文档库 最新最全的文档下载
当前位置:文档库 › 可回收式锚杆在工程中的应用

可回收式锚杆在工程中的应用

可回收式锚杆在工程中的应用
可回收式锚杆在工程中的应用

可回收式锚杆的研制与应用

1 普通锚杆造成的环境问题及可回收锚索研究的意义

1.1 普通锚杆支护所造成的环境问题

基坑临时性支护等采用普通锚杆时,当临时性支护功能失效后,普通锚杆无法进行回收,与所建筑的构筑物一起埋藏于地下,占用了大量地下空间,形成地下垃圾,造成地下环境污染,给相邻地块的开发造成很大的影响。

1.2 可回收锚杆研究意义

可回收锚杆具有普通锚杆的优点的同时,还可克服普通锚杆长期占用大量地下空间,形成地下垃圾的缺点,具有非常广阔的发展前景。

2 新型可回收锚杆的组成及工作原理

2.1 新型可回收锚杆的组成

新型可回收锚杆命名为伸缩式伞状可回收锚杆。由外套钢管、拉杆、可伸缩支撑钢板、内带螺纹的锥头和螺母组成。拉杆两端有螺纹,一端用螺母固定在外套钢管内,另一端固定在锥头螺孔内。主要支挡结构是由两部分构成,上部是带肋支撑钢板,下部是方钢,两部分用销子连接,是主要锚固部位。锚杆构造如图所示:

图2.1 可回收锚杆结构示意图

1-主拉杆;2-螺母;3-外套钢管;4-盖板;5-支撑钢板;6-上支撑杆;

7-下支撑杆;8-方钢;9-销子;10-锚锥头;11-螺母(1)主拉杆

主拉杆是主要受力构件之一,为锚杆设计的控制点。其作用和普通锚杆相同,且在打开伞状支撑体时受拉,收拢时受压。一般是二级钢加工而成,两端有螺纹,一端与螺母连接,另一端和锚锥体相接。

(2)上盖板

上盖板的作用是控制主体钢筋的定位,使钢筋和外套钢管平行。其结构见下图:

图2.2 上盖板示意图

它是由45#圆钢制成,套嵌在外套钢管内并焊接(剖口焊)。

(3)外套钢管

外套钢管的外径根据设计的要求而定,钢管管壁一般取3毫米即可。在打开伞状支撑体的时受压,收拢时受拉。在锚杆锚固好以后主要是承受来自土的剪切力。

图2.3 外套钢管示意图

(4)下盖板

如图所示:

图2.4 下盖板示意图

下盖板是主要的受力构件之一,它除了有上盖板的作用之外,还要承受来自上肋的拉力。其材料和与外套钢管的连接与上盖板相同。

(5)支撑钢板

支撑钢板呈伞状撑开伸入土中,是主要受力构件,主要承受土压力。它是由Q235钢车成,焊于上肋,共四块,尺寸由设计而定。板上焊接钢肋即上支撑杆,钢肋起到增强支撑钢板承弯能力及连接作用。

图2.5 支撑钢板示意图

(6)下支撑杆

下支撑杆的示意图如下:

图2.6 下支撑杆示意图

是由24×24的方钢整体车制而成,两端铣槽,槽壁上钻孔便于连结,为了使锚杆轻便,中间段削薄。共四块,均为主要受力构件,锚杆锚固时主要承受压力。

(7)锚锥体

锚锥体构造较复杂,如下图所示:

图2.7 锚锥体示意图

锚锥体可有三部分组成,上端是一段钢管,目的是确定锚杆撑开的程度;锥体上均匀焊接四块钢条,上面钻孔,与上部连结;下面是锥头,里面钻孔并车有内螺纹,目的是与主体钢筋连接,使两部件固定成为一体。

(8)螺母

本锚杆设计的螺母是与主体钢筋相匹配的,可以购买相同的成品亦可有45#钢加工而成。它主要起到固定锚杆的作用。

(9)销子

销子是连接铰接点的构件,承受很大的剪力,是受力薄弱部位,因此销子的材料采用合金结构钢,通过高温淬火,中低温回火等热处理工艺,增强其强度。

以上是个构件的细部构造,现在说明一下各构件的连接方法。

外套钢管上下各加一个盖板,用剖口焊的方法焊接在一起。下盖板上均匀车有四块钢条,在钢条上打控,与上支撑杆连接。上支撑杆即钢肋上焊有支撑钢板,钢肋形状像叉子一样,一端加粗,在加粗部位铣槽,槽壁上转孔,下盖板上的钢条正好插入其中用销子对应连接。钢肋另一端也转

有圆孔,便于与下部连接。与之连接的构件是一段方钢,同样铣槽,中间削薄,同样转孔,连接方法也与上面相同。锥体部分构造较复杂,上面均匀焊接四块钢条,不同的是锥体上端中心部位车出一段钢管来,它的作用是阻止支挡结构被压缩的过于厉害,使支挡结构一直保持较大支撑力。锥体内部车有螺纹,便于拉杆固定在其中。拉杆两端车有螺纹,上端螺母固定在外套钢管上,下端固定在锥体中。

2.2 伸缩式伞状可回收锚杆的工作原理

先用钻孔机或洛阳铲钻一个孔,然后将呈伸直状态的伞状锚杆放入孔中,拧紧端头螺母,此时,钢管受压,钢筋受拉,使可伸缩的支撑钢板撑开,伸入土中,到达锥上钢管所抵位置为止,此时可达到锚固作用。

待锚固工作完成后,可把锚杆回收,先旋开螺母,通过在外套钢筒上施加拉力,使可伸缩支撑钢板收回,呈伸直状态,使支撑钢板失去锚固作用,呈伸直状态,然后同时对钢管和管内钢筋施加外力,从而把整个锚干取回,达到回收的目的。此种锚杆的作用过程,就如雨伞一样一开一合,所以称作伸缩式伞状可回收锚杆。

可回收式锚杆在工程中的应用

可回收式锚杆的研制与应用 1 普通锚杆造成的环境问题及可回收锚索研究的意义 1.1 普通锚杆支护所造成的环境问题 基坑临时性支护等采用普通锚杆时,当临时性支护功能失效后,普通锚杆无法进行回收,与所建筑的构筑物一起埋藏于地下,占用了大量地下空间,形成地下垃圾,造成地下环境污染,给相邻地块的开发造成很大的影响。 1.2 可回收锚杆研究意义 可回收锚杆具有普通锚杆的优点的同时,还可克服普通锚杆长期占用大量地下空间,形成地下垃圾的缺点,具有非常广阔的发展前景。 2 新型可回收锚杆的组成及工作原理 2.1 新型可回收锚杆的组成 新型可回收锚杆命名为伸缩式伞状可回收锚杆。由外套钢管、拉杆、可伸缩支撑钢板、内带螺纹的锥头和螺母组成。拉杆两端有螺纹,一端用螺母固定在外套钢管内,另一端固定在锥头螺孔内。主要支挡结构是由两部分构成,上部是带肋支撑钢板,下部是方钢,两部分用销子连接,是主要锚固部位。锚杆构造如图所示: 图2.1 可回收锚杆结构示意图

