文档库 最新最全的文档下载
当前位置:文档库 › 电子封装与微组装密封技术发展

电子封装与微组装密封技术发展

电子封装与微组装密封技术发展
电子封装与微组装密封技术发展

电子工艺技术

Electronics Process Technology

2011年7月197

第32卷第4期电子封装与微组装密封技术发展

王俊峰

(中国电子科技集团公司第二研究所,山西 太原 030024)

摘 要:近年来,电子封装和微组装技术进入了超高速发展时期,新的封装和组装形式不断涌现,而其标准化工作已经严重滞后,导致概念上的模糊,这必然会对该技术的发展造成影响。力求将具有电子行业特点的电子封装和微组装密封的内涵和特点加以诠释,并对其发展提出见解和建议,以促进该技术的发展。

关键词:电子封装;微组装;电子制造

中图分类号:TN605 文献标识码:A 文章编号:1001-3474(2011)04-0197-05

Development of Electronic Packaging and Micro-assembly

WANG Jun-feng

(CETC No.2 Research Institute, Taiyuan 030024, China)

Abstract: Electronic packaging and micro-assembly technologies have entered into a developing period recently. New forms of packaging and micro-assembly are continuously emerging. But a difficulty has cropped up at standardization, leading to ambiguous concept. It will affect development of the technology. By integrating the annotation and feature of electronic packaging and micro-assembly, give out some advices and opinions, in order to promote development of microelectronics technology.

Key words: Electronic packaging; Micro-assembly; Electronic manufacture Document Code: A Article ID: 1001-3474(2011)04-0197-05

近30年来,随着信息技术的飞速发展,微电子技术的发展一直遵循摩尔定律和按比例缩小原理,即每隔三年芯片的集成度翻两翻(增加4倍),特征尺寸缩小三分之一。从而带动电子封装与微组装技术也相应得到快速的发展。进入21世纪,电子封装和微组装进入了超高速发展的时期,新的封装和组装形式不断涌现,而其标准化工作已经严重滞后,导致概念上的模糊,甚至连名词的统一都出现困难。长久以往,必然会对该技术的发展造成影响。本文力求将具有电子行业特点的电子封装和微组装密封的内涵、特点加以诠释,并对电子封装和微组装技术的发展提出我们的意见和见解,以促进技术的发展。

1 定义与内涵

1.1 国内外基本情况

国外通常把封装分为4级,即零级封装、一级封装、二级封装和三级封装:零级封装指芯片级的连接;一级封装指单芯片或多芯片组件或元件的封装;二级封装指印制电路板级的封装;三级封装指整机的组装。由于导线和导电带与芯片间键合焊接技术大量应用,一、二级封装技术之间的界限已经模糊了。

国内基本上把相对应国外零级和一级的封装形式也称之为封装,一般在元器件研制和生产单位完成。把相对应国外二级和三级的封装形式称之为电子组装,大多在电子整机单位实现。1.2 电子封装的定义和内涵

电子封装工艺技术指将一个或多个芯片包封、连接成电路器件的制造工艺。其作为衔接芯片与系统的重要界面,也是器件电路的重要组成部分,已从早期的为芯片提供机械支撑、保护和电热连接

作者简介:王俊峰(1971- ),男,毕业于西安电子科技大学,工程师,主要从事电子制造技术的研究与开发工作。

电子工艺技术

Electronics Process Technology2011年7月198

功能,逐渐融入到芯片制造技术和系统集成技术之中,目前已经发展到新型的微电子封装工艺技术,推动着一代器件、电路并牵动着整机系统的小型化和整体性能水平的升级换代,电子封装工艺对器件性能水平的发挥起着至关重要的作用。

电子封装是为电子产品提供合适环境的技术,它在一段时间内为电子产品提供可靠性。封装也可以说是安装半导体集成电路芯片用的外壳,它不仅起着安放、固定、密封、保护芯片和增强导热性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁。对于很多电子产品而言,封装技术都是非常关键的一环。电子封装通常有五个主要功能,即电源分配、信号分配、散热通道、机械支撑和环境保护。

电源分配:能接通电源,使芯片和电路之间通电流,对电源和接地线分布要考虑恰当;

信号分配:为使电信号传输延迟尽可能小,布线路径应达最短,对于高频信号还应考虑串扰,进行合理的信号及接地线分配;

散热通道:电子封装均要考虑如何将器件或部件长期工作时产生的热量散发出去,有时还要附加散热器和热沉;

机械支撑:封装要为芯片和其他部件提供牢固可靠的机械支撑;

环境保护:半导体器件和电路的许多参数均与半导体表面状态密切相关,半导体芯片制造出来在未封装之前,时刻处于周围环境的威胁之中,在使用中,必须把芯片严加密封和保护。

从广义上讲,电子封装是指电子器件、电子组件、电子部件和电子系统的包装。如果说20世纪80年代之前,电子封装是面向器件和电路的,到了20世纪90年代随着MCM(multi-chip-module)的出现,电子封装开始面向部件,将来的电子封装将面向系统和整机。电子封装已经发展成为重要的技术领域。

1.3 微组装密封的定义和内涵

微电子组装技术是电子组装的重要技术领域,指的是采用微电子技术和混合微电子技术,在电路基板上将芯片和微小型元器件等,用微细焊接技术,形成微组装模块的工艺技术。

将微组装模块(组件)进行的包封的工序一般称之为密封。

微组装电路组件作为电子整机的核心部件,其工作可靠性对于电子整机来说非常关键。由于环境因素的影响,如电子整机工作在沿海地区或海上,大气中含有微量悬浮的盐,形成盐雾,当这些盐雾覆盖到微组装电路组件时,在一般温度下就能对其内部电路焊点和单元电路模块等部位产生腐蚀作用,降低电路的电性能,一定程度下会使微组装电路组件出现故障,进而影响电子整机的性能和功能。因此需要对微组装电路组件进行密封,以隔绝恶劣的外部工作环境,保证其稳定性和长期可靠性,以提高电子整机的可靠性。

2 分类

2.1 电子封装技术的分类

电子封装目前有多种分类方式,按材料可分为金属封装、陶瓷封装、金属陶瓷封装和塑料封装。按照外形、尺寸和结构可分为引脚插入封装、表贴封装、面阵封装和高级封装(3D封装)等。按照应用领域可分为微波功率器件封装、大规模集成电路封装、光电封装、MEMS(Micro-Electro-Mechanical-Systems微机电系统)封装和高温封装等。

2.2 微组装密封技术的分类

由于面向电子整机的微组装电路组件包含了微波电路、控制电路和电源等复杂电路,因此,微组装电路组件需要密封的部位包括控制接口及电源接口的插头、RF射频I/O接口的插头、冷却功放单元部件的输入输出的水管和盖板等。目前采用的密封方法有胶粘剂密封、衬垫密封、玻璃金属封接、软钎焊密封、平行缝焊密封和脉冲激光熔焊密封等。对于密封性要求较高的微组装电路组件,要达到气密要求,需要综合选用玻璃金属烧结、软钎焊、激光熔焊和平行缝焊等密封方法,如对RF射频I/O接口采用玻璃金属烧结、对控制接口采用高频感应软钎焊、对大壳体/异型盖板采用脉冲激光熔焊等。对于密封性要求不高的非气密微组装电路组件,也可选用胶粘剂密封和衬垫密封等低成本常规密封方法。

3 特点

3.1 产品应用对象不同

封装技术针对功能相对单一的器件,结构相对简单、体积较小;

微组装密封针对面向电子整机的多功能和高频组件,结构较为复杂(如异形等),体积较大。3.2 对产品可靠性要求不同

采用封装技术研制的器件通用性强、数量大和可靠性要求高;

采用密封的微组装组件通用性差,数量不大,可靠性要求比器件的要求低。

3.3 采用的元器件种类不同

封装技术应用的元器件种类通常有GaAs材料的MMIC芯片(高频器件),采用Si材料的ASIC芯片和用银钯等材料作为焊盘的片式元件(低频器件);

第32卷第4期199

微组装技术中应用的元器件种类既有采用GaAs 材料的MMIC 芯片,又有采用Si材料的ASIC芯片和采用银钯等材料作为焊盘的片式元件,应用的元件种类较多。

3.4 采用的工艺技术不同

多层基板结构不同:封装技术采用的多层基板通常只包括电路连接线;微组装采用的多层基板通常不但包括电路互联线,而且包括功分器和电桥等微波功率器件。

组装焊接工艺方法有差别:封装技术采用的元器件和材料种类较少,需应用适合少品种、大批量的焊接方法;微组装采用的元器件和材料种类较多,需应用适合多品种、多材料的焊接方法。

