文档库 最新最全的文档下载
当前位置:文档库 › 带电粒子在磁场运动中的轨迹赏析

带电粒子在磁场运动中的轨迹赏析

带电粒子在磁场运动中的轨迹赏析
带电粒子在磁场运动中的轨迹赏析

带电粒子在匀强磁场中的轨迹问题赏析

带电粒子在磁场中受到垂直于运动速度方向的洛仑兹力作用而做匀速圆周运动,由于所受力及初始条件不同,带电粒子在匀强磁场中形成不同的图形。这些图形反映了有关带电粒子在匀强磁场中运动时的不同特性,研究这些图形,可以直观的得到解题思路和方法,给人以美的享受,美的启迪。现以例题形式解析在匀强磁场中几种常见的图形。

一.一面“扇子”

例1 如图所示,在半径为R 的圆范围内有匀强磁场,一个

电子从M点沿半径方向以v射入,从N点射出,速度方向偏

转了600则电子从M到N运动的时间是( )

A v R 2π B v 3R 2π C v 3R π D v

3R 3π 解析 选D 过M,N两点分别做O’M⊥OM,O’N⊥ON.则粒子运动轨道形成一“扇面“图形,如图所示,圆心角∠MO’N=

60=3

π 又由r=Bq mv =030tan R =3R 和T=Bq m π2,得T=v R π3 2,所以电子从M 到N 运动时间t=T πθ2 =π

π2 3×v

R π3 2=v R 33 π 估选D 。

二. 一颗“心脏”

例2如图所示,以ab 为分界面的两个匀强磁场,方向

均垂直于纸面向里,其磁感应强度B 1=2B 2,现有一质量为m,带电量为+q 的粒子,从

O 点沿图示方向以速度v 进入B 1中,经过时间t= 粒子重新回到O 点(重力不计)

解析 粒子重新回到O 点时其运动轨道如图所示,形

成一”心脏”图形.由图可知,粒子在B 1中运动时间

t 1=T 1=q B m 12π 粒子在B 2中的运动时间为t 2=2

1T 2=q B m 2π 所以粒子运动的总时间t= t 1+ t 2=

q B m 12π+q B m 2π=q B m 22π或q B m 14π 三. 一条“螺旋线”

例3如图所示,水平放置的厚度均匀的铝箔,置于匀强磁场

中,磁场方向垂直于纸面向里,一带电粒子进入磁场后在

磁场中做匀速圆周运动,粒子每次穿过铝箔时损失的能量

都相同,如图中两圆弧半径R=20cm, R=19cm,则该粒子总共能穿过铝箔的次数是多少?

解析 由R=Bq mv 及E K =2

1mv 2 得::E K =m R B q 2222 所以每次动能损失:?E K = E K1- E K2=m R B q 22122—m R B q 22

222 所以粒子总共能穿过

铝箔的次数:K 1E ?E =222121R R R -=2

221.02.02.0-3.10≈ 故n=10次 粒子在每次穿过铝箔后其轨迹形成如图所示的一条“螺旋线”图形

四.一座“拱桥”

例4如图所示,在x 轴上方有垂直于xy 平面的匀强

磁场, 磁感应强度为B,在x 轴下方有沿y 轴负方向的匀强电场,场强为E ,一质量为m ,电量为—q 的粒子从坐标原点O 沿着y 轴正方向射出,射出之后,第三次到达x 轴时,它与O 点的距离为L ,求此时粒子射出时的速度和运动的总路程(重力不记)

解析 画出粒子运动轨迹如图所示,形成“拱桥“图形。由题知粒子轨道半径R=4L ,所以由牛顿定律知粒子运动速率为 v=m BqR =m BqL 4 对粒子进入电场后沿y 轴负方向做减速运动的最大路程y 由动能定理知:22

1mv =qEy ,得y=mE L qB 3222 所以粒子运动的总路程为s=+mE L qB 16222

1πL 五.一串“葡萄”

例5 如图(甲)所示,两块水平放置的平行金属板,板长L=1.4m,板距d=30cm 。两板间有B=1.25T,垂直于纸面向里的匀强磁场。在两板上加如图(乙)所示的脉冲电压。在t=0时,质量m=2×10-15kg ,电量为q=1×10-10C 的正离子,以速度为4×103m/s 从两板中间水平射入。试求:粒子在板间做什么运动?画出其轨迹。

解析 在第一个10-4s 内,电场,磁场同时存在,离子受

电场力,洛仑兹力分别为F 电=qE= 5=d qU ×10-7N,方向由左手定则知向上,粒子做匀速直线运动。位移s=vt=0.4m. 第二个10-4s 内,只有磁场,离子做匀速圆周运动,r=Bq mv 0=6.4×10-2m <4

d ,不会碰板,时间T=q B m 12π=1×10-4s ,即正巧在无电场时离子转满一周。易知以后重复上述运动,故轨迹如图所示,形成

“葡萄串”图形

六.一个“字母S ”

例6 如图所示,一个初速为0的带正电的粒子经过M ,

N 两平行板间电场加速后,从N 板上的孔射出,当带电

粒子到达P 点时,长方形abcd 区域中出现大小不变,方

向垂直于纸面且交替变化的匀强磁场,磁感应强度

B=0.4T,每经过t=4

π×10-3s ,磁场方向变化一次,粒子到达P 点时出现的磁场方向指向纸外,在Q 处有一静止的中性粒子,PQ 距离s=3.0m ,带电粒子的比荷是1.0×104C/kg,不计重力。求:(1)加速电压为200V 时带电粒子能否与中性粒子碰撞?(2)画出它的轨迹

解析 (1)粒子在M ,N 板间加速时由动能定理得到达P 点时的速度:qU =22

1mv 即:v=m

qU 2=4100.12002???m/s=2×103m/s 方向水平向右。此时P 点出现垂直于纸面向外的磁场,所以粒子由于受到洛伦兹力做圆周运动的周期为:T=Bq m π2=2