1-主拉杆;2-螺母;3-外套钢管;4-盖板;5-支撑钢板;6-上支撑杆; 7-下支撑杆;8-方钢;9-销子;10-锚锥头;11-螺母(1)主拉杆 主拉杆是主要受力构件之一,为锚杆设计的控制点。其作用和普通锚杆相同,且在打开伞状支撑体时受拉,收拢时受压。一般是二级钢加工而成,两端有螺纹,一端与螺母连接,另一端和锚锥体相接。 (2)上盖板 上盖板的作用是控制主体钢筋的定位,使钢筋和外套钢管平行。其结构见下图: 图2.2 上盖板示意图 它是由45#圆钢制成,套嵌在外套钢管内并焊接(剖口焊)。 (3)外套钢管 外套钢管的外径根据设计的要求而定,钢管管壁一般取3毫米即可。在打开伞状支撑体的时受压,收拢时受拉。在锚杆锚固好以后主要是承受来自土的剪切力。 图2.3 外套钢管示意图 (4)下盖板 如图所示:

可回收锚杆技术

目录(征求意见稿) 1 总则 (1) 2 术语和符号 (2) 2.1 术语 (2) 2.2 符号 (4) 3 基本规定 (6) 4 构造 (7) 5 设计 (11) 5.1 一般规定 (11) 5.2 材料 (12) 5.3 设计 (13) 5.4 承载力计算 (14) 6 施工 (19) 6.1 一般规定 (19) 6.2 杆体制作及安放 (19) 6.3 锚杆成孔与注浆 (20) 6.4 张拉及锁定 (23) 6.5 开挖与监测 (24) 7 回收 (25) 7.1 一般规定 (25) 7.2 回收 (25) 7.3 回收失败的补救处理 (26) 8 试验 (28) 8.1 一般规定 (28) 8.2 试验装置和操作要求 (28) 8.3 基本试验 (29) 8.4 蠕变试验 (30) 8.5 验收试验 (31) 8.6 回收试验 (32) 9 质量检验与验收 (33) 9.1 一般规定 (33) 9.2 质量检验 (33) 9.3 验收 (34) 附录A 可回收锚杆的杆体材料性能 (36) 附录B 锚杆施工记录表 (37) 附录C 锚杆回收记录表 (39) 本规程用词说明 (40) 引用标准名录 (41) 条文说明 (42) 1

Contents 1 General Provisions (1) 2 Terms and Symbols (2) 2.1 Terms (2) 2.2 Symbols (4) 3 General Requirements (6) 4 Structure (7) 5 Design (11) 5.1 General Requirements (11) 5.2 Materials (12) 5.3 Design (13) 5.4 Calculation on Load Holding Capacity of Anchor (14) 6 Construction (19) 6.1 General Requirements (19) 6.2 Tendon making and Placed (19) 6.3 Drilling and Grouting (20) 6.4 Tension and Locking (23) 6.5 Monitoring (24) 7 Recovery (25) 7.1 General Requirements (25) 7.2 Recovery (25) 7.3 Treatment of Failed Recovery Anchor (26) 8 Test (28) 8.1 General Requirements (28) 8.2 Test device and Operation requirements (28) 8.3 Basic test (29) 8.4 Creep test (30) 8.5 Acceptance test (31) 8.6 Recovery test (32) 9 Quality inspection and Acceptance (33) 9.1 General Requirements (33) 9.2 Quality Inspection (33) 9.3 Acceptance (34) Appendix A Material Performance for Anchor Tendon (36) Appendix B Anchor Construction Form (37) Appendix C Anchor Recovery Form (39) Explanation of Wording in This Specification (40) List of Quoted Standards (41) Explanation of Provisions (42) 2

锚杆机在矿井防治水工程中的应用

锚杆机在矿井防治水工程中的应用 发表时间:2009-12-24T09:15:39.827Z 来源:《中小企业管理与科技》2009年9月上旬刊供稿作者:时世东刘永先陆球渊杨永金[导读] 采取什么样的探放水方案既可以达到预期的防治水效果,同时又能节省人力、材力,这是比较重要的。时世东刘永先陆球渊杨永金(徐州矿务集团庞庄煤矿) 摘要:通过具体实例介绍了锚杆机在煤矿防治水工程中应用效果,以及在应用过程中如何有效地选择技术参数,为以后遇到类似的防治水问题提供了科学有效地探放水方案。 关键词:锚杆机探放水老空区积水 0 引言 在煤矿开采过程中,井下探放水是矿井防治水工作的一项重要内容。采取什么样的探放水方案既可以达到预期的防治水效果,同时又能节省人力、材力,这是比较重要的。本文以庞庄煤矿张小楼井94107溜子道探放74107老空水为例,来探讨锚杆机在煤矿探放水方案选择上的技术特点。 1 概况 庞庄煤矿张小楼井94107工作面为综采面,走向长430m,倾向长160m,标高为-940.6~-1025.8m,自切眼向外296m回采过程中将推上山,采后老塘内易积水。74107工作面于2006年12月回采结束,与其倾斜上方已开采的74105工作面情况十分相似,在74107材料道掘进过程中曾对74105采空区积水进行探放,根据74105采空区积水范围类比确定74107老空区积水范围,预计自切眼向外190m范围老空区有积水,预计积水量5000m3,切眼处积水最深24m,积水面标高-991m,积水区位于94107工作面溜子道正上方偏下,此处7、9煤揭发间距35~40m,煤层倾角22°,9煤直接顶板为中~细粒砂岩,9煤采动后导水裂隙高度最大可达40m,根据94107工作面采动后岩移塌陷角计算出94107面采动后所波及到的74107老空区范围,此范围内的74107老空区积水对94107工作面的回采有严重威胁,因此必须对74107老空区积水进行探放。 2 施工过程 根据探放水设计方案,在94107溜子道10点处(切眼下头)47°仰角垂直溜子道向深部用锚杆机探放74107老空水。施工过程中要根据钻孔岩性的变化改变钻进速度,当岩性为砂岩砂岩时可以适当加快钻进速度,因为在砂岩中钻进钻头出水眼不容易被堵;当岩性较软,特别是有泥岩夹层时一定要放慢钻进速度,因为孔内事故(常发生钻头出水眼被堵)常常在此岩段发生,而当岩性变为软岩时,在给锚杆机同样压力的情况下,此时的进尺速度明显加快,这时好多情况下并不是真正钻进去的,而是“顶”进去的,极易造成钻头出水眼被堵,所以此时一定要把速度放慢,最好的效果是采取“蜻蜓点水式”的钻进,钻进几公分后把钻杆缩回,观察钻头是否出水,确认正常出水后再继续向前钻进,往返多次,顺利钻过软岩。 3 几点技术关键 3.1 施工前一定要对钻孔最大出水量进行预计,单孔出水量可采用以下公式进行计算:q=CA(2gh)1/2=(式中:C-流量系数,取值0.6~0.62;A-放水孔有效断面(m2);g-重力加速度9.8m/s2;h-老空区内水柱高度(m))。由于h随积水放出而不断降低,钻孔水量也有所减少,h值通常取实际水头高度的40~50%,以求得整个放水过程中的平均流量,但一定要对刚开始时出现的最大水量有个预计,此时h值取最大水头高度,以便安装与之相适应的排水系统。 3.2 要对施工地点做一个综合柱状,对钻进过程中岩性变化有个大致的了解,便于钻进期间改变钻进工艺,防止发生孔内事故。 3.3 锚杆机最好使用新锚杆机,新钻杆,有利于上下钻。由于钻进距离较长,防水密封圈磨损厉害,需要及时更换密封圈。 3.4 锚杆机操作手要熟练掌握锚杆机性能,根据孔内岩性的变化随时改变钻进工艺。 4 效果 本次探放水工程共放出水量近1000m3,把94107工作面采动影响范围内74107老空区积水全部放完。钻孔深度49.6m,使用锚杆机钻孔对以后有类似的探放水工程完全可以借鉴此方法。通过实验证明此方法探放水效果很好,与钻机探放水比较,节省了大量的人力和物力。若用钻机探放,工作量为:下钻机一个班;安装钻机、钻机搭火4小时;49.6m(多数为砂岩)钻深至少要三个班;钻机甩火、装车打上井要一个半班。如果使用钻机至少需要4个人6个班才能完成该项工程。若使用锚杆机只需要三个人一个班就可已完成。可见使用锚杆机计可以节省大量的人力、物力,有缩短了施工时间,效果十分明显,具有很好的推广利用价值。