密封焊接工艺不同:由于封装件结构相对外形规则,封装较多采用平行焊接工艺;由于微组装组件结构复杂,外形有异形,因此常采用激光密封焊接。3.5 技术层次不同

电子封装是电子制造技术中重要的技术领域;微组装密封只是微组装模块制造中的一个重要工序。

4 发展趋势

4.1 电子封装技术的发展

过去的40多年,国外微电子封装技术在封装材料、封装方式、封装性能以及封装的应用等方面均取得了巨大的进步,封装效率(硅片面积与封装面积的比值)成几何倍数增长,PGA(针栅阵列)的封装效率不足10%,BGA(球栅阵列)的封装效率为20%,CSP(芯片尺寸封装)的封装效率大于80%,MCM的封装效率可达90%。随着新的封装技术的出现,封装效率可超过100%,五芯片叠层封装的封装效率可达300%,电子封装技术已经成为电子器件领域的关键技术。

器件级封装是整个电气互联技术发展的关键,所谓“一代电子器件决定一代电子互联技术,进而决定一代电子产品”就是指器件级电气互联技术对先进电气互联技术所起的决定性作用。电子器件的小型化、高性能、多功能和低成本的要求推动着电子封装技术的不断进步,纵观近几年的电子封装业,其发展趋势如下:

电子封装技术继续朝着超高密度的方向发展,出现了三维封装、多芯片封装(MCP)和系统级封装(SIP)等超高密度的封装形式;

电子封装技术继续朝着超小型的方向发展,出现了与芯片尺寸大小相同的超小型封装形式——圆晶级封装技术(WLP);

电子封装技术从二维向三维方向发展,不仅出现了3D-MCM,也出现了3D-SIP等封装形式[1,2];

电子封装技术继续从单芯片向多芯片发展,除了多芯片模块(M C M)外还有多芯片封装(MCP)、系统级封装(SIP)及叠层封装等;

电子封装技术从分立向系统方向发展,出现了面向系统的SIP和SOP (Systrm-on-a-package)等封装形式;

电子封装技术继续向高性能、多功能方向发展,高频、大功率和高性能仍然是发展的主题;

电子封装技术向高度集成化方向发展,出现了板级集成、片级集成和封装集成等多种高集成方式。

电子封装技术发展的新领域:MEMS封装、光电子(OE)封装、高温(高温半导体材料)封装和微光电子机械系统(MOEMS)封装等。

4.1.1 电子封装材料技术

未来的封装技术涉及圆片级封装(WLP)技术、叠层封装和系统级封装等工艺技术。不论封装技术如何发展,封装材料是重要的基础,新型封装材料主要包括:低温共烧陶瓷材料(LTCC)、高导热率氮化铝陶瓷材料和AlSiC金属基复合材料等。4.1.1.1 低温共烧陶瓷材料(LTCC)

LTCC材料是一类由玻璃陶瓷组成的封装材料,烧结温度仅有850 ℃左右,可与金、银和铜等金属共烧,介电常数低,介电损耗小,并可以无源集成,尤其是其特别优良的高频性能,使其成为许多高频应用的首选[3]。该技术开始于20世纪80年代中期,经过多年的开发和应用,已经日臻成熟,并在许多领域获得了应用。

4.1.1.2 高导热率氮化铝陶瓷材料

氮化铝陶瓷材料是20世纪90年代才发展起来的一种新型高导热电子封装材料,由于其热导率高、热膨胀系数与硅匹配、介电常数低和绝缘强度高,而成为最理想的功率电子封装材料,目前已经在微波功率器件、毫米波封装和高温电子封装等领域获得了应用。

4.1.1.3 AlSiC金属基复合材料

AlSiC金属复合材料是用于高级热管理的封装材料,它具有以下特性,第一该材料可以净尺寸加工,避免了繁杂的后处理工艺,第二该材料具有高的热导率、与半导体芯片相匹配的热膨胀系数以及非常低的密度。该材料适用于航空航天等对轻型化比较敏感的领域。

4.1.2 电子封装技术的进展

4.1.2.1 圆片级封装(WLP)技术

圆片级封装和圆片级芯片尺寸封装(WLCSP)是同一概念,它是芯片尺寸封装的一个突破性进

王俊峰: 电子封装与微组装密封技术发展

电子工艺技术

Electronics Process Technology2011年7月200

展,是一类电路封装完成后仍以圆片形式存在的封装[4]。

4.1.2.2 叠层封装

叠层封装是指在一个芯腔/基板上将多个芯片竖直堆叠起来,进行芯片与芯片或芯片与封装之间的互连,大部分的叠层封装是两个或两个以上的芯片相叠,也有一些厂家生产了一些更多芯片叠加的产品。

4.1.2.3 系统级封装

系统级封装技术是在系统级芯片的基础上发展起来的一种新技术,它是指将多个半导体裸芯片和可能的无源元件构成的高性能系统集成于一个封装内,形成一个功能性器件,因此可以实现较高的性能密度,集成较大的无源元件,最有效地使用芯片组合[5]。

4.1.3 电子封装技术发展的新领域

4.1.3.1 MEMS封装

MEMS技术的迅速发展使其在汽车、医疗、通信及其他消费类电子中获得了广泛的应用,但是MEMS 产品继续发展的瓶颈主要是其封装技术,如同其他半导体器件一样,MEMS器件需要特殊封装。

4.1.3.2 光电子(OE)封装

光电子器件就是将光学元件与电子电路相结合的一类器件,它包括有源元件、无源元件以及构成光通路的互连,光电子封装就是将这些光电元件与原来的电子封装集成起来,形成一个新的模块。光电子封装的主要问题是高的数字速度和低的光信号转化率,另一个主要问题是光功能件的集成。

4.1.3.3 高温封装

近年来,以高温半导体材料——SiC、GaN、 AlN和半导体金刚石为代表的宽带隙半导体器件的研究格外引人注目,它们具有禁带宽度大、击穿电场高、热导率大、载流子迁移率高、介电常数小和抗辐射能力强等特点,而被人们誉为是继Si、GaAs之后的第三代半导体材料,它们在高温、高功率、高频电子领域和短波长光电领域具有广阔的应用前景,这类器件大都工作在高温恶劣环境之中,需要特殊的封装。

4.1.3.4 微波毫米波封装

无线通信市场的爆炸性发展,导致毫米波技术的快速进展,这些应用急需低成本、小型化的毫米波封装,在目前情况下,限制这些无线零部件使用频率的原因,往往不在集成电路芯片的本身,而在于封装的寄生参数,封装的这些寄生参数(包括物理的、分布的和电磁场的等方面)严重损害了器件的频率响应,破坏了信号的完整性。

4.1.3.5 微光电子机械系统(MOEMS)封装

微光学电子机械系统是一种新型的技术,它内含微机械光调制器、微机械光学开光、IC及其他构件,它是将MEMS技术引进到OE中的新应用,充分利用了MEMS技术的小型化、多重化和微电子性,实现了光器件与电器件的无缝集成,这些器件对封装有特殊需要,不仅要求封装能提供光、电的通路,而且要能提供气密性、机械强度、尺寸稳定性和长期的可靠性等。

4.2 微组装密封技术的发展

随着微电子技术的飞速发展,微组装技术也得到了迅速发展。主要表现在小型轻型化、高密度三维互连结构、宽工作频带、高工作频率、具有较完整的分机/子系统功能和高可靠性等。

其技术发展主要体现在:组装技术与芯片封装技术(甚至涉及芯片技术)的融合是发展方向;二维平面组装向三维立体组装的演变是微组装技术当前发展的主要倾向;发展MEMS领域中的微组装技术势在必行等。

4.2.1 组装技术与芯片封装技术的融合

SOP(Systrm-on-a-package)技术:SOP是SOC (System-on-a-chip)的‘简化设计’和‘实用设计’,它也可包含MCM(multi-chip-module)、MCP(multi-chip- package)、SIP(system-in-a-package)的内容。SOP是20世纪90年代提出的一个新概念,此后一直作为便携式或台式集成化系统的基本的微电子和微系统构架而发展。这种组装方式有可能导致微小型化,把包含微电子、光电子、数字、模拟、射频和微机电系统集成为单一的组件系统。SOP技术在系统/子系统级组装中大量采用多芯片组件等新技术,使微组装电路组件向着具有完整的系统或子系统功能、小型化、高密度、工作频带宽、速度快和外互连线少的方向发展。

