文档库 最新最全的文档下载
当前位置:文档库 › 相似三角形的定义及其判定同步练习及答案

相似三角形的定义及其判定同步练习及答案

相似三角形的定义及其判定同步练习及答案
相似三角形的定义及其判定同步练习及答案

相似三角形的定义及其判定——典型题专项训练知识点 1 对相似三角形定义的理解

1.下列说法中错误的是( )

A.两个全等三角形一定相似

B.两个直角三角形一定相似

C.两个相似三角形的对应角相等,对应边成比例

D.相似的两个三角形不一定全等

2.已知△ABC∽△A′B′C′,且BC∶B′C′=AC∶A′C′,若AC=3,A′C′=4.5,则△A′B′C′与△ABC的相似比为( )

A.1∶3 B.3∶2 C.3∶5 D.2∶3

3.2017·贵阳期末一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则该三角形的最短边是( )

A.6 B.9 C.10 D.15

4.如图4-4-1,已知△ADE∽△ACB,且∠ADE=∠C,则AD∶AC等于( )

图4-4-1

A.AE∶AC

B.DE∶CB

C.AE∶BC

D.DE∶AB

5.若△ABC∽△A′B′C′,AB=2,BC=3,A′B′=1,则B′C′等于( )

A.1.5 B.3 C.2 D.1

6.如图4-4-2所示,已知△ABC∽△ADE,AD=6 cm,BD=3 cm,BC=9.9 cm,∠A =70°,∠B=50°.

求:(1)∠ADE的度数;

(2)∠AED的度数;

(3)DE的长.

图4-4-2

知识点 2 利用两角分别相等判定三角形相似

7.如图4-4-3所示的三个三角形,相似的是( )

图4-4-3

A.(1)和(2) B.(2)和(3)

C.(1)和(3) D.(1)和(2)和(3)

8.教材习题4.5第3题变式题如图4-4-4,在Rt△ABC中,CD是斜边AB上的高,则图中相似三角形有( )

A.0对 B.1对 C.2对 D.3对

图4-4-4

图4-4-5

9.如图4-4-5,添加一个条件:__________(写出一个即可),使△ADE∽△ACB.

10.将两块大小一样的含30°角的直角三角板叠放在一起,使得它们的斜边AB重合,直角边不重合(如图4-4-6),AC与BD相交于点E.连接CD,请写出图中的一对相似三角形,并加以证明.

图4-4-6

11.如图4-4-7,在?ABCD中,E是AD延长线上一点,BE交AC于点F,交DC于点G,则下列结论中错误的是

图4-4-7

( )

A.△ABE∽△DGE

B.△CGB∽△DGE

C.△BCF∽△EAF

D.△ACD∽△GCF

12.2016·贵阳期末如图4-4-8,△ABC中,DE∥BC,EF∥AB,则图中相似三角形的对数是( )

A.1 B.2 C.3 D.4

4-4-8

4-4-9

13.如图4-4-9,已知P是Rt△ABC的斜边BC上任意一点,若过点P作直线PD与直角边AB或AC相交于点D,截得的小三角形与△ABC相似,则点D的位置最多有________处.

14.如图4-4-10,在△ABC中,AB=AC,BD=CD,CE⊥AB于点E.求证:△ABD∽△CBE.

图4-4-10

15.如图4-4-11,△PMN是等边三角形,∠APB=120°,求证:AM·PB=PN·AP.

图4-4-11

16.如图4-4-12,点D在等边三角形ABC的BC边上,△ADE为等边三角形,DE与AC 相交于点F.

(1)求证:△ABD∽△DCF;

(2)除了△ABD∽△DCF外,请写出图中其他所有的相似三角形.

图4-4-12

17.如图4-4-13,在平面直角坐标系内,已知点A(0,6),点B(8,0).动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P,Q移动的时间为t秒.

(1)求直线AB的函数表达式;

(2)当t为何值时,△APQ与△AOB相似?并求出此时点P与点Q的坐标.

图4-4-13

相似三角形的判定——典型题专项训练知识点由三边成比例判定两三角形相似

图4-4-23

1.教材习题4.7第2题变式题如图4-4-23,每个小正方形的边长均为1,则下列图形(每个小正方形的边长均为1)中的三角形(阴影部分)与△ABC相似的是( )

图4-4-24

2.已知AB=12 cm,AC=15 cm,BC=21 cm,A1B1=16 cm,B1C1=28 cm,当A1C1=________ cm时,△ABC∽△A1B1C1.

3.已知△ABC的三边长分别为AB=6 cm,BC=7.5 cm,AC=9 cm,△DEF的三边长分别为DE=4 cm,EF=5 cm,DF=6 cm.求证:∠A=∠D.

4.已知△ABC的三边长分别为6 cm,7.5 cm,9 cm,△DEF的一边长为4 cm,当△DEF 的另两边长是下列哪一组时,这两个三角形相似( )

A.2 cm,3 cm B.4 cm,5 cm

C.5 cm,6 cm D.6 cm,7 cm

图4-4-25

5.如图4-4-25,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),

若以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是( ) A.(6,0) B.(6,3)

C.(6,5) D.(4,2)

6.如图4-4-26,在△ABC和△ADE中,ABAD=BCDE=ACAE,点B,D,E在一条直线上.求证:△ABD∽△ACE.

图4-4-26

7.如图4-4-27,在边长为1的小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,P1,P2,P3,P4,P5是△DEF边上的5个格点,请按要求完成下列各题:

(1)求证:△ABC为直角三角形;

(2)判断△ABC和△DEF是否相似,并说明理由;

(3)画一个三角形,使它的三个顶点为P1,P2,P3,P4,P5中的3个格点并且与△ABC相似(要求:不写作法与证明).

图4-4-27

1.B [解析] 因为每个小正方形的边长均为1,所以已知的三角形的各边长分别为2,2,10,B选项中的三角形三边长分别为1,2,5,三边与已知三角形的各边对应成比例,故两三角形相似.

2.20

3.证明:∵ABDE=64=32,BCEF=7.55=32,ACDF=96=32,

∴ABDE=BCEF=ACDF,∴△ABC∽△DEF,

∴∠A=∠D.

