文档库 最新最全的文档下载
当前位置:文档库 › 机器人视觉算法 参考答案

机器人视觉算法 参考答案

机器人视觉算法 参考答案
机器人视觉算法 参考答案

1.什么是机器视觉

【概述】

机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分 CMOS 和 CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。

机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。

正是由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。【基本构造】

一个典型的工业机器视觉系统包括:光源、镜头、 CCD 照相机、图像处理单元(或图像捕获卡)、图像处理软件、监视器、通讯 / 输入输出单元等。

系统可再分为:

主端电脑(Host Computer)

影像撷取卡(Frame Grabber)与影像处理器影像摄影机 CCTV镜头显微镜头照明设备: Halogen光源 LED光源

高周波萤光灯源闪光灯源其他特殊光源影像显示器

LCD

机构及控制系统

PLC、PC-Base控制器

精密桌台伺服运动机台

【工作原理】

机器视觉检测系统采用CCD照相机将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,包括尺寸、角度、个数、合格 / 不合格、有 / 无等,实现自动识别功能。

【机器视觉系统的典型结构】

一个典型的机器视觉系统包括以下五大块: 1.照明

照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。光源可分为可见光和不可见光。常用的几种可见光源是白帜灯、日光灯、水银灯和钠光灯。可见光的缺点是光能不能保持稳定。如何使光能在一定的程度上保持稳定,是实用化过程中急需要解决的问题。另一方面,环境光有可能影响图像的质量,所以可采用加防护屏的方法来减少环境光的影响。照明系统按其照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。其中,背向照明是被测物放在光源和摄像机之间,它的优点是能获得高对比度的图像。前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装。结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的三维信息。频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步。 2.镜头FOV(Field Of Vision)=所需分辨率*亚象素*相机尺寸/PRTM(零件测量公差比)镜头选择应注意:

①焦距②目标高度③影像高度④放大倍数⑤影像至目标的距离⑥中心点 / 节点⑦畸变 3.相机

按照不同标准可分为:标准分辨率数字相机和模拟相机等。要根据不同的实际应用场合选不同的相机和高分辨率相机:线扫描CCD和面阵CCD;单色相机和彩色相机。 4.图像采集卡

图像采集卡只是完整的机器视觉系统的一个部件,但是它扮演一个非常重要的角色。图像采集卡直接决定了摄像头的接口:黑白、彩色、模拟、数字等等。

比较典型的是PCI或AGP兼容的捕获卡,可以将图像迅速地传送到计算机存储器进行处理。有些采集卡有内置的多路开关。例如,可以连接8个不同的摄像机,然后告诉采集卡采用那一个相机抓拍到的信息。有些采集卡有内置的数字输入以触发采集卡进行捕捉,当采集卡抓拍图像时数字输出口就触发闸门。 5.视觉处理器

视觉处理器集采集卡与处理器于一体。以往计算机速度较慢时,采用视觉处理器加快视觉处理任务。现在由于采集

卡可以快速传输图像到存储器,而且计算机也快多了,所以现在视觉处理器用的较少了。

2.机器视觉的主要应用领域有哪些

机器视觉的应用普及主要体现在半导体及电子行业,其中大概40%-50%都集中在半导体行业。具体如PCB印刷电路:各类生产印刷电路板组装技术、设备;单、双面、多层线路板,覆铜板及所需的材料及辅料;辅助设施以及耗材、油墨、药水药剂、配件;电子封装技术与设备;丝网印刷设备及丝网周边材料等。SMT表面贴装:SMT工艺与设备、焊接设备、测试仪器、返修设备及各种辅助工具及配件、SMT材料、贴片剂、胶粘剂、焊剂、焊料及防氧化油、焊膏、清洗剂等;再流焊机、波峰焊机及自动化生产线设备。电子生产加工设备:电子元件制造设备、半导体及集成电路制造设备、元器件成型设备、电子工模具。机器视觉系统还在质量检测的各个方面已经得到了广泛的应用,并且其产品在应用中占据着举足轻重的地位。除此之外,机器视觉还用于其他各个领域。

而在中国,视觉技术的应用开始于90年代,因为行业本身就属于新兴的领域,再加之机器视觉产品技术的普及不够,导致以上各行业的应用几乎空白。目前国内机器视觉大多为国外品牌,如康耐视、迈思肯、欧姆龙等。国内大多机器视觉公司基本上是靠代理国外各种机器视觉品牌起家,随着机器视觉的不断应用,公司规模慢慢做大,技术上已经逐渐成熟。例如:深圳市品印宝智能科技有限公司,是康耐视白钻代理商。也是迈思肯深圳核心代理商。在短短六年的时间里,就发展成国内首屈一指的机器视觉企业。国内也开始意识到机器视觉的重要性,微视就是中国人自己的机器视觉的公司,研发自己的机器视觉产品。当然,技术上跟国外的品牌还存在一些不足。

随着经济水平的提高,3D机器视觉也开始进入人们的视野。3D机器视觉大多用于水果和蔬菜、木材、化妆品、烘焙食品、电子组件和医药产品的评级。它可以提高合格产品的生产能力,在生产过程的早期就报废劣质产品,从而减少了浪费节约成本。这种功能非常适合用于高度、形状、数量甚至色彩等产品属性的成像。

在行业应用方面,主要有制药、包装、电子、汽车制造、半导体、纺织、烟草、交通、物流等行业,用机器视觉技术取代人工,可以提供生产效率和产品质量。例如在物流行业,可以使用机器视觉技术进行快递的分拣分类,不会出现大多快递公司人工进行分拣,减少物品的损坏率,可以提高分拣效率,减少人工劳动1、食品安全监测

2、制造业

提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。

同时,机器视觉技术还能在超标准排放烟尘、污水等方面发挥作用。利用机器视觉,能够及时发现机房及生产车间的的火灾、烟雾等异常情况。利用机器视觉中的面相检测、人脸识别技术,可以帮助企业加强出入口的控制和管理,提高管理水平,降低管理成本。

3、太阳能、交通监控

近年来新兴行业的发展给机器视觉市场也带来了新的市场空间。在太阳能领域,太阳能电池和模块生产者使用机器视觉来检测产品、识别和跟踪产品以及装配产品。在交通监控领域,可以利用车牌识别技术、图像分析技术,自动识别车牌,发现违章停车、逆行、发现交通肇事车辆等。此外,如地质灾害对地震预防、山体滑坡、泥石流、火山喷发的发现识别、防范,水文监测对河流水文状况的观测等领域机器视觉技术都有巨大空间有待挖掘。

