文档库 最新最全的文档下载
当前位置:文档库 › 双电源切换应用电路

双电源切换应用电路

双电源切换应用电路
双电源切换应用电路

双电源切换应用电路

Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

功率P-FET控制器LTC4414

LTC4414是一种功率P-EFT控制器,主要用于控制电源的通、断及自动切换,也可用作高端功率开关。该器件主要特点:工作电压范围宽,为~36V;电路简单,外围元器件少;静态电流小,典型值为30μA;能驱动大电流P沟道功率MOSFET;有电池反极性保护及外接P-MOSFET的栅极箝位保护;可采用微制器进行控制或采用手动控制;节省空间的8引脚MSOP封装;工作温-40℃+125℃。

图1 LTC4414的引脚排列引脚排列及功能

LTC4414的引脚排列如图1所示,各引脚功能如表1所示。

图2 LTC4414结构及外围器件框图

基本工作原理

这里通过内部结构框图及外接元器件组成的电源自动切换电路来说明其工作原理。内部结构框图及外围元器件组成的电路如图2所示。其内部结构是由放大器A1、电压/电流转换电路、电源选择器(可由VIN端或SENSE端给内部电路供电)、模拟控制器、比较器C1、基准电压源()、线性栅极驱动器和栅极电压箝位保护电路、开漏输出FET及在CTL内部有μA的下拉电流源等组成。外围元器件有P沟道功率MOSFET、肖特基二极管D1、上拉电阻RPU、输入电容CIN及输出电容COUT。

图2中有两个可向负载供电的电源(主电源及辅电源),可以由主电源单独供电,也可以接上辅电源,根据主、辅电源的电压由LTC4414控制实现自动切换。这两种供电情况分别如下。

1 主电源单独供电

主电源单独供电时,电流从LTC4414的VIN端输入到电源选择器,给内部供电。放大器A1将VIN和VSENSE的差值电压放大,并经过电压/电流转换,输出与VIN-VSESNSE之值成比例的电流输入到模拟控制器。当VIN-VSESNE>20mV时,模拟控制器通过线性栅极驱动器及箝位保护电路将GATE 端的电压降到地电平或到栅极箝位电压(保证-VGS≤),使外接P-MOSFET 导通。与此同时,VSESNE被调节到VSESNE=VIN-20mV,即外接P-MOSFET的VDS=20mV。P-MOSFET的损耗为ILOAD×20mV。在P-MOSFET 导通时,模拟控制器给内部FET的栅极送低电平,FET截止,STAT端呈高电平(表示P-MOSFET导通)。

2 加上辅电源

当加上辅电源(如交流适配器)后,如果VSESNE> VIN+20mV,则内部电源选择器由SENSE端向内部电路供电。模拟控制器使GATE端电压升高到VSENSE,则P-MOSFET截止,辅电源通过肖特基二极管D1向负载供电。这种电源切换是自动完成的。

在辅电源向负载供电时,模拟控制器给内部FET的栅极送高电平,FET导通,STAT端呈低电平(表示辅电源供电)。上拉电阻RPU的阻值要足够大,使流过FET的电流小于5mA。

在上述两种供电方式时,CTL端是接地或悬空的。CTL的控制功能将在下面的应用电路介绍。

典型应用电路

1主、辅电源自动切换电路

图3是一种减少功耗的主、辅电源自动切换电路,其功能与图2电路相同,不同之处是用一只辅P-MOSFET(Q2)替代了图2中的D1,可减少电压降及损耗。其工作原理与图2完全相同。

图3 主、畏电源自动切换电路

图4 由微控制器控制的电源切换电路

2 由微控制器控制的电源切换电路

由微控制器(μC)控制的电源切换电路如图4所示。此图中的主、辅P-MOSFET都采用了两个背对背的P-MOSFET组成,其目的是主电源或辅电源中的P-MOSFET截止时,均不会通过P-MOSFET内部的二极管向负载供电。其缺点是电源要通过两个P-MOSFET才能向负载供电,损耗增加一倍,并增加成本。

图4虚线框中的稳压二极管(一般取8~10V)连接在辅P-MOSFET的极限-VGSS时,由于稳压二极管的击穿电压<-VGS,稳压二极管被击穿使P-MOSFET的-VGS箝位于8~10V,从而进行保护。

主、辅电源的电压若等于或小于μC的工作电压时,主、辅电源可直接连接μC的ADC接口;若主、辅电源的电压大于μC的工作电压时,则电源电压要经过电阻分压器分压后才能输入μC的ADC(图4中,主辅电源直接与μC接口)。

μC的I/O口与LTC4414的CTL端连接。当在CTL端施加逻辑低电平时(低于)时,主电源向负载供电(不管辅电源的电压高低);当μC向CTL端施加高电平(高于)时,则由辅电源向负载供电(也不管其电压比主电源高还是低)。一旦辅电源供电,主电源可移去。只有当主电源高于辅电源并且在

CTL端置低电平时才能使主电源恢复供电。为了在切换的瞬间使输出电压变化较小,输出电容COUT要有足够的电容量。

这电路切换的过程是:CTL=H时,GATE端的电压与SENSE端的电压相等,使主P-MOSFET的-VGS=0而截止;与此同时STAT端为低电平,使辅P-MOSFET的-VGS≈Vout而导通。

在实际使用时,主电源往往由电池供电,主电源低阈值电压(切换电压)先设定好并存入μC中,μC检测主要电源的电压,一旦主电源的电压低于设定的低阈值电压,μC向CTL端输出高电平,则主P-MOSFET截止;STAT端输出低电平,辅P-MOSFET导通,电源切换成辅电源供电。此时可移去主电源的电池,更换充好电的电池再装入。μC可检查主电源的电压,若VIN>VSENEN 超过20mV,μC会自动切换到主电源供电。μC还可以通过I/O口驱动不同颜色的LED,显示主、辅电源的供电状态。

图5 高端功率开关

3 高端功率开关

图5 是由LTC4414组成的高端功率开关电路。由CTL端施加逻辑电平来控制P-MOSFET的通、断。该电路可由μC控制、电路控制或手动控制。

CTL=L时,开关导通;CTL=H时,开关关断。

外围元器件的选择

LTC4414的主要外围元器件是P-MOSFET、输入、输电容器CIN和COUT。

1 P-MOSFET的选择

为满足电路工作的可靠性,要选VDSS>VIN(max)及RDS(on)小的P-MOSFET。在VIN低、ILOAD大时,要保证ID>ILOAD(max)及RDS(on) ×I LOAD(max) ≤20mV。