4.C [解析] 设△DEF的另两边的长分别为x cm,y cm,

若△DEF中为4 cm长的边的对应边为6 cm,则46=x7.5=y9,解得x=5,y=6;

若△DEF中为4 cm长的边的对应边为7.5 cm,则47.5=x6=y9,解得x=3.2,y=4.8;

若△DEF中为4 cm长的边的对应边为9 cm,则49=x6=y7.5,解得x=83,y=103.故选C.

5.B

6.证明:∵在△ABC和△ADE中,ABAD=BCDE=ACAE,

∴△ABC∽△ADE,

∴∠BAC=∠DAE,

∴∠BAD=∠CAE.

又∵ABAD=ACAE,

∴ABAC=ADAE,

∴△ABD∽△ACE.

7.解:(1)证明:∵AB2=20,AC2=5,BC2=25,

∴AB2+AC2=BC2,

∴△ABC为直角三角形,且∠BAC=90°.

(2)△ABC和△DEF相似.理由:

由(1)中数据得AB=2 5,AC=5,BC=5. 由题意易知DE=4 2,DF=2 2,EF=210,∴ABDE=ACDF=BCEF=10)4,

∴△ABC∽△DEF.

(3)如图,连接P2P5,P2P4,P4P5.

∵P2P5=10,P2P4=2,P4P5=2 2,

AB=2 5,AC=5,BC=5,

∴P2P5BC=P4P5AB=P2P4AC=10)5,

∴△ABC∽△P4P5P2.

详解

1.B 2.B

3.B [解析] 设与它相似的三角形的最短边的长为x,

∵一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,

∴x3=217,解得x=9.故选B.

4.B [解析] 根据相似三角形的定义可知,△ADE∽△ACB,且∠ADE和∠C是对应角,因此AD,AC与DE,CB对应成比例.

5.A [解析] ∵△ABC∽△A′B′C′,

∴ABA′B′=BCB′C′,即21=3B′C′,

解得B′C′=1.5.故选A.

6.解:(1)∵△ABC∽△ADE,

∴∠ADE=∠B=50°.

(2)在△ADE中,∠A+∠ADE+∠AED=180°,

∴∠AED=180°-70°-50°=60°.

(3)∵△ADE∽△ABC,

∴ADAB=DEBC,

即66+3=DE9.9,

∴DE=6.6(cm).

7.A

8.D [解析] ∵CD是斜边AB上的高,

∴∠ADC=∠BDC=90°.

∵∠CAD=∠BAC,

∴Rt△ACD∽Rt△ABC.

∵∠DBC=∠CBA,

∴Rt△ABC∽Rt△CBD,

∴Rt△CBD∽Rt△ACD.共有3对.故选D.

9.∠ADE=∠C(答案不唯一)

10.解:答案不唯一,如△ADE∽△BDA.

证明:∵∠CAB=30°,∠BAD=60°,

∴∠DAE=30°=∠DBA.

又∵∠ADE=∠BDA=90°,

∴△ADE∽△BDA.

11.D [解析] ∵四边形ABCD是平行四边形,

∴AB∥CD,

∴∠EDG=∠EAB.

又∵∠E=∠E,

∴△ABE∽△DGE;

∵AE∥BC,

∴∠EDG=∠BCG,∠E=∠CBG,

∴△CGB∽△DGE;

∵AE∥BC,

∴∠E=∠FBC,∠EAF=∠BCF,

∴△BCF∽△EAF.

第四个无法证得.故选D.

12.C [解析] ∵DE∥BC,EF∥AB,

∴∠ABC=∠ADE,∠AED=∠ACB,∠CEF=∠CAB,∠CFE=∠CBA,∴△ADE∽△ABC,△EFC∽△ABC,

∴△ADE∽△EFC.

∴图中相似三角形的对数是:3.

故选C.

13.3 [解析] ∵截得的小三角形与△ABC相似,∴过点P作AC的垂线,作AB的垂线,作BC的垂线,所截得的三角形均满足题意,则点D的位置最多有3处.

14.证明:∵在△ABC中,AB=AC,BD=CD,

∴AD⊥BC.

∵CE⊥AB,

∴∠ADB=∠CEB=90°.

又∵∠B=∠B,

∴△ABD∽△CBE.

15.证明:∵△PMN是等边三角形,

∴∠PMN=60°,PN=MP,

∴∠AMP=180°-∠PMN=120°=∠APB.

又∵∠A=∠A,

∴△AMP∽△APB,

∴AMAP=MPPB,

∴AM·PB=MP·AP,

∴AM·PB=PN·AP.

16.解:(1)证明:∵△ABC,△ADE均为等边三角形,

∴∠B=∠C=∠ADE=60°,

∴∠ADB+∠FDC=∠DFC+∠FDC,

∴∠ADB=∠DFC.

∴△ABD∽△DCF.

(2)∵∠C=∠E,∠AFE=∠DFC,

∴△AEF∽△DCF,

∴△ABD∽△AEF.

∵△ABC与△ADE均为等边三角形,

∴△ABC∽△ADE.

∵∠ADC=∠ADF+∠CDF=∠C+∠CDF=∠AFD,又∠DAF=∠CAD,

∴△ADF∽△ACD.

故除了△ABD∽△DCF外,图中的相似三角形还有:△AEF∽△DCF,△ABD∽△AEF,△ABC∽△ADE,△ADF∽△ACD.

17.解:(1)直线AB的函数表达式为y=-34x+6.

(2)在Rt△AOB中,由勾股定理得AB=10.

由题意,知AP=t,AQ=10-2t.可分两种情况讨论:

①当∠APQ=∠AOB时,有△APQ∽△AOB,得APAO=AQAB,解得t=3011,

此时,P\a\vs4\al\co1(0,\f(3611)),Q\a\vs4\al\co1(\f(403611).

②当∠AQP=∠AOB时,

有△APQ∽△ABO,

得APAB=AQAO,解得t=5013,

此时,P\a\vs4\al\co1(0,\f(2813)),Q\a\vs4\al\co1(\f(246013).