图像识别,图像检测,视觉定位,物体测量,物体分拣

标签数字高速对照检测;在高速流水线检测电子元器件外形缺陷和尺寸,检测电路板线路及插孔位置,检测针剂液量,对药品包装喷印批号,生产日期和保质期文字检测;食品灌装线在线检测等。

3机器视觉系统的主要构成

典型的视觉系统一般包括:光源、光学系统,相机、图像处理单元(或图像采集卡)、图像分析处理软件、监视器、通讯/输入输出单元等

典型的工业机器视觉应用系统包括光源、光学系统、图像捕捉系统、图像数字化模块、数字图像处理模块、智能判断决策模块和机械执行模块

4.列举每个应用领域中机器视觉的应用场景(每个领域至少两个场景)

产品广泛应用于各个行业:

1、半导体行业:外观缺陷、尺寸大小、数量、平整度、间隔、定位、校准、焊点质量、弯曲度等等的检测和测量。

2、SMT行业:虚焊,短路,多锡,少锡,元件偏移,元件极性,元件侧立,元件翻转,OCR,OCV,条码识别。

3、电子行业:检测污点,划痕、浅坑、浅瘤、边缘缺陷、图案缺陷等;测量内圈直径、外圈直径、偏心度、高度、厚度等。

4、烟草行业:在印刷生产线上对于烟盒的印刷质量进行检测,主要缺陷类型为:刀丝、针孔、毛发、飞墨、漏印、飞虫、套印误差等,检测水松纸印刷过程中花纹、文字及烫金图案的印刷质量。

5、医药/医疗行业::对液体制剂的灌装液位、瓶体内杂质及封盖质量;尺寸不合格的胶囊;对泡罩药品的缺粒;对医药产品的外包装打码效果;对外包装纸箱的满箱及数量检测。

6、汽车行业:齿轮号的符号识别,里程表上的数字检测,刹车片的印体识别、各零件的尺寸测量等等。

7、印刷行业:材质的缺陷检测(如孔洞、异物等);印刷缺陷检测(如飞墨、刀丝、蹭版、套印不准等);颜色缺陷检测(如浅印、偏色、露白等)。

8、食品饮料行业:玻璃瓶的质量检测,瓶子的计数,液位检测,异物检测,标签检测。

5.机器视觉系统的优点与缺陷

机器视觉就是用机器代替人眼来做测量和判断,机器视觉系统的特点是提高生产的柔性和自动化程度,在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。像美国TEO迪奥科技一家专业从事机器视觉的研发与生产的制造商,是机器视觉产品的首选品牌

容易受到外界环境的影响,光照,天气等。不够灵活。

6.针对视频中出现的某一个机器视觉应用场景,画出其系统框图与算法架构

7.考虑在上述应用场景中,你可能遇到的问题

8.OCR的关键技术有哪些

所谓OCR (Optical Character Recognition光学字符识别)技术,是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程;即,对文本资料进行扫描,然后对图像文件进行分析处理,获取文字及版面信息的过程。

9.列举4个OCR的应用场景

公安,电信,金融,物流,

1.用OCR进行印刷体文稿的识别录入3.邮件自动分拣系统4.手写体表格数据自动录入系统

10.机器视觉相对于人工有哪些优势

(看第5题)

11.机器视觉的关键技术有哪些

12.嵌入式机器视觉的优缺点

嵌入式机器视觉

机器视觉系统利用机器代替人眼来做测量和判断,通过机器视觉产品将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。

作为科技发展的产物,机器视觉的出现大大提高了生产自动化程度,增加了加了质量检测的高效准确性,同时也开辟了不少新的研究领域。

目前,我国的机器视觉行业也出现了不少具备自主创新能力的企业,将嵌入式技术结合传统的机器视觉就是应市场需求变化而推出的一项新技术,该技术实现了实时视觉图像采集、视觉图像处理控制,使其结构更紧凑,甚至完全不需要计算机的介入,提高处理速度,并能有效降低成本的专用机器视觉控制系统,使得该系统具有安装方便、配置灵活、便于携带等突出优点。

13.搭建机器视觉系统过程中应该注意哪些问题

机器视觉(或称为自动可视检测系统)一般包含了大量部件,这些部件直接影响系统的性能。

考虑各种变化:人类的眼睛和大脑可以在不同的条件下识别目标,但是机器视觉系统就不是这样多才多艺了,它只能按程序编写的任务来工作。了解你的系统能看到什么和不能看到什么能帮助你避免失败(例如将好的部件认为是坏的)或其它检测错误。一般要考虑的包括部件颜色、周围光线、焦点、部件的位置和方向和背景颜色的大变化。正确选择软件:机器视觉软件是检测系统中的智能部分,也是最核心的部分。软件的选择决定了你编写调试检测程序的时间、检测操作的性能等等。图2 DTVF是一个多功能、图形化编程的机器视觉软件(附件2)机器视觉提供了图形化编程界面(通常称为“Point & Click”) 通常比其他编程语言(例如Visual C++)容易,但是在你需要一些特殊的特征或功能时有一定的局限性。基于代码的软件包,尽管非常困难和需要编码经验,但在编写复杂的特殊应用检测算法具备更大的灵活性。一些机器视觉软件同时提供了图形化和基于代码的编程环境,提供两方面最好的特征,提供了很多灵活性,满足不同的应用需求。通信和记录数据:机器视觉系统的总的目标是通过区分好和坏的部件来实现质量检测。为了实现这一功能,这个系统需要与生产流水线通信,这样才可以在发现坏的部件是做某种动作。通常这些动作是通过数字I/O板,这些板与制造流水线中的PLC相连,这样坏的部件就可以跟好的部件分离。例外,机器视觉系统可以与网络连接,这样就可以将数据传送给数据库,用于记录数据以及让质量控制员分析为什么会出现废品。在这一步认真考虑将有助于将机器视觉系统无缝与生产流水线结合起来。需要考虑的问题是: 1. 使用了什么类型的PLC,它的接口如何?2. 需要什么类型的信号?3. 现在使用或必须使用什么类型的网络? 4. 在网络上传送的文件格式是什么?通常使用RS-232端口与数据库通信,来实现对数据的纪录。为以后做准备:当你为机器视觉系统选择部件时,时刻记住未来的生产所需和有可能发生的变动。这些将直接影响你的机器视觉软硬件是否容易更改来满足以后新的任务。提前的准备将不仅仅节约你的时间,而且通过在将来重用现有的检测任务可以降低整个系统的价格。机器视觉系统的性能由最差的部分决定(就像一个木桶的容量由最短的一个木块决定),精度则由它能获取的信息决定。花时间和精力合理配置系统就可以建造一个零故障和有弹性的视觉检测系统。