2 C IN及C OUT的选择

为保证在电源切换及负载有较大变化时输出电压稳定,选择合适的CIN及COUT很重要。

C IN一般在~10μF范围内选择,C OUT在1~47μF范围内选取。C IN及C OUT可选用多层陶瓷电容器(MLCC),其电容量大小是否合适最好通过实验来调整。

在使用MLCC电容器时,因其ESR低,自身谐振频率及Q值高,有可能在AC适配器供电插拔瞬单间生高压脉冲而损坏LTC4414。因此,凌特公司建议在输入电容中串联几个Ω的电阻以降值Q值以防止瞬态高压的产生。在实验过程中可看V IN及S ENSE端的电压波形来调整电容量及增减串联在C IN电路中的各电阻值。

应用领域

该器件主要应用于大电流功率通路开关、工业控制及汽车、不间断电源(UPS)、逻辑电平控制的功率开关和带有备用电池的应急系统。

备用电源自动投切装置定期实验切换制度

设备定期投切试验制度 为了使运行设备安全可靠地长期运行,保证备用设备处于良好状态,对一些设备进行定期切换运行或试验,是确保机组安全运行的重要措施。 1.运行人员应在规定的时间内,按要求,严格认真的做好有关项目的定期切换和实验工作,并将执行情况记入交接班簿和定期切换实验簿,以备查考。 2.由于某些原因,不能执行(或未执行)定期切换工作或实验时,应注明其具体原因。不得随意改变执行时间或不执行。 3.例行实验的具体内容及要求详见集控运行例行试验表。本表中已列出的实验监护项目,必须严格执行操作监护制度。 4.本定期实验制度未列出实验的具体操作程序,因此其操作必须遵循各运行规程的有关规定。 5.操作员应熟悉场用电气运行方式,有较强的处理事故的应变能力。 6.本制度是运行基本技术管理制度之一,自公布日起执行。

集控运行例行试验表

备用电源自动投入装置定期切换实验制度为贯彻反事故措施,确保场用电的连续安全运行,决定进行备用电源自动投入装置(简称BZT)做定期切换试验。为使该项工作顺利进行,特制定本措施: 一、组织措施: 1.参加人员:风场场长、电气专工、安全员、技术员、运行组、检修组。 2.担任切换试验的操作员,应熟悉场用电气运行方式,有较强的处理事故的应变能力。 3.在进行备用电源自动投入装置(简称BZT)切换试验前,应根据运行方式做好事故预想,充分协调,明确分工,并将分工情况汇报场长。 4.在备用电源自动投入装置切换试验过程中,如果发生事故,各参加人员要立即中止试验操作,在值长的统一指挥下处理事故。 5.风场运行值长负责本分场检修及运行人员的协调工作。 二、备用电源自动投入装置切换试验的范围: 400V配电室 三、备用电源自动投入装置切换试验的周期: 切换周期原则为一个月。切换时机应选择在重要设备备用(或非工作)状态,如在试验周期内发现BZT工作异常,经修复后也应做切换试验。其试验时机的选择,参加试验的人员,与做定期试验时相同。其试验周期亦应从本次试验算起;若本月某段的BZT动作成功过,

双电源切换装置改造技术规范标准

1.热控电动门低压电源柜双电源切换装置技术改造规 1.1总则 1.1.1 本规书适用于华电热电热控电动门低压电源柜双电源自动切换装置改造项目的有关方面的要求,其中包括技术指针、性能、结构、试验等要求,还包括数据交付及技术文件要求等。 1.1.2本规书提出的是最低限度的技术要求,并未对一切技术细节做出规定,也未充分引述有关标准和规的条文,供方应保证提供符合国家或国际标准和本规书的优质产品。若供方所使用的标准与本规书所使用的标准不一致时,按较高标准执行。 1.1.3 如供方没有以书面形式对本规书的条文提出异议,那么招标方就可以认为供方提供的产品完全满足本规书的要求。 1.1.4本规书为订货合同的附件,与合同正文具有同等效力。 1.1.5在签订合同之后,到供方开始制造之日的这段时间,招标方有权提出因规、标准和规程发生变化而产生的一些补充修改要求,供方应遵守这个要求。 1.1.6本规书未尽事宜,双方协商解决。 1.2 供方的工作围 供方至少必须按下列项目提供双电源及其配套设备和相应服务: a. 设计 b. 装配 c. 材料试验 d. 设计试验 e. 生产试验 f. 包装 g. 检验 h. 运输及现场交货 i. 安装 j. 调试 i.安装结束,投入生产前相关试验合格。 2、技术要求

2.1 技术要求: a. 额定电压:400V b. 额定绝缘电压690V c. 额定频率:50HZ d. 额定工作电流:80A、125A e. 极限短路分断能力:Icu≥65KA f. 运行短路分断能力:Icu≥65KA g. 断电时间<100ms 2.2 使用说明 本技术规书中的低压开关柜用于华电热电热控电动门低压电源柜自动双电源切换装置改造项目,其中装有必要的控制、保护设备。 2.3 双电源装置选用国际品牌应具有瞬时、超载、短延时、缺相保护等功能 对现有电气回路进行修改,现场能够显示投切状态,失电、缺相等故障声光报警。DCS远程监控投切状态,失电、缺相等故障信号,远程控制投切 2.4 所有导体接触面进行镀银处理 母线支持件和母线绝缘物,应为不吸潮、阻燃、长寿命的并能耐受规定的环境条件产品。在设备的使用寿命,其机械强度和电气性能应基本保持不变。 所有导体的支持件,应能耐受相当于它所接的断路器的最大额定开断电流所引起的应力。 2.5 接线 控制、测量表计和继电器等端子排均应为防潮、防过电压、阻燃、长寿命端子排。端子排的额定值不小于20A,500V,并具有隔板、标志牌和接线螺钉,每个端子应标上需方KKS的编号。 端子选用菲尼克斯系列端子。 应提供适当数量的备用端子,每排端子应有不少于15%的备用量。 供招标方外部连接用的端子,应按能连贯地连接一根电缆的所有缆芯来布置,一根外部联机应接至各自的引出端子桩头上。在所有端子的正前方,应留出足够的、无阻挡的接近空间。 由供方提供的控制线应为不小于1.5mm2交联聚乙烯绝缘线,额定耐压为600V,并具有耐热、防潮、阻燃性能。要求有挠性的地方,应采用多股导线。布线应没有磨损