相似三角形的判定和应用

相似三角形的判定和应用 知识点: 1. 对应角________,对应边_________的两个三角形叫做相似三角形. 2. 相似三角形的对应角________,对应边_________. 3. 相似三角形中,对应边的比叫做___________(或相似系数). 4.证明两个三角形相似的方法: (1)先证_____组对应角相等. (2)先证两边对应成比例,并且____________. (3)先证三边对应___________. 5.如图1,如果ΔABC与ΔA/B/C/的相似比是AB∶A/B/=k,那么ΔA/B/C/与ΔABC的相似比是_ . 6.在图2和图3中: 要证明ΔADE∽ΔABC,只需先证明_________(填一个条件)。 7.在图3中,若DE∥BC,DB∶DA=9∶4,则ΔABC与ΔADE的相似比是______. 8.如图4, ABCD中,G是BC边延长线上一点,AG交DB、DC于E、F, 则图中的相似三角形共有_____对;若AE∶EF=4∶3则ΔAFD与ΔGFC的相似比是______. 9.如图5,当∠ADC=∠____时,ΔABC∽ΔACD;当A2=_________时,ΔABC∽ΔACD. 10. ΔABC的三边长为3、4、5,ΔA/B/C/的最短边为5,若ΔABC∽ΔA /B / C /,则ΔA/B/C/的面积为____. 一、选择题 1.如图,DE∥BC,EF∥AB,则图中相似三角形一共有() A.1对 B.2对 C.3对 D.4对 第1题第2题第3题第4题第5题 2.如图,P是Rt ABC △斜边AB上任意一点(A,B两点除外),过P点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作() A. 1条 B. 2条 C. 3条 D. 4条 3.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件不能使ΔABE和ΔACD相似的是() A. ∠B=∠C . ∠ADC=∠AEB C. BE=CD,AB=AC D. AD∶AC=AE∶AB 4.在矩形ABCD中,E、F分别是CD、BC上的点,若∠AEF=90°,则一定有() A ΔADE∽ΔAEF B ΔECF∽ΔAEF C ΔADE∽ΔECF D ΔAEF∽ΔABF 5.如图,E是□ABCD的边BC的延长线上的一点,连结AE交CD于F,图中有相似三角形() 1

18.5 相似三角形的判定 同步练习1(含答案)

18.5 相似三角形的判定 自主学习 主干知识←提前预习勤于归纳→ 认真阅读教材,完成下列各题 1.判定两个三角形全等的主要依据有哪些? 答案:主要有:边角边公理,角边角公理,角角边定理,边边边公理,若两个三角形为直角三角形,则还有“HL”定理. 2.判定两个三角形相似的主要依据有哪些? 答案:主要依据有:两角对应相等,两三角形相似;两边对应成比例且夹角相等,两三角形相似;三边对应成比例,两三角形相似. 3.平行于三角形一边的直线,截其他两边所得的三角形与原三角形______. 答案:相似 4.以下选项中不正确的是( ) A.所有的等边三角形都相似 B.含30°角的直角三角形都相似 C.所有的直角三角形都相似 D.顶角相等的两等腰三角形相似 答案:C 点击思维←温故知新查漏补缺→ 1.对于说法: ①都含有80°角的两个等腰三角形相似;②都含有100°角的两个等腰三角形相似. 下列结论正确的是( )

A.只有①对 B.只有②对 C.①、②均对 D.①、②均不对 答案:B 解析:对于①,如图所示,显然不相似.但对于②,由内角和定理知,显然100°的角只能是顶角,由判定定理可知,②是正确的. 2.一个钢筋三脚架A 的三边长分别是20 cm 、60 cm 、50 cm,现在要做一个与其相似的钢筋三脚架B,已知三脚架B 的一边长为30 cm,试确定三脚B 的另外两边长. 答案:解析:设三脚架B 的另外两边长分别为x cm ,y cm. (1)当30 cm 的边长为最长边时, 30605020==y x ,解得x=10 cm ,y=25 cm ; (2)当30 cm 的边长为最短边时,y x 60503020==,解得x=75 cm ,y=90 cm. (3)当30 cm 的边长为另外一条边时, y x 60305020==,解得x=12 cm ,y=36 cm ; 所以三脚架B 的另外两边长为10 cm ,25 cm ,或12 cm ,36 cm ,或75 cm,90 cm.

(完整版)相似三角形的判定方法

(一)相似三角形 1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形. ①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可; ②相似三角形的特征:形状一样,但大小不一定相等; ③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例. 2、相似三角形对应边的比叫做相似比. ①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例. ②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽ △ABC的相似比,当它们全等时,才有k=k′=1. ③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出. 3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形. 4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似. ①定理的基本图形有三种情况,如图其符号语言: ∵DE∥BC,∴△ABC∽△ADE; (双A型) ②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”; ③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”. (二)相似三角形的判定 1、相似三角形的判定: 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可简单说成:两角对应相等,两三角形相似。 例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.

教案:4.4 两个相似三角形的判定(2)

4.4两个相似三角形的判定(2) 教学目标: 1、经历三角形相似的判定方法“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”的探索过程. 2、掌握“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”的两个三角形相似的判定方法. 3、能运用上述两个判定方法判定两个三角形相似. 重点与难点: 1、本节教学的重点是相似三角形的判定方法“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”及其应用. 2、例3的解答首先要选择用什么判定方法,然后利用方格进行计算,根据计算结果来判断两个三角形的三边是否对应成比例,需要学生有一定的分析、判断和计算能力,是本节教学的难点. 知识要点: 三角形相似的条件: 1、有两个角对应相等的两个三角形相似. 2、两边对应成比例,且夹角相等的两个三角形相似. 3、三边对应成比例的两个三角形线相似. 重要方法: 1、利用两对对应角相等证相似,关键是找出两对对应角. 2、三边对应成比例的两个三角形相似中,三边对应是有序的即:大