五个建筑施工创新技术应用案例

五个建筑施工创新技术应用案例 一、什么是建筑施工的科技创新? 创造或应用四新技术(新技术、新材料、新设备、新工艺),优化服务环境、提高履约质量、实现产品效益的一系列过程。 二、五个建筑施工创新技术应用案例 1、预制的装配式路面 装配式路面造价分析: 单块造价约800元。每块(2㎡)每次运输、吊装、安装费用约为150元,周转使用5次,因此每块总费用约为1550元。 传统现浇式路面造价分析: 现浇单块面积(2㎡)人、机、料总费用为200元,完工后破碎、运输消纳等约为200元,施工五次的总费用约为2000元/2㎡。造价工程师 2、大体积底板跳仓法施工 (1)避免了后浇带封闭的等待时间,可缩短工期,特别对于存在预应力结构的工程。 (2)在缩短工期的基础上,极大节约了施工成本。 (3)可控制超长混凝土结构早期裂缝与后期裂缝,节约裂缝治理成本并得到良好的社会效益。 3、预应力抗浮锚杆逆作法施工工艺 (1)与主体结构同时进行,缩短总工期,比常规方法提前工期50~70天。 (2)采用新型钻头和扩孔器,质量更容易保证。 (3)避免了锚杆成孔时对地基的扰动,保证地基承载力。 (4)可降低工程成本,直接经济效益达390万元以上。 (5)相对采用抗拔桩或增加基础底板结构尺寸的抗浮方法,预应力抗浮锚杆工艺的造价更低,可节约大量的社会和自然资源,社会效益良好。

4、外墙结构保温一体化施工技术 (1)工厂化生产,板块型材规格标准化高,质量好; (2)降低现场搅拌量,节水节材,减少现场施工污染,环保程度高; (3)具有一定成本优势,与粘贴式外保温系统比较,每平米可节约费用40-50元。造价工程师 (4)结构主体与保温同步完成,可缩短施工工期。 (5)可以避免龟裂和渗水等质量通病,可靠性高。 5、盘扣式模板支架 由于架体构造简单,均为标准化构件,架体间距大,外形美观,对推动引领现场文明施工起到积极作用。

(完整版)第四讲锚杆支护理论

第四讲锚杆支护理论 本讲主要介绍锚杆常用支护理论(包括一些近年来比较流行和活跃的理论)、锚杆支护设计方法和国外锚杆支护主要经验,以及巷道容易冒顶的十种情况和五种应对措施。 锚杆支护的作用机理尚在探讨之中。目前己提出的观点较多,其中影响较大的有悬吊作用、组合梁(拱)作用、组合拱、减跨理论、加固(提高C、φ值)作用等几种。这几种观点都是以围岩状态和利用锚杆杆体受拉(力)为前提来解释锚杆支护作用机理的,因此,围岩状态及锚杆受拉力这两个前提的客观性是判定上述理论正确性的标准。 一、锚杆支护理论 支护:就是指为了地下巷道掘进、硐室开挖后的稳定及施工安全,而采取的支持、加强或改善围岩应力状态而打设的构件或采取的措施的总称。支护包括两个方面,一是支,就是顶住顶板,防止顶板出现大量的下沉,使顶板下沉控制在可控、安全的状态,二是护,就是保持顶板的完整性,防止出现漏矸、漏顶、巷道掉渣等现象。支和护是一个有机统一的整体,它们共同组成了支护系统。 (一)锚杆支护理论综述 1、悬吊理论

1)机理:将巷道顶板较软弱岩层悬吊在稳定岩层上,以避免较软弱岩层的破坏、失稳和塌落,锚杆所受的拉力来自被悬吊的岩层重量。 图4-1 锚杆悬吊作用原理示意图 2)缺点:没有考虑围岩的自承能力,而且将被锚固体与原岩体分开。 3)适用条件:在锚杆的长度范围内有一层坚硬而稳定的岩层,锚杆可以锚固到顶板坚硬稳定岩层。 图4-2 a拱形巷道的锚杆悬吊作用b软弱岩层的锚杆悬吊作用 2、组合梁理论 1)机理:将锚固范围内的岩层挤紧,增加岩层间的摩