缓启动电路原理

-48V电源缓启动原理 2012年02月17日星期五 15:51 现在大多数电子系统都要支持热插拔功能,所谓热插拔,也就是在系统正常工作时,带电对系统的某个单元进行插拔操作,且不对系统产生任何影响。 热插拔对系统的影响主要有两方面: 其一,热插拔时,连接器的机械触点在接触瞬间会出现弹跳,引起电源振荡,如下图所示: 这个振荡过程会引起系统电源跌落,引起误码,或系统重启,也可能会引起连接器打火,引发火灾。 解决的办法就是延迟连接器的通电时间,在连接器抖动的那十几毫秒内((t1至t2)不给连接器通电,等插入稳定后(t2后)再通电,即防抖动延时。 其二,热插拔时,由于系统大容量储能电容的充电效应,系统中会出现很大的冲击电流,大家都知道,电容在充电时,电流呈指数趋势下降(左下图),所以在刚开始充电的时候,其冲击电流是非常大的。 此冲击电流可能会烧毁设备电源保险管,所以在热插拔时必须对冲击电流进行控制,使其按理想的趋势变化,如右上图所示,图中0~t1为电源缓启动时间。 综上所述,缓启动电路主要的作用是实现两项功能: 1).防抖动延时上电;

2).控制输入电流的上升斜率和幅值。 缓启动电路有两种类型:电压斜率型和电流斜率型。 电压斜率型缓启动电路结构简单,但是其输出电流的变化受负载阻抗的影响较大,而电流斜率型缓启动电路的输出电流变化不受负载影响,但是电路结构复杂。 下面重点介绍电压型缓启动电路。 设计中通常使用MOS管来设计缓启动电路的。MOS管有导通阻抗Rds低和驱动简单的特点,在周围加上少量元器件就可以构成缓慢启动电路。通常情况下,在正电源中用PMOS,在负电源中使用NMOS。 下图是用NMOS搭建的一个-48V电源缓启动电路,我们来分析下缓启动电路的工作原理。 1).D1是嵌位二极管,防止输入电压过大损坏后级电路; 2).R2和C1的作用是实现防抖动延时功能,实际应用中R2一般选20K欧姆,C1选4.7uF左右; 3).R1的作用是给C1提供一个快速放电通道,要求R1的分压值大于D3的稳压值,实际应用中,R1一般选10K左右; 4).R3和C2用来控制上电电流的上升斜率,实际应用中,R3一般选200K欧姆左右,C2取值为10 nF~100nF; 5).R4和R5的作用是防止MOS管自激振荡,要求R4、R5lt;<R3,R4取值一般为10~50欧姆之间,R5一般为2K欧姆; 6).嵌位二极管D3的作用是保护MOS管Q1的栅-源极不被高压击穿;D2的作用是在MOS管导通后对R2、C1构成的防抖动延时电路和R3、C2构成的上电斜率控制电路进行隔离,防止MOS栅极充电过程受C1的影响。 下面来分析下该电路的缓启动原理: 假设MOS管Q1的栅-源极间的寄生电容为Cgs,栅-漏极间的寄生电容为Cgd,漏-源极间的寄生电容为Cds,栅-漏极外部并联了电容C2 (C2gt;>Cgd),所以栅-漏极的总电容C’gd=C2+ Cgd,由于相对于C2 来说,Cgd的容值几乎可忽略不计,所以C’gd≈C2,MOS管栅极的开启电压为Vth,正常工作时,MOS 管栅源电压为Vw(此电压等于稳压管D3的嵌位电压),电容C1充电的时间常数t=(R1//R2//R3)C1,由于R3通常比R1、R2大很多,所以t≈(R1//R2)C1。 下面分三个阶段来分析上述电压缓启动电路的工作原理:

双电源切换应用电路

双电源切换应用电路 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

功率P-FET控制器LTC4414 LTC4414是一种功率P-EFT控制器,主要用于控制电源的通、断及自动切换,也可用作高端功率开关。该器件主要特点:工作电压范围宽,为~36V;电路简单,外围元器件少;静态电流小,典型值为30μA;能驱动大电流P沟道功率MOSFET;有电池反极性保护及外接P-MOSFET的栅极箝位保护;可采用微制器进行控制或采用手动控制;节省空间的8引脚MSOP封装;工作温-40℃+125℃。 图1 LTC4414的引脚排列引脚排列及功能 LTC4414的引脚排列如图1所示,各引脚功能如表1所示。 图2 LTC4414结构及外围器件框图 基本工作原理 这里通过内部结构框图及外接元器件组成的电源自动切换电路来说明其工作原理。内部结构框图及外围元器件组成的电路如图2所示。其内部结构是由放大器A1、电压/电流转换电路、电源选择器(可由VIN端或SENSE端给内部电路供电)、模拟控制器、比较器C1、基准电压源()、线性栅极驱动器和栅极电压箝位保护电路、开漏输出FET及在CTL内部有μA的下拉电流源等组成。外围元器件有P沟道功率MOSFET、肖特基二极管D1、上拉电阻RPU、输入电容CIN及输出电容COUT。 图2中有两个可向负载供电的电源(主电源及辅电源),可以由主电源单独供电,也可以接上辅电源,根据主、辅电源的电压由LTC4414控制实现自动切换。这两种供电情况分别如下。 1 主电源单独供电