C 对大,小对小,中对中. 3、两边对应成比例且夹角相等的两个三角形相似,一定要弄清边与角的位置关系.即边是指夹角的两边,角是成比例的两边的夹角. 4、在相似三角形条件(3)中,如果对应相等的角不是两条对应边的夹角,那么这两个三角形不一定相似,如在图4-3-14△ABC 中,AB =AC ,∠A =120°,在△A ′B ′C ′中,A ′B ′=A ′C ′,∠A ′=30°,可以说AB ∶A ′B ′=AC ∶A ′C ′,∠B =∠A ′,但两个三角形不相似. 教学过程: 一、复习 1、我们已经学习了几种判定三角形相似的方法?(1)平行于三角形一边直线定理 ∵DE ∥BC ,∴△ADE ∽△ABC (2 ∠A ′,∠B=∠B ′,∴△ABC ∽△A ′B ′C ′(3 ∵∠ACB=Rt ∠,CD ⊥AB ,∴△ABC ∽△ACD ∽△CDB 二、新课 1、合作学习 A B C A ′ B ′ C ′ 4-3-14

人教版数学九年级下册 第二十七章 相似 27.2.1 相似三角形的判定 同步练习附答案学生版

人教版数学九年级下册 第二十七章 相似 27.2.1 相似三角形的判定 同步练 习 一、单选题(共9题;共18分) 1.如图,在 中, , , ,将 沿图示中的虚线 剪开, 剪下的三角形与原三角形不. 相似的是( ) A. B. C. D. 2.下列各组长度的线段(单位: )中,成比例线段的是( ) A. 1,2,3,4 B. 1,2,3,5 C. 2,3,4,5 D. 2,3,4,6 3.已知四条线段a,b,c,d 是成比例线段,即 = ,下列说法错误的是( ) A. ad=bc B. = C. = D. = 4.下列判断中,错误的有( ) A. 三边对应成比例的两个三角形相似 B. 两边对应成比例,且有一个角相等的两个三角形相似 C. 有一个锐角相等的两个直角三角形相似 D. 有一个角是100°的两个等腰三角形相似 5.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,AD :BD=5:3,CF=6,则DE 的长为( ) A. 6 B. 8 C. 10 D. 12 6.下列条件中,不能判断△ABC 与△DEF 相似的是( ) A. ∠A =∠D , ∠B =∠F B. 且∠B =∠D C. D. 且∠A =∠D 7.如图所示,在?ABCD.BE 交AC ,CD 于G ,F ,交AD 的延长线于E ,则图中的相似三角形有( )

A. 3对 B. 4对 C. 5对 D. 6对 8.如图,下列条件中不能判定△ACD∽△ABC的是() A. ∠ADC=∠ACB B. C. ∠ACD=∠B D. AC2=AD?AB 9.如图,AG:GD=4:1,BD:DC=2:3,则AE:EC 的值是() A. 3:2 B. 4:3 C. 6:5 D. 8:5 二、填空题(共4题;共4分) 10.如图,在△ABC中,D,E两点分别在AB,AC边上,DE∥B C.如果,AC=10,那么EC =________. 11.如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=________时,△CPQ与△CBA相似. 12.的边长分别为的边长分别,则与________(选填“一定”“不一定” “一定不”)相似 13.如图所示,在△ABC中,已知BD=2DC,AM=3MD,过M作直线交AB,AC于P,Q两点.则 =________.

《相似三角形的判定预备定理-》

相似三角形的判定——预备定理 【教学目标】 知识技能:掌握用相似三角形的定义和预备定理判断两个三角形相似 过程方法:在探索相似三角形判定定理过程中,体现解决问题的方法 情感态度:在探索相似图形的性质过程中,培养学生与他人交流、合作的意识和品质. 【教学重点】预备定理的证明与应用 【教学难点】预备定理的证明 【教学过程】 一.复习引入 活动1 。 回顾相似三角形的定义,定义既是判定也是性质;平行线分线段成比例 出示问题:如图,DE 学生猜想:相似。能得到△ADE ∽△ABC 吗 教师活动:教师出示并提出问题,组织学生思考. (1)△ADE 与△ABC 满足“对应角相等”吗为什么 (2)△ADE 与△ABC 满足对应边成比例吗由“DE ∥BC ”的条件可得到哪些线段的比相等 (3)根据以前学习的知识如何把DE 移到BC 上去(作辅助线DF ∥AC ) 学生活动:学生小组讨论:要证△ADE ∽△ABC 只需证∠A=∠A ,∠B=∠2,∠C=∠3←——由平行得 =AD AE DE AB AC BC ? =?? 由DE ∥BC 得 相似定义 只需证出:DE AD BC AB =或DE AE BC AC = 由于DE 、BC 不在同一直线上,故可以通过做辅助线平移DE ,将DE 、BC 放在同一直线上 ; 证明: 过D 点作DF ∥AC 交BC 于F ∵DE ∥BC ,DF ∥AC ∴四边形DFCE 是□ ∴DE=CF ∵DF ∥AC ∴CF AD BC BD = ∴DE AD BC BD = ∵DE ∥BC ∴ = AD AE BD AC ∵DE ∥BC ∴∠A=∠A ,∠1=∠B ,∠2=∠C ∴△ADE ∽△ABC BC DE AC AE AB AD = =∴ B

相似三角形知识点总结

相似三角形知识点总结 1. 比例线段的有关概念: 在比例式 ::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2 =AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质: a b c d ad bc =?= ②合比性质:±±a b c d a b b c d d =? = ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0 3. 平行线分线段成比例定理: ①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。 则 ,,,…AB BC DE EF AB AC DE DF BC AC EF DF === ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比 例。 ③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。 4. 相似三角形的判定: ①两角对应相等,两个三角形相似 ②两边对应成比例且夹角相等,两三角形相似 ③三边对应成比例,两三角形相似 ④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似 ⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 ⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