14.应该如何选择合适的光源

1)照明方案选择:1、安装位置确认,

前向照明:光源和相机位于同一侧,用于外观、表面的检测;

背光照明:相机和光源异侧,用于轮廓、边缘、尺寸的检测;

2、缺陷检测时,根据缺陷特点:

凹形:易采用低角度照明,缺陷处较亮;

凸形:易采用高角度照明,缺陷处较暗;

3、颜色选择:根据物体和背景的色差,或者特征位置于其他位置的色差;

4、线阵相机采用选用线光源;

5、精度要求高时,可选用平行光;

15.如何选择合适的镜头

机器视觉为工业控制系统增加了新的维度,它可以提供装配线上零件的尺寸、位置和方向。而合适的镜头选择对于机器视觉能否发挥应有的作用是非常重要的。

在绝大多数机器视觉应用里,光学控制都是非常重要的。机器人视觉系统同样要求极高的可重复性,因此减少抖动提供清晰图像是必要的。

在类似药品工厂这样的大规模单位检测线上,视觉系统必须能够辨识缺陷包、不可读标签和产品缺失。视觉系统必须能够以极高的准确度快速识别和测量方形、圆形和椭圆形物体。提高机器视觉系统的精确度,可以帮助保持统一的包装表面和颜色。

尽管照相机、分析软件和照明对于机器视觉系统都是十分重要的,可能最关键的元件还是工业相机镜头。系统若想完全发挥其功能,镜头必须要能够满足要求才行。当为控制系统选择镜头的时候,POMEAS建议机器视觉集成商应该考虑四个主要因素:

■可以检测物体类别和特性;

■景深或者焦距;

■加载和检测距离;

■运行环境。

物理特性镜头对于物体特征的解析能力依赖于特征的对比是否强烈。确定系统解析度、或者物体最小更解析特征的方法,可以使用诸如伦奇刻线法这样的解像力方法。镜头在指定光线条件下辨识特定宽度的线耦或者点距的能力,决定了它的解析度。解析度通常被模块转换功能(MTF)以图像的方式显示出来。

距离约束所谓的工作距离,是指当图像在焦距范围内的时候,物体和照相机镜头前端的距离。它限制了视觉系统以及和视觉系统一起工作的设备所需要的空间。在极限范围内,通过镜头重新对焦,可以改变工作距离。无限共轭镜头的对焦距离可以从最小工作距离一直到无限远,有限共轭镜头则有一个特定工作距离范围。

景深深效果(DOF)是指由于物体移动导致的模糊。DOF是完全在焦距范围内最大的物体深度,它也是保持理想对焦状态下物体允许的移动量(从最佳焦距前后移动)。当物体的放置位置比工作距离近或者远的时候,它就位于焦外了,这样解析度和对比度都会受到不好的影响。出于这个原因,DOF同指定的解析度和对比度相配合。当景深一定的情况下,DOF可以通过缩小镜头孔径(也就是增加F/#值)来变大,同时也需要光线增强。

环境的重要性

机器视觉系统的环境因素包括物体反射系数、光线、温度、振动和污染物。物体的反射会导致高光,还可能使特征模糊。高温环境下,可能因为镜头里光学元件的热膨胀出现问题。并不是所有的镜头都可以适应温度变化,在检测热物体时,最好使用工作距离比较长的镜头。

机器视觉系统想要选择合适的镜头,首先要了解镜头的几个重要参数具体要参考的参数如下:

参数一:焦距。焦距是从镜头的中心点到显现清晰影像的焦点之间的距离,焦距是机器视觉镜头的重要性能指标,其长短决定着成像的大小、视角的大小以及景深的大小。焦距越短,视角越大,所能观察的范围也越大;反之,焦距越常,视角越小,能观察的范围也越小。为了能够更好的实现图像的采集,镜头又分为了定焦与变焦两大类。

参数二:光圈。光圈是镜头中改变中间孔大小的一个机械装置,其大小,由焦距和通光孔径的比值来决定。比值越小,光圈越大,则在单位时间内的通光量也越大;反之,比值越大,光圈就会越小,通光量也会随之变小。

参数三:拍摄距离。顾名思义,镜头的工作面到被测物体的距离就是所谓的拍摄距离参数四:景深。机器视觉镜头拍摄被测物体的清晰范围是有一定限度的,而景深就是指的在被摄物体聚焦清楚后,在物体前后一定距离内,能清晰展现的这个范围。景深与光圈、焦距、拍摄距离有着紧密的联系。(1)光圈越大,景深越小;光圈越小,景深越大。(2焦距越长,景深越小;焦距越短,景深越大;(3)拍摄距离越远,景深越大;距离越近,景深越小。

除了以上三个主要的互相影响的参数外,机器视觉镜头的参数还包括CCD的尺寸、与相机的接口、分辨率、视野范围、光学放大倍数等等。正是这些参数在影响着机器视觉镜头能否发挥其作用,在选择镜头时,一定要以适合检测需要为原则,因此,对其参数的了解时必不可少的。

16.如何选择合适的光学传感器

光学传感器及仪器是依据光学原理进行测量的,它有许多优点,如非接触和非破坏性测量、几乎不受干扰、高速传输以及可遥测、遥控等

特点编辑

1、采低功耗架构[1]