擦力,防止岩石沿层面滑动,避免各岩层出现离层现象,提高其自撑能力。将几层薄岩层锁紧成一个较厚的岩层(组合梁)。在上覆岩层载荷的作用下,这种组合厚岩层内的最大弯曲应变和应力都将大大减小,组合梁的挠度亦减小。在于通过锚杆的预拉应力将原视为叠合梁(板)的岩层挤紧,增大岩层间的摩擦力; 同时,锚杆本身也提供一定的抗剪能力,阻止其层间错动。锚杆把数层薄的岩层组合成类似铆钉加固的组合梁,这时被锚固的岩层便可看成组合梁,全部锚固层能保持同步变形,顶板岩层抗弯刚度得以大大提高。 决定组合梁稳定性的主要因素是锚杆的预拉应力及杆体强度和岩层的性质。 2)缺点:将锚杆作用与围岩的自稳作用分开;在顶板较破碎、连续性受到破坏时,难以形成组合梁。这一观点有一定的影响,但是其工程实例比较少,也没有进一步的资料供锚杆支护设计应用,尤其是组合梁的承载能力难以计算,而且组合梁在形成和承载过程中,锚杆的作用难以确定。另外,岩层沿巷道纵向有裂缝时粱的连续性问题、梁的抗弯强度等问题也难以解决。 3)适用条件: 层状地层,如图4-3中2所示; 顶板在相当距离内(锚杆长度范围内)不存在稳定岩层,

五个建筑施工创新技术应用案例

五个建筑施工创新技术 应用案例 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

五个建筑施工创新技术应用案例 一、什么是建筑施工的科技创新 创造或应用四新技术(新技术、新材料、新设备、新工艺),优化服务环境、提高履约质量、实现产品效益的一系列过程。 二、五个建筑施工创新技术应用案例 1、预制的装配式路面 装配式路面造价分析: 单块造价约800元。每块(2㎡)每次运输、吊装、安装费用约为150元,周转使用5次,因此每块总费用约为1550元。 传统现浇式路面造价分析: 现浇单块面积(2㎡)人、机、料总费用为200元,完工后破碎、运输消纳等约为200元,施工五次的总费用约为2000元/2㎡。 2、大体积底板跳仓法施工 (1)避免了后浇带封闭的等待时间,可缩短工期,特别对于存在预应力结构的工程。 (2)在缩短工期的基础上,极大节约了施工成本。 (3)可控制超长混凝土结构早期裂缝与后期裂缝,节约裂缝治理成本并得到良好的社会效益。 3、预应力抗浮锚杆逆作法施工工艺 (1)与主体结构同时进行,缩短总工期,比常规方法提前工期50~70天。 (2)采用新型钻头和扩孔器,质量更容易保证。 (3)避免了锚杆成孔时对地基的扰动,保证地基承载力。 (4)可降低工程成本,直接经济效益达390万元以上。 (5)相对采用抗拔桩或增加基础底板结构尺寸的抗浮方法,预应力抗浮锚杆工艺的造价更低,可节约大量的社会和自然资源,社会效益良好。

4、外墙结构保温一体化施工技术 (1)工厂化生产,板块型材规格标准化高,质量好; (2)降低现场搅拌量,节水节材,减少现场施工污染,环保程度高; (3)具有一定成本优势,与粘贴式外保温系统比较,每平米可节约费用40-50元。 (4)结构主体与保温同步完成,可缩短施工工期。 (5)可以避免龟裂和渗水等质量通病,可靠性高。 5、盘扣式模板支架 由于架体构造简单,均为标准化构件,架体间距大,外形美观,对推动引领现场文明施工起到积极作用。

锚杆支护体系

锚杆支护体系 1.结构形式 锚杆支护体系由挡土墙结构物与土层锚杆系统两部分组成,如下图1所示。 1—锚杆(索)2—自由段3—锚固段4—锚头5—垫块6—挡土结构 图2-1 灌浆土层锚杆系统的构造示意图 根据挡土结构的不同目前我国常见的锚杆式挡土墙分为肋板式、格构式、排桩式锚杆挡墙。灌浆土层锚杆系统由锚杆(索)、自由段、锚固段及锚头、垫块等组成。 2.支护原理 锚杆是一种新型的受拉杆件,它的一端与工程结构物或挡土墙联接。另一端锚固在地基的土层或岩层中,以承受结构物的上托力、拉拔力、侧倾力或挡土墙的土压力、水压力,从而利用地层的锚固力维持结构物的稳定。 3.计算方法 3.1墙背土压力及分布 (1)墙背土压力的计算:锚杆挡土墙墙面板所受的土压力系由墙后填料及外荷载引起。为简化计算,一般仍按库仑主动土压力公式

计算,然后根据试验资料,乘以增大系数2β(一般为1.0~1.2,)。但是,锚杆挡土墙后一般为岩体,岩体产生的土压力用库仑公式是不够的,根据现场经验,结合岩体的节理、裂隙、岩层的风化程度等合理选用,有条件时亦可用岩石力学分析方法进行核算。分级锚杆挡土墙的土压力可按延长墙背法计算。计算上级各级构件时,视下级墙为稳定结构,可不考虑下级墙对上级墙的影响,墙背摩擦角可用(0.3~0.5)δφ=。 (2)土压力分布:填方锚杆挡土墙和单排锚杆的土层锚杆挡土墙,或挡土墙高度较小,未采用逆作法施工,可近似按库伦土压力理论取为三角形分布;对于岩质边坡以及坚硬、硬塑状粘性土和密实、中密砂土类边坡,当采用逆作法施工的柔性结构的多层锚杆挡墙时,侧压力分布可近似按图2确定,图中hk e 可按式(1)(2)计算: 对于岩质边坡:0.9hk hk E e H = (1) 对于土质边坡:0.875hk hk E e H = (2) 式中:hk e —侧向岩土压力水平分力标准值; hk E —侧向岩土压力合力水平分力标准值; H —挡墙高度。 图2 锚杆挡墙侧压力分布图 3.2 肋柱、锚杆的内力计算