相似三角形的判定方法

相似三角形的判定方法 证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。 方法一(预备定理) 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;(这是相似三角形判定的引理,是以下判定方法证明的基础。这个引理的证明方法需要平行线分线段成比例的证明) 方法二 如果一个三角形的两个角与另一个三角形的两个角对应相等, 那么这两个三角形相似 方法三 如果两个三角形的两组对应边的比相等,并且相应的夹角相等, 那么这两个三角形相似 方法四 如果两个三角形的三组对应边的比相等,那么这两个三角形相似 方法五(定义) 对应角相等,对应边成比例的两个三角形叫做相似三角形 一定相似的三角形 1.两个全等的三角形一定(肯定)相似。 2.两个等腰直角三角形一定(肯定)相似 (两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。) 3.两个等边三角形一定(肯定)相似。 直角三角形相似判定定理 1.斜边与一条直角边对应成比例的两直角三角形相似。 2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。 编辑本段三角形相似的判定定理推论 推论一:顶角或底角相等的两个等腰三角形相似。推论二:腰和底对应成比例的两个等腰三角形相似。推论三:有一个锐角相等的两个直角三角形相似。推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

相似三角形的判定定理2

A B C A 1 B 1 C 1 A B C D O 1、 相似三角形判定定理2 如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似. 可简述为:两边对应成比例且夹角相等,两个三角形相似. 如图,在ABC ?与111A B C ?中,1A A ∠=∠,1111 AB AC A B AC = ,那么ABC ?∽111A B C ?. 【例1】 如图,四边形ABCD 的对角线AC 与BD 相交于点O , 2OA =,3OB =,6OC =,4OD =. 求证:OAD ?与OBC ?是相似三角形. 相似三角形判定定理2 知识精讲

A B C D A B C D E 【例2】 如图,点D 是ABC ?的边AB 上的一点,且2AC AD AB =g . 求证:ACD ?∽ABC ?. 【例3】 如图,在ABC ?与AED ?中, AB AC AE AD = ,BAD CAE ∠=∠. 求证:ABC ?∽AED ?. 【例4】 下列说法一定正确的是( ) A .有两边对应成比例且一角相等的两个三角形相似 B .对应角相等的两个三角形不一定相似 C .有两边对应成比例且夹角相等的两个三角形相似 D .一条直线截三角形两边所得的三角形与原三角形相似 【例5】 在ABC ?和DEF ?中,由下列条件不能推出ABC ?∽DEF ?的是( ) A .A B A C DE DF = ,B E ∠=∠ B .AB AC =,DE DF =,B E ∠=∠ C .AB AC DE DF = ,A D ∠=∠ D .AB AC =,DE DF =,C F ∠=∠

相似三角形分类整理(超全)

第一节:相似形与相似三角形 基本概念: 1.相似形:对应角相等,对应边成比例的两个多边形,我们称它们互为相似形。 相似三角形:对应角相等,对应边成比例的两个三角形,叫做相似三角形。 1.几个重要概念与性质(平行线分线段成比例定理) (1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 已知a ∥b ∥c, A D a B E b C F c 可得 EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或 等. (2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. A D E B C 由DE ∥BC 可得:AC AE AB AD EA EC AD BD EC AE DB AD = ==或或.此推论较原定理应用更加广泛,条件是平行. (3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. 此定理给出了一种证明两直线平行方法,即:利用比例式证平行线. (4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例. (5)①平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。 ②比例线段:四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即b a =d c ,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段。 2.比例的有关性质 ①比例的基本性质:如果 d c b a =,那么ad=b c 。如果ad=bc (a ,b ,c , d 都不等于0),那么 d c b a =。 ②合比性质:如果 d c b a =,那么d d c b b a ±=±。

九下 相似三角形4种判定方法 知识点+模型+例题+练习 (非常好 分类全面)

①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。 则,,,…AB BC DE EF AB AC DE DF BC AC EF DF === ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。 ③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。 ○4推论:如果一条直线平行于三角形的一条边,截其它两边(或其延长线),那么所截得的三角形与原三角形相似.推论○4的基本图形有三种情况,如图其符号语言:∵DE ∥BC ,∴△ABC ∽△ADE ; 知识点二、相似三角形的判定

判定定理1:两角对应相等,两三角形相似. 符号语言: 拓展延伸: (1)有一组锐角对应相等的两个直角三角形相似。 (2)顶角或底角对应相等的两个等腰三角形相似。 例题1.如图,直线DE 分别与△ABC 的边AB 、AC 的反向延长线相交于D 、E ,由ED ∥BC 可以推出 AD AE BD CE = 吗?请说明理由。(用两种方法说明) 例题2.(射影定理)已知:如图,在△ABC 中,∠BAC=90°,AD ⊥BC 于D. 求证:(1)2AB BD BC =?;(2)2AD BD CD =?;(3)CB CD AC ?=2 例题3.如图,AD 是Rt ΔABC 斜边BC 上的高,DE ⊥DF ,且DE 和DF 分别交AB 、AC 于E 、F.则 BD BE AD AF =例题精讲 A E D B C A B C D

吗?说说你的理由. 例题4.如图,在平行四边形ABCD 中,已知过点B 作BE ⊥CD 于E,连接AE ,F 为AE 上一点,且∠BFE=∠C (1) 求证:△ABF ∽△EAD ; (2)若AB=4,∠BAE=30°,求AE 的长;3分之8倍根号3 (3)在(1)(2)条件下,若AD=3,求BF 的长。 2分之3倍根号3 随练: 一、选择题 1.如图,△ABC 经平移得到△DEF ,AC 、DE 交于点G ,则图中共有相似三角形( )D A . 3对 B . 4对 C . 5对 D . 6对 2.如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )C A D C B E F G F E D C B A

相似三角形的定义及其判定同步练习及答案

相似三角形的定义及其判定——典型题专项训练知识点 1 对相似三角形定义的理解 1.下列说法中错误的是( ) A.两个全等三角形一定相似 B.两个直角三角形一定相似 C.两个相似三角形的对应角相等,对应边成比例 D.相似的两个三角形不一定全等 2.已知△ABC∽△A′B′C′,且BC∶B′C′=AC∶A′C′,若AC=3,A′C′=4.5,则△A′B′C′与△ABC的相似比为( ) A.1∶3 B.3∶2 C.3∶5 D.2∶3 3.2017·贵阳期末一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则该三角形的最短边是( ) A.6 B.9 C.10 D.15 4.如图4-4-1,已知△ADE∽△ACB,且∠ADE=∠C,则AD∶AC等于( ) 图4-4-1 A.AE∶AC B.DE∶CB C.AE∶BC D.DE∶AB 5.若△ABC∽△A′B′C′,AB=2,BC=3,A′B′=1,则B′C′等于( ) A.1.5 B.3 C.2 D.1 6.如图4-4-2所示,已知△ABC∽△ADE,AD=6 cm,BD=3 cm,BC=9.9 cm,∠A =70°,∠B=50°.