π×10-3s=2t 即粒子运动半周磁场方向改变,此时粒子速度方向变为水平向右,

故粒子又在PQ 右边做匀速圆周运动,以后重复下去,粒子做匀速圆周运动的轨道半径r=Bq mv =0.5m 所以粒子做半圆周运动个数为n=r s 2=m

m 5.020.3 =3 所以带电粒子能与中性粒子相遇。

(2)依(1)知带电粒子的轨迹如图所示,形成“葡萄串”图形

七.一朵“梅花”

例7. 如图两个共轴的圆筒形金属电极,外电极接地,

其上均匀分布着平行于轴线的四条狭缝a ,b ,c 和d ,

外筒的外半径为r 0,在圆筒之外的足够大区域中有平

行于轴线的匀强磁场,磁感应强度B ,在两极间加上

电压,使两圆筒之间的区域内有沿半径向外的电场。一质量为m ,带电量为+q 的粒子,从紧靠内筒且正对狭缝a 的S 点出发,初速为0。如果该粒子经过一段时间的运动之后恰好又回到出发点S ,则两电极之间的电压U 应是多少?(不计重力,整个装置在真空中)

解析 带电粒子从S 点出发,在两筒之间的电场力作用

下加速,沿径向穿出a 而进入磁场区

在洛伦兹力作用下做圆周运动,粒子再回到S 点的条件

是能依次沿径向穿过狭缝d ,c ,b 。在各狭缝中粒子在

电场力作用下先减速,在反向加速,然后从新进入磁场

区,如图所示 设粒子进入磁场区时的速度为v ,根据能量守恒有:qU =22

1mv 设粒子在洛伦兹力作用下做圆周运动的半径为R ,由洛伦兹力公式和牛顿定律得:

m R v 2=qvB 粒子从a 到d 必须经过4

3圆周,所以半径R 必定等于筒的外半径r 0,即R= r 0,由以上各式解得:U=m B qr 22

2

带电粒子在圆形磁场中运动的规律.

带电粒子在磁场中的运动 例 1. 如图所示,在宽度为 d 磁感应强度为 B 、水平向外的匀强磁场矩形区域内,一带电粒子以初速度 v 入射, 粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 A. 带电粒子的比荷 B. 带电粒子在磁场中运动的周期 C. 带电粒子的质量 D. 带电粒子在磁场中运动的半径变式 . 若带电粒子以初速度 v 从 A 点沿直径入射至磁感应强度为 B , 半径为 R 的圆形磁场, 粒子飞出时偏离原方向 60°,利用以上数据可求出下列物理量中的哪几个 应用 1、如图所示,长方形 abcd 长 ad = 0.6m ,宽 ab = 0.3m , O 、 e 分别是 ad 、bc 的中点,以 ad 为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场 ,磁感应强度 B =0.25T 。一群不计重力、质

量 m =3 ×10-7 kg 、电荷量 q =+2×10- 3C 的带电粒子以速度 v =5×l02m/s 沿垂直 ad 方向且垂直于磁场射入磁场区域( A . 从 Od 边射入的粒子, 出射点全部分布在 Oa 边 B . 从 aO 边射入的粒子, 出射点全部分布在 ab 边 C .从 Od 边射入的粒子,出射点分布在 Oa 边和 ab 边 D .从 aO 边射入的粒子,出射点分布在 ab 边和 bc 边 应用 2. 在以坐标原点 O 为圆心、半径为 r 的圆形区域内,存在磁感应强度大小为 B 、方向垂直于纸面向里的匀强磁场,如图 10所示。一个不计重力的带电粒子从磁场边界与 x 轴的交点 A 处以速度 v 沿 -x 方向射入磁场,恰好从磁场边界与 y 轴的交点 C 处沿 +y方向飞出。 (1请判断该粒子带何种电荷,并求出其比荷 q/m; (2若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了 60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间 t 是多少? 例 2. 如图所示, 一束电子流以不同速率, 由边界为圆形的匀强磁场的边界上一点 A , 沿直径方向射入磁场,已知磁感应强度方向垂直圆平面,则电子在磁场中运动时:( A 轨迹长的运动时间长 B 速率大的运动时间长 C 偏转角大的运动时间长 D 速率为某一值时不能穿出该磁场