地铁可回收式锚杆施工

浅谈可回收式锚杆施工工艺 李浩 (陕西西安) 一、前言 可回收式锚杆是在西安地铁二号线城运村~张家堡区间明挖基坑工程中采用的一项新工艺,基坑位于张家堡广场内。坑深度为15~18米,从地质纵断面显示,本段土层主要为黄土状土、粉质粘土和中粗砂。因本基坑要考虑轨排基地,内净空的限制导致不能使用内支撑支护系统。经技术经济综合比较、计算分析和工程类比,本工程推荐采用此工艺。 二、可回收式锚杆简介: 可回收式锚杆即自旋锚杆也称为螺旋锚杆。锚杆的前端有特制钻头,用来顺利前进,末端有螺纹用来预紧托板。拧入锚杆时不需要用机械的方法强迫推进,利用人工方法稍加轴向推进力,锚杆即可拧入钻眼,然后靠电钻回转力矩完成。自旋锚杆采用通用的电钻拧入,不需要冲击力,自旋锚杆支护可以有效地应用于中等硬度以下的围岩中,锚固力一般在80KN以上。在回采其间,利用电钻反转锚杆,锚杆即被旋出,实现了锚杆回收再利用。自旋式可回收锚杆在地铁基坑开挖防护中显现出安全、施工快捷、节约成本的优越性。自旋可回收土层锚杆是一种新型的受拉杆件,它的一端与工程结构物或挡土桩墙联结,另一端锚固在基坑或边坡中,以承受结构物的上托力、拉拔力、倾侧力或者挡土墙的土压力、水压力。

自旋锚杆由杆体、螺丝、螺丝端部金属头(金属头主要是利用电弧焊接上去的合金材料,主要是防止端头的螺丝旋进过程中变形)、螺母及托板组成。锚杆杆体为钢管体,杆体上的螺丝经机器冷加工后焊接上去。 图1 锚杆结构图 三、可回收式锚杆的施工工艺 在地铁基坑开挖中,锚杆的安装工艺越简单,工作效率越高。自旋安装过程十分简单,利用锚杆钻机和钻杆在被加固的土体中打好小于锚杆外径的锚杆的钻孔,将锚杆锚固端置于钻孔口处,通过回转接头将锚杆与安装机具连接好,开动安装机具,锚杆即被旋入土体(岩体); 上图为西安地铁二号线张家堡广场明挖基坑可回收式锚杆现场施工施工工艺: 土钉墙初喷锚杆检验布设锚杆点钻机就位锚杆钻进锚固锚杆回收(在主体结构到达锚杆位置前)

土层锚杆习题库.

单选、 (1)最上层锚杆的覆土厚度不小于(C)。 A.2m B.3m C.4m D.5m (2)锚杆间距一般上下层间距(A)。 A.4-5m B.5-6m C.6-7m D.7-8m (3)锚杆间距一般水平间距(A)。 A.1.5-3m B.2.5-4m C.3.5-5m D.4.5-6m (4)为保证锚杆束位于钻孔中心,每隔(B)。 A.1-2m B.2-3m C.3-4m D.4-5m (5)正式张拉前,应取设计拉力的(D)进行张拉。 A.40%-50% B.30%-40% C.20%-30% D.10%-20% 多选、 (1)锚杆一般由(BCE)基本部分组成。 A.自由段 B.锚头 C.拉杆 D.拉索 E.锚固体 (2)注浆材料有(DE)。 A.石灰 B.混凝土 C.水泥 D.水泥砂浆 E.纯水泥浆 (3)土层锚杆钻孔机械主要有(ABC)。 A.旋转式钻孔机 B.冲击式钻孔机 C.旋转冲击式钻孔机 D.反循环钻机 E.正循环钻机 (4)土层锚杆用的拉杆有(CDE)。 A.粗钢筋 B.钢丝束 C.钢绞线 D.钢丝绳 E.钢丝线 (5)锚杆钻孔时,应严格控制其(ABC)。 A.位置 B.方向 C.深度 D.孔径 E.坍孔 填空、 (1)锚杆是一种新型的受拉杆件。 (2)锚头锚固在围护结构上。 (3)锚固在岩石中的为岩石锚杆,在土层中的为土层锚杆。 (4)锚杆倾角为13°-35°。 (5)锚固体位于滑动土体1m以外,锚杆长度一般为15-30m。 判断、 (1)待注浆材料强度达到设计强度的75%后,进行锚杆张拉。(√) (2)锁定预应力以设计轴力的75%为宜。(×) (3)正式张拉应分级加载,每级荷载应恒定加载2min后记录伸长值。(×) (4)注浆压力不大于上覆土压力的3倍,也不大于0.9MPa。(×) (5)张拉到设计荷载时恒载15min,伸长无变化时,进行锁定。(×) 名词解释、 (1)锚杆:是将受拉杆件的一端(锚固段)固定在稳定地层中,另一端与工程构筑物相联结,用以承受由于土压力、水压力等施加于构筑物的推力,从而利用地层的锚固力以 维持构筑物的稳定。 (2)机械式可回收锚杆:将锚杆体与机械的联结器联结起来,回收时施加与紧固方向相反力矩,使杆体与机械联结器脱离后取出。如采用全长带有螺纹的预应力钢筋作为拉杆, 拆除时,先用空心千斤顶卸荷,然后再旋转钢筋,使其撤出。它由三部分组成:锚固 体、带套管全长有螺纹的预应力钢筋、传荷板。 (3)化学式可回收锚杆:如用高热燃烧剂将拉杆熔化切断法,在锚杆的锚固段与自由段的连接处先设置有高热燃烧剂的容器,拆除时,通过引燃导线点火,将锚杆在该处熔化 切割拔出,为用高热燃烧剂将拉杆的一部分熔化。也有采用燃烧剂将拉杆全长去除。 (4)自钻式(自进式)锚杆:自钻式锚杆由中空螺纹杆体、钻头、垫板螺母、连接套和定位套组成。钻杆即锚杆杆体,在强度很低和松散地层中钻进不需退出,并可利用中空

锚杆施工技术要求

锚杆施工技术要求 1)锚杆(包含预应力锚索与锚杆钢筋,以下同)钻孔垂直度偏差不应大于5%,孔深允许偏差±100mm,钻孔深度应超过锚杆设计长度不小于0、5m,钻孔完毕应将孔内得泥浆或碎屑清除干净; 2)锚杆注浆材料为水泥净浆,水灰比0、45~0、5,水泥浆应随拌随用; 3)锚杆孔注浆必须密实饱满; 4)锚杆锚筋制作:锚杆锚筋制作时应先除锈,锚筋表面涂防腐保护漆.为使锚筋在锚孔中居中,每隔1、5m设一对中支架。注浆管管头用胶带封闭,安设在对中支架得一侧,用细铁丝绑扎,管头用胶带封闭,且管头比锚端少50~100mm。 5)锚杆施工: a、人工修坡:按设计要求进行人工修坡,以保证坡面平整。 b、锚孔定位:按设计图纸钻孔,孔位水平允许偏差±100mm。竖向允许偏差误差±50mm。 c、锚杆成孔:锚杆成孔根据施工具体情况宜采用风动干钻、凿岩机成孔,或由施工单位根据自身情况确定。 d、锚筋安放:锚杆钢筋放入锚孔前应检查钢筋质量与长度,钢筋长必须与孔深相符.安放时要防止杆体弯曲、扭压,不得损坏注浆管与对中支架。钢筋插入深度不少于锚杆设计长度得95%,钢筋外露孔口长度控制在6~8cm。锚固时应注意锚杆清洁,如钢筋在搬运过程中粘泥太多,必须清洗后再下。 e、注浆:本工程锚杆灌浆材料为纯水泥浆。所有水泥均采用42、5等级普通硅酸盐水泥,水灰比为0、45~0、5。必要时可适量加入速凝剂、膨胀剂等添加剂。浆液应搅拌均匀,并做到随搅随用,且必须在初凝前用完。注浆开始或中途停止超过30min时,应用水或稀水泥浆润滑注浆罐及其管路。杆注浆采用孔底反浆法,注浆压力为常压注浆,注浆压力控制在0、5~0、8MPa,水泥浆凝固后要及时二次孔口补浆。岩钉采用先注浆,后安放钢筋得施工方法.