求:(1)∠ADE的度数; (2)∠AED的度数; (3)DE的长. 图4-4-2 知识点 2 利用两角分别相等判定三角形相似 7.如图4-4-3所示的三个三角形,相似的是( ) 图4-4-3 A.(1)和(2) B.(2)和(3) C.(1)和(3) D.(1)和(2)和(3) 8.教材习题4.5第3题变式题如图4-4-4,在Rt△ABC中,CD是斜边AB上的高,则图中相似三角形有( ) A.0对 B.1对 C.2对 D.3对 图4-4-4 图4-4-5 9.如图4-4-5,添加一个条件:__________(写出一个即可),使△ADE∽△ACB.

初三相似三角形的判定培优同步讲义

初三相似三角形的判定培优同步讲义 学科教师辅导讲义 体系搭建 一、知识框架 二、知识概念 (一)相似三角形的概念 对应角相等,对应边之比相等的三角形叫做相似三角形. 1、相似三角形是相似多边形中的一种; 2、应结合相似多边形的性质来理解相似三角形; 3、相似三角形应满足形状一样,但大小可以不同; 4、母子型:已知∠ACB=90°,AB ⊥CD ,则△CBD ∽△ABC ∽△ACD . 5、斜交型: 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。 (有“反 A 共 角型”、“反 A 共角共边型”、 “蝶型”)b5E2RGbCAP 6、垂直型:有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂 直型”) 考点 1:三角形相似判定方法的运用 例 1、如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于点 D ,则图中相似三角形共有( ) A .1 对 B .2 对 C .3 对 D .4 对 p1EanqFDPw 例 2、如图,下列条件不能判定△ADB ∽△ABC 的是( ) A .∠ABD=∠ACB B .∠ADB=∠ABCDXDiTa9E3d C .AB 2 =AD?AC D .= 典例分析 A B C D A B C D E 12 A

A B B C C D D E E 124 1 2 E C B D A B C D E A E
( )
A D C B 例 3、已知:在梯形 ABCD 中,AD∥BC,∠ABC=90°,BC=2AD,E 是 BC 的中点,连接 AE、 AC.RTCrpUDGiT (1)点 F 是 DC 上一点,连接 EF,交 AC 于点 O(如图 1),求证:△AOE∽△COF; (2)若点 F 是 DC 的中点,连接 BD,交 AE 与点 G(如图 2),求证:四边形 EFDG 是菱形. 例 4、如图,在△ABC 中,AB=AC=1,BC=,在 AC 边上截取 AD=BC,连接 BD. (1)通过计算,判断 AD2 与 AC?CD 的大小关系; (2)求∠ABD 的度数. 考点 2:网格图中相似三角形的判定 例 1、下列四个三角形中,与图中的三角形相似的是() A.B.C.D. 实战演练 课堂狙击 1、下列命题中,是真命题的为() A.锐角三角形都相似

初中数学 27.2.1 相似三角形的判定(1)教案

课题 27.2.1相似三角形的判定(一)【总第3课时】 教学任务分析 活道镇初级中学 陆炳泉 教学目的: (1) 会用符号“∽”表示相似三角形如△ABC ∽ △C B A '''; (2) 知道当△ABC 与△C B A '''的相似比为k 时,△C B A '''与△ABC 的相似比为1/k . (3) 理解掌握平行线分线段成比例定理 (4) 在平行线分线段成比例定理探究过程中,让学生运用“操作—比较—发现—归纳”分析 问题. (5) 在探究平行线分线段成比例定理过程中,培养学生与他人交流、合作的意识和品质. 重点、难点 教学重点: 理解掌握平行线分线段成比例定理及应用. 教学难点: 掌握平行线分线段成比例定理应用. 一. 创设情境 谈话复习引入课题 (1)相似多边形的主要特征是什么? (2)在相似多边形中,最简单的就是相似三角形. 在△ABC 与△A′B′C′中, 如果△A=△A ′, △B=△B ′, △C=△C ′, 且k A C CA C B BC B A AB =' '=''=''. 我们就说△ABC 与△A ′B ′C ′相似,记作△ABC△△A ′B ′C ′,k 就是它们的相似比. 反之如果△ABC△△A ′B ′C ′, 则有△A=△A ′, △B=△B ′, △C=△C ′, 且A C CA C B BC B A AB ' '=''=''. (3)问题:如果k=1,这两个三角形有怎样的关系? 教师活动:明确 (1)在相似多边形中,最简单的就是相似三角形。 (2)用符号“∽”表示相似三角形如△ABC ∽ △C B A '''; (3)当△ABC 与△C B A '''的相似比为k 时,△C B A '''与△ABC 的相似比为1/k . 活动1 (教材P 40页 探究1) 如图27.2-1),任意画两条直线l 1 , l 2,再画三条与l 1 , l 2 相交的平行线l 3 , l 4, l 5.分别量度l 3 , l 4, l 5.在l 1 上截得的两条线段AB, BC 和在l 2 上截得的两条线段DE, EF 的长度, AB ︰B C 与DE ︰EF 相等吗?任意平移l 5 , 再量度AB, BC, DE, EF 的长度, AB ︰B C 与DE ︰EF 相等吗?