带电体在磁场中的运动

带电在匀强磁场中的运动 (大庆实验中学2015-2016学年高二上学期期中)7.如图所示,一个带正电q 的小带电体处于一匀强磁场中,磁场垂直纸面向里,磁感应强度为B .带电体质量为m ,为了使它对水平绝缘面正好无压力,应( ) A .使 B 数值增大 B .使磁场以速率v=向上移动 C .使磁场以速率v=向右移动 D .使磁场以速率v= 向左移动 【考点】共点力平衡的条件及其应用;洛仑兹力. 【分析】小球能飘离平面的条件:竖直向上的洛伦兹力与重力平衡,由左手定则可知,当洛伦兹力竖直向上时,电荷向右运动,根据相对运动小球不动时,磁场相对小球向左运动. 【解答】解:小球能飘离平面的条件,竖直向上的洛伦兹力与重力平衡即:qvB=mg ,得: ,根据相对运动当小球不动 时,磁场相对小球向左运动.故选项D 正确,ABC 错误. 故选:D 【点评】考查了运动电荷在磁场中的运动,用左手定则判断洛伦兹力的方向,注意小球飘离地面的条件. (哈尔滨师大附属中2014-2015学年高二上学期期末)12.【多选】如图所示,两根长直导线竖直插入光滑绝缘水平桌面上的M 、N 两小孔中,O 为M 、N 连线中点,连线上a 、b 两点关于O 点对称。两导线通有大小相等、方向相反的电流。已知长直导线周围产生的磁场的磁感应强度B =k I r ,式中k 是常数,I 是导线中的电流、r 为点到导线的距离。一带负电的小球以初速度v 0从a 点出发沿连线运动到b 点。关于上述过程,下列说法正确的是 BC A .小球先做加速运动后做减速运动 B .小球一直做匀速直线运动 C .小球对桌面的压力先减小后增大 D .小球对桌面的压力先增大后减小 (大庆实验中学2015-2016学年高二上学期期末) 【多选】12. 如图所示,在垂直纸面向里的水平匀强磁场中,水平放置一根粗糙绝缘细直杆,有一个重力不能忽略、中间带有小孔的带正电小球套在细杆上。现在给小球一个水平向右的初速度v0,假设细杆足够长,小球在运动过程中电荷量保持不变,杆上各处的动摩擦因数相同,则小球运动的速度v 与时间t 的关系图像可能是 BD (牡丹江一中2013-2014学年高二上学期期末)8.如图所示,空间存在垂直于纸面向里的磁感应强度为B 的匀强磁场,场内有一绝缘的足够长的直杆,它与水平面的倾角为θ,一带电量为-q 、质量为m 的带负电的小球套在直杆上,从A 点由静止沿杆下滑,小球与杆之间的动摩擦因数为μ,在小球以后运动的过程中,下列说法正确的是( B ) A .小球下滑的最大速度为v =mgsin θ μBq B .小球下滑的最大加速度为am =gsin θ C .小球的加速度一直在减小 D .小球的速度先增大后减小 (黑龙江某重点中学2014-2015届高二上学期期末) 【多选】 7. 如图所示,一带正电的滑环套在水平放置且足够长的粗糙绝缘杆上,整个装置处于方向如图所示的匀强磁场中.现给环施以一个水平向右的速度,使其运动,则滑环在杆上的运动情况可能是( ABD ) A.先做减速运动,后做匀速运动 B.一直做减速运动,直到静止 C.先做加速运动,后做匀速运动 D.一直做匀速运动 (大庆实验中学2012-2013学年高二11月月考) (安达市高级中学2013-2014学年高二下学期开学检测) 【多选】4. 如图所示,一个质量为m 、电荷量为+q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度为B 的匀强磁场中,不计空气阻力,现给圆环向右的初速度v 0,在以后的运动过程中,圆环运动的速度图象可能是下图中的( AD )

带电粒子在圆形磁场中运动的规律

带电粒子在磁场中的运动 例1.如图所示,在宽度为d磁感应强度为B、水平向外的匀强磁场矩形区域内,一带电粒子以初速度v入射,粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 A.带电粒子的比荷 B.带电粒子在磁场中运动的周期 C.带电粒子的质量 D.带电粒子在磁场中运动的半径 变式.若带电粒子以初速度v从A点沿直径入射至磁感应强度为B,半径为R的圆形磁场,粒子飞出时偏离原方向60°,利用以上数据可求出下列物理量中的哪几个 应用1、如图所示,长方形abcd 长ad = 0.6m ,宽ab = 0.3m , O、e分别是ad、bc 的中点,以ad为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场),磁感应强度B=。一群不计重力、质量m=3 ×10-7 kg 、电荷量q=+2×10-3C 的带电粒子以速度v=5×l02m/s 沿垂直ad方向且垂直于磁场射入磁场区域( ) A.从Od边射入的粒子,出射点全部分布在Oa边B.从aO边射入的粒子,出射点全部分布在ab边C.从Od 边射入的粒子,出射点分布在Oa 边和ab边 D.从aO边射入的粒子,出射点分布在ab边和bc边 应用2.在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图10所示。一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,恰好从磁场边界与y轴的交点C处沿+y方向飞出。 (1)请判断该粒子带何种电荷,并求出其比荷q/m; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B′,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B′多大此次粒子在磁场中运动所用时间t是多少 例2.如图所示,一束电子流以不同速率,由边界为圆形的匀强磁场的边界上一点A,沿直 径方向射入磁场,已知磁感应强度方向垂直圆平面,则电子在磁场中运动时:() A轨迹长的运动时间长B速率大的运动时间长

带电粒子在均匀电磁场中的运动

目 录 一、引言 ........................................................................................ 1 二、认识等离子体 ........................................................................ 1 三、单粒子轨道运动 .................................................................... 5 3.1带电粒子在均匀电场中的运动学特性 .. (5) 3.1.10v 与E 垂直或平行时带电粒子的运动轨迹 (5) 3.1.20v 与E 成任一夹角时带电粒子的运动轨迹 (5) 3.2带电粒子在均匀磁场中的运动学特性 .......................... 6 3.2.1洛伦兹力 .. (6) 3.2.2粒子的初速度0v 垂直于B ...................................... 7 3.2.3粒子的初速度0v 与B 成任一夹角时 (8) 3.3带电粒子在均匀电磁场中的运动学特性 (10) 3.3.10v 、E 和B 两两相互垂直 (10) 3.3.20v 与E 成任一夹角,B 垂直它们构成的平面 (12) 四、小结 ...................................................................................... 16 参考文献 .. (16)

带电粒子在磁场中运动(I)

3.6 带电粒子在磁场中的运动(二) 主编:金生华 主审:张国平 班级 姓名 学号 教学目标: 1.学会寻找带电粒子在匀强磁场中做匀速圆周运动的圆心、半径 2.能够处理带电粒子在匀强磁场中做非完整匀速圆周运动时间 教学重难点: 1.如何确立带电粒子在匀强磁场中做匀速圆周运动的圆心、半径及运动时间 难点解析 1、如何确立带电粒子在匀强磁场中做匀速圆周运动的圆心、半径及 运动时间? (1)圆心的确定。因为洛伦兹力f 指向圆心,根据f ⊥v ,画出粒子运动轨迹上任意两 点(一般是射入和射出磁场的两点)的f 的方向,其延长线的交点即为圆心。 (2)半径的确定和计算。圆心找到以后,自然就有了半径(一般是利用粒子入、出磁 场时的半径)。半径的计算一般是利用几何知识,常用解三角形的方法及圆心角等于圆弧上弦切角的两倍等知识。 (3)在磁场中运动时间的确定。利用圆心角与弦 切角的关系,或者是四边形内角和等于360° 计算出圆心角θ的大小,由公式t=ο360 θ×T 可求出运动时间。有时也用弧长与线速度的比。 如图所示,还应注意到: ①速度的偏向角?等于弧AB 所对的圆心角θ。 ②偏向角?与弦切角α的关系为:?<180°,?=2α;?>180°,?=360°-2α; (4)注意圆周运动中有关对称规律 如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等; 在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。 典型例题 【例1】如图所示,一束电子(电量为e)以速度v 垂直射入磁感应强度为B ,宽度为d 的匀强 磁场中,穿过磁场时速度方向与电子原来入射方向的夹角是300,则电子的质量是多少?电子穿过磁场的时间是多少? 【例2】如图所示,匀强磁场的磁感应强度为B ,宽度为d ,边界为CD 和EF 。一电子从 CD 边界外侧以速率V 0垂直射入匀强磁场,入射方向与CD 边界间夹角为θ。已知电子的质量为m ,电荷量为e ,求: (1)为使电子能从磁场的另一侧EF 射出,电子的速率v0至少多大? (2)若电子从磁场的CD 一侧射出, 则电子在磁场中的运动时间是多少? 【例3】如图所示,分布在半径为r 的圆形区域内的匀强磁 场,磁感应强度为B ,方向垂直纸面向里。电量为 q 、质量为m 的带正电的粒子从磁场边缘A 点沿圆 的半径AO 方向射入磁场,离开磁场时速度方向偏 转了60°角。试确定:

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中, 如“圆周运动中小球能过最高点的速度条 件” “动量中的避免碰撞问题”等等, 这类题目中往往含有“最大”、 “最高”、“至少”、 “恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁 场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 、解题方法 画图T 动态分析T 找临界轨迹。 (这类题目关键是作图,图画准了,问题就解决了一大 半,余下的就只有计算了——这一般都不难。 ) 、常见题型 (B 为磁场的磁感应强度,V 。为粒子进入磁场的初速度) r ①旳方向一定,大小不确定一第一类 I 』确宦 < ②V 。犬小 一亦方向不确定——第二类 ■③旳大小、方向都不确定一第三类 分述如下: 第一类问题: 例1如图1所示,匀强磁场的磁感应强度为 B,宽度为d ,边界为CD 和EF 。一电子从 CD 边界 外侧以速率 V 。垂直匀强磁场射入,入射方向与CD 边界夹角为0。已知电子的质量为 m 电荷量为e ,为使电子能从磁场的另一侧 EF 射出,求电子的速率 v o 至少多大? 2.行不确宦 -①巾确定 ——第四类 {——五类

例2如图3所示,水平线 MN 下方存在垂直纸面向里的磁感应强度为 B 的匀强磁场,在 MN 线上某点O 正下方与之相距 L 的质子源S,可在纸面内360°范围内发射质量为 m 电量 为e 、速度为 V o =BeL / m 的质子,不计质子重力,打在 MN 上的质子在 O 点右侧最远距离 OP ,打在O 点左侧最 远距离 OO 。 分析:首先求出半径得r =L ,然后作出临界轨迹如图 4所示(所有从 S 发射出去的质子 做圆周运动的轨道圆心是在以 S 为圆心、以r =L 为半径的圆上,这类问题可以先作出这一圆 ——就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆) ,O 諒L , OQL 。 【练习】如图5所示,在屏MN 勺上方有磁感应强度为 B 的匀强磁场,磁场方向垂直纸面 向里。P 为屏上的一小孔,PC 与MN 垂直。一群质量为 m 带电荷量为一q 的粒子(不计重力), 分析:如图2,通过作图可以看到:随着 界EF 相切,然后就不难解答了。 第二类问题: V o 的增大,圆半径增大,临界状态就是圆与边

带电粒子在磁场运动中的轨迹赏析

带电粒子在匀强磁场中的轨迹问题赏析 带电粒子在磁场中受到垂直于运动速度方向的洛仑兹力作用而做匀速圆周运动,由于所受力及初始条件不同,带电粒子在匀强磁场中形成不同的图形。这些图形反映了有关带电粒子在匀强磁场中运动时的不同特性,研究这些图形,可以直观的得到解题思路和方法,给人以美的享受,美的启迪。现以例题形式解析在匀强磁场中几种常见的图形。 一.一面“扇子” 例1 如图所示,在半径为R 的圆范围内有匀强磁场,一个 电子从M点沿半径方向以v射入,从N点射出,速度方向偏 转了600则电子从M到N运动的时间是( ) A v R 2π B v 3R 2π C v 3R π D v 3R 3π 解析 选D 过M,N两点分别做O’M⊥OM,O’N⊥ON.则粒子运动轨道形成一“扇面“图形,如图所示,圆心角∠MO’N= 60=3 π 又由r=Bq mv =030tan R =3R 和T=Bq m π2,得T=v R π3 2,所以电子从M 到N 运动时间t=T πθ2 =π π2 3×v R π3 2=v R 33 π 估选D 。 二. 一颗“心脏” 例2如图所示,以ab 为分界面的两个匀强磁场,方向 均垂直于纸面向里,其磁感应强度B 1=2B 2,现有一质量为m,带电量为+q 的粒子,从

O 点沿图示方向以速度v 进入B 1中,经过时间t= 粒子重新回到O 点(重力不计) 解析 粒子重新回到O 点时其运动轨道如图所示,形 成一”心脏”图形.由图可知,粒子在B 1中运动时间 t 1=T 1=q B m 12π 粒子在B 2中的运动时间为t 2=2 1T 2=q B m 2π 所以粒子运动的总时间t= t 1+ t 2= q B m 12π+q B m 2π=q B m 22π或q B m 14π 三. 一条“螺旋线” 例3如图所示,水平放置的厚度均匀的铝箔,置于匀强磁场 中,磁场方向垂直于纸面向里,一带电粒子进入磁场后在 磁场中做匀速圆周运动,粒子每次穿过铝箔时损失的能量 都相同,如图中两圆弧半径R=20cm, R=19cm,则该粒子总共能穿过铝箔的次数是多少? 解析 由R=Bq mv 及E K =2 1mv 2 得::E K =m R B q 2222 所以每次动能损失:?E K = E K1- E K2=m R B q 22122—m R B q 22 222 所以粒子总共能穿过 铝箔的次数:K 1E ?E =222121R R R -=2 221.02.02.0-3.10≈ 故n=10次 粒子在每次穿过铝箔后其轨迹形成如图所示的一条“螺旋线”图形 四.一座“拱桥” 例4如图所示,在x 轴上方有垂直于xy 平面的匀强