锚杆分类及性能

锚杆分类 目前用作支护的锚杆种类很多,按其与被支护体的锚固长度划分,可分为集中锚固类锚杆和全长锚固类锚杆。集中锚固类锚杆是指锚杆装置和杆体只有一部分和锚杆孔壁相接触的锚杆。包括端头锚固、点锚固和局部锚固等;全长锚固类锚杆是指锚固装置或锚杆杆体在全长范围内全部和锚杆孔壁接触的锚杆,包括各种摩擦式锚杆、全长砂浆锚杆、树脂锚杆和水泥锚杆等。 根据锚杆的锚固方式可分为机械式锚固型和黏结锚固型两类。锚固装置或锚杆杆体和孔壁接触,靠摩擦力起锚固作用的锚杆,属于机械锚固型锚杆;锚杆杆体部分或全长利用树脂、砂浆、快硬水泥等胶结材料将锚杆杆体和锚杆孔壁黏结固定在一起,靠粘结力起锚固作用的锚杆属于黏结型锚杆。 用于制作锚杆的材料种类较多,根据锚杆的材质不同,又可将锚杆分为钢丝绳锚杆、普通钢筋锚杆、螺纹钢锚杆、玻璃钢锚杆、木锚杆和竹锚杆等类型。 第一节金属锚杆 金属锚杆根据其锚固形式可分为机械式、管缝式和黏结式三大类。 一、机械式锚杆 机械式锚杆使用最早、结构多样、数量较大的锚杆。机械式锚杆的锚固机构本身是一个统一体,在安装锚杆时,锚固机构主要通过一个楔子系统在钻孔中进行轴向或径向相互错动而紧张在钻孔壁上。锚固机构通过摩擦连接将锚固力多数传递给岩层。机械式锚杆在安装时,多数产生预紧力。有时,甚至锚固机构必须直接依靠预紧力来固定。 机械式锚杆的优点有:安装迅速,可即时达到承载力,可二次张紧,某些结构的锚杆还可以回收。其缺点是:钻孔中的锚固段较短,在高应力区容易导致岩层破坏和锚固剂松动,锚固力一般偏低,只能适用于中等稳定以上的岩层条件。机械式锚杆又可分为楔缝式锚杆、倒楔式锚杆和账壳式锚杆。 1.楔缝式锚杆 楔缝式锚杆主要由杆体、楔子、垫板和螺母等组成,如1-1所示。杆体直径包括18mm、20mm、22mm、25mm等规格,长度1200—1800mm;楔缝长150—250mm,宽2—3mm;楔子长130—150mm,宽18—25mm,上厚22—25mm,下厚3mm。 1—杆体;2—楔缝;3—丝扣;4—楔子;5—垫板;6—螺母楔缝式锚杆的

土锚杆(土锚)计算

土锚杆(土锚)计算 在土质较好地区,以外拉方式用土锚杆锚固支护结构的围护墙,可便利基坑土方开挖和主体结构地下工程的施工,对尺寸较大的基坑一般也较经济。 土锚一般由锚头、锚头垫座、钻孔、防护套管、拉杆(拉索)、锚固体、锚底板(有时无)等组成(图6-94)。 图6-94 土锚构造 1-锚头;2-锚头垫座;3-围护墙;4-钻孔; 5-防护套管;6-拉杆(拉索);7-锚固体;8-锚底板 土锚根据潜在滑裂面,分为自由段(非锚固段)l f和锚固段l a(图6-95)。土锚的自由段处于不稳定土层中。要使拉杆与土层脱离,一旦土层滑动,它可以自由伸缩,其作用是将锚头所承受的荷载传递到锚固段。锚固段处于稳定土层中,它通过与土层的紧密接触将锚杆所承受的荷载分布到周围土层中去。锚固段是承载力的主要来源。 图6-95 土锚的自由段与锚固段的划分 l f-自由段(非锚固段);l a-锚固段 1.土锚布置 根据《建筑基坑支护技术规程》,锚杆的上下排垂直间距不宜小于2m;水平

间距不宜小于1.5m;锚杆锚固体上覆土层厚度不宜小于4m。 锚杆的倾角宜为15°~25°,且不应大于45°。 锚杆自由段长度不宜小于5m,并应超过潜在滑裂面1.5m。锚杆的锚固段长度不宜小于4m。 拉杆(拉索)下料长度,应为自由段、锚固段及外露长度之和。外露长度需满足锚固及张拉作业的要求。 锚杆的锚固体宜采用水泥浆或水泥砂浆,其强度等级不宜低于M100。 2.土锚计算 (1)土锚承载力计算:锚杆承载力计算,应符合下式要求: T d≤N u cosθ(6-99) 式中T d——锚杆水平拉力设计值,由式(6-99)计算; θ——锚杆与水平面的倾角; N u——锚杆轴向受拉承载力设计值。 规程规定,对安全等级为一级和缺乏地区经验的二级基坑侧壁,锚杆应进行基本试验,N u值取基本试验确定的极限承载力除以受拉抗力分项系数γs(γs=1.3);基坑侧壁安全等级为二级且有邻近工程经验时,可按式(6-100)计算锚杆轴向受拉承载力设计值,并进行锚杆验收试验: (6-100) 式中d1——扩孔锚固体直径; d——非扩孔锚杆或扩孔锚杆的直孔段锚固体直径; l i——第i层土中直孔部分的锚固段长度; l j——第j层土中扩孔部分的锚固段长度; q sik、q sjk——土体与锚固体的极限摩阻力标准值,应根据当地经验取值;当无经验时可按表6-73取值; γs——锚杆轴向受拉抗力分项系数,取1.3; C——扩孔部分土层的抗压强度。 基坑侧壁安全等级为三级时,亦按式(6-99)计算N u值。 对于塑性指数大于17的粘性土层中的锚杆,应进行徐变试验。 (2)拉杆(拉索)截面计算:普通钢筋的截面面积,按下式计算:

锚杆支护及其应用分析

锚杆支护及其应用分析 摘要:针对我国锚杆支护的现状做了初步分析。运用支护设计中常用理论及方法,对其中的优缺点进行了分析和评价,同时对实际支护工程中的某些不足进行了具体讨论,并对未来的发展趋势进行了初步分析。关键词:锚杆支护;应用现状;发展趋势 0 引言 锚杆支护作为岩土工程加固的一种重要形式,由于其具有安全、高效、低成本等优点,在国际岩土工程领域得到了越来越多的应用.1872年,英国北威尔士的煤矿加固工程中首次采用钢筋加固页岩之后,1905年美国矿山中也出现了类似的加固工程.到了20世纪40年代,锚杆支护在地下工程中的应用在国外得到了迅猛发展.目前,在澳大利亚和美国的地下工程支护中,锚杆支护已经占到了将近100%.我国的锚杆加固技术于20世纪50年代开始起步,在最近20年得到了快速发展,目前已经得到了广泛的应用.据估计,在1993年至1999年间,我国仅在边坡工程和深基坑工程中的锚杆年用量就达到了3000-3500KM.目前,我国正在进行大规模的基础设施与各类矿山及隧道工程建设,锚杆支护得到了普遍应用。 1 锚杆的含义 锚杆是一种埋设于围岩中的受拉构件,它是用金属或其它高抗拉材料制作的杆状构件。它通过一些机械装置或粘结材料与围岩结 技术、经济方面都有着巨大的优越性,而且能够适应不同地质条件的性质,基于这些优点锚杆在地下工程中得到了广泛应用和迅速发展[1] 地下工程中所使用的锚杆一般由锚固体(或称内锚头)、锚杆及垫板三个基本部分组成,具体如图1[2] 图1 地应力场示意图 (1)垫板是支护结构与锚杆的连接部分,它能够有效改变锚杆的受力分布,使锚杆的轴力分布比较均匀,提高锚杆的支护效果。同时还能够使锚杆与初期支护连成整体,有利于共同承担围岩压力。

基坑方案可回收锚索部分

(三)可回收式预应力锚索施工 1、可回收式预应力锚索实验方案 (1)实验目的 本次试验为锚索施工前基本试验,试验目的在于检测锚索的承载力与变形是否能达到设计要求。 可回收式预应力锚索基本试验的数量为9根,分三组进行,每组3根;一组可回收式预应力锚索试验位置选取在1-1剖面第一道锚索处,沿坑壁进行试验,第二组位置选取4-4剖面第一道锚索处,沿坑壁进行试验。第三组位置选取7-7剖面第一道锚索处,沿坑壁进行试验。 (2)实验锚索施工 A、实验机具及材料 锚杆机、水泥、φ15.2钢绞线、锚杆托架、空心千斤顶、垫板、锚具、位移计、计时表等。 B、实验锚索施工要点 (1)水泥浆采用42.5硅酸盐水泥拌制。一次注浆水灰比为0.45~0.50,二次注浆水灰比为0.5~0.55。二次注浆成锚,第一次采用常压注浆,第二次注浆压力不小于3.0MPa。 (2)锚索成孔孔径180mm,孔位允许偏差不大于50mm,偏斜度不应大于3%,孔深应超过设计长度0.5m。 A、实验方法 根据规范锚索基本试验应采用分级循环加、卸荷法,并应符合下列规定: a.每级荷载施加或卸除完毕后,应立即测读变形量;

b.在每次加、卸载时间内应测读锚头位移二次,连续二次测读的变形量小于0.1mm 时,可施加下一级荷载; c.加、卸荷等级、测读间隔时间宜按下表确定。 A、锚头位移不收敛,锚固体从土层中拔出或锚索从锚固体中拔出; B、锚头总位移量超过设计允许值; C、土层锚索性能试验中,后一级荷载产生的锚头位移增量超过上一级荷载位移量的2倍。 (5)实验要求 A、最大试验荷载(Q max)不应超过钢绞线强度标准值的0.7倍。本次试验采用钢绞线强度等级为1860Mpa,一索(7?5)钢绞线承受的最大试验荷载控制为:P=1860×139×0.7=181kN; B、加载装置(千斤顶、油泵)的额定压力必须大于试验压力,且试验前应进行标定; C、加荷反力装置的承载力和刚度应满足最大试验荷载要求; D、计量仪表(测力计、位移计等)应满足测试要求的精度。 2、可回收式预应力锚索施工工艺流程 测量定位→钻机就位→安装钻杆、旋转接头等→钻孔、清孔→插入钢绞线索→注浆→浇筑腰梁→养护→预应力张拉→后期拆除回收。 3、锚索成孔、安装 (1)在锚索施工前,施工单位应详细了解基坑周边已施工的

土方工程计算题

【例1-4】基坑土方量计算示例 某基坑底平面尺寸如图1-74所示,坑深5.5m ,四边均按1: 0.4 的坡度放坡,土的可松性系数Ks=1.30, Ks ‘=1.12,坑深范围内箱形基础的体积为2000m 3。试求:基坑开挖的土方量和需预留回填土的松散体积。 解: (1)基坑开挖土方量 由题知,该基坑每侧边坡放坡宽度为: 5.5×0.4=2.2m ; 坑底面积为:F 1 =30×15-10×5=400m 2 坑口面积为:F 2=(30+2×2.2)×(15+2×2.2)—(10-2×2.2)×5=639.4m 2 基坑中截面面积为:F 0=(30+2×1.1)×(15+2×1.1)—(10-2.2)×5=514.8m 2 基坑开挖土方量为: 28406 ) 4.6398.5144400(2.46)4(201=+?+=++= F F F H V m 3 (2)需回填夯实土的体积为: V 3=2840-2000=840m 3 (3)需留回填松土体积为: 97512 .13.1840' 32=?== S K Ks V V m 3 【例1-5】轻型井点系统设计示例 某工程地下室,基坑底的平面尺寸为40m ×16m ,底面标高-7.0m (地面标高为±0.000)。已知地下水位面为 -3m ,土层渗透系数K=15m/d ,-15m 以下为不透水层,基坑边坡需为1:0.5。拟用射流泵轻型井点降水,其井管长度为不锈钢垫片6m ,滤管长度待定,管径为38mm ;总管直径100mm ,每节长4m ,与井点管接口的间距为1m 。试进行降水设计。 解: 1)井点的布置 ①平面布置 基坑宽为16m ,且面积较大,采用环形布置。 ②高程(竖向)布置 基坑上口宽为:16+2×7×0.5=23m ; 井管埋深:H=7+0.5+12.5×1/10=8.75m ; 井管长度:H+0.2=8.95(m)>6m ,不满足要求(如图1-75)。 若先将基坑开挖至-2.9m ,再埋设井点,如图1-76。 此时需井管长度为:H 1=0.2+0.1+4.5+(8+4.1×0.5+1)×1/10 =5.905(m) ≈ 6m ,满足。 2)涌水量计算 ①判断井型 取滤管长度l =1.4m ,则滤管底可达到的深度为: 2.9+5.8+1.4=10.1(m )<15m ,未达到不透水层,此井为无压非完整井。 ②计算抽水有效影响深度 s’=6-0.2-0.1=5.7m , 图1-74 基坑底面布置图