2、可采用表面贴装技术生产

3、自动调整省电模式可以延长电池使用时间

4、高速移动检测达20ips和8G

5、可自动调整帧读取率取得优化性能

6、移动检测引脚输出

7、内嵌振荡电路,不需时钟输入

8、可选择500或1,000cpi分辨率

9、工作电压范围:2.7V到3.6V额定

10、四线式串行连接端口

11、采Pb-Free环保无铅封装并符合RoHS标准要求

用途: 光学传感器广泛应用于航天、航空、国防科研、信息产业、机械、电力、能源、交通、冶金、石油、建筑、邮电、生物、医学、环保等领域。

17.相机控制卡的基本功能

相机是一个光电转换装置,要观测或要检测物体经过透镜或其他成像系统,在相机的传感器光敏面上现成物体的像,相机传感器根据物体像的不同位置光强强弱而转化成对应强度的电信号输出,该电信号经过A/D数字化后,输入计算机就获得了物体的数字图像,供后续的计算机图像处理和分析同步方式有:内同步、外同步。其具体功能如下:

高速相机

□内同步:利用相机内置的时钟信号发生电路产生的同步信号来完成相机同步控制;

□外同步:通过外置同步信号发生器将特定的同步信号送入相机的外同步输入端,完成满足对相机的特殊控制需要。对于一多个相机构成的图像采集系统,希望所有的相机的图像信号是同步的,以避免不同相机图像的失调,此时,利用同一个外同步信号发生器产生的同步信号驱动多台相机,可实现多相机的同步图像采集。

18.图像处理算法的基本结构

19.列举至少4种相机接口

20.分析上述列举出来的接口的特点

机器人视觉系统介绍

机器人视觉(Robot Vision)简介 机器视觉系统的组成 机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。 机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。 机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。 将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。产品的分类和选择也集成于检测功能中。下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。 视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。 图像的获取 图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成: *照明 *图像聚焦形成 *图像确定和形成摄像机输出信号

机器人视觉大作业

机器人视觉论文 论文题目:基于opencv的手势识别院系:信息科学与工程学院 专业:信号与信息处理 姓名:孙竟豪 学号:21160211123

摘要 文中介绍了一种易于实现的快速实时手势识别算法。研究借助计算机视觉库OpenCV和微软Visual Studio 2008 搭建开发平台,通过视频方式实时提取人的手势信息,进而经二值化、膨胀腐蚀、轮廓提取、区域分割等图像处理流程甄别出当前手势中张开的手指,识别手势特征,提取出人手所包含的特定信息,并最终将手势信息作为控制仪器设备的操作指令,控制相关设备仪器。 0、引言 随着现代科技的高速发展及生活方式的转变,人们越发追求生活、工作中的智能化,希望享有简便、高效、人性化的智能操作控制方式。而伴随计算机的微型化,人机交互需求越来越高,人机友好交互也日益成为研发的热点。目前,人们已不仅仅满足按键式的操作控制,其目光已转向利用人体动作、表情变化等更加方便、友好、直观地应用智能化交互控制体系方面。近年来,国内外科学家在手势识别领域有了突破性进展。1993 年B.Thamas等人最先提出借助数据手套或在人手粘贴特殊颜色的辅助标记来进行手势动作的识别,由此开启了人们对手势识别领域的探索。随后,手势识别研究成果和各种方式的识别方法也纷然出现。从基于方向直方图的手势识别到复杂背景手势目标的捕获与识别,再到基于立体视觉的自然手势识别,每次探索都是手势识别领域内的重大突破。 1 手势识别流程及关键技术 本文将介绍一种基于 OpenCV 的实时手势识别算法,该算法是在现有手势识别技术基础上通过解决手心追踪定位问题来实现手势识别的实时性和高效性。 基于 OpenCV 的手势识别流程如图 1 所示。首先通过视频流采集实时手势图像,而后进行包括图像增强、图像锐化在内的图像预处理,目的是提高图像清晰度并明晰轮廓边缘。根据肤色在 YCrCb 色彩空间中的自适应阈值对图像进行二值化处理,提取图像中所有的肤色以及类肤色像素点,而后经过膨胀、腐蚀、图像平滑处理后,祛除小块的类肤色区域干扰,得到若干块面积较大的肤色区域; 此时根据各个肤色区域的轮廓特征进行甄选,获取目标手势区域,而后根据目标区域的特征进行识别,确定当前手势,获取手势信息。

基于机器视觉的工件识别和定位文献综述

基于机器视觉的工件识别和定位文献综述 1.前言 1.1工业机器人的现状与发展趋势 机器人作为一种最典型的应用范围广、技术附加值高的数字控制装备,在现代先进生产制造业中发挥的作用越来越重要,机器人技术的发展将会对未来生产和社会发展起到强有力的推动作用。《2l 世纪日本创建机器人社会技术发展战略报告》指出,“机器人技术与信息技术一样,在强化产业竞争力方面是极为重要的战略高技术领域。培育未来机器人产业是支撑2l 世纪日本产业竞争力的产业战略之一,具有非常重要的意义。” 研发工业机器人的初衷是为了使工人能够从单调重复作业、危险恶劣环境作业中解脱出来,但近些年来,工厂和企业引进工业机器人的主要目的则更多地是为了提高生产效率和保证产品质量。因为机器人的使用寿命很长,大都在10 年以上,并且可以全天后不间断的保持连续、高效地工作状态,因此被广泛应用于各行各业,主要进行焊接、装配、搬运、加工、喷涂、码垛等复杂作业。伴随着工业机器人研究技术的成熟和现代制造业对自动生产的需要,工业机器人越来越被广泛的应用到现代化的生产中。 现在机器人的价格相比过去已经下降很多,并且以后还会继续下降,但目前全世界范围的劳动力成本都有所上涨,个别国家和地区劳动力成本又很高,这就给工业机器人的需求提供了广阔的市场空间,工业机器人销量的保持着较快速度的增长。工业机器人在生产中主要有机器人工作单元和机器人工作生产线这两种应用方式,并且在国外,机器人工作生产线已经成为工业机器人主要的应用方式。以机器人为核心的自动化生产线适应了现代制造业多品种、少批量的柔性生产发展方向,具有广阔的市场发展前景和强劲生命力,已开发出多种面向汽车、电气机械等行业的自动化成套装备和生产线产品。在发达国家,机器人自动化生产线已经应用到了各行各业,并且已经形成一个庞大的产业链。像日本的FANUC、MOTOMAN,瑞典的ABB、德国的KUKA、意大利的COMAU 等都是国际上知名的被广泛用于自动化生产线的工业机器人。这些产品代表着当今世界工业机器人的最高水平。 我国的工业机器人前期发展比较缓慢。当将被研发列入国家有关计划后,发展速度就明显加快。特别是在每次国家的五年规划和“863”计划的重点支持下,我国机器人技术的研究取得了重大发展。在机器人基础技术和关键技术方面都取得了巨大进展,科技成果已经在实际工作中得到转化。以沈阳新松机器人为代表的国内机器人自主品牌已迅速崛起并逐步缩小与国际品牌的技术差距。 机器人涉及到多学科的交叉融合,涉及到机械、电子、计算机、通讯、控制等多个方面。在现代制造业中,伴随着工业机器人应用范围的扩大和机器人技术的发展,机器人的自动化、智能化和网络化的程度也越来越高,所能实现的功能也越来越多,性能越来越好。机器人技术的内涵已变为“灵活应用机器人技术的、具有实在动作功能的智能化系统。”目前,工业机器人技术正在向智能机器和智能系统的方向发展,其发展趋势主要为:结构的模块化和可重构化;控制技术的开放化、PC 化和网络化;伺服驱动技术的数字化和分散化;多传感器融合技术的实用化;工作环境设计的优化和作业的柔性化以及系统的网络化和智能化等方面。 1.2机器视觉在工业机器人中的应用 工业机器人是FMS(柔性加工)加工单元的主要组成部分,它的灵活性和柔性使其成为自动化物流系统中必不可少的设备,主要用于物料、工件的装卸、分捡和贮运。目前在全世界有数以百万的各种类型的工业机器人应用在机械制造、零件加工和装配及运输等领域,