带电粒子在磁场中的运动(教案)

磁场·带电粒子在磁场中的运动 一、教学目标 1.根据洛仑兹力的特点,理解带电粒子垂直进入磁场做匀速圆周运动。 2.以洛仑兹力为向心力推导出带电粒子在磁场中做圆运动的半径r= 3.掌握速度选择器和质谱仪的工作原理和计算方法。 二、重点、难点分析 1.洛仑兹力f=Bqv的应用是该节重点。 2.洛仑兹力作为向心力,是使运动电荷在磁场中做匀速圆周运动的 本节的难点。 3.对速度选择器和质谱仪的工作原理的理解和掌握也是本节的重点和难点。 三、教具 洛仑兹力演示仪。 四、主要教学过程 (一)引入新课 1.提问:如图所示,当带电粒子q以速度v分别垂直进入匀强电场和匀强磁场中,它们将做什么运动?(如图1所示)

回答:平抛和匀速圆周运动。 在此学生很有可能根据带电粒子进入匀强电场做平抛运动的经验,误认为带电粒子垂直进入匀强磁场也做平抛运动。在这里不管学生回答正确与错误,都应马上追问:为什么?引导学生思考,自己得出正确答案。 2.观察演示实验:带电粒子在磁场中的运动——洛仑兹力演示仪。 3.看挂图,比较带电粒子垂直进入匀强电场和磁场这两种情况下轨迹的差别。 (二)教学过程设计 1.带电粒子垂直进入匀强磁场的轨迹(板书) 提问: 在什么平面内?它与v的方位关系怎样? ①f 洛 对运动电荷是否做功? ②f 洛 ③f 对运动电荷的运动起何作用? 洛 ④带电粒子在磁场中的运动具有什么特点? 通过学生的回答,展开讨论,让同学自己得出正确的答案,强化上节所学知识——洛仑兹力产生条件,洛仑兹力大小、方向的计算和判断方法。 结论:(板书)①带电粒子垂直进入匀强磁场,其初速度v与磁场垂直,根据左手定则,其受洛仑兹力的方向也跟磁场方向垂直,并与初速度方向都在同一垂直磁场的平面内,所以粒子只能在该平面内运动。 ②洛仑兹力总是跟带电粒子的运动方向垂直,它只改变粒子运动的方向,不改变粒子速度的大小,所以粒子在磁场中运动的速率是恒定的,这时洛仑兹力的大小f=Bqv也是恒定的。 ③洛仑兹力对运动粒子不做功。

带电粒子在有界磁场中运动(超经典)..

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 一、解题方法 画图→动态分析→找临界轨迹。(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。) 二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度) 分述如下: 第一类问题: 例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?

分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。 第二类问题: 例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。 分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆 ──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。 【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。P为屏上的一小孔,PC与MN垂直。一群质量为m、带电荷量为-q的粒子(不计重力),

带电粒子在磁场中的运动习题含答案

带电粒子在磁场中的运动 练习题 1. 如图所示,一个带正电荷的物块m 由静止开始从斜面上A 点下滑,滑到水平面BC 上的D 点停下来.已知物块与斜面及水平面间的动摩擦因数相同,且不计物块经过B 处时的机械能损失.先在ABC 所在空间加竖直向下的匀强电场,第二次让物块m 从A 点由静止开始下滑,结果物块在水平面上的D′点停下来.后又撤去电场,在ABC 所在空间加水平向里的匀强磁场,再次让物块m 从A 点由静止开始下滑,结果物块沿斜面滑下并在水平面上的D″点停下来.则以下说法中正确的是( ) A .D′点一定在D 点左侧 B .D′点一定与D 点重合 C .D″点一定在 D 点右侧 D .D″点一定与D 点重合 2. 一个质量为m 、带电荷量为+q 的圆环,可在水平放置的足够长的粗 糙细杆上滑动,细杆处于磁感应强度为B 的匀强磁场中.现给圆环向右初速度v 0,A . B . C . D . 子从ad 的中点垂直于电场和磁场方向射入,恰沿直线从bc 边的中点P 射出,若撤去磁场,则粒子从c 点射出;若撤去电场,则粒子将(重力不计)( ) A .从b 点射出 B .从b 、P 间某点射出 C .从a 点射出 D .从a 、b 间某点射出 4. 如图所示,在真空中匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里,三个油滴a 、b 、c 带有等量同种电荷,其中a 静止,b 向右做匀速运动,c 向左匀速运动,比较它们的重力Ga 、Gb 、Gc 的大小关系,正确的是( ) A .Ga 最大 B .Gb 最大 C .Gc 最大 D .Gb 最小 5. 如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角。现将带电粒子的速度变为v /3,仍从A 点射入磁场,不计重力,则粒子在磁场中的运动时间变为 ( ) A.t ?2 1 B. t ?2 C. t ?3 1 D. t ?3 6. 如图所示,在xOy 平面内存在着磁感应强度大小为B 的匀强磁场,第一、二、四象限内的磁场方向垂直纸面向里,第三象 限内的磁场方向垂直纸面向外.P (-L 2,0)、Q (0,-L 2)为坐标轴上的两个

带电粒子在磁场中运动的轨迹欣赏

带电粒子在磁场中运动的轨迹欣赏

————————————————————————————————作者: ————————————————————————————————日期:

带电粒子在复合场中运动的轨迹欣赏 1.一朵梅花 例1.如图所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B。在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零。如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中) 解析:如图所示,设粒子进入磁场区的速度大小为V,根据动能定理,有 设粒子做匀速圆周运动的半径为R,由洛伦兹力公式和牛顿第二定律,有: 由上面分析可知,要回到S点,粒子从a到d必经过4圆周,所以 半径R必定等于筒的外半径r,即R=r.由以上各式解得 感受美:该粒子运动的轨迹构成了一朵“四只花辨”的鲜艳的油菜花 拓展1:该圆筒上平行于轴线均匀分布的若是“六条狭缝”,当电压 时,粒子经过一段运动后也能回到原出发点。 感受美:该运动轨迹构成了“六只花辨”的怒放的 梅花 拓展2:该圆筒上平行于轴线均匀分布的若是“n条狭缝”,当电压时,粒子经过一段运动后也能回到原出发点,并且粒子做匀速 m r qB U 6 2 2 = 2 2 2 tan 2 ? ? ? ? ?? = n m r qB U π

圆周运动的半径 感受美:粒子的运动轨迹构成了一朵“n 只花辨”盛开的鲜花。 拓展3:若圆筒上只在a 处有平行于轴线的狭缝,并且粒子与圆筒外壁发生了n 次无能量损失和电量损失的碰撞后恰能回到原出发点,则加速电压 并且粒子运动的半径 感受美:该运动轨迹也构成了一朵“n只花辨” 盛开的鲜花(右图为五次碰撞的情形)。 2.一座“拱桥” 例2.如图所示,在x 轴上方有垂直于xy 平面的匀强磁场,磁感应强度为B ,在x 轴下方有沿y 轴负方向的匀强电场,场强为E ,一质量为m,电量为—q 的粒子从坐标原点O 沿着y 轴正方向射出,射出之后,第三次到达x 轴时,它与O 点的距离为L,求此时粒子射出时的速度和运动的总路程(重力不计) 解析:画出粒子运动轨迹如图所示,形成“拱桥”图形。 由题知粒子轨道半径 所以由牛顿定律知粒子运动速率为 对粒子进入电场后沿y 轴负方向做减速运动的最大路程y 由动能定理知: 所以粒子运动的总路程为 3、一个电风扇 例3、据有关资料介绍,受控热核聚变反应装置中有极高的温度,因而带电粒子将没有通常意义上的容器可装,而是由磁场约束带电粒子运动将其束缚在某个区域 内,现按下面的简化条件来讨论这个问题,如图所示,有一个环形区域,其截面内半径为 外半径为R 2=1.0m,区域内有垂直纸面向里的匀强磁场,已知 n r R π tan ?=22 21tan 2? ?? ??+?=n m r qB U π1tan +?=n r R π133 R m =

带电粒子在磁场中的轨迹圆规律经典题型

附一:带电粒子在匀强磁场中的运动问题分析策略 带电粒子在匀强磁场中受洛伦兹力做匀速圆周运动,根据这一特点该问题的解决方法一般为:一定圆心,二画轨迹,三用几何关系求半径,四根据圆心角和周期关系确定运动时间。其中圆心的确定最为关键,一般方法为:①已知入射方向和出射方向时,过入射点和出射点做垂直于速度方向的直线,两条直线的交点就是圆弧轨迹的圆心。②已知入射点位置及入射时速度方向和出射点的位置时,可以通过入射点做入射方向的垂线,连接入射点和出射点,做其中垂线,这两条垂线的交点就是圆弧轨迹的圆心。 以上方法简单明了,但具体求解时,学生对其轨迹的变化想象不出来,从而导致错解习题。如从以上方法出发,再借助圆规或硬币从“动态圆”角度分析,便可快而准的解决问题。此类试题可分为旋转圆、缩放圆和平移圆三大类型,下面以高考试题为例进行分析。 一、旋转圆模型特征带电粒子从某一点以大小不变而方向不限定(如0—180°范 围内)的速度射入匀强磁场中,这类问题都可以归结为旋转圆问题,把其轨迹连续起来观察可认为是一个半径不变的圆,根据速度方向的变化以出射点为旋转轴在旋转如图1。解题时使用圆规或硬币都可以快捷画出其轨迹,达到快速解答试题的目的。 典例解析 例1(2010·全国1)如图2,在0≤x≤a 区域内存在与xOy 平面垂直的匀强磁场,磁感应强度的大小为B。在t=0 时刻,一位于坐标原点的粒子源在xOy 平面内发射出大量同种带电粒子,所有粒子的初速度大小相Array同,方向与y 轴正方向的夹角分布在0°~180° 范围内。已 知沿y 轴正方向发射的粒子在t=t0 时刻刚好从磁场边界上 P(a,a)点离开磁场。求: (1)粒子在磁场中做圆周运动的半径R 及粒子的比荷 q/m; (2)此时刻仍在磁场中的粒子的初速度方向与y 轴正方 向夹角的取值范围; (3)从粒子发射到全部粒子离开磁场所用的时间动态分 析 由题知沿y 轴正方向发射的粒子从磁场边界上P( a,a)点离开磁场,利用圆规或硬币可作出其轨迹图像如图3,由于粒子速度方向在0°~180°范围内,其它方向的轨迹可以通过旋转第一个圆得到(O点为旋转点),如图4。从图中可明显发现第2问第3 问所涉及的粒子轨迹所在位置,利用几何关系便可解答此题。

高中物理带电粒子在磁场中的运动知识点汇总

难点之九:带电粒子在磁场中的运动 一、难点突破策略 (一)明确带电粒子在磁场中的受力特点 1. 产生洛伦兹力的条件: ①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用. ②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小: 当电荷运动方向与磁场方向平行时,洛伦兹力f=0; 当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ; 当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ 3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功. (二)明确带电粒子在匀强磁场中的运动规律 带电粒子在只受洛伦兹力作用的条件下: 1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动. 2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动. ①向心力由洛伦兹力提供: R v m qvB 2 = ②轨道半径公式: qB mv R = ③周期: qB m 2v R 2T π=π= ,可见T 只与q m 有关,与v 、R 无关。 (三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的 物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。 1. “带电粒子在匀强磁场中的圆周运动”的基本型问题 (1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。确定半径和给定的几何量之间的关系是解题的基础, 有时需要建立运动时间t 和转过的圆心角α之间的关系( T 2t T 360t πα=α= 或)作为辅助。圆心的确定,通常有以下 两种方法。 ① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。 ② 已知入射方向和出射点的位置,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图9-2,P 为入射点,M 为出射点)。 (2)半径的确定和计算:利用平面几何关系,求出该圆的可能半径或圆心角。并注意以下两个重要的特点: 图9-1 图9-2 图9-3