锚杆支护在基坑工程中应用

锚杆支护在基坑工程中的应用研究【摘要】:本文根据锚杆支护结构体系以及锚杆对基坑土体的作用方式,从基坑开挖后土体应力状态出发,分析了基坑锚杆支护机理,得到锚杆对基坑土体出了支护作用外,还具有加固作用。并结合苏州某基坑工程,结合具体工程地质概况及施工工艺,并通过现场测试,说明锚杆支护的可靠性,可为基坑锚杆支护工程设计和研究提供参考。 【关键词】:锚杆支护,基坑,机理,应力状态,施工工艺 abstract : according to the supporting structure system and the mode of the anchor to the soil of foundation pit, from the foundation pit excavation stress state of soils, we analyzed the mechanism of the bolt supporting of foundation pit, get out of the soil of foundation pit supporting role outside, and have reinforcement effect. and combined with suzhou a foundation pit engineering, with specific engineering geology survey and the construction technology, and through the field test, explain the reliability of the bolt supporting, bolt support for foundation pit engineering design and research to provide the reference. key words: anchoring bolt, foundation pit, mechanism, the stress state, the construction technology

土钉墙支护和锚杆支护的实例应用

土钉墙支护和锚杆支护的实例应用 土钉墙是由天然土体通过土钉墙就地加固并与喷射砼面板相结合,形成一个类似重力挡墙以此来抵抗墙后的土压力;从而保持开挖面的稳定,这个土挡墙称为土钉墙。土钉墙是通过钻孔、插筋、注浆来设置的,一般称砂浆锚杆,也可以直接打入角钢、粗钢筋形成土钉。土钉墙的做法与矿山加固坑道用的喷锚网加固岩体的做法类似,故也称为喷锚网加固边坡或喷锚网挡墙,建筑基坑与护坡技术规程JGJ120-99 正式定名为土钉墙。 [编辑本段]土钉墙的发展 50年代末期通过土层锚杆的使用使挡土结构有了新发展,在基坑开挖前先建造桩、地下连续墙、板桩等利用土层锚杆对其进行背拉从而形成锚杆式挡墙。10年后出现了锚杆构造墙,它是利用砼构件排列在开挖过程中的土层表面,用锚杆进行背拉,这是一种可以与挖方工程同时进行作业的方式。 60年代出现了加筋土墙,一般在填方区如筑路、平整场地填方区域形成的挡土墙,在分层回填土方时分层铺放土工织物并于预制砼面板拉结,形成加筋土挡墙。70年代出现了土钉墙,1972年法国承包商在法国凡尔赛市铁路边坡开挖进行了成功应用。1979年巴黎国际土加固会议之后在西方得到广泛应用,1990年在美国召开的挡土墙国际学术会议上,土钉墙作为一个独立的专题与锚杆挡墙并列,使它成为一个独立的土加固学科分支 [编辑本段]4 土钉墙的特点与应用范围 土钉墙应用于基坑开挖支护和挖方边坡稳定有以下特点:(1)形成土钉复合体、显著提高边坡整体稳定性和承受边坡超载的能力。 (2)施工设备简单,由于钉长一般比锚杆的长度小的多,不加予应力所以设备简单。 (3)随基坑开挖逐层分段开挖作业,不占或少占单独作业时间,施工效率高,占用周期短。 (4)施工不需单独占用场地,对现场狭小,放坡困难,有相邻建筑物时显示其优越性。 (5)土钉墙成本费较其他支护结构显著降低。 (6)施工噪音、振动小,不影响环境。

可回收锚索施工方案样本

广州市某工程预应力可回收锚索 施工方案 1、概述 1.1本站概况: 广州市某工程位于广州市海珠区某路与某路交汇处, 北接某路, 东接某立交, 西接某南。车站为某线延长段和某线交汇站。其中: 某线起讫里程为YDK9+849.140~YDK10+006.890。车站总长157.75m, 标准段基坑深度25.3m、宽21.3m, 扩大段基坑深度26.3m, 基坑总面积约3645m2, 土方总开挖量约9.14万m3; 某线车站起讫里程某线YDK29+329.75~YDK29+475.950, 车站总长146.20m,标准段基坑深度约16.3m、长144m、宽20.7m, 扩大段基坑深度17.4m, 基坑总面积约3994m2, 土方总开挖量约6.5万m3。 车站总建筑面积21543㎡,包括车站主体结构, 7个出入口和3个风亭。其中: 某线车站建筑面积12532㎡( 主体10365㎡, 附属2167㎡) , 南北走向, 地下三层双柱三跨整体式现浇钢筋混凝土框架结构。某线车站建筑面积9011㎡( 主体6712㎡, 附属2299㎡) , 东西走向, 地下二层双柱三跨整体式现浇钢筋混凝土框架结构。 本站用锚索支护共为四处, 某线、某线各两处, 共设有锚索125条, 其中某线止水墙位置40条、某线左线37条( 含对锚5条) 、某线左线30条, 某线右线18条( 含对锚2条) , 锚索施工总长度为3312.7延长米, 其中一期工程1328延长米。 1.2岩土分层及其特性 某站的地层和岩层自上而下共分为九层: 1.人工填土; 2.淤泥质砂; 3.淤泥或淤泥质土、中、细砂; 4.冲洪积粉质粘土层; 5.残积层; 6.基岩全风化; 7.强风化: 8·中风化岩; 9.微风化岩。此次锚索施工涉及的是2---9层、淤泥质砂~微风化岩。各土层特性详细如下: 〈1〉杂填土、素填土: 杂色、棕红色、黄绿色、灰褐色、灰白色, 松散-稍密, 湿-稍湿。素填土的组成物主要为人工堆积的粉质粘土和中细砂碎石垫层; 杂填土混杂瓦片、砖块和混凝土碎块等建筑垃圾, 0.0~0.3m多为砼、沥青路面, 以下多为粘性土, 局

相关文档