主电源单独供电时,电流从LTC4414的VIN端输入到电源选择器,给内部供电。放大器A1将VIN和VSENSE的差值电压放大,并经过电压/电流转换,输出与VIN-VSESNSE之值成比例的电流输入到模拟控制器。当VIN-VSESNE>20mV时,模拟控制器通过线性栅极驱动器及箝位保护电路将GATE 端的电压降到地电平或到栅极箝位电压(保证-VGS≤),使外接P-MOSFET 导通。与此同时,VSESNE被调节到VSESNE=VIN-20mV,即外接P-MOSFET的VDS=20mV。P-MOSFET的损耗为ILOAD×20mV。在P-MOSFET 导通时,模拟控制器给内部FET的栅极送低电平,FET截止,STAT端呈高电平(表示P-MOSFET导通)。 2 加上辅电源 当加上辅电源(如交流适配器)后,如果VSESNE> VIN+20mV,则内部电源选择器由SENSE端向内部电路供电。模拟控制器使GATE端电压升高到VSENSE,则P-MOSFET截止,辅电源通过肖特基二极管D1向负载供电。这种电源切换是自动完成的。 在辅电源向负载供电时,模拟控制器给内部FET的栅极送高电平,FET导通,STAT端呈低电平(表示辅电源供电)。上拉电阻RPU的阻值要足够大,使流过FET的电流小于5mA。 在上述两种供电方式时,CTL端是接地或悬空的。CTL的控制功能将在下面的应用电路介绍。 典型应用电路 1主、辅电源自动切换电路

电源的缓启动电路原理分析

电源的缓启动电路原理分析 Version 1.0

在电信工业和微波电路设计领域,普遍使用MOS管控制冲击电流的方达到电流缓启动的目的。MOS管有导通阻抗Rds_on低和驱动简单的特点,在周围加上少量元器件就可以构成缓慢启动电路。虽然电路比较简单,但只有吃透MOS管的相关开关特性后才能对这个电路有深入的理解。 本文首先从MOSFET的开通过程进行叙述: 尽管MOSFET在开关电源、电机控制等一些电子系统中得到广泛的应用,但是许多电子工程师并没有十分清楚的理解MOSFET开关过程,以及MOSFET在开关过程中所处的状态一般来说,电子工程师通常基 于栅极电荷理解MOSFET的开通的过程,如图1所示此图在MOSFET数据表中可以查到 图1 AOT460栅极电荷特性 MOSFET的D和S极加电压为VDD,当驱动开通脉冲加到MOSFET的G和S极时,输入电容Ciss充电,G和S极电压Vgs线性上升并到达门槛电压VGS(th),Vgs上升到VGS(th)之前漏极电流Id≈0A,没有漏极电流流过,Vds的电压保持VDD不变 当Vgs到达VGS(th)时,漏极开始流过电流Id,然后Vgs继续上升,Id也逐渐上升,Vds仍然保持VDD当Vgs到达米勒平台电压VGS(pl)时,Id也上升到负载电流最大值ID,Vds的电压开始从VDD下降 米勒平台期间,Id电流维持ID,Vds电压不断降低

米勒平台结束时刻,Id电流仍然维持ID,Vds电压降低到一个较低的值米勒平台结束后,Id电流仍然维持ID,Vds电压继续降低,但此时降低的斜率很小,因此降低的幅度也很小,最后稳定在 Vds=Id×Rds(on)因此通常可以认为米勒平台结束后MOSFET基本上已经导通 对于上述的过程,理解难点在于为什么在米勒平台区,Vgs的电压恒定?驱动电路仍然对栅极提供驱动电流,仍然对栅极电容充电,为什么栅极的电压不上升?而且栅极电荷特性对于形象的理解MOSFET的开通过程并不直观因此,下面将基于漏极导通特性理解MOSFET开通过程 MOSFET的漏极导通特性与开关过程 MOSFET的漏极导通特性如图2所示MOSFET与三极管一样,当MOSFET应用于放大电路时,通常要使用此曲线研究其放大特性只是三极管使用的基极电流、集电极电流和放大倍数,而MOSFET使用栅极电压、漏极电流和跨导 图2 AOT460的漏极导通特性 三极管有三个工作区:截止区、放大区和饱和区,MOSFET对应是关断区、恒流区和可变电阻区注 意:MOSFET恒流区有时也称饱和区或放大区当驱动开通脉冲加到MOSFET的G和S极时,Vgs的电压逐渐升高时,MOSFET的开通轨迹A-B-C-D如图3中的路线所示

备用电源自动投入装置及接线方式

洛阳理工学院 备用电源自动投入装置原理及接线方式 专业:电气工程及其自动化专业班级:电气35班 学号:B12043506 学生姓名:皇甫晓晓 完成时间: 2013年11月15日

《电力系统自动装置》课程论文评分表

摘要 随着经济建设的发股,我国电力系统的规模日益扩大,发电设备的容量也相应增大.系统运行方式的变化越来越频繁。为了更好地保证电力系统的安全、经济运行并保证电能质量,电力系统自动装置及其技术得到广泛应用并日益发展,同时也促进电力系统自动控制技术的不断提高。 与其他产品不同,电能的生产、传输、分配和消耗在同一时刻完成,遵循功率平衡原则。所以发电厂、变电所、输配电线路和用户构成的电力系统是一个有机的整体,在运行中任何一个环节出现问题,都会影响到电力系统的稳定运行,严重时会造成恶性事故,导致整个系统崩溃。 为了取得更大的经济效益,电力网规模越来越庞大、发电机容量也越来越大,因此为了满足电力系统运行的要求,电力系统必须借助于自动装置来完成别电力系统及其设备监视、控制、保护和信息传递。因此自动化技术就成了必不可少的手段。 二、电力系统自动控制的总目标和主要内容 电力系统自动控制酌总目标是:保证供电质量,提高供电的可靠性,实现电力系统的安全经济运行。为了实现这个总目标,电力系统自动控制的任务有以下几个方面。 1.电力系统自动监视和控制 2.电厂动力机械自动控制 3.电力系统主要电力设备的自动控制 近年来,由于控制理论、信息沦等方面的成就,大规模、超大规模集成电子器件不断推出;计算机技术和数据通信技术的发展,自动控制技术正发生着日新月异的变化;计算机控制技术在电力系统自动装置中得到广泛应用。 关键词:电力系统自动控制可靠性

Q2057W锂电池充电器原理(适用)