机器人视觉算法 参考答案

1.什么是机器视觉 【概述】 机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分 CMOS 和 CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。 正是由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。【基本构造】 一个典型的工业机器视觉系统包括:光源、镜头、 CCD 照相机、图像处理单元(或图像捕获卡)、图像处理软件、监视器、通讯 / 输入输出单元等。 系统可再分为: 主端电脑(Host Computer) 影像撷取卡(Frame Grabber)与影像处理器影像摄影机 CCTV镜头显微镜头照明设备: Halogen光源 LED光源 高周波萤光灯源闪光灯源其他特殊光源影像显示器 LCD 机构及控制系统 PLC、PC-Base控制器 精密桌台伺服运动机台 【工作原理】 机器视觉检测系统采用CCD照相机将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,包括尺寸、角度、个数、合格 / 不合格、有 / 无等,实现自动识别功能。 【机器视觉系统的典型结构】 一个典型的机器视觉系统包括以下五大块: 1.照明 照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。光源可分为可见光和不可见光。常用的几种可见光源是白帜灯、日光灯、水银灯和钠光灯。可见光的缺点是光能不能保持稳定。如何使光能在一定的程度上保持稳定,是实用化过程中急需要解决的问题。另一方面,环境光有可能影响图像的质量,所以可采用加防护屏的方法来减少环境光的影响。照明系统按其照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。其中,背向照明是被测物放在光源和摄像机之间,它的优点是能获得高对比度的图像。前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装。结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的三维信息。频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步。 2.镜头FOV(Field Of Vision)=所需分辨率*亚象素*相机尺寸/PRTM(零件测量公差比)镜头选择应注意: ①焦距②目标高度③影像高度④放大倍数⑤影像至目标的距离⑥中心点 / 节点⑦畸变 3.相机 按照不同标准可分为:标准分辨率数字相机和模拟相机等。要根据不同的实际应用场合选不同的相机和高分辨率相机:线扫描CCD和面阵CCD;单色相机和彩色相机。 4.图像采集卡 图像采集卡只是完整的机器视觉系统的一个部件,但是它扮演一个非常重要的角色。图像采集卡直接决定了摄像头的接口:黑白、彩色、模拟、数字等等。 比较典型的是PCI或AGP兼容的捕获卡,可以将图像迅速地传送到计算机存储器进行处理。有些采集卡有内置的多路开关。例如,可以连接8个不同的摄像机,然后告诉采集卡采用那一个相机抓拍到的信息。有些采集卡有内置的数字输入以触发采集卡进行捕捉,当采集卡抓拍图像时数字输出口就触发闸门。 5.视觉处理器 视觉处理器集采集卡与处理器于一体。以往计算机速度较慢时,采用视觉处理器加快视觉处理任务。现在由于采集

机器人视觉传感技术及应用doc汇总

机器人视觉传感技术及应用 摘要:机器人视觉技术是指机器人工作时通过视觉传感器对环境物体获取视觉信息,让机器人识别物体来进行各种工作。本文介绍了机器人技术中所常用的视觉传感器的种类、结构。原理和功能。介绍了弧焊机器人视觉传感技术较为前沿的一些应用和研究,包括焊缝跟踪和获取熔池信息。简要说明了视觉技术在农业采摘机器人方面的应用。 关键词:机器人、视觉、弧焊、采摘机器人 1.绪论 机器人视觉是使机器人具有视觉感知功能的系统。机器人视觉可以通过视觉传感器获取环境的一维、二维和三维图像,并通过视觉处理器进行分析和解释,进而转换为符号,让机器人能够辨识物体,并确定其位置及各种状态。机器人视觉视觉侧重于研究以应用为背景的专用视觉系统,只提供对执行某一特定任务相关的景物描述。机器人视觉硬件主要包括图像获取和视觉处理两部分,而图像获取由照明系统、视觉传感器、模拟-数字转换器和帧存储器等组成。根据功能不同,机器人视觉可分为视觉检验和视觉引导两种,广泛应用于电子、汽车、机械等工业部门和医学、军事领域。 2. 机器人常用的视觉传感器 2.1光电二极管与光电转换器件 图2.1是pn型光电二级管的结构。如果让光子射入半导体的pn结边界耗尽层,就会激励起新的空穴。利用电场将空穴和电子分离到两侧,就可以的到与光子量成比例的反向电流。Pn型元件的优点是暗电流小,所以被广泛用于照度计和分广度计等测量装置中。

