曲唇亶馳卜DG(W S^njRtJJ 11口辿J KU删 吕叫? r茗命窗?n靂二?1 a 15柞mjj 和啊r fJl I 111 1芋砂1a Q X X目 2險£g 2壬无8 3>SB壬9 4申料皺咱 B Z X a t8 2±@ &一:jfi fulfil9 2£X9 ?寓咽8 ?E9 2)菜单栏上执行【分析】一一【降维】一一【因子分析】,打开因素分析对话框,将要分析的变量都放入【变量】窗口中

3)设计分析的统计量 点击【描述】:选中“ Statistics ”中的“原始分析结果”和“相关性矩阵”中的“系数”。(选中原始分析结果,SPSS自动把原始数据标准差标准化,但不显示出来;选中系数,会显示相关系数矩阵)然后点击“继续”。 点击【抽取】:“方法”里选取“主成分”;“分析”、“输出”、“抽取”均选中各自的第一个选项即可。

点击【得分】:选中“保存为变量”,方法中选“回归”;再选中 V 尿存为穽昼腔} 「方法 -------------- ◎目甘砂 < Bartlett C Ardorson-F?ubin 点击【选项】:选择“按列表排除个案”。 点击【旋转】:选取第一个选项“无”。 (当因子分析的抽取方法选择主成分法时,且不进 “显示因子得分系数矩阵” 行因子旋转,则其结果即为主成分分析)

4)结果解读 5) A.相关系数矩阵:是6个变量两两之间的相关系数大小的方阵。通过相关系数可以看到各个变量之间的相关,进而了解各个变量之间的关系。 B.共同度:给出了这次主成分分析从原始变量中提取的信息,可以看出交通和通讯最多,而娱乐教育文化损失率最大。 C.总方差的解释:系统默认方差大于1的为主成分。如果小于1,说明这个主因素的影响力度还不如一个基本的变量。所以只取前两个,且第一主成分的方差为3.568,第二主成分的方差为1.288,前两个主成分累加占到总方差的80.939%<

主成分分析原理

第七章主成分分析 (一)教学目的 通过本章的学习,对主成分分析从总体上有一个清晰地认识,理解主成分分析的基本思想和数学模型,掌握用主成分分析方法解决实际问题的能力。 (二)基本要求 了解主成分分析的基本思想,几何解释,理解主成分分析的数学模型,掌握主成分分析方法的主要步骤。 (三)教学要点 1、主成分分析基本思想,数学模型,几何解释 2、主成分分析的计算步骤及应用 (四)教学时数 3课时 (五)教学内容 1、主成分分析的原理及模型 2、主成分的导出及主成分分析步骤 在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。 第一节主成分分析的原理及模型 一、主成分分析的基本思想与数学模型 (一)主成分分析的基本思想 主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。

主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。 (二)主成分分析的数学模型 对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为: ??????? ??=np n n p p x x x x x x x x x X 21 222 21112 11()p x x x ,,21= 其中:p j x x x x nj j j j ,2,1,21=?????? ? ??= 主成分分析就是将p 个观测变量综合成为p 个新的变量(综合变量),即 ???????+++=+++=+++=p pp p p p p p p p x a x a x a F x a x a x a F x a x a x a F 22112222121212121111 简写为: p jp j j j x x x F ααα+++= 2211 p j ,,2,1 = 要求模型满足以下条件:

高维数据的低维表示综述

高维数据的低维表示综述 一、研究背景 在科学研究中,我们经常要对数据进行处理。而这些数据通常都位于维数较高的空间,例如,当我们处理200个256*256的图片序列时,通常我们将图片拉成一个向量,这样,我们得到了65536*200的数据,如果直接对这些数据进行处理,会有以下问题:首先,会出现所谓的“位数灾难”问题,巨大的计算量将使我们无法忍受;其次,这些数据通常没有反映出数据的本质特征,如果直接对他们进行处理,不会得到理想的结果。所以,通常我们需要首先对数据进行降维,然后对降维后的数据进行处理。 降维的基本原理是把数据样本从高维输入空间通过线性或非线性映射投影到一个低维空间,从而找出隐藏在高维观测数据中有意义的低维结构。(8) 之所以能对高维数据进行降维,是因为数据的原始表示常常包含大量冗余: · 有些变量的变化比测量引入的噪声还要小,因此可以看作是无关的 · 有些变量和其他的变量有很强的相关性(例如是其他变量的线性组合或是其他函数依赖关系),可以找到一组新的不相关的变量。(3) 从几何的观点来看,降维可以看成是挖掘嵌入在高维数据中的低维线性或非线性流形。这种嵌入保留了原始数据的几何特性,即在高维空间中靠近的点在嵌入空间中也相互靠近。(12) 数据降维是以牺牲一部分信息为代价的,把高维数据通过投影映射到低维空间中,势必会造成一些原始信息的损失。所以在对高维数据实施降维的过程中如何在最优的保持原始数据的本质的前提下,实现高维数据的低维表示,是研究的重点。(8) 二、降维问题 1.定义 定义1.1降维问题的模型为(,)X F ,其中D 维数据空间集合{}1N l l X x == (一 般为D R 的一个子集),映射F :F X Y →(),x y F x →=

(完整版)评价方法综述

评价方法综述 综合评价是指对以多属性体系结构描述的对象系统作出全局性、整体性的评价,即对评价对象的全体根据所给的条件,采用一定的方法给每个评价对象赋予一个评价值,再据此择优或排序。 常用的综合综合评价方法可以分为以下几大类: (1)定性评价方法,包括专家会议法、德尔菲法(Delphi法)。这类方法具有操作简单,可以利用专家的知识,结论易于使用的优点,但是主观比较强,多人评价是结论难收敛,适合于不能或难以量化的大系统,简单的小系统。 (2)技术经济分析方法,包括经济分析法和技术评价法,分别通过价值分析、成本效益分析、价值功能分析,采用NPV(Net Present value)、IRR(Internal Rate of Retum)等指标和通过可行性分析、可靠性评价等。该方法含义明确,可比性强,但是建立模型比较困难,只适用评价因素少的对象。 (3)多属性决策方法(Multi Attribute Decesion-makingMethod,简称DADM),这类方法通过化多为少、分层序列、直接求非劣解、重排次序法莱排序与评价,具有描述精确,可以处理多决策者、多指标、动态的对象的优点,但由于隶属刚性的评价,无法涉及模糊因素的对象。 (4)系统工程法,包括评分法、关联矩阵法和层次分析法(Analytic Hierarchy Proeess,简称AHP),前两者具有方法简单、容易操作的优点,但只能用于静态评价;AHP法的可靠度比较高,误差小,但评价对象的因素不能太多(通常不多于9个)。 (5)模糊数学方法,包括模糊综合评价、模糊积分、模糊模式识别等,能克服传统数学方法中的“唯一解”的弊端,根据不同可能性得出多个层次的问题解,但不能解决评价指标间相关造成的信息重复问题,隶属函数、模糊相关矩阵等的确定方法有待进一步研究。 (6)物元分析方法与可拓评价,可以解决评价对象的指标存在不相容性和可变性的问题。 (7)统计分析方法,包括主成分分析、因子分析、聚类分析和判别分析等,具有全面性、可比性、客观合理的优点,但都需要大量的统计数据,没有反映客观发展水平。

主成分分析法概念及例题

主成分分析法 主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法 [编辑] 什么是主成分分析法 主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。 在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 [编辑] 主成分分析的基本思想

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 同样,在科普效果评估的过程中也存在着这样的问题。科普效果是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。如上所述,主成分分析法正是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令,其中为正交阵,的各分量是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。的各分量是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。 例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。 [编辑] 主成分分析法的基本原理 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 [编辑] 主成分分析的主要作用

相关文档