SOP技术可以包含以下组成部分:多功能及微小型化基板;圆片级SOC封装;三维集成电路封装如SIP;基板上MCM的组装。

倒装FC(Flip Chip)技术:倒装技术是一种试图把组装技术融入芯片技术的方法[6,7],用组装的方法来扩展芯片的功能,特别是近年来迅猛发展的晶片级封装(Wafer Level Packaging)在大芯片盘上直接制球组装,是近二年的热门话题。如把FC芯片制作看作半导体技术,FC技术主要是组装工艺与材料。组装工艺主要有焊接(包括共晶焊)和胶接,当前热门的研究是胶(又称底部填充料)。异向性导电树脂及薄膜这类高分子有机材料的连接方法中,其连接机理、加速寿命试验与实际使用中的对应关系目前还有待明确。在追求高分子材料的粘结性、导

第32卷第4期201

电性、可绕性和密封性等这些高功能的同时,还希望发现高分子材料与无机材料的粘结界面状态。

4.2.2 二维平面组装向三维立体组装的演变

二维平面组装向三维立体组装的演变是微组装技术当前发展的主要倾向。立体组装技术从3D芯片开始,在硅片上直接制作多层结构,扩展了芯片的功能,是当前半导体技术,特别是硅半导体的重要发展方向。扩展到微组装技术中,即把功能块(可以包含3D芯片)“叠装”起来,立体组装技术是提高组装密度最好的方法,组装密度可达到200%~300%。从组装角度看,分系统(功能块)间最直接方便的立体组装技术是垂直互连技术,垂直互连的方式很多,主要有底面垂直互连和周边垂直互连两类,互连方式有凸点(球)、微簧片、填孔法以及毛纽扣(Fuzz Button)等,作为微组装技术中的重要分支,是目前各国热衷研究和推广应用的技术。

4.2.3 MEMS微装配和微组装

MEMS是多种学科交叉融合具有战略意义的前沿高技术,是未来的主导技术之一。在汽车、电子、家电和机电等行业和军事领域有着极为广阔的应用前景。MEMS的制作涉及许多微加工技术,包括显微刻蚀、激光微钻孔、干膜及液态粘接工艺、微型焊接、微成型、混合微电子工艺及精密微装配工艺等。

微组装技术可看作微装配的一部分,在微尺度下,重力不再起主导作用,随着物体尺寸的减小,其质量和体积按尺寸的三次方减小;而其表面积按尺寸的平方减小。当物体尺寸小于某临界值后,与物体表面积相关的粘附力如范德华力、表面张力和静电力等将大于重力。不仅如此,在微尺度下,物体的力特性还与物体密度、表面粗糙度、湿度以及部件外形密切相关,这就给微操作带来很大的不确定性。

除此之外,微组装电路互连基板的慨念有拓展,己不是传统意义上的多层板,与此同时在此基板上进行的微组装在技术上也需拓展。如MFS (Multifunctional Structures)多功能基板,作为特种互联基板考虑了散热和机械连接的同时还考虑到与系统的底盘和电缆的连接,它甚至成为构件的“壁”,微组装本身的组件(包括MCM)已成为构件的一个部分;采用DBC(Direct Bonded Copper)覆铜陶瓷基板技术制作的高效散热基板(甚至可做成风冷、水冷通道板)改善了散热性能,提高了可焊接性,覆铜板上直接进行微组装,拓展了微组装技术的应用和发展。微组装技术的应用己不再局限于传统的电子组件中,给微组装密封提出了新的要求。5 对电子封装和微组装技术发展的几点建议

(1)加大研究投入提高工艺技术水平。电子封装与微组装技术已成为信息化建设和信息化装备研制进程中关键甚至是起决定性作用的制造技术。建议加大电子封装与微组装技术工艺研究的投入力度,实行倾斜政策。

(2)加速技术标准体系的研究。依据目前我国产品研制、生产中的实际需要,研究、制订我国的电子封装和微组装技术标准体系,提出近期应开展的主要工作及其应制订的一些基础标准与通用标准,科学、系统地规划相关标准的中、长期建设工作,以满足企业和电子产品研制、生产的迫切需要,这是一项意义重大的、十分必要的工作。

(3)加快应用研究中心的建设进程。为加强现有成果工程化的推广应用力度,使已有电子封装和微组装工艺技术成果的效能得以充分发挥,提高成果工程化能力,应加快技术应用研究中心的建设,微组装、电子封装等应用研究中心的建设应尽早考虑予以立项是必要的。

(4)确定研究重点。在电子信息装备向高频、高速、宽带和高可靠方向发展趋势下,针对电子装备及系统对体积、质量和性能等方面越来越高的需求,通过开展电路基板制造和三维立体组装等技术研究,突破关键技术,形成工艺规范,满足新一代整机小型化、轻型化、高性能、多功能、高可靠性和低成本的要求。

参考文献:

[1] 郎鹏,高志方,牛艳红. 3D封装与硅通孔(TSV)工艺[J]. 技 术电子工艺技术,2009,30(6):75-81.

[2] 杨光育,杨建宁,韩依楠. 电子产品3D—立体组装技术[J].电 子工艺技术, 2008,29(1):33-34.

[3] 何健锋. LTCC基板制造及控制技术[J]. 电子工艺技术,2005, 26(2):75-81.

[4] 隆志力. 芯片封装互连新工艺热超声倒装焊的发展现状[J]. 电 子工艺技术,2004,25(5):185-188.

[5] 陈贵宝,阎山. 系统级封装技术现状与发展趋势[J]. 电子工艺 技术, 2007,28(5):273-276.

[6] 程明生. 倒装芯片热电极键合工艺研究[J]. 电子与封装, 2006,6(6):9-13.

[7] 张彩云. 凸点芯片倒装焊接技术[J]. 电子与封装,2005,5 (2):10-13.

收稿日期:2011-06-05

王俊峰: 电子封装与微组装密封技术发展

电子封装技术发展现状及趋势

电子封装技术发展现状及趋势 摘要 电子封装技术是系统封装技术的重要内容,是系统封装技术的重要技术基础。它要求在最小影响电子芯片电气性能的同时对这些芯片提供保护、供电、冷却、并提供外部世界的电气与机械联系等。本文将从发展现状和未来发展趋势两个方面对当前电子封装技术加以阐述,使大家对封装技术的重要性及其意义有大致的了解。 引言 集成电路芯片一旦设计出来就包含了设计者所设计的一切功能,而不合适的封装会使其性能下降,除此之外,经过良好封装的集成电路芯片有许多好处,比如可对集成电路芯片加以保护、容易进行性能测试、容易传输、容易检修等。因此对各类集成电路芯片来说封装是必不可少的。现今集成电路晶圆的特征线宽进入微纳电子时代,芯片特征尺寸不断缩小,必然会促使集成电路的功能向着更高更强的方向发展,这就使得电子封装的设计和制造技术不断向前发展。近年来,封装技术已成为半导体行业关注的焦点之一,各种封装方法层出不穷,实现了更高层次的封装集成。本文正是要从封装角度来介绍当前电子技术发展现状及趋势。

正文 近年来,我国的封装产业在不断地发展。一方面,境外半导体制造商以及封装代工业纷纷将其封装产能转移至中国,拉动了封装产业规模的迅速扩大;另一方面,国内芯片制造规模的不断扩大,也极大地推动封装产业的高速成长。但虽然如此,IC的产业规模与市场规模之比始终未超过20%,依旧是主要依靠进口来满足国内需求。因此,只有掌握先进的技术,不断扩大产业规模,将国内IC产业国际化、品牌化,才能使我国的IC产业逐渐走到世界前列。 新型封装材料与技术推动封装发展,其重点直接放在削减生产供应链的成本方面,创新性封装设计和制作技术的研发倍受关注,WLP 设计与TSV技术以及多芯片和芯片堆叠领域的新技术、关键技术产业化开发呈井喷式增长态势,推动高密度封测产业以前所未有的速度向着更长远的目标发展。 大体上说,电子封装表现出以下几种发展趋势:(1)电子封装将由有封装向少封装和无封装方向发展;(2)芯片直接贴装(DAC)技术,特别是其中的倒装焊(FCB)技术将成为电子封装的主流形式;(3)三维(3D)封装技术将成为实现电子整机系统功能的有效途径;(4)无源元件将逐步走向集成化;(5)系统级封装(SOP或SIP)将成为新世纪重点发展的微电子封装技术。一种典型的SOP——单级集成模块(SLIM)正被大力研发;(6)圆片级封装(WLP)技术将高速发展;(7)微电子机械系统(MEMS)和微光机电系统(MOEMS)正方兴未艾,它们都是微电子技术的拓展与延伸,是集成电子技术与精密