知识讲解_带电粒子在磁场中的运动 提高

带电粒子在磁场中的运动 编稿:周军审稿:隋伟 【学习目标】 1.掌握带电粒子在匀强磁场中做匀速圆周运动的特点和解决此类运动的方法。 2.理解质谱仪和回旋加速器的工作原理和作用。 【要点梳理】 要点一:带电粒子在匀强磁场中的运动 要点诠释: 1.运动轨迹 带电粒子(不计重力)以一定的速度v进入磁感应强度为B的匀强磁场中: (1)当v∥B时,带电粒子将做匀速直线运动; (2)当v⊥B时,带电粒子将做匀速圆周运动; (3)当v与B的夹角为θ(θ≠0°,90°,180°)时,带电粒子将做等螺距的螺旋线运动. 说明:电场和磁场都能对带电粒子施加影响,带电粒子在匀强电场中只在电场力作用下,可能做匀变速直线运动,也可能做匀变速曲线运动,但不可能做匀速直线运动;在匀强磁场中,只在磁场力作用下可以做曲线运动.但不可能做变速直线运动. 2.带电粒子在匀强磁场中的圆周运动 如图所示,带电粒子以速度v垂直磁场方向入射,在磁场中做匀速圆周运动,设带电粒子的质量为m,所带的电荷量为q. (1)轨道半径:由于洛伦兹力提供向心力,则有 2 v qvB m r =,得到轨道半径 mv r qB =. (2)周期:由轨道半径与周期之间的关系 2r T v π =可得周期 2m T qB π =. 说明:(1)由公式 mv r qB =知,在匀强磁场中,做匀速圆周运动的带电粒子,其轨道半径跟运动速率 成正比. (2)由公式 2m T qB π =知,在匀强磁场中,做匀速圆周运动的带电粒子,周期跟轨道半径和运动速率 均无关,而与比荷q m 成反比. 注意: mv r qB =与 2m T qB π =是两个重要的表达式,每年的高考都会考查.但应用时应注意在计算说明 题中,两公式不能直接当原理式使用. 要点二:带电粒子在匀强磁场中做圆周运动的问题分析要点诠释:

《带电粒子在磁场中的运动》教案示例

《带电粒子在磁场中的运动》教案示例 设计思想 本节课是一节新常规课,组织方式为课堂教学。在设计本课时,遵循了新课程理念中“学生为主体、教师为主导”的原则,体现了传统媒体、现代媒体与课堂教学恰当整合的思想。 一.学生主体、教师主导的实现 主要通过恰当地创设教学情景来体现学生的主体地位。本节课共创设了以下几个情景: 1.在观察电子射线管中电子在磁场中的圆周运动的基础上,提出:从理论上如何分析、论证带电粒子垂直射入匀强磁场中时,为什么是匀速圆周运动?引导学生分析、推理、论证。 2.在得出带电粒子做匀速圆周的结论后,提出:粒子在多大的圆周上运动?运动一周的时间是多少?引导学生运用牛顿第二定律,结合圆周运动的知识,推导带电粒子运动的轨道半径和运动周期。 3.最后,提出:带电粒子在磁场中运动规律在实际中有什么应用?引导学生运用所学知识,分析质谱仪、回旋加速器的原理。 在整个课堂教学过程中,通过教师的引导,学生观察实验;思考回答问题;分析、推理、论证;完成实验原理设计,在这一系列的活动中,学生始终处于主体地位,是活动的主体。应用所学知识解决实际问题的过程,充分调动了学生的主体参与,而教师则始终主导着课堂的进行,体现教师的主导作用。 二.现代媒体与课堂教学的整合 在现代课堂教学中,现代媒体已经成为一个重要的支持教学的工具,媒体与课堂教学的整合一般有以下几种方式: 1.模拟演示/多媒体展示 2.情境化学习 3.微型世界 4.虚拟实验 具体采用哪种整合方式应视教学目标而定。在本课的教学中,目标是让学生建立带电粒子垂直进入匀强磁场时的运动图景,掌握带电粒子的运动规律及其应用。图景的建立是难点,为了突破这个难点,我设计了一个模拟带电粒子在磁场中运动的软件,在学生观察了电子射线管中电子的圆周运动后,再让学生观察模拟运动,帮助学生建立动态图景,突破了思维障碍。为了展示质谱仪和螺旋加速器的原理,我制作了相应的课件,动态演示它们的工作原理,帮助学生建立直观的图景,降低了教学难度。在整堂的教学过程中,传统媒体、现代媒体有机融合,相辅相成,使课堂教学行云流水,提高了课堂教学质量和教学效果。 教学设计

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动(超经典)

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 一、解题方法 画图→动态分析→找临界轨迹。(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。) 二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)

分述如下: 第一类问题: 例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?

分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。 第二类问题: 例2 如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN 线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN 上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。

分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。 【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向