图2.1 pn型光电二极管结构 在高响应的发光二极管中pin结型与雪崩型。前者在pn结边界插入一个本征半导体i 层取代其耗尽层。给它施加反向偏压,可以减少结电容,获得高速响应;而后者是在pn结上加100伏左右的反向偏置电压产生强电场,激励载流子加速,与原子碰撞产生电子雪崩现象。这些高速型二极管的响应速度很快,能用于高速光通信等。 2.2 PSD PSD(Position Sensitive Detector,位置敏感探测器)是测定入射光位置的传感器,由发光二级管、表面电阻膜、电极组成。入射光产生的光电流通过电阻膜到达元件两端的电极,流入各个电极的电流与电阻值存在对应关系,而电阻值又与光的入射位置及到各个电极距离成比例,因此根据电流值就能检测到光入射的位置。PSD元件中有一维和二维两种,它们都具有高速性,但要注意入射到开口部分的散射光的影响。 2.3CCD图像传感器 电荷耦合器件(CCD:Charge Coupled Device)图像传感器是由多个光电二极管传送储存电荷的装置。它有多个MOS(Metal Oxide Semiconductor)结构的电极,电荷传送的方式是通过向其中一个电极上施加与众不同的电压,产生所谓的势阱,并顺序变更势阱来实现的。根据传送电荷需要的脉冲信号的个数,施加电压的方法有两相方式和三相方式。 CCD图像传感器有一维形式的,是将发光二极管和电荷传送部分一维排列制成的。此外还有二维形式的,它可以代替传统的硒化镉光导摄像管和氧化铅光电摄像管二维传感器。二维传感器属于水平和垂直传送电荷传感器,传送方式有行间传送、帧—行间传送、帧传送及全帧传送四种方式。 图2.2所示为行间传送方式,采取一维摄像区域(接收部分)与传送区域平行布置结构

浅谈机器人视觉技术

浅谈机器人视觉技术 摘要 机器人视觉是使机器人具有视觉感知功能的系统,是机器人系统组成的重要部分之一。机器人视觉可以通过视觉传感器获取环境的二维图像,并通过视觉处理器进行分析和解释,进而转换为符号,让机器人能够辨识物体,并确定其位置。机器人视觉广义上称为机器视觉,其基本原理与计算机视觉类似。计算机视觉研究视觉感知的通用理论,研究视觉过程的分层信息表示和视觉处理各功能模块的计算方法。而机器视觉侧重于研究以应用为背景的专用视觉系统,只提供对执行某一特定任务相关的景物描述。机器人视觉硬件主要包括图像获取和视觉处理两部分,而图像获取由照明系统、视觉传感器、模拟-数字转换器和帧存储器等组成。本文介绍了机器人的发展以及视觉计算理论和视觉的关键技术。 关键词:机器人、视觉、计算、关键技术 一、机器人发展概述 科学技术的发展,诞生了机器人。社会的进步也提出要求,希望创造出一种能够代替人进行各种工作的机器,甚至从事人类不能及的事情。自从1959年诞生第一台机器人以来,机器人技术取得了很大的进步和发展,至今已成为一门集机械、电子、计算机、控制、传感器、信号处理等多学科门类为一体的综合性尖端科学。当今机器人技术的发展趋势主要有两个突出的特点:一个是在横向上,机器人的应用领域在不断扩大,机器人的种类日趋增多;另一个是在纵向上,机器人的性能不 断提高,并逐步向智能化方向发展。前者是指应用领域的横向拓宽,后者是在性能及水平上的纵向提高。机器人应用领域的拓宽和性能水平的提高,二者相辅相成、相互促进。 智能机器人是具有感知、思维和行动功能的机器,是机构学、自动控制、计算机、人工智能、微电子学、光学、通讯技术、传感技术、仿生学等多种学科和技术的综合成果阎。智能机器人可获取、处理和识别多种信息,自主地完成较为复杂的操作任务,比一般的工业机器人具有更大的灵活性、机动性和更广泛的应用领域。要使机器人拥有智能,对环境变化做出反应,首先,必须使机器人具有感知

基于双目视觉的工业机器人运动轨迹准确度检测

万方数据

万方数据

万方数据

万方数据

基于双目视觉的工业机器人运动轨迹准确度检测 作者:岁波, 都东, 陈强, 孙振国, 韩翔宇 作者单位:清华大学机械工程系,北京,100084 刊名: 机械工程学报 英文刊名:CHINESE JOURNAL OF MECHANICAL ENGINEERING 年,卷(期):2003,39(5) 被引用次数:13次 参考文献(5条) 1.Yuan Jing;Yu S L End-effector position-orientation measurement[外文期刊] 1999(03) 2.Bijan Shimzadeh Laser-interferometry-based tracking for dynamic measurement[外文期刊] 1998(01) 3.McNamee L P;Petriu E M;Spoelder H J W Photogrammetric calibration of a mobile robot model[外文会议] 2001(01) 4.Van Albada G D Low-cost pose-measuring system for robot calibration[外文期刊] 1995(03) 5.Janocha H;Diewald B New methods of measuring and calibrating robots 1995 本文读者也读过(4条) 1.刘常杰.杨学友.邾继贵.叶声华.LIU Chang-jie.YANG Xue-you.ZHU Ji-gui.YE Sheng-hua基于工业机器人白车身柔性坐标测量系统研究[期刊论文]-光电子·激光2006,17(2) 2.谭冠政.徐雄.肖宏峰.TAN Guan-Zheng.XU Xiong.XIAO Hong-feng工业机器人实时高精度路径跟踪与轨迹规划[期刊论文]-中南大学学报(自然科学版)2005,36(1) 3.陈伟.钟健面向工业机器人系统的三种可靠度配置策略的研究[期刊论文]-光学精密工程2002,10(2) 4.黄晨华.张铁.谢存禧工业机器人位姿误差建模与仿真[期刊论文]-华南理工大学学报(自然科学版) 2009,37(8) 引证文献(16条) 1.李召鑫.李海峰.郑臻荣.刘旭立体视觉测量系统的空间分辨力和结构参数设置[期刊论文]-光电工程 2012(1) 2.张娅丽.刘波.解周凯.王晓白空中目标姿态测量中的图像处理方法[期刊论文]-科学技术与工程 2010(10) 3.郑魁敬.王连峰双目主动视觉监测平台设计[期刊论文]-计算机集成制造系统 2010(4) 4.张娅丽.刘波.解周凯.王晓白基于投影匹配的目标姿态测量方法研究[期刊论文]-传感技术学报 2010(6) 5.崔彦平.葛杏卫.张洪亮机械零件直线边缘亚像素定位方法研究[期刊论文]-半导体光电 2010(5) 6.基于双目视觉的飞行目标落地速度测量方法研究[期刊论文]-传感器与微系统 2009(8) 7.崔彦平.葛杏卫基于双目视觉的空间直线重建方法研究[期刊论文]-半导体光电 2009(6) 8.王健强.吕游一种面向工业机器人智能抓取的视觉引导技术研究[期刊论文]-机械设计与制造 2009(9) 9.宗光华.邓鲁华.王巍基于激光扫描的移动机器人实时轨迹测量系统[期刊论文]-航空学报 2007(4) 10.崔彦平.林玉池.黄银国双目视觉飞行目标落地参数测量[期刊论文]-光电工程 2007(8) 11.傅其凤.崔彦平.葛杏卫空间轴对称目标三维姿态测量方法的研究[期刊论文]-传感器与微系统 2007(3) 12.崔彦平.林玉池.黄银国回转体目标空间三维姿态测量方法研究[期刊论文]-传感技术学报 2007(1) 13.孙洪淋机器人视觉伺服系统的自适应模糊控制方法研究[学位论文]硕士 2006 14.刘苏宜.王国荣.钟继光视觉系统在机器人焊接中的应用与展望[期刊论文]-机械科学与技术 2005(11) 15.张国贤.陈强.张文增.汤晓华宏-微机器人微动机构研制[期刊论文]-焊接学报 2005(12)