相似三角形 说课稿

[北师大版实验教材八年级下册第四章第五节] 相似三角形 一、教材分析 1.教材的地位和作用 本节“相似三角形”是北师大版实验教材八年级下册第四章第五节的内容,在此之前学生已经学习了相似多边形,知道了相似多边形的本质特征,为学习本节内容做了铺垫。本节课旨在由一般到特殊引出相似三角形的概念,并应用这一概念解决一些实际问题,为下一步学习相似三角形的判定定理做感性和理性的准备,因此本节课具有承前启后的联系和纽带作用。同时本节内容的教学对整章学习掌握起着奠基作用,也为学生今后在学习和生活中更好的用数学作准备,因而它在本章的学习中占有重要地位。 2.教学目标 2.1知识与技能目标:使学生了解两个三角形相似的概念,学会利用相似三角形解决一些实际问题,在实际应用中加深对相似三角形的认识和理解。培养学生的抽象思维能力和解决实际问题的能力。 2.2过程与方法目标:在相似三角形概念及性质的学习过程中,引导学生对问题观察、分析、归纳、猜想,养成良好的思维习惯。通过将相似三角形与全等三角形有关知识的对比学习,渗透类比的思想方法。 2.3情感态度与价值观目标:通过本节内容教学,使学生认识数学与生活的密切联系,体验在数学学习活动中探索与创造的乐趣,通过合作交流学习,培养他们的团队合作精神,增强学习数学的兴趣和信心。 3.教学重点、难点 3.1重点:相似三角形的概念及初步应用。这两项之所以成为重点,首先是由本节教材的地位和作用所决定的。其次,《数学课程标准》明确要求要使学生了解两个三角形相似的概念,并利用相似三角形解决一些实际问题。 3.2难点:相似比的概念及对应边的确定。由相似三角形写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,学生经

完整版相似三角形的判定方法

(一)相似三角形 1定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形. ①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可; ②相似三角形的特征:形状一样,但大小不一定相等; ③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例. 2、相似三角形对应边的比叫做相似比. ①全等三角形一定是相似三角形,其相似比k=1 ?所以全等三角形是相似三角形的特例?其 区别在于全等要求对应边相等,而相似要求对应边成比例. ②相似比具有顺序性.例如△ ABC A B,的对应边的比,即相似比为k,则△ A B' 0 △ ABC的相似比「当它们全等时,才有k=k' =1 ③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小 的倍数,这一点借助相似三角形可观察得出. 3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形. 4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似. ①定理的基本图形有三种情况,如图其符号语言: ?/ DE // BC ,???△ ABC ADE ; ②这个定理是用相似三角形定义推导出来的三角形相似的判定定理. 它不但本身有着广泛的 应用,同时也是证明相似三角形三个判定定理的基础,故把它称为预备定理”; ③有了预备定理后,在解题时不但要想到见平行,想比例”,还要想到见平行,想相似 (二)相似三角形的判定 1、相似三角形的判定: 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角 形相似。可简单说成:两角对应相等,两三角形相似。 例1、已知:如图,/ 仁/ 2=7 3,求证:△ AB(0A ADE A (双A型)

相似三角形的判定(二)

3.3 相似三角形的判定(二) 一、教学目标 1.掌握“三组对应边的比相等的两个三角形相似”、“两组对应边的比相等且它们夹角相等的两个三角形相似”的判定定理. 2.经历探索两个三角形相似条件的过程,体验画图操作、类比猜想、分析归纳得出数学结论的过程; 3.能够运用三角形相似的条件解决简单的问题; 4.通过问题的探索过程,培养学生获得数学猜想的经验,激发学生探索知识的兴趣。 二、重点、难点 1.重点:掌握两种判定定理,会运用两种判定方法判定两个三角形相似. 2.难点:(1)三角形相似的条件归纳、证明; (2)会准确的运用两个三角形相似的条件来判定三角形是否相似. 三、教学过程 (一)复习已学过的知识 问题:(1) 判断两个三角形相似,你有哪些方法? 方法1:通过定义(不常用) 方法2:通过平行线(条件特殊,使用起来有局限性) (2) 思考:有没有其它简单的办法判断两个三角形相似? (3) 全等三角形与相似三角形有怎样的关系? 设计意图: 引导学生复习学过的知识,承前启后,激发学生学习新知的欲望。 (二)类比联想、猜想相似三角形的判定方法。 (1)问题:判定一般三角形全等有哪些判定方法? (2)由全等三角形是相似三角形的特例,启发我们类比全等三角形的判定方法猜想相 设计意图: 回顾三角形全等条件,用类比展开思维,按顺序展开探究。三、证明猜想,形成定理 1.猜想一:类比三角形全等的SSS判定方法,我们会想如果一个三角形的三条边与另一个三角形的三条对应边的比相等,那么能否判定这两个三角形相似呢? 2.带领学生画图探究: (1)任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边的k倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗? (2)教师借助几何画板对两个三角形三组对应角进行度量,对猜想结论得到数据准确的验证,初步形成结论。 (3)学生口述命题:如果两个三角形的三组对应边的比相等,那么这两个三角形相似。3.怎样证明这个命题是正确的呢? (命题是否正确,需要理论严谨的证明,教师带领学生探求证明方法) 如图,在ABC ?和' ' 'C B A ?中, ' ' ' ' ' 'C A AC C B BC B A AB = =, 求证:ABC ?∽' ' 'C B A ? 分析:(1)要证两个三角形相似,目前只有两个途径。一个是三角形相似的定义(显然条件不具备);二个是上节课学习的利用平行线来判定三角形相似的定理。为了使用它,就必须创造具备定理的基本图形的条件。怎样创造呢? (2)学生会想到把小的三角形移动到大的三角形上,然而如何实现平移呢? (3)引导学生整理证明思路,教师板书证明过程。 证明:在线段' 'B A(或它的延长线)上截取AB D A= ',过点D作DE∥' 'C B,交' 'C A 于点E,根据前面的定理可得DE A' ?∽' ' 'C B A ?. ' ' ' ' ' ' ' ' C A E A C B DE B A D A = = ∴. , ' ' ' ' ' ' ' AB D A C A AC C B BC B A AB = = =, 又 . ' ' ' ' ' C A AC C A E A = ∴ . 'AC E A= ∴ 同理 DE=BC. DE A' ? ∴≌ABC ?. ABC ? ∴∽' ''C B A ?. 4.命题改成定理 三角形相似的判定方法 1 如果两个三角形的三组对应边的比相等,那么这两个三角形相似.