带电粒子在匀强磁场中运动轨迹

确定带电粒子在匀强磁场中运动轨迹 的方法探究 指导老师:陈枫 被指导老师:许林民教材分析 本节内容是磁场一章中非常重要的知识点,主要注意对带电粒子在磁场中运动半径和轨迹圆心的确定,特别是在有界磁场中如何来确定轨迹的问题。所以教学中要注意使学生通过运用物理方法和几何方法来解题,将数学知识和物理模型有机结合起来。 教学目标 知识与能力 1.理解带电粒子在磁场中运动有它的特殊性,即受洛伦兹力作用;洛伦兹力大小有 其特殊表达式:F=Bqv,其方向也具有特点:洛伦兹力的方向始终与速度方向垂直;故洛伦兹力不做功。 2.带电粒子在磁场中运动做圆周运动,洛伦兹力提供向心力,通过这样的物理情景 来确定轨迹圆心位置,即找出任意两点作速度垂线(洛伦兹力方向),交点即为圆心。数学几何关系上有如下特点:①圆周上任意两点连线的中垂线过圆心②圆周上两条切线夹角的平分线过圆心③过切点作切线的垂线过圆心 过程与方法 1.渗透物理学方法的教育,让学生学习运用理想化方法,突出主要因素,忽略次要 因素的科学方法 2.掌握物理方法与数学方法的结合 3.提高学生的分析、推理及运算能力。 情感、态度、价值观 1.让学生体会到物理情景的不同,物理规律却可以是相同的 2.通过本节的学习,培养学生科学研究的意志品质 教学重点 带电粒子在匀强磁场中运动轨迹半径的确定 教学难点 带电粒子在匀强磁场中运动轨迹半径及圆心的确定;有界磁场边界的确定。 教学方法 模型法教学。通过习题来反映如何建立物理模型,然后怎样解决模型,培养学生分析推理及运算能力。 教学用具 球形电子射线管多媒体课件

引入:通过观察球形电子射线管中电子在磁场作用下的偏转,回顾带电粒子在磁场中运动的规律. 一、带电粒子在匀强磁场中的运动规律 1、带电粒子在磁场中(v⊥B)只受洛仑兹力,粒子做匀速圆周运动。 2、轨道半径:由Bqv=mv2/R得到R=mv/qB 3、周期:T=2πR/v=2πm/qB 二、确定带电粒子在磁场中运动轨迹的方法 1、物理方法: 作出带电粒子在磁场中两个位置所受洛仑兹力,沿其方向延长线的交点确定圆心,从而确定其运动轨迹。 2、物理和几何方法: 作出带电粒子在磁场中某个位置所受洛仑兹力,沿其方向的延长线与圆周上两点连线的中垂线的交点确定圆心,从而确定其运动轨迹。 3、几何方法: ①圆周上任意两点连线的中垂线过圆心②圆周上两条切线夹角的平分线过圆心③过切点作切线的垂线过圆心 三、例题 1、物理方法 例1:如图所示,一束电子(电量为e)以速度v垂直 射入磁感应强度为B、宽度为d的匀强磁场中,穿透磁 场时速度方向与电子原来入射方向的夹角是30o,则电 子的质量是多少?穿透磁场的时间又是多少? 2、物理和几何方法 例2:如图所示,在y<0的区域内存在匀强磁场, 磁场方向垂直于xy平面并指向纸面外,磁感应 强度为B。一带正电的粒子以速度v o从O点射 入磁场,入射方向在xy平面内,与x轴正向的 夹角为θ。若粒子射出磁场的位置与O点的距 离为L,求该粒子的电量和质量之比q/m。

带电粒子在磁场中的运动习题含标准答案

带电粒子在磁场中的运动练习题2016.11.23 1. 如图所示,一个带正电荷的物块m由静止开始从斜面上A点下滑,滑到水平面BC上的D点停下来.已知物块与斜面及水平面间的动摩擦因数相同,且不计物块经过B处时的机械能损失.先在ABC所在空间加竖直向下的匀强电场,第二次让物块m从A点由静止开始下滑,结果物块在水平面上的D′点停下来.后又撤去电场,在ABC所在空间加水平向里的匀强磁场,再次让物块m从A点由静止开始下滑,结果物块沿斜面滑下并在水平面上的D″点停下来.则以下说法中正确的是( ) A.D′点一定在D点左侧 B.D′点一定与D点重合 C.D″点一定在D点右侧 D.D″点一定与D点重合 2. 一个质量为m、带电荷量为+q的圆环,可在水平放置的足够长的粗糙细杆 上滑动,细杆处于磁感应强度为B的匀强磁场中.现给圆环向右初速度v0,在以 后的运动过程中,圆环运动的速度图象可能是() A.B.C.D. 3. 如图所示,在长方形abcd区域内有正交的电磁场,ab=bc/2=L,一带电粒子从ad的 中点垂直于电场和磁场方向射入,恰沿直线从bc边的中点P射出,若撤去磁场,则粒子从 c点射出;若撤去电场,则粒子将(重力不计)() A.从b点射出B.从b、P间某点射出 C.从a点射出D.从a、b间某点射出 4. 如图所示,在真空中匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里,三 个油滴a、b、c带有等量同种电荷,其中a静止,b向右做匀速运动,c向左匀速运动,比 较它们的重力Ga、Gb、Gc的大小关系,正确的是() A.Ga最大B.Gb最大 C.Gc最大D.Gb最小

5. 如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角。现将带电粒子的速度变为v /3,仍从A 点射入磁场,不计重力,则粒子在磁场中的运动时间变为 ( ) A.t ?2 1 B.t ?2 C. t ?3 1 D. t ?3 6. 如图所示,在xOy 平面内存在着磁感应强度大小为B 的匀强磁场,第一、二、四象限内的磁场方向垂直纸面向里,第三象限内的磁场方向垂直纸面向外.P (-L 2,0)、Q (0,-L 2)为坐标轴上的两个点.现有一电子从P 点沿PQ 方向射出,不计电子的重力,则. ( ) A .若电子从P 点出发恰好经原点O 第一次射出磁场分界线,则电子运动的路程一定为 2 L π B .若电子从P 点出发经原点O 到达Q 点,则电子运动的路程一定为L π C .若电子从P 点出发经原点O 到达Q 点,则电子运动的路程可能为2L π D .若电子从P 点出发经原点O 到达Q 点,则n L π(n 为任意正整数)都有可能是电子运动的路程 7. 如图,一束电子(电量为e )以速度v 0垂直射入磁感应强度为B ,宽为d 的匀强磁场中,穿出磁场的速度方向与电子原来的入射方向的夹角为30°,求: (1)电子的质量是多少? (2)穿过磁场的时间是多少? (3)若改变初速度,使电子刚好不能从A 边射出,则此时速度v 是多少?

相关文档
相关文档 最新文档