摘要:本文介绍美国TI公司生产的先进锂电池充电管理芯片BQ2057,利用BQ2057系列芯片及简单外围电路可设计低成本的单/双节锂电池充电器,非常适用于便携式电子仪器的紧凑设计。本文将在介绍BQ2057芯片的特点、功能的基础上,给出典型充电电路的设计方法及应用该充电芯片设计便携式仪器的体会。 关键词:锂电池充电器BQ2057 1 引言 BQ2057系列是美国TI公司生产的先进锂电池充电管理芯片,BQ2057系列芯片适合单节(4.1V或4.2V)或双节(8.2V或8.4V)锂离子(Li-Ion)和锂聚合物(Li-Pol)电池的充电需要,同时根据不同的应用提供了MSOP、TSSOP和SOIC的可选封装形式,利用该芯片设计的充电器外围电路及其简单,非常适合便携式电子产品的紧凑设计需要。BQ2057可以动态补偿锂电池组的内阻以减少充电时间,带有可选的电池温度监测,利用电池组温度传感器连续检测电池温度,当电池温度超出设定范围时BQ2057关闭对电池充电。内部集成的恒压恒流器带有高/低边电流感测和可编程充电电流,充电状态识别可由输出的LED指示灯或与主控器接口实现,具有自动重新充电、最小电流终止充电、低功耗睡眠等特性。 2.功能及特性 2.1 器件封装及型号选择 BQ2057系列充电芯片为满足设计需要,提供了多种可选封装及型号,其封装形式如图2-1所示,有MSOP、TSSOP和SOIC三种封装形式。其型号如表2-1所示,有BQ2057、BQ2057C、BQ2057T和BQ2057W四种信号,分别适合4.1V、4.2V、8.2V和8.4V的充电需要。 元件型号 BQ2057 BQ2057C BQ2057T BQ2057W 8.4V BQ2057的引脚功能描述如下: ?VCC (引脚1):工作电源输入; ?TS (引脚2):温度感测输入,用于检测电池组的温度; ?STAT(引脚3):充电状态输出,包括:充电中、充电完成和温度故障三个状态; ?VSS (引脚4):工作电源地输入; ?CC (引脚5):充电控制输出; ?COMP(引脚6):充电速率补偿输入; ?SNS (引脚7):充电电流感测输入; ?BAT (引脚8):锂电池电压输入; 2.2 充电状态流程 BQ2057的充电状态流程如图2-3所示,其充电曲线如图2-2所示,BQ2057的充电分为三个阶段:预充状态、恒流充电和恒压充电阶段。

双电源切换安全操作规程详细版

文件编号:GD/FS-4256 (操作规程范本系列) 双电源切换安全操作规程 详细版 The Daily Operation Mode, It Includes All The Implementation Items, And Acts To Regulate Individual Actions, Regulate Or Limit All Their Behaviors, And Finally Simplify Management Process. 编辑:_________________ 单位:_________________ 日期:_________________

双电源切换安全操作规程详细版 提示语:本操作规程文件适合使用于日常的规则或运作模式中,包含所有的执行事项,并作用于规范个体行动,规范或限制其所有行为,最终实现简化管理过程,提高管理效率。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 1、当市电因故停电,且在较短时间内无法恢复供电时,必须启用备用电源。步骤:①切除市电供电各断路器(包括配电室控制柜各断路器,双电源切换箱市供电断电器),拉开双投防倒送开关至自备电源一侧,保持双电源切换箱内自备电供电断路器处于断开状态。②启动备用电源(柴油发电机组),待机组运转正常时,顺序闭合发电机空气开关、自备电源控制柜内各断路器。③逐个闭合电源切换箱内各备用电源断路器,向各负载送电。④备用电源运行期间,操作值班人员不得离开发电机组,并根据负荷的变化及时调整电压、厂频率等,发现异常及时处理。

2、市电恢复供电时,应及时做好电源转换工作,切断备用电源,恢复市电供电。 步骤:①按顺序逐个断开自备电源各断路器,顺序是:双电源切换箱自备电源断路器→自备电源配电柜各断路器→发电机总开关→将双投开关拨至市电供电一侧。②按柴油机停机步骤停机。③按顺序,从市电供电总开关至各分路开关逐个闭合各断路器,将双电源切换箱自市电供电断路器置于闭合位置。 3、检查各仪表及指示灯指示是否正常,启动变压器内冷却风扇。 可在这里输入个人/品牌名/地点 Personal / Brand Name / Location Can Be Entered Here

SchneiderBA电源自动切换控制器说明书

BA/UA BA/UA controller Compact NS100-630 Masterpact MT Merlin Gerin Installation manual

This equipment should only be mounted by professionals.The manufacturer shall not be held responsible for any failure to comply with the instructions given in this manual RISK OF ELECTROCUTION,BURNS OR EXPLOSION the device should only be installed and serviced by professionals switch off the general power supply to the device prior to any work on or in the device always use an appropriate voltage detection device to confirm the absence of voltage replace all interlocks,doors and covers before energising the device. Failure to take these precautions could expose intervener and people round to serious corporal injuries which could cause death.

双电源切换开关的应用和维护

双电源切换开关的应用和维护 安全是民航工作永恒的主题,空管工作亦是如此,而保障空管业务正常安全的进行,最基础的一环就是供配电系统。供配电系统中的双电源自动切换开关是一种能在两路电源之间进行可靠切换双电源的装置,能为负载设备提供稳定、可靠的电力保障。文章结合广州区域管制中心供配电系统配置,从工作原理及应用、切换开关的合理化配置等几个方面阐述了如何使利用双电源切换开关为负载设备提供更加稳定、可靠的电力保障。 标签:双电源切换开关;可靠;合理化配置 1 双电源切换开关原理及应用 1.1 ATS自动切换开关原理及应用 ATS自动转换开关主要用在紧急供电系统,将负载电路从一个电源自动换接至另一个(备用)电源的开关电器,以确保重要负荷连续、可靠运行。ATS为机械结构,转换时间相对比较长,为100毫秒以上,会造成负载断电。ATS主要应用:市电与发电机之间60%-70%;市电与市电之间20%-30%。以ATS最主要的应用在市电和发电机之间为例。电源柜接两路电源,一路是常用电,另一路是备用电,正常时使用市电作为主用电,油机用为备用电,当市电出现中断或波动时(达到ATS内的设置值),ATS会发启动指令给油机,油机启动,当油机工作稳定,输出电源符合ATS切换标准时,ATS会自动切换到油机电供电,当市电恢复正常,并符合切换要求时,ATS自动切换回市电供电,并在N分钟后(ATS 内部设定值)向油机发出停机信号,令油机停机。 1.2 STS静态切换开关原理及应用 STS静态转换开关主要用于两路电源供电切换,为电源二选一自动切换系统。顾名思义,STS静态切换开关使用静态开关作为其切换开关,静态开关是一种无触点开关,是用两个可控硅(SCR)反向并联组成的一种交流开关,其闭合和断开由逻辑控制器控制。其标准切换时间≤8ms,不会造成IT类负载断电。既对负载可靠供电,同时又能保证STS在不同相切换时的安全性。STS静态转换开关正常工作状态下,在主电源处于正常的电压范围内,负载一直连接于主电源。在主电源发生故障时,负载自动切换到备用电源,主电源恢复正常后,负载自动切换到主电源。 1.3 IT-SWITCH切换开关原理及应用 IT-SWITCH可看做小型的STS,工作原理与STS相同,IT-SWITCH专门设计用于方便地安装在最有效的地方,即接近关键任务负载。IT-SWITCH有两种型号:B型和E型。E型包括主机和底座,底座包含旁路切换、电源输入输出接线排、监控信号接线排及固定用的机架。B型只有主机无底座,所有的用户接线