一张图搞懂机器人视觉与机器视觉

机器人视觉与计算机视觉:有什么不同? By Alex 机器人视觉、计算机视觉、图像处理、机器视觉和图形识别,这几者之间到底有神马区别呢? 要弄清楚他们哪一个是哪一个,有时候也真的是容易混淆的。接下来看看这些术语的具体含义是什么,以及他们与机器人技术有什么关联。读了这篇文章后,你就再也不会被这些概念弄糊涂了! 当人们有时候谈论机器人视觉的时候,他们搞混淆了。当他们说,他们正在使用“计算机视觉”或“图像处理”的时候,实际上,他们的意思是正在使用…机器视觉?,这是一个完全可以理解的错误。因为,所有不同术语之间的界限有时候也是有些模糊的。 在这篇文章当中,我们分解了机器人视觉的“族谱”,以显示在更广泛的信号处理领域所在的位置。 什么是机器人视觉(Robot Vision)? 在基本术语中,机器人视觉涉及使用相机硬件和计算机算法的结合,让机器人处理来自现实世界的视觉数据。例如,您的系统可以使一个二维摄像头,检测到机器将拿起来的一个对象物。更复杂的例子可能是使用一个3D立体相机来引导机器人将车轮安装到一个以移动中的车辆上。 如果没有机器视觉,你的机器人基本上是个瞎子。对一些机器人任务来说,这也许不是一个问题。但对于某些应用来说,机器人视觉是有帮助的,甚至是必不可少的。 机器人视觉(Robot Vision)的“族谱” 机器人视觉与机器视觉密切相关,机器视觉我们稍后再介绍。他们两个又都与计算机视觉密切相关。如果他们谈论的是一个“族谱”,计算机视觉可以看作是他们的“父母”。然而,为了详细的了解他们在整个系统中的位置,我们要更进一步介绍他们的“祖父母”-信号处理。 族谱 信号处理(Signal Processing)

工业机器人视觉检测

项目一认识机器视觉系统 任务一连接视觉系统的周边设备 活动一连接相机 活动二连接光源 活动三连接手柄 活动四连接电源 活动五连接显示器 任务二调节相机 活动一调节相机 任务三调节光源 活动二调节光源 活动三操作手柄 任务三运行视觉软件 活动一运行软件 活动二修改语言 活动三创建一个新设定 任务四运行视觉系统的仿真 活动一安装软件 活动二注册图像 活动三运行仿真 任务五基恩士视觉与机器人通讯连接活动一确定本机通讯方式 活动二选择通讯方式 活动三通讯线安装 活动四连接通讯线 任务六基恩士与机器人通讯软件设置活动一进入通讯设置界面 活动二选择正确的通讯数据 活动三通讯测试 项目二基恩士视觉识别颜色

任务一进入新的设置 活动一创建新的设定窗口 活动二进入相机设定 活动三注册图像 任务二识别颜色的窗口设定 活动一设定前的准备 活动二设定检测范围 活动三设定判断值 活动四条件设定 任务三输出设置 活动一选择通讯方式 活动二设置判断值 任务四机器人控制概述 活动一机器人视觉控制指令运行 活动二机器人运行控制指令运行 活动三机器人运行控制编程 任务五整体编程运行 活动一两种颜色中确定所选颜色 活动二三种颜色中确定所选颜色 活动三四种颜色中确定两种所选的颜色项目三基恩士视觉识别大小 任务一进入新的设置 活动一创建新的设定窗口 活动二进入相机设定 活动三注册图像 任务二识别大小的窗口设定 活动一设定前的准备 活动二设定检测范围 活动三设定判断值 活动四条件设定

任务三输出设置 活动一选择通讯方式 活动二设置判断值 任务四在仿真中识别图像大小设置 活动一建立识别图像大小的仿真 活动二设置识别大小的仿真 活动三思考与原机的区别 任务五整体编程运行 活动一两种大小不同的工件进行选择 活动二三种不同大小的工件进行选择 活动三两种不同大小不同颜色的工件进行选择活动四三种不同大小不同颜色的工件进行选择项目四基恩士视觉识别形状 任务一进入新的设置 活动一创建新的设定窗口 活动二进入相机设定 活动三注册图像 任务二识别形状的窗口设定 活动一设定前的准备 活动二设定检测范围 活动三设定测量值 活动四条件设定 任务三输出设置 活动一选择通讯方式 活动二设置测量值 任务四机器人控制概述 活动一机器人视觉控制指令运行 活动二机器人运行控制指令运行 活动三机器人运行控制编程 任务五整体编程运行