数学:24.2《相似三角形的判定》同步练习(沪科版九年级上)

24.2相似三角形的判定 第1题. 如图,AC BD ⊥,垂足为C ,过D 点作DF AB ⊥,垂足为F ,交AC 于E 点.请找出图中所有的相似三角形,并说明理由. 答案:解:(1)因为90A A AFE ACB ∠=∠∠=∠=, 所以AFE ACB △∽△. (2)因为90AEF DEC AFE DCE ∠=∠∠=∠=,, 所以AFE DCE △∽△. 所以A D ∠=∠. (3)因为A D ∠=∠,90AFE DFB ∠=∠=, 所以AFE DFB △∽△. (4)因为D A ∠=∠,90DCE ACB ∠=∠=, 所以DCE ACB △∽△. (5)因为D A ∠=∠,90DFB ACB ∠=∠=, 所以DFB ACB △∽△. (6)因为D A ∠=∠,90DCE DFB ∠=∠=, 所以DCE DFB △∽△. 知识点:三角形相似的条件 试题类型:运算题 试题难度:容易 考查目标:基本技能 第2题.如图,一艘军舰从点A 向位于正东方向的C 岛航行,在点A 处测得B 岛在其北偏东75,航行75nmile 到达点D 处,测得B 岛在其北偏东15,继续航行5n mile 到达C 岛,此时接到通知,要求这艘军舰在半小时内赶到正北方向的B 岛执行任务,则这艘军舰航行 速度至少为多少时才能按时赶到B 岛? 答案:解:根据题意,可得1590A CBD BCD ACB ∠=∠=∠=∠=,. 所以.BCD ACB △∽△ 由相似三角形对应边成比例,得 BC AC DC BC =,即80 5BC BC =. A F B C D E A D

所以2 40020BC BC ==,. 要求军舰在半小时内赶到正北方向的B 岛执行任务,因此航行速度至少是 200.540=÷(n mile/h) 知识点:三角形相似的条件 试题类型:应用题 试题难度:中等 考查目标:双基简单应用 第3题. 如图,点E C 、分别在AB AD 、上,BC 与DE 相交于一点O ,若B D ∠=∠, 则图中相似三角形有几对?分别写出来说明理由. 答案:2对BAC DAE BOE DOC △∽△,△∽△.理由略 知识点:三角形相似的条件 试题类型:运算题 试题难度:容易 考查目标:基本技能 第4题. 如图,已知:3:4DE BC AD DB =∥,,若5DE =cm ,求BC 的长. 答案: 35 3 cm 知识点:三角形相似的条件 试题类型:运算题 试题难度:中等 考查目标:基本技能 第5题. 如图,已知ABC ACB ∠=∠,若3AD =cm ,7AB =cm ,试求AC 的长. 21cm 知识点:三角形相似的条件 试题类型:运算题 试题难度:中等 考查目标:基本技能 第6题. 如图,4cm 9cm 5cm 12cm AO DO AB BC O ====,,,,为BC 的中点,求 CDO △的周长. 答案:解:由12cm BC =,O 为BC 的中点,得 6BO CO ==cm . 由4cm 9cm AO DO ==,,得 2 3 AO BO CO DO ==. 因为两边对应成比例且夹角相等的两个三角形相似, 所以AOB COD △∽△. 由相似三角形对应边成比例,得 AB AO CD CO =,即52 3 CD =. A C O D B E A D E C B A D C A B O C

相似三角形分类整理(超全)上课讲义

相似三角形分类整理 (超全)

第一节:相似形与相似三角形 基本概念: 1.相似形:对应角相等,对应边成比例的两个多边形,我们称它们互为相似形。 相似三角形:对应角相等,对应边成比例的两个三角形,叫做相似三角形。 1.几个重要概念与性质(平行线分线段成比例定理) (1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 已知a ∥b ∥c, A D a B E b C F c 可得EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB = ====或或或或 等. (2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. A D E B C 由DE ∥BC 可得: AC AE AB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行. (3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. 此定理给出了一种证明两直线平行方法,即:利用比例式证平行线. (4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例. (5)①平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。 ②比例线段:四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即b a =d c ,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段。 2.比例的有关性质 ①比例的基本性质:如果 d c b a =,那么ad=b c 。如果ad=bc (a ,b ,c , d 都不等于0),那么 d c b a =。

浙教版-数学-九年级上册-4.4 两个相似三角形的判定(2) 教案

两个相似三角形的判定(2) 教学目标: 1、经历三角形相似的判定方法“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”的探索过程. 2、掌握“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”的两个三角形相似的判定方法. 3、能运用上述两个判定方法判定两个三角形相似. 重点与难点: 1、本节教学的重点是相似三角形的判定方法“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”及其应用. 2、例3的解答首先要选择用什么判定方法,然后利用方格进行计算,根据计算结果来判断两个三角形的三边是否对应成比例,需要学生有一定的分析、判断和计算能力,是本节教学的难点. 知识要点: 三角形相似的条件: 1、有两个角对应相等的两个三角形相似. 2、两边对应成比例,且夹角相等的两个三角形相似. 3、三边对应成比例的两个三角形线相似. 重要方法: 1、利用两对对应角相等证相似,关键是找出两对对应角. 2、三边对应成比例的两个三角形相似中,三边对应是有序的即:大对大,小对小,中对中. 3、两边对应成比例且夹角相等的两个三角形相似,一定要弄清边与角的位置关系.即边是指夹角的两边,角是成比例的两边的夹角. 4、在相似三角形条件(3)中,如果对应相等的角不是两条对应边的夹角,那么这两个三角形不一定相似,如在图4-3-14△ABC 中,AB =AC ,∠A =120°,在△A ′B ′C ′中,A ′B ′ =A ′C ′,∠A ′=30°,可以说AB ∶A ′B ′=AC ∶A ′C ′,∠ B =∠A ′,但两个三角形不相似. A B C A ′ B ′ C ′

相关文档
相关文档 最新文档