电子封装的现状及发展趋势

电子封装的现状及发展趋势 现代电子信息技术飞速发展,电子产品向小型化、便携化、多功能化方向发展.电子封装材料和技术使电子器件最终成为有功能的产品.现已研发出多种新型封装材料、技术和工艺.电子封装正在与电子设计和制造一起,共同推动着信息化社会的发展 一.电子封装材料现状 近年来,封装材料的发展一直呈现快速增长的态势.电子封装材料用于承载电子元器件及其连接线路,并具有良好的电绝缘性.封装对芯片具有机械支撑和环境保护作用,对器件和电路的热性能和可靠性起着重要作用.理想的电子封装材料必须满足以下基本要求: 1)高热导率,低介电常数、低介电损耗,有较好的高频、高功率性能; 2)热膨胀系数(CTE)与Si或GaAs芯片匹配,避免芯片的热应力损坏;3)有足够的强度、刚度,对芯片起到支撑和保护的作用;4)成本尽可能低,满足大规模商业化应用的要求;5)密度尽可能小(主要指航空航天和移动通信设备),并具有电磁屏蔽和射频屏蔽的特性。电子封装材料主要包括基板、布线、框架、层间介质和密封材料. 1.1基板 高电阻率、高热导率和低介电常数是集成电路对封装用基片的最基本要求,同时还应与硅片具有良好的热匹配、易成型、高表面平整度、易金属化、易加工、低成本并具有一定的机械性能电子封装基片材料的种类很多,包括:陶瓷、环氧玻璃、金刚石、金属及金属基复合材料等.

1.1.1陶瓷 陶瓷是电子封装中常用的一种基片材料,具有较高的绝缘性能和优异的高频特性,同时线膨胀系数与电子元器件非常相近,化学性能非常稳定且热导率高随着美国、日本等发达国家相继研究并推出叠片多层陶瓷基片,陶瓷基片成为当今世界上广泛应用的几种高技术陶瓷之一目前已投人使用的高导热陶瓷基片材料有A12q,AIN,SIC和B或)等. 1.1.2环氧玻璃 环氧玻璃是进行引脚和塑料封装成本最低的一种,常用于单层、双层或多层印刷板,是一种由环氧树脂和玻璃纤维(基础材料)组成的复合材料.此种材料的力学性能良好,但导热性较差,电性能和线膨胀系数匹配一般.由于其价格低廉,因而在表面安装(SMT)中得到了广泛应用. 1.1.3金刚石 天然金刚石具有作为半导体器件封装所必需的优良的性能,如高热导率(200W八m·K),25oC)、低介电常数(5.5)、高电阻率(1016n·em)和击穿场强(1000kV/mm).从20世纪60年代起,在微电子界利用金刚石作为半导体器件封装基片,并将金刚石作为散热材料,应用于微波雪崩二极管、GeIMPATT(碰撞雪崩及渡越时间二极管)和激光器,提高了它们的输出功率.但是,受天然金刚石或高温高压下合成金刚石昂贵的价格和尺寸的限制,这种技术无法大规模推广. 1.1.4金属基复合材料

微电子封装必备答案

微电子封装答案 微电子封装 第一章绪论 1、微电子封装技术的发展特点是什么?发展趋势怎样?(P8、9页) 答:特点: (1)微电子封装向高密度和高I/O引脚数发展,引脚由四边引出向面阵排列发展。 (2)微电子封装向表面安装式封装发展,以适合表面安装技术。 (3)从陶瓷封装向塑料封装发展。 (4)从注重发展IC芯片向先发展后道封装再发展芯片转移。 发展趋势: (1)微电子封装具有的I/O引脚数将更多。 (2)微电子封装应具有更高的电性能和热性能。 (3)微电子封装将更轻、更薄、更小。 (4)微电子封装将更便于安装、使用和返修。 (5)微电子封装的可靠性会更高。 (6)微电子封装的性能价格比会更高,而成本却更低,达到物美价廉。 2、微电子封装可以分为哪三个层次(级别)?并简单说明其内容。(P15~18页)答:(1)一级微电子封装技术 把IC芯片封装起来,同时用芯片互连技术连接起来,成为电子元器件或组件。 (2)二级微电子封装技术 这一级封装技术实际上是组装。将上一级各种类型的电子元器件安装到基板上。 (3)三级微电子封装技术 由二级组装的各个插板安装在一个更大的母板上构成,是一种立体组装技术。 3、微电子封装有哪些功能?(P19页) 答:1、电源分配2、信号分配3、散热通道4、机械支撑5、环境保护 4、芯片粘接方法分为哪几类?粘接的介质有何不同(成分)?。(P12页) 答:(1)Au-Si合金共熔法(共晶型) 成分:芯片背面淀积Au层,基板上也要有金属化层(一般为Au或Pd-Ag)。 (2)Pb-Sn合金片焊接法(点锡型) 成分:芯片背面用Au层或Ni层均可,基板导体除Au、Pd-Ag外,也可用Cu (3)导电胶粘接法(点浆型) 成分:导电胶(含银而具有良好导热、导电性能的环氧树脂。) (4)有机树脂基粘接法(点胶型) 成分:有机树脂基(低应力且要必须去除α粒子) 5、简述共晶型芯片固晶机(粘片机)主要组成部分及其功能。 答:系统组成部分: 1 机械传动系统 2 运动控制系统 3 图像识别(PR)系统 4 气动/真空系统 5 温控系统 6、和共晶型相比,点浆型芯片固晶机(粘片机)在各组成部分及其功能的主要不同在哪里?答: 名词解释:取晶、固晶、焊线、塑封、冲筋、点胶

封装与微组装

摘要:近年来,封装与微组装技术进入了超高速发展时期,新的封装和组装形式不断涌现,而其标准化工作已经严重滞后,导致概念上的模糊,这必然会对该技术的发展造成影响。力求将具有电子行业特点的封装与微组装技术的内涵和特点加以诠释,并对其发展提出见解和建议,以促进该技术的发展。 关键字:封装、微组装、发展、BGA、SOP、FC、CSP、MCM、集成电路、系统级封装 正文: 一、电子产品技术概述 第一代电子产品以电子管为核心。四十年代末世界上诞生了第一只半导体三极管,它以小巧、轻便、省电、寿命长等特点,很快地被各国应用起来,在很大范围内取代了电子管。五十年代末期,世界上出现了第一块集成电路,它把许多晶体管等电子元件集成在一块硅芯片上,使电子产品向更小型化发展。集成电路从小规模集成电路迅速发展到大规模集成电路和超大规模集成电路,从而使电子产品向着高效能低消耗、高精度、高稳定、智能化的方向发展。 随着电子元器件向小型化、复合化、轻量化、多功能、高可靠、长寿命的方向变革,从而相继出现了各种类型的片式电子元器件(SMC/SMD),导致了第四代组装技术即表面组装技术(SMT)的出现,在世界上引发了一场电子组装技术的新革命。在国际上,片式电子元器件应用于电子整机,始于用年代,当时美国IBM公司首先把片式电子元器件用于微机。 目前世界上发达国家已广泛采用表面贴装技术,片式元器件已成为电子元器件的主体,其中片式电容、片式电阻、片式电感以及片式敏感元件的需求量约占片式元件的90%,世界上发达国家电子元器件片式化率己高达80%以上,全世界平均亦在40%,而我国仅为约30%,可以预见,加入WTO后,片式元件产业的市场竞争将更趋激烈。实现了批量生产全系列片式电容器、片式电阻器、片式电感器,开始摆脱一代代重复引进的被动局面,并逐步走上自主发展的道路。2001年片式电容器、片式电阻器、片式电感器等片式元件市场低迷,价格普遍下调15%~20%,对国内元件生产企业造成了一定的影响。 二、集成电路与微电子封装技术 集成电路(integrated circuit)是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。它在电路中用字母“IC”表示。集成电路发明者为杰克·基尔比(基于硅的集成电路)和罗伯特·诺伊思(基于锗的集成电路)。当今半导体工业大多数应用的是基于硅的集成电路。