锂电池充电电路详解

锂电池充电电路图 锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。 一、锂电池与镍镉、镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池叫做锂离子电池,简称锂电池。 锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。 二、锂电池的特点: 1、具有更高的重量能量比、体积能量比; 2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; 6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 9、成本高。与其它可充电池相比,锂电池价格较贵。 三、锂电池的内部结构: 锂电池通常有两种外型:圆柱型和长方型。 电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。字串5 四、锂电池的充放电要求; 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA 以内时,应停止充电。 充电电流(mA)=0.1~1.5倍电池容量(如1350mAh的电池,其充电电流可控制在135~2025mA之间)。常规充电电流可选择在0.5倍电池容量左右,充电时间约为2~3小时。 2、锂电池的放电:因锂电池的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命就相应缩短。为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。放电终止电压通常为3.0V/节,最低不能低于2.5V/节。电池放

双电源管理办法

屏南县供电有限公司双电源(自备电源)管理办法 (试行) 第一条本办法对双回路供电、客户自备电源的安装以及投入运行的管理进行规定,适用于营业、用电检查受理客户申请双回路供电、安装自备电源以及投入运行的管理。 第二条供电所营业窗口负责受理客户双回路供电、安装自备电源的申请,营销部负责客户双回路供电、安装自备电源投入运行的管理。 第三条供电营业窗口按客户负荷重要性、用电容量和供电可能性,受理下列客户的双回路供电申请: (一)中断供电将会造成人身伤亡;造成环境严重污染;造成重要设备损坏,连续性生产企业长期不能恢复;造成重大的政治和社会影响的单位。 (二)重要科研单位、军工企业、医疗单位,电气化生活小区。 第四条因受电网供电条件限制,暂不可能向上列客户提供双回路供电,客户可以自备发电机组作为备用电源。 第五条营业窗口受理双回路供电或者自备发电机组 申请后,应在规定时限内通知勘测人员或用电检查人员现场勘测,双回路供电应由营销部会同生技、调度共同审查,经公司领导审批后方可实施。 第六条客户的保安电源由客户自行解决。

第七条公司应就双回路供电、自备发电机组投入运行的安全事项与用电客户签订双电源(自备电源)协议书,明确责任。协议书、副本由供电企业和用电客户各执一份。 第八条双电源(自备电源)的切换装置和接线要求。 (一)常、备用电源切换操作装置,原则上应安装于同一变电室内; (二)高压双电源供电的,电源侧的刀闸应尽量采用机械联锁装置。 (三)供电可靠性有特殊要求的,可采用电气闭锁,保证在任何情况下,只有一路电源投放运行而无误并列的可能。 (四)低压双电源供电的,应在双电源进线端(包括零线),装设四极双投刀闸,由此转换电源。如双电源的进户点距离过远,四极双投刀闸前的电源进线,应采用电缆,防止误接用电设备而造成电源倒送。 (五)自备发电机作为备用电源的,不得同时使用电网电源和自备发电机电源。如发电机装设地点较远,应采用电缆布线,严禁在双投刀闸前接用任何电器设备。如是高压供电客户,因受发电机容量限制,只能供给一部分车间或保安设备的,其线路应与由电网供电的线路严格分开架设,不得同杆架设或混接。两电源间应装设双投刀闸,由此转换电源。 第九条双电源(自备电源)的运行要求

MOS管缓启动电路分析

MWR MOS管缓启动电路原理分析 Version 1.0

Project FTFB Section File Name 电源的缓启动电路原理分析Pages11Document Number: MWR-HW-XXXX-XX Revision: 1.0 Date: 2020-8-12 Process Owner: songchangjiang Group: Rev. Date ECO# Originated by History 1.0 2009-10-10 Song changjiang Created

Project FTFB Section File Name 电源的缓启动电路原理分析Pages11Document Number: MWR-HW-XXXX-XX Revision: 1.0 Date: 2020-8-12 Process Owner: songchangjiang Group: Hardware Development

Process Owner: songchangjiang Group: Hardware Development 在电信工业和微波电路设计领域,普遍使用MOS管控制冲击电流的方达到电流缓启动的目的。MOS管有导通阻抗Rds_on低和驱动简单的特点,在周围加上少量元器件就可以构成缓慢启动电路。虽然电路比较简单,但只有吃透MOS管的相关开关特性后才能对这个电路有深入的理解。 本文首先从MOSFET的开通过程进行叙述: 尽管MOSFET在开关电源、电机控制等一些电子系统中得到广泛的应用,但是许多电子工程师并没有十分清楚的理解MOSFET开关过程,以及MOSFET在开关过程中所处的状态一般来说,电子工程师通常基于栅极电荷理解MOSFET的开通的过程,如图1所示此图在MOSFET数据表中可以查到 图1 AOT460栅极电荷特性 MOSFET的D和S极加电压为VDD,当驱动开通脉冲加到MOSFET的G和S极时,输入电容Ciss充电,G和S极电压Vgs线性上升并到达门槛电压VGS(th),Vgs上升到VGS(th)之前漏极电流Id≈0A,没有漏极电流流过,Vds的电压保持VDD不变 当Vgs到达VGS(th)时,漏极开始流过电流Id,然后Vgs继续上升,Id也逐渐上升,Vds仍然保持VDD当Vgs到达米勒平台电压VGS(pl)时,Id也上升到负载电流最大值ID,Vds的电压开始从VDD下降