微电子封装复习题

电子封装是指将具有一定功能的集成电路芯片,放置在一个与之相适应的外壳容器中,为芯片提供一个稳定可靠的工作环境;同时,封装也是芯片各个输出、输入端的向外过渡的连接手段,以及起将器件工作所产生的热量向外扩散的作用,从而形成一个完整的整体,并通过一系列的性能测试、筛选和各种环境、气候、机械的试验,来确保器件的质量,使之具有稳定、正常的功能。 从整个封装结构讲,电子封装包括一级封装、二级封装和三级封装。 芯片在引线框架上固定并与引线框架上的管脚或引脚的连接为一级封装; 管脚或引脚与印刷电路板或卡的连接为二级封装; 印刷电路板或卡组装在系统的母板上并保证封装各组件相对位置的固定、密封、以及与外部环境的隔离等为三级封装。 前工程: 从整块硅圆片入手,经过多次重复的制膜、氧化、扩散,包括照相制版和光刻等工序,制成三极管、集成电路等半导体组件卫电极等,开发材料的电子功能,以实现所要求的元器件特性。 后工程: 从由硅圆片切分好的一个一个的芯片入手,进行装片、固定、键合连接、塑料灌封、引出接线端子、按印检查等工序,完成作为器件、部件的封装体,以确保元器件的可靠性并便于与外电路连接。 ?环保和健康的要求 ?国内外立法的要求 ?全球无铅化的强制要求 1、无铅钎料的熔点较高。 比Sn37Pb提高34~44 oC。高的钎焊温度使固/液界面反应加剧。 2 、无铅钎料中Sn含量较高。 (SnAg中96.5% Sn ,SnPb中63%Sn),因为Pb不参与固/液和固/固界面反应,高Sn含量使固/液、固/固界面反应均加速。 3 小尺寸钎料在大电流密度的作用下会导致电迁移的问题。

(1) 无毒化,无铅钎料中不含有毒、有害及易挥发性的元素 (2) 低熔点,无铅钎料的熔点应尽量接近传统的Sn-Pb 共晶钎料的熔点(183℃),熔化温度间隔愈小愈好。 (3) 润湿性,无铅钎料的润湿铺展性能应达到Sn-Pb 共晶钎料的润湿性,从而易于形成良好的接头。 (4) 力学性能,无铅钎料应具有良好的力学性能,焊点在微电子连接中一个主要作用是机械连接。 (5) 物理性能,作为微电子器件连接用的无铅钎料,应具有良好的导电性、导热性、延伸率,以免电子组件上的焊点部位因过热而造成损伤,从而提高微电子器件的可靠性。 (6) 成本,从Sn-Pb 钎料向无铅钎料转化,必须把成本的增加控制在最低限度。因此应尽量减少稀有金属和贵重金属的含量,以降低成本。 电子元器件封装集成度的迅速提高,芯片尺寸的不断减小以及功率密度的持续增加,使得电子封装过程中的散热、冷却问题越来越不容忽视。而且,芯片功率密度的分布不均会产生所谓的局部热点,采用传统的散热技术已不能满足现有先进电子封装的热设计、管理与控制需求,它不仅限制了芯片功率的增加,还会因过度冷却而带来不必要的能源浪 。电子封装热管理是指对电子设备的耗热元件以及整机或系统采用合理的冷-~IJl 散热技术和结构设计优化,对其温度进行控制,从而保证电子设备或系统正常、可靠地工作。 热阻 由于热导方程与欧姆定律形式上的相似性,可以用类似于电阻的表达式来定义热阻 式中,?T 是温差,q 为芯片产生的热量。 该式适用于各种热传递形式的计算。 1、 具有极高耐热性 2、 具有极高吸湿性 3、 具有低热膨胀性 4、 具有低介电常数特性 电解铜箔是覆铜板(CCL)及印制电路板(PCB)制造的重要的材料。电解铜箔生产工序简单,主要工序有三道:溶液生箔、表面处理和产品分切。 q T R th ?=

电子封装技术介绍

电子封装技术介绍 电子封装就是安装集成电路内置芯片外用的管壳,起着安放固定密封,保护集成电路内置芯片,增强环境适应的能力,并且集成电路芯片上的铆点也就是接点,是焊接到封装管壳的引脚上的。 电子封装发展随着电子技术的飞速发展,封装的小型化和组装的高密度化以及各种新型封装技术的不断涌现,对电子组装质量的要求也越来越高。所以电子封装的新型产业也出现了,叫电子封装测试行业。可对不可见焊点进行检测。还可对检测结果进行定性分析,及早发现故障。现今在电子封装测试行业中一般常用的有人工目检,在线测试,功能测试,自动光学检测等,其人工目检相对来说有局限性,因为是用肉眼检查的方法,但是也是最简单的。只能检察器件有无漏装、型号正误、桥连以及部分虚焊。自动光学检测是近几年兴起一种检测方法。它是经过计算机的处理分析比较来判断缺陷和故障的,优点是检测速度快,编程时间短,可以放到生产线中的不同位置,便于及时发现故障和缺陷,使生产、检测合二为一。可缩短发现故障和缺陷时间,及时找出故障和缺陷的成因。所以它是现在普遍采用的一种检测手段。 电子封装应用电子封装系统地介绍了电子产品的主要制造技术。内容包括电子制造技术概述、集成电路基础、集成电路制造技术、元器件封装工艺流程、元器件封装形式及材料、光电器件制造与封装、太阳能光伏技术、印制电路板技术以及电子组装技术。书中简要介绍了电子制造的基本理论基础,重点介绍了半导体制造工艺、电子封装与组装技术、光电技术及器件的制造与封装,系统介绍了相关制造工艺、相关材料及应用等。现在很多电子封装材料用的都是陶瓷,玻璃以及金属。但是现在出来一种新型密封质料,环氧树脂材料,用环氧树脂纯胶体封装,相对其他材料来说,密封性能更好,并且对于一些特

4.电子封装技术发展现状及趋势

- 39 - 收稿日期:2011-08-15 电子封装技术发展现状及趋势 龙 乐 (龙泉天生路205号1栋208室,成都 610100) 摘 要:现今集成电路晶圆的特征线宽进入微纳电子时代,而电子产品和电子系统的微小型化依赖先进电子封装技术的进步,封装技术已成为半导体行业关注的焦点之一。主要介绍了近年来国内外出现的有市场价值的封装技术,详细描述了一些典型封装的基本结构和组装工艺,并指出了其发展现状及趋势。各种封装方法近年来层出不穷,实现了更高层次的封装集成,因而封装具有更高的密度、更强的功能、更优的性能、更小的体积、更低的功耗、更快的速度、更小的延迟、成本不断降低等优势,其技术研究和生产工艺不可忽视,在今后的一段时间内将拥有巨大的市场潜力与发展空间,推动半导体行业进入后摩尔时代。 关键词:高密度封装;3D 封装;封装技术;封装结构;发展趋势 中图分类号:TN305.94 文献标识码:A 文章编号:1681-1070(2012)01-0039-05 Current Status and Development Trend of Electronic Packaging Technology LONG Le (Tiansheng Road 205,1-208, Longquan ,Chengdu 610100,China ) Abstract: The current IC wafer ling width characteristics is micronanoelectronic scale. The microminiaturization process of electronic products and electronic systems will depend on the advanced packaging technology .It has increasingly become a focus of the semiconductor industry. Novel packaging technology with larger market value around home and abroad in recent years are introduced. Basic structures and fabrication processes of some typical packaging are bescribed in detail. Furthermore, it is pointed out current status a nd development trend of packaging technology.In the recent years, endless varieties of packagings are proposed. It implements a new and higher level of packaging integration with higher assemble density,more strong features, better performance, smalles size, lower power consumption, faster speed, smaller delay, cost reduction,etc. Researches and process of packaging cannot be ignored. It has a great market potential and development in the days to come. Advanced packaging technology are forcing semiconductor industry access the More-than-Moore era. Key words: high density packaging; 3D packaging; packaging technology; packaging structure; development trend 1 引言 创新与变革是IC (集成电路)发展的主旋律, “新摩尔定律”、“超摩尔定律”、“后摩尔定 律”等新概念引领IC 行业从追求工艺技术节点的时代,发展到转向投资市场应用及其解决方案,转向封装、混合信号、微系统、微结构、微组装等综合

微电子封装技术作业(一)

第一次作业 1 写出下列缩写的英文全称和中文名称 DIP: Double In-line Package, 双列直插式组装 BGA: ball grid array, 球状矩阵排列 QFP: Quad flat Pack, 四方扁平排列 WLP: Wafer Level Package, 晶圆级封装 CSP: Chip Scale Package, 芯片级封装 LGA: Land grid array, 焊盘网格阵列 PLCC: Plastic Leaded Chip Carrier, 塑料芯片载体 SOP: Standard Operation Procedure, 标准操作程序 PGA: pin grid array, 引脚阵列封装 MCM: multiple chip module, 多片模块 SIP: System in a Package, 系统封装 COB: Chip on Board, 板上芯片 DCA: Direct Chip Attach, 芯片直接贴装,同COB MEMS: Micro-electromechanical Systems, 微电子机械系统 2 简述芯片封装实现的四种主要功能,除此之外LED封装功能。 芯片功能 (1)信号分配;(2)电源分配;(3)热耗散:使结温处于控制范围之内;(4)防护:对器件的芯片和互连进行机械、电磁、化学等方面的防护 LED器件 (2)LED器件:光转化、取光和一次配光。 3 微电子封装技术的划分层次和各层次得到的相应封装产品类别。 微电子封装技术的技术层次 第一层次:零级封装-芯片互连级(CLP) 第二层次:一级封装SCM 与MCM(Single/Multi Chip Module) 第三层次:二级封装组装成SubsystemCOB(Chip on Board)和元器件安装在基板上 第三层次:三级微电子封装,电子整机系统构建 相对应的产品如图(1)所示:

微电子笔试(笔试和面试题)有答案

第一部分:基础篇 (该部分共有试题8题,为必答题,每位应聘者按自己对问题的理解去回答,尽可能多回答你所知道的内容。若不清楚就写不清楚)。 1、我们公司的产品是集成电路,请描述一下你对集成电路的认识,列举一些与集成电路相关的内容(如讲清楚模拟、数字、双极型、CMOS、MCU、RISC、CISC、DSP、ASIC、FPGA等的概念)。 数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路或系统。 模拟信号,是指幅度随时间连续变化的信号。例如,人对着话筒讲话,话筒输出的音频电信号就是模拟信号,收音机、收录机、音响设备及电视机中接收、放大的音频信号、电视信号,也是模拟信号。 数字信号,是指在时间上和幅度上离散取值的信号,例如,电报电码信号,按一下电键,产生一个电信号,而产生的电信号是不连续的。这种不连续的电信号,一般叫做电脉冲或脉冲信号,计算机中运行的信号是脉冲信号,但这些脉冲信号均代表着确切的数字,因而又叫做数字信号。在电子技术中,通常又把模拟信号以外的非连续变化的信号,统称为数字信号。 FPGA是英文Field-Programmable Gate Array的缩写,即现场可编程门阵列,它是在PAL、GAL、EPLD 等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。 2、你认为你从事研发工作有哪些特点? 3、基尔霍夫定理的内容是什么? 基尔霍夫电流定律:流入一个节点的电流总和等于流出节点的电流总和。 基尔霍夫电压定律:环路电压的总和为零。
欧姆定律: 电阻两端的电压等于电阻阻值和流过电阻的电流的乘积。 4、描述你对集成电路设计流程的认识。 模拟集成电路设计的一般过程: 1.电路设计依据电路功能完成电路的设计。 2.前仿真电路功能的仿真,包括功耗,电流,电压,温度,压摆幅,输入输出特性等参数的仿真。 3.版图设计(Layout)依据所设计的电路画版图。一般使用Cadence软件。 4.后仿真对所画的版图进行仿真,并与前仿真比较,若达不到要求需修改或重新设计版图。 5.后续处理将版图文件生成GDSII文件交予Foundry流片。正向设计与反向设计 State Key Lab of ASIC & Systems, Fudan University 自顶向下和自底向上设计 State Key Lab of ASIC & Systems, Fudan University Top-Down设计 –Top-Down流程在EDA工具支持下逐步成为 IC主要的设计方法 –从确定电路系统的性能指标开始,自系 统级、寄存器传输级、逻辑级直到物理 级逐级细化并逐级验证其功能和性能 State Key Lab of ASIC & Systems, Fudan University Top-Down设计关键技术 . 需要开发系统级模型及建立模型库,这些行 为模型与实现工艺无关,仅用于系统级和RTL 级模拟。

电子封装技术

电子封装技术专业本科学生毕业后动向及出路分析 080214S:电子封装技术专业 专业级别:本科所属专业门类:材料类报读热度:★★★ 培养目标: 培养适应科学技术、工业技术发展和人民生活水平提高的需要,具有优良的思想品质、科学素养和人文素质,具有宽厚的基础理论和先进合理的专业知识,具有良好的分析、表达和解决工程技术问题能力,具有较强的自学能力、创新能力、实践能力、组织协调能力,爱国敬业、诚信务实、身心健康的复合型专业人才,使其具备电子封装制造领域的基础知识及其应用能力,毕业后可在通信设备、计算机、网络设备、军事电子设备、视讯设备等的器件和系统制造厂家和研究机构从事科学研究、技术开发、设计、生产及经营管理等工作,并为学生进入研究生阶段学习打好基础。 专业培养要求: 本专业学生主要学习自然科学基础、技术科学基础和本专业领域及相关专业的基本理论和基本知识,接受现代工程师的基本训练,具有分析和解决实际问题及开发软件等方面的基本能力,因此,要求本专业毕业生应具备以下几个方面的知识和能力: 1.具有坚实的自然科学基础,较好的人文、艺术和社会科学基础知识及正确运用本国语言和文字表达能力; 2.具有较强的计算机和外语应用能力; 3.较系统地掌握本专业领域的理论基础知识,掌握封装布线设计、电磁性能分析与设计、传热设计、封装材料和封装结构、封装工艺、互连技术、封装制造与质量、封装的可靠性理论与工程等方面的基本知识与技能,了解本学科前沿及最新发展动态; 4.获得本专业领域的工程实践训练,具有较强的分析解决问题的能力及实践技能,具有初步从事与本专业有关的产品研究、设计、开发及组织管理的能力,具有创新意识和独立获取知识的能力。 专业主干课程: 1.微电子制造科学与工程概论

封装材料行业基本概况

封装材料行业研究报告 研究员:高鸿飞一、行业定义 根据国民经济行业分类《国民经济行业分类GB/T 4754-2011》),引线框架和LED支架制造业属于为计算机、通信和其他电子设备制造业(行业代码:C39);根据中国证监会行业分类(《上市公司行业分类指引》),引线框架和LED支架制造业属于计算机、通信和其他电子设备制造业C396。 二、行业的监管体制 引线框架和LED支架制造业所属的行业主管部门是国家发展改革委员会、中国环境保护部及中国工业和信息化部。国家发改委主要负责本行业发展政策的制定;中国环境保护部负责环境污染防治的监督管理,制定环境污染防治管理制度、标准和技术规范并组织实施;中国工业和信息化部负责制定我国电子元器件行业的产业规划和产业政策,对行业的发展方向进行宏观调控。 引线框架和LED支架制造业的行业自律性组织是中国电子材料行业协会(以下简称“行业协会”),该协会是由从事电子材料生产、研制、开发、经营、应用、教学的单位及其他相关企、事业单位自愿结合组成的全国性的行业社会团体,为政府对电子材料行业实施行业管理提供帮助,同时也是政府部门和企业单位之间的桥梁纽带。行业协会主要在电子材料行业自律、技术培训、信息交流、国内外交流与合作等方面广泛开展工作,为行业的进步和发展起到了促进作用。行业协会下设集成电路分会、半导体分立器件分会、半导体封装分会、集成电路设计分会和半导体支撑业分会等5个分会。 三、封装材料行业基本概况 (1)引线框架概念及应用领域 引线框架是一种用来作为芯片载体的专用材料,借助于键合丝使芯片内部电

路引出端(键合点)通过内引线实现与外引线的电气连接,形成电气回路的关键结构件。在半导体中,引线框架主要起稳固芯片、传导信号、传输热量的作用,需要在强度、弯曲、导电性、导热性、耐热性、热匹配、耐腐蚀、步进性、共面形、应力释放等方面达到较高的标准。 (2)LED支架概念及应用领域 LED是“Light Emitting Diode”的缩写,中文译为“发光二极管”,是一种可以将电能转化为光能的半导体器件,不同材料的芯片可以发出红、橙、黄、绿、蓝、紫色等不同颜色的光。LED的核心是由p型半导体和n型半导体组成的芯片,而LED支架就是芯片的承载物,担负着机械保护,提高可靠性;加强散热,降低芯片结温、提高LED性能;光学控制,提高出光效率,优化光束分布;供电管理,包括交流/直流转变、电源控制等作用。 (3)半导体封装材料产业链结构 ①引线框架产业链结构 引线框架的上游行业主要是铜合金带加工企业和生产氰化银钾的化工企业,由于铜基材料具有导电、导热性能好,价格低以及和环氧模塑料密着性能好等优势,当前已成为主要的引线框架材料,其用量占引线框架材料的80%以上。 公司引线框架产业的下游行业是集成电路和分立器件封装测试行业。一般的封装工艺流程为:划片→装片→键合→塑封→去飞边→电镀→打印→切筋和成型→外观检查→成品测试→包装出货。引线框架主要是在装片步骤中,作为切割好晶片的基板,是封装过程中所需的重要基础材料。 公司引线框架产业处于产业链中游,随着电子信息技术的高速发展,对集成电路的性能要求越来越多样化,对集成电路封装测试行业的要求也越来越高。公司将会充分发挥创新优势,致力于研发多样化和高性能的引线框架。 ②LED支架产业链结构 LED支架的主要原材料为铜合金带、氰化银钾和PPA,铜合金带属于金属加工产品,氰化银钾属于化工产品,而PPA则是塑料制品,因此,公司的上游产业主要是金属加工企业、化工企业和塑料制品企业。 LED支架主要应用在电子和照明领域,主要产品有汽车信号灯、照明灯、家用电器、户外大型显示屏、仪器仪表等光电产品。LED支架主要是作为LED