详解开关电源的几种常用软启动电路

详解开关电源的几种常用软启动电路 来源:电子元件技术网 [导读]开关电源的输入电路大都采用整流加电容滤波电路。在输入电路合闸瞬间,由于电容器上的初始电压为零会形成很大的瞬时冲击电流。 关键词:电源电路开关电源 开关电源的输入电路大都采用整流加电容滤波电路。在输入电路合闸瞬间,由于电容器上的初始电压为零会形成很大的瞬时冲击电流(如图1所示),特别是大功率开关电源,其输入采用较大容量的滤波电容器,其冲击电流可达100A以上。在电源接通瞬间如此大的冲击电流幅值,往往会导致输入熔断器烧断,有时甚至将合闸开关的触点烧坏,轻者也会使空气开关合不上闸,上述原因均会造成开关电源无法正常投入。为此几乎所有的开关电源在其输入电路设置防止冲击电流的软起动电路,以保证开关电源正常而可靠的运行。本文介绍了几种常用的软启动电路。 图1 合闸瞬间滤波电容电流波形 (1)采用功率热敏电阻电路 热敏电阻防冲击电流电路如图2所示。它利用热敏电阻的Rt的负温度系数特性,在电源接通瞬间,热敏电阻的阻值较大,达到限制冲击电流的作用;当热敏电阻流过较大电流时,电阻发热而使其阻值变小,电路处于正常工作状态。采用热敏电阻防止冲击电流一般适用于小功率开关电源,由于热敏电阻的热惯性,重新恢复高阻需要时间,故对于电源断电后又需要很快接通的情况,有时起不到限流作用。 图2 采用热敏电阻电路 (2)采用SCR-R电路

该电路如图3所示。在电源瞬时接通时,输入电压经整流桥VD1?VD4和限流电阻R对电容器C充电。当电容器C充电到约80%的额定电压时,逆变器正常工作,经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R,开关电源处于正常运行状态。 图3 采用SCR-R电路 这种限流电路存在如下问题:当电源瞬时断电后,由于电容器C上的电压不能突变,其上仍有断电前的充电电压,逆变器可能还处于工作状态,保持晶闸管继续导通,此时若马上重新接通输入电源,会同样起不到防止冲击电流的作用。 (3)具有断电检测的SCR-R电路 该电路如图4所示。它是图3的改进型电路,VD5、VD6、VT1、RB、CB组成瞬时断电检测电路,时间常数RBCB的选取应稍大于半个周期,当输入发生瞬间断电时,检测电路得到的检测信号,关闭逆变器功率开关管VT2的驱动信号,使逆变器停止工作,同时切断晶闸管SCR的门极触发信号,确保电源重新接通时防止冲击电流。 图4 具有断电检测的SCR-R电路 (4)继电器K1与电阻R构成的电路 该电路原理图如图5所示。电源接通时,输入电压经限流电阻R1对滤波电容器C1充电,同时辅助电源VCC经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的充电电压达到继电器的动作电压时,K1动作,旁路限流电阻R1,达到瞬时防冲击电流的作用。通常在电源接通之后,继电器K1动作延时0.3~0.5秒,否则限流电阻R1因通流时间过长会烧坏。

锂电池充电电路及电源自动切换电路的设计

BATT BATT-8.4V 图1 锂电池充电电路原理图 输入电源V in =24V ,充电电流1~1.5A,锂电池参数为8.4V,2.5A 1、充电电流的设置 恒流充电电流由下式决定:CS CH R mV I 200=,取A I CH 25.1=,得 Ω=16.0CS R 选取R CS 参数为0.16Ω±5%/1W 实际使用电阻值为150mΩ,得A A R mV I CS CH 33.1150 200 200=== 2、充电结束电流的设置 在恒压充电模式,充电电流逐渐减小,当充电电流减小到EOC 管脚的电阻所设置的电流时,充电结束。充电结束电流由下式决定: 6 10 ) 314350(278.1×+×= CS EOC R R I ,R3取10K ,I EOC =0.2A 3、电感的选择 在正常工作时,瞬态电感电流是周期性变化的。在P 沟道MOS 场效应晶体管导通期间,输入电压对电感充电,电感电流增加;在P 沟道MOS 场效应晶体管关断期间,电感向电池放电,电感电流减小。电感的纹波电流随着电感值的减小而增大,

随着输入电压的增大而增大。较大的电感纹波电流会导致较大的纹波充电电流和磁损耗。所以电感的纹波电流应该被限制在一个合理的范围内。 电感的纹波电流可由下式估算: )1(1 VCC V V L f I BAT BAT L ?×××= Δ 其中: f 是开关频率,300KHz L 是电感值 VBAT 电池电压 VCC 是输入电压 在选取电感值时,可将电感纹波电流限制在△IL =0.4×I CH ,I CH 是充电电流,得 L>34.2μΗ,实际取电感值为39μΗ。 4、电源自动切换电路 VOUT 给后续电路供电 图2 电源自动切换电路 当外部电源断开时,PMOS 管导通,由电池给外部系统供电,当外部电源接入时, PMOS 管关断,电池和系统电源之间断开,外部电源对系统供电。

智能型双电源自动切换开关应用

智能型双电源自动切换开关应用 来源:工控商务网 随着科学技术的进步,各行业对供电可靠性的要求越来越高。很多场合必须采用两路电源来保证供电的可靠性。过去的两路电源用户,在低压侧采用手动操作的双向隔离开关进行倒闸操作,因此常出现误操作而引起事故。随着供电可靠性要求的提高,反事故措施的日趋完善,越来越多的先进设备投入应用到供电系统中。 一、高可靠性双电源切换装置 一种能在两路电源之间进行可靠切换双电源的装置,不会出现误操作而引起事故的全系列智能化双电源自动切换开关,就是为了满足高可靠性要求。目前投入使用的专用智能化设备,具有自投自复、自投不自复和电网发电机三种切换功能,对两路供电电源的三相电压有效值及相位进行实时检测,当任一相发生过压、欠压、缺相,能自动从异常电源切换到正常电源,这是一种性能完善、安全可靠、操作方便、智能化程度高、使用范围广泛的双电源控制系统的设备。 全系列智能型双电源自动切换开关的紧急供电系统,可实现当一路电源发生故障时,可以自动完成常用与备用电源间切换,而无需人工操作,以保证重要用户供电的可靠性。其主要用于医院、商场、银行等不允许断电的重要场所。 二、智能型双电源自动切换开关 智能型双电源自动切换开关特点 智能型双电源自动切换开关是由两台三极或四极的塑壳断路器及其附件(辅助、报警触头)、机械联锁传动机构、智能控制器等组成。分为整体式与分体式两种结构。整体式是控制器和执行机构同装在一个底座上;分体式是控制器装在柜体面板上,执行机构装在底座上,由用户安装在柜体内,控制器与执行机构用约2m长的电缆连接。其特点是: 两台断路器之间具有可靠的机构联锁装置和电气联锁保护,彻底杜绝了两台断路器同时合闸的可能性; 智能化控制器采用以MOTOROLA单片机为控制核心,硬件简洁,功能强大,扩展方便,可靠性高; 具有短路、过载保护功能,过压、欠压、缺相自动切换功能与智能报警功能; 自动切换参数可在外部自由设定; 具有操作电机智能保护功能; 装置带有消防控制电路,当消防控制中心给一控制信号进入智能控制器,两台断路器都进入分闸状态; 留有计算机联网接口,以备实现遥控、遥调、遥信、遥测等四遥功能。

自制简单锂电池充电器电路

自制简单锂电池充电器电路 充电器电路图及原理 电路很简单,如附图所示,元件很容易廉价获得,适用范围很宽,可以适应1节-4节串连电压,充电电流可以通过元件参数选择,充电特性也比较理想,原理如下:由LM317和R1、R2、R3组成一个典型的恒流电路(431暂时认为断开R4比较大可以先不看)。当电压不太高时保持恒定的充电电流。以两节电池充电为例,理想状态下,充电电流应该是电压达到8.3V前一直保持恒定。当A点电压达到拐点值8.3V时,经过R4、R5分压,TL431开始导通,并把LM317的基准点电压从8.3V逐渐拉下。所谓拐点就是指电流开始下降的那点。直到电压达到8.4V的0电流点,A点仍然保持这个8.3V电压,LM317的输出V out下降到8.4V,其调整端下降到7.17V。 电池电压为8.3V时(拐点)各点的电压都标在图上,充电截止(8.4V)的各点电压以括号形式也标在后边。 元件选择 LM317,三端可调串连稳压块,选塑封的,LM317T,常用。根据电流不同,应选用相应的散热片。 TL431,三端可调并联稳压块,与一个小三极管外形一样,常用。 RL就是外接被充电池。 电流采样电阻R1,计算方法是R1 = 1.23 / 充电电流。例如,若充电电流为0.3A,则电阻应该选择4.1欧。这个电阻一般要选择功率大一些的,比如1A就应该是2W的。 可调电阻R4可以选择那种篮色的精密多圈,取比额定值大一些的,比如23.2k的就可以选择25K的多圈。若嫌多圈太贵或难找,也可以用一个固定电阻串连一个普通可调电阻。例如23.2k的就可以选择22k固定加一个2.2k-3.9k可调节的,以便进行精细调节。

电源的缓启动电路分析

MWR 电源的缓启动电路原理分析 Version 1.0

在电信工业和微波电路设计领域,普遍使用MOS管控制冲击电流的方达到电流缓启动的目的。MOS管有导通阻抗Rds_on低和驱动简单的特点,在周围加上少量元器件就可以构成缓慢启动电路。虽然电路比较简单,但只有吃透MOS管的相关开关特性后才能对这个电路有深入的理解。 本文首先从MOSFET的开通过程进行叙述: 尽管MOSFET在开关电源、电机控制等一些电子系统中得到广泛的应用,但是许多电子工程师并没有十分清楚的理解MOSFET开关过程,以及MOSFET在开关过程中所处的状态一般来说,电子工程师通常基于栅极电荷理解MOSFET的开通的过程,如图1所示此图在MOSFET数据表中可以查到 图1 AOT460栅极电荷特性 MOSFET的D和S极加电压为VDD,当驱动开通脉冲加到MOSFET的G和S极时,输入电容Ciss充电,G和S极电压Vgs线性上升并到达门槛电压VGS(th),Vgs上升到VGS(th)之前漏极电流Id≈0A,没有漏极电流流过,Vds的电压保持VDD不变 当Vgs到达VGS(th)时,漏极开始流过电流Id,然后Vgs继续上升,Id也逐渐上升,Vds仍然保持VDD当Vgs到达米勒平台电压VGS(pl)时,Id也上升到负载电流最大值ID,Vds的电压开始从VDD下降 米勒平台期间,Id电流维持ID,Vds电压不断降低

米勒平台结束时刻,Id电流仍然维持ID,Vds电压降低到一个较低的值米勒平台结束后,Id电流仍然维持ID,Vds电压继续降低,但此时降低的斜率很小,因此降低的幅度也很小,最后稳定在 Vds=Id×Rds(on)因此通常可以认为米勒平台结束后MOSFET基本上已经导通 对于上述的过程,理解难点在于为什么在米勒平台区,Vgs的电压恒定?驱动电路仍然对栅极提供驱动电流,仍然对栅极电容充电,为什么栅极的电压不上升?而且栅极电荷特性对于形象的理解MOSFET的开通过程并不直观因此,下面将基于漏极导通特性理解MOSFET开通过程 MOSFET的漏极导通特性与开关过程 MOSFET的漏极导通特性如图2所示MOSFET与三极管一样,当MOSFET应用于放大电路时,通常要使用此曲线研究其放大特性只是三极管使用的基极电流、集电极电流和放大倍数,而MOSFET使用栅极电压、漏极电流和跨导 图2 AOT460的漏极导通特性 三极管有三个工作区:截止区、放大区和饱和区,MOSFET对应是关断区、恒流区和可变电阻区注意:MOSFET恒流区有时也称饱和区或放大区当驱动开通脉冲加到MOSFET的G和S极时,Vgs的电压逐渐升高时,MOSFET的开通轨迹A-B-C-D如图3中的路线所示

相关文档