电子封装技术专业

电子封装技术专业 本科教学质量报告(2018—2019学年) 专业代码: 080709T 专业负责人:(签字) 教学院长:(签字) 学院院长:(签字) 学院名称:(盖章) 二〇一九年12月

一、专业基本概况 (一)专业概况 主要介绍专业发展历程、学生规模等情况,包括 1.专业所在学院概况,学院专业设置情况; 电子封装技术专业隶属于材料工程学院,归为材料物理与化学学科。从2006年第一次招生,名称为材料成型及控制工程(微电子封装),2013年更名为电子封装技术专业,最新的一级为2019级,平均每年为35人左右,已经持续招生十年。我校该本科专业是全国范围内最早招生的一批院校之一,目前全国共有9所(华中科技大学、哈尔滨工业大学、西安电子科技大学、上海工程技术大学等)开设电子封装技术专业的院校,且师资及招生规模均不大。大部分院校的电子封装技术专业开设在材料科学与工程学院,小部分院校开设在机电工程学院。 2. 专业的历史沿革,包括专业设置时间、招收本科生时间,通过相关评估、认证时间,取得学位授予资格时间等;专业是否获批应用型本科试点专业,一流本科建设专业、卓越工程师教育培养试点专业、新工科试点专业、贯通培养试点专业等情况说明。 近三年,本专业为了适应社会对新型教育人才的需要,增设了大量的新课程。调整原有的专业基础课程和专业特色课程,比如增设了很多加强基础知识的课程,比如《半导体物理基础》、《半导体器件物理》、《固体物理导论》等。另外,我们在未来的教学培养方案中,设置了《微纳加工技术》、《微连接原理》《MEMS 与封装基础》等与微电子产业紧密相关、和高技术紧密相关。这些课程符合国家产业发展,必将有助于学生就业。在课程教学方面开展5门次的课程建设,包含全英语、MOOC等优质课程资源,超越传统课堂限制,进一步丰富学生第二课堂、第三课堂等课外文化活动,全面推进各类课堂的协同培养,创新人才培养模式。 本专业加大引进人才力度,加快制度建设,加速教学改革,建设精品课程,为学校进入更高的平台做好了准备。积极引进高学历、高职称人才,保证了本专业的良性发展。为适应高教事业的发展,本专业近三年致力于发展一支高素质、高水平、高职称、高学历的师资队伍。近三年,电子封装技术专业吸纳6名博士。目前专职教师为14人,其中教授1人,副教授7人,讲师6人。师资力量完全匹配学生规模,并能容纳1.5倍的扩展规模。14人全部具有博士研究生学历,2人具有海外博士学位,6人具有海外经历,4人具有企业(行业)的实践经验。 本专业培养了一批掌握半导体技术基础知识、掌握电子封装技术知识、和掌握电子材料知识的工程师、科研工作者。本专业每年毕业本科生35人左右。学

电子组装技术的发展与现状

电子组装技术的发展与现状 XX XXXXXXXXX 摘要:随着电子产品小型化、高集成度的发展趋势, 电子产品的封装技术正逐步迈入微电子封装时代。从SMT 设备、元器件和工艺材料等几个方面浅谈电子组装技术的发展趋势。 关键词:电子组装技术、逆序电子组装、SMT、表面组装 一.电子组装技术的产生及国内外发展情况 电子管的问世,宣告了一个新兴行业的诞生,它引领人类进入了全新的发展阶段,电子技术的快速发展由此展开,世界从此进入了电子时代。开始,电子管在应用中安装在电子管座上,而电子管座安装在金属底板上,组装时采用分立引线进行器件和电子管座的连接,通过对各连接线的扎线和配线,保证整体走线整齐。其中,电子管的高电压工作要求,使得我们对强电和信号的走线,以及生产中对人身安全等给予了更多关注和考虑。 国内封装产业随半导体市场规模快速增长,与此同时,IC设计、芯片制造和封装测试三业的格局也正不断优化,形成了三业并举、协调发展的格局。作为半导体产业的重要部分,封装产业及技术在近年来稳定而高速地发展,特别是随着国内本土封装企业的快速成长和国外半导体公司向国内转移封装测试业务,其重要性有增无减,仍是IC产业强项。 境外半导体制造商以及封装代工业纷纷将其封装产能转移至中国,近年来,飞思卡尔、英特尔、意法半导体、英飞凌、瑞萨、东芝、三星、日月光、快捷、国家半导体等众多国际大型半导体企业在上海、无锡、苏州、深圳、成都、西安等地建立封测基地,全球前20大半导体厂商中已有14家在中国建立了封测企业,长三角、珠三角地区仍然是封测业者最看好的地区,拉动了封装产业规模的迅速扩大。 二.电子封装的分类 一般来说微电子封装可以分为几个层次: 零级封装、一级封装、二级封装和三级封装( 如图1 所示) 。零级封装指芯片级的连接; 一级封装指单芯片或多芯片组件或元件的封装; 二级封装指印制电路板级的封装; 三级封装指整机的组装。一般将0 级芯片级和1级元器件级封装形式称为“封装技术”, 而将2 级印制板级和3 级整机级封装形式称为“组装技术”。

电子封装的现状及发展趋势

现代电子信息技术飞速发展,电子产品向小型化、便携化、多功能化方向发展.电子封装材料和技术使电子器件最终成为有功能的产品.现已研发出多种新型封装材料、技术和工艺.电子封装正在与电子设计和制造一起,共同推动着信息化社会的发展 一.电子封装材料现状 近年来,封装材料的发展一直呈现快速增长的态势.电子封装材料用于承载电子元器件及其连接线路,并具有良好的电绝缘性.封装对芯片具有机械支撑和环境保护作用,对器件和电路的热性能和可靠性起着重要作用.理想的电子封装材料必须满足以下基本要求: 1)高热导率,低介电常数、低介电损耗,有较好的高频、高功率性能; 2)热膨胀系数(CTE)与Si或GaAs芯片匹配,避免芯片的热应力损坏;3)有足够的强度、刚度,对芯片起到支撑和保护的作用; 4)成本尽可能低,满足大规模商业化应用的要求;5)密度尽可能小(主要指航空航天和移动通信设备),并具有电磁屏蔽和射频屏蔽的特性。电子封装材料主要包括基板、布线、框架、层间介质和密封材料. 基板 高电阻率、高热导率和低介电常数是集成电路对封装用基片的最基本要求,同时还应与硅片具有良好的热匹配、易成型、高表面平整度、易金属化、易加工、低成本并具有一定的机械性能电子封装基片材料的种类很多,包括:陶瓷、环氧玻璃、金刚石、金属及金属基复合材料等. 陶瓷

陶瓷是电子封装中常用的一种基片材料,具有较高的绝缘性能和优异的高频特性,同时线膨胀系数与电子元器件非常相近,化学性能非常稳定且热导率高随着美国、日本等发达国家相继研究并推出叠片多层陶瓷基片,陶瓷基片成为当今世界上广泛应用的几种高技术陶瓷之一目前已投人使用的高导热陶瓷基片材料有A12q,AIN,SIC和B或)等. 环氧玻璃 环氧玻璃是进行引脚和塑料封装成本最低的一种,常用于单层、双层或多层印刷板,是一种由环氧树脂和玻璃纤维(基础材料)组成的复合材料.此种材料的力学性能良好,但导热性较差,电性能和线膨胀系数匹配一般.由于其价格低廉,因而在表面安装(SMT)中得到了广泛应用. 金刚石 天然金刚石具有作为半导体器件封装所必需的优良的性能,如高热导率(200W八m·K),25oC)、低介电常数、高电阻率(1016n·em)和击穿场强(1000kV/mm).从20世纪60年代起,在微电子界利用金刚石作为半导体器件封装基片,并将金刚石作为散热材料,应用于微波雪崩二极管、GeIMPATT(碰撞雪崩及渡越时间二极管)和激光器,提高了它们的输出功率.但是,受天然金刚石或高温高压下合成金刚石昂贵的价格和尺寸的限制,这种技术无法大规模推广. 金属基复合材料 为了解决单一金属作为电子封装基片材料的缺点,人们研究和开

微电子工艺技术 复习要点答案(完整版)

第四章晶圆制造 1.CZ法提单晶的工艺流程。说明CZ法和FZ法。比较单晶硅锭CZ、MCZ和FZ三种生长方法的优缺点。 答:1、溶硅2、引晶3、收颈4、放肩5、等径生长6、收晶。CZ法:使用射频或电阻加热线圈,置于慢速转动的石英坩埚内的高纯度电子级硅在1415度融化(需要注意的是熔硅的时间不宜过长)。将一个慢速转动的夹具的单晶硅籽晶棒逐渐降低到熔融的硅中,籽晶表面得就浸在熔融的硅中并开始融化,籽晶的温度略低于硅的熔点。当系统稳定后,将籽晶缓慢拉出,同时熔融的硅也被拉出。使其沿着籽晶晶体的方向凝固。籽晶晶体的旋转和熔化可以改善整个硅锭掺杂物的均匀性。 FZ法:即悬浮区融法。将一条长度50-100cm 的多晶硅棒垂直放在高温炉反应室。加热将多晶硅棒的低端熔化,然后把籽晶溶入已经熔化的区域。熔体将通过熔融硅的表面张力悬浮在籽晶和多晶硅棒之间,然后加热线圈缓慢升高温度将熔融硅的上方部分多晶硅棒开始熔化。此时靠近籽晶晶体一端的熔融的硅开始凝固,形成与籽晶相同的晶体结构。当加热线圈扫描整个多晶硅棒后,便将整个多晶硅棒转变成单晶硅棒。 CZ法优点:①所生长的单晶的直径较大,成本相对较低;②通过热场调整及晶转,坩埚等工艺参数的优化,可以较好的控制电阻率径向均匀性。缺点:石英坩埚内壁被熔融的硅侵蚀及石墨保温加热元件的影响,易引入氧、碳杂质,不易生长高电阻率单晶。 FZ法优点:①可重复生长,提纯单晶,单晶纯度较CZ法高。②无需坩埚、石墨托,污染少③高纯度、高电阻率、低氧、低碳④悬浮区熔法主要用于制造分离式功率元器件所需要的晶圆。缺点:直径不如CZ法,熔体与晶体界面复杂,很难得到无位错晶体,需要高纯度多晶硅棒作为原料,成本高。 MCZ:改进直拉法优点:较少温度波动,减轻溶硅与坩埚作用,降低了缺陷密度,氧含量,提高了电阻分布的均匀性 2.晶圆的制造步骤【填空】 答:1、整形处理:去掉两端,检查电阻确定单晶硅达到合适的掺杂均匀度。 2、切片 3、磨片和倒角 4、刻蚀 5、化学机械抛光 3. 列出单晶硅最常使用的两种晶向。【填空】 答:111和100. 4. 说明外延工艺的目的。说明外延硅淀积的工艺流程。 答:在单晶硅的衬底上生长一层薄的单晶层。 5. 氢离子注入键合SOI晶圆的方法 答:1、对晶圆A清洗并生成一定厚度的SO2层。2、注入一定的H形成富含H的薄膜。3、晶圆A翻转并和晶圆B键合,在热反应中晶圆A的H脱离A和B键合。4、经过CMP和晶圆清洗就形成键合SOI晶圆 6. 列出三种外延硅的原材料,三种外延硅掺杂物【填空】 7、名词解释:CZ法提拉工艺、FZ法工艺、SOI、HOT(混合晶向)、应变硅 答:CZ法:直拉单晶制造法。FZ法:悬浮区融法。SOI:在绝缘层衬底上异质外延硅获得的外延材料。HOT:使用选择性外延技术,可以在晶圆上实现110和100混合晶向材料。应变硅:通过向单晶硅施加应力,硅的晶格原子将会被拉长或者压缩不同与其通常原子的距离。 第五章热处理工艺 1. 列举IC芯片制造过程中热氧化SiO2的用途?

电子元器件封装技术详细介绍

电子元器件封装技术详细介绍 电子元器件封装技术详细介绍 1、BGA(ballgridarray):球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配LSI芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,是多引脚LSI用的一种封装。封装本体也可做得比QFP(四侧引脚扁平封装)小。 例如,引脚中心距为1.5mm的360引脚BGA仅为31mm见方;而引脚中心距为0.5mm的304引脚QFP为40mm见方。而且BGA不用担心QFP那样的引脚变形问题。该封装是美国Motorola公司开发的,首先在便携式电话等设备中被采用,今后在美国有可能在个人计算机中普及。最初,BGA的引脚(凸点)中心距为1.5mm,引脚数为225。现在也有一些LSI 厂家正在开发500引脚的BGA。BGA的问题是回流焊后的外观检查。现在尚不清楚是否有效的外观检查方法。有的认为,由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。美国Motorola公司把用模压树脂密封的封装称为OMPAC,而把灌封方法密封的封装称为GPAC(见OMPAC和GPAC)。 2、BQFP(quadflatpackagewithbumper):带缓冲垫的四侧引脚扁平封装。QFP封装之一,在封装本体的四个角设置突起(缓冲垫)以防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和ASIC等电路中采用此封装。引脚中心距0.635mm,引脚数从84到196左右(见QFP)。 3、碰焊PGA(buttjointpingridarray):表面贴装型PGA的别称(见表面贴装型PGA)。 4、C-(ceramic):表示陶瓷封装的记号。例如,CDIP表示的是陶瓷DIP。是在实际中经常使用的记号。 5、Cerdip:用玻璃密封的陶瓷双列直插式封装,用于ECLRAM,DSP(数字

电子封装和组装中的微连接技术

电子封装和组装中的微连接技术 Microjoining Technology in Electronics Packaging and Assembly 王春青田艳红孔令超 哈尔滨工业大学材料科学与工程学院微连接研究室,150001 李明雨 哈尔滨工业大学深圳研究生院,518055 摘要 材料的连接在微电子器件封装和组装制造中是关键工艺之一,由于材料尺寸非常微细,连接过程要求很高的能量控制精度、尺寸位置控制精度,在连接过程上体现出许多的特殊性,其研究已经成为一门较为独立的方向:微连接。本文介绍了在微电子封装和组装的连接技术上近年来的研究结果。 0 前言 连接是电子设备制造中的关键工艺技术,印制电路板上许多集成电路器件、阻容器件以及接插件等按照原理电路要求通过软钎焊(Soldering)等方法连接构成完整的电路;在集成电路器件制造中,芯片上大量的元件之间通过薄膜互连工艺连接成电路,通过丝球键合(Wire/Ball Bonding)、倒扣焊(Flip Chip)等方式将信号端与引线框架或芯片载体上的引出线端相互连接,实现封装。连接同时起到电气互连和机械固定连接的作用,绝大多数采用钎焊、固相焊、精密熔化焊等冶金连接方法,也有导电胶粘接、记忆合金机械连接等方法。如图0-1是一个集成电路中可能的互连焊点的示意图。- 图0-1 电子封装和组装中的连接技术 连接又是决定电子产品质量的关键一环。在一个大规模集成电路中少则有几十个焊点、多则有上千个焊点,而在印制电路板上则可能有上万个焊点。这些焊点虽然只起到简单的电气连接作用和机械固定作用,但其影响却非常重要,甚至只要有一个焊点失效就有可能导致整个元器件或者整机停止工作。而另一方面,焊接又是电子生产工艺中研究最为薄弱之处,在电子器件或电子整机的所有故障原因中,约70%以上为焊点失效所造成。 因此,随着电子工业的大规模发展和对电子产品可靠性的更高要求,电子产品焊接技术引起了人们的极大重视,已经在开展系统的研究:从事微电子生产工艺的科技工作者称之为 微电子焊接,而在焊接领域被称为微连接。 微电子器件封装和组装时要连接的材料的尺寸极其微小,在微米数量级;要求的精度很高,已达到纳米的数量级。连接的过程时间非常短、对加热能量等的控制要求非常精确。连

相关文档
相关文档 最新文档