KUKA机器人与视觉相关小文档

第一部分:提问 1.KUKA机器人中,怎样理解S,T参数? 2.实际操作中,首次运动编程怎样确定S,T参数? 3.在一条连续曲线轨迹运动中,S,T两参数会改变吗? 4.S,T两参数反映的是静态姿态还是运动过程的姿态?如果是动态的,哪么当机器人TCP移到目标点的过程中由各轴都在转动(即改变角位置),那怎能保证所定义的S,T值不不变呢?既然S,T值会变化,哪定义S,T 的值又有什么义意呢? 5.结构POS中的整数型变量S和T用于明确地定义一个轴的位置。 6.触摸屏与机器人的通讯问题,触摸屏输入参数怎样与机器人内存进行通讯? 7.机器人内存地址与硬件输入输出端子在名称上的对应关系? 8.在KUKA机器人编程中怎样实现两个向量的相减运算? 9.KUKA机器人能进行两个向量的相减运算编程吗? 10.标记的作用是什么?循环标记是标记中的一种吗?它能理解为PLC中的中间(辅助)继电器吗?比如S7-200 PLC中的M位? 11.循环标记的作用是什么?什么情况下使用循环标记? 12.循环标记以多长时间启动一次?是受某个定时器影响吗? 13.循环标记启动周期与程序扫描周期是什么关系?两周期是相同吗,还是循环标志的扫描周期独立于程序的扫描周期? 14.子程序,函数(表达式)的调用由循环标记来调用吗? 15.定时器的工作原理(过程)是什么?它与PLC的定时器类似吗?比如可以给它赋值?做延时断开或延时接通? 16.定时器计时时其时间值是递增还是递减? 17.定时器的变数$TIMER_STOP[1]?是什么?其作用是什么? 18.定时器的$TIMER_FLAG[1]?是什么标记?其作用是什么? 19.KUKA的工件座标,工具座标怎么设置? 20.请演示TCP座标测量的几种方法,如XYZ4点法,XYZ参照法,已知工具尺寸直接输入法? 21.通过ABC世界座标法,ABC两点法确定TCP座标姿态后也确定了S,T两参数值吗?怎样查询出已确定好的S,T两参数的值?在做运动编程时首次确定S,T两参数值就能用此参数吗? 22.TCP座标测量问题,如下图所示 23. 24.什么是外部TCP,其原理与作用是什么?什么场合使用? 25.在初始默认状态,TCP座标在第六轴的法兰盘中心吗?那基座标(工件座标)又在哪里?除了TCP座标和基座标可以改变外还有哪几个座标可以改变? 26.已知的TCP座标可以移动吗?实际编程时怎样编程移动? 27.KUKA机器人指系统中有相对移动(旋转)的指令吗?如在当前姿态绕TCP的X轴旋转30度,沿Y轴

机器人视觉系统

机器人视觉系统 ——人脸识别技术 优势 1 不被察觉,不会引起人的反感。 2 非接触性,不需要和设备接触即可识别 3 自然性 4 准确,可靠,灵活。 原理 在检测到人脸并定位面部关键特征点之后,主要的人脸区域就可以被裁剪出来,经过预处理之后,馈入后端的识别算法。识别算法要完成人脸特征的提取,并与库存的已知人脸进行比对,完成最终的分类。 主要过程 一般分三步: (1)首先建立人脸的面像档案。即用摄像机采集单位人员的人脸的面像文件或取他们的照片形成面像文件,并将这些面像文件生成面纹(Faceprint)编码贮存起来。 (2)获取当前的人体面像。即用摄像机捕捉的当前出入人员的面像,或取照片输入,并将当前的面像文件生成面纹编码。(智械科技) (3)用当前的面纹编码与档案库存的比对。即将当前的面像的面纹编码与档案库存中的面纹编码进行检索比对。上述的“面纹编码”方式是根据人脸脸部的本质特征和开头来工作的。这种面纹编码可以抵抗光线、皮肤色调、面部毛发、发型、眼镜、表情和姿态的变化,具有强大的可靠性,从而使它可以从百万人中精确地辩认出某个人。人脸的识别过程,利用普通的图像处理设备就能自动、连续、实时地完成。 实现方法 基于OpenCv人脸识别设计方案 1 系统组成 以OpenCV 图像处理库为基础,利用库中提供的相关功能函数进行各种处理:通过相机对图像数据进行采集,人脸检测主要是调用已训练好的Haar 分类器来对采集的图像进行模

式匹配,检测结果利用PCA 算法可进行人脸图像训练与身份识别,而人脸表情识别则利用了Camshift 跟踪算法和Lucas–Kanade 光流算法。

机器人视觉系统(Robot Vision)简介

机器人视觉系统(Robot Vision)简介 【字体:大中小】时间:2014-08-28 11:00:06 点击次数:23次 机器视觉系统的组成 机器视觉系统是指用计算机来实现人的视觉功能,也就是用计算机来实现对客观的三维世界的识别。按现在的理解,人类视觉系统的感受部分是视网膜,它是一个三维采样系统。三维物体的可见部分投影到网膜上,人们按照投影到视网膜上的二维的像来对该物体进行三维理解。所谓三维理解是指对被观察对象的形状、尺寸、离开观察点的距离、质地和运动特征(方向和速度)等的理解。 机器视觉系统的输入装置可以是摄像机、转鼓等,它们都把三维的影像作为输入源,即输入计算机的就是三维管观世界的二维投影。如果把三维客观世界到二维投影像看作是一种正变换的话,则机器视觉系统所要做的是从这种二维投影图像到三维客观世界的逆变换,也就是根据这种二维投影图像去重建三维的客观世界。 机器视觉系统主要由三部分组成:图像的获取、图像的处理和分析、输出或显示。 将近80%的工业视觉系统主要用在检测方面,包括用于提高生产效率、控制生产过程中的产品质量、采集产品数据等。产品的分类和选择也集成于检测功能中。下面通过一个用于生产线上的单摄像机视觉系统,说明系统的组成及功能。 视觉系统检测生产线上的产品,决定产品是否符合质量要求,并根据结果,产生相应的信号输入上位机。图像获取设备包括光源、摄像机等;图像处理设备包括相应的软件和硬件系统;输出设备是与制造过程相连的有关系统,包括过程控制器和报警装置等。数据传输到计算机,进行分析和产品控制,若发现不合格品,则报警器告警,并将其排除出生产线。机器视觉的结果是CAQ系统的质量信息来源,也可以和CIMS其它系统集成。 图像的获取 图像的获取实际上是将被测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据,它主要由三部分组成: *照明 *图像聚焦形成 *图像确定和形成摄像机输出信号

机器视觉与人工智能的特点说明

一、机器视觉的定义 机器视觉是人工智能正在快速发展的一个分支。简单说来,机器视觉就是用机器代替人眼来做测量和判断。 互联网的高速发展,使得物流业走势迅猛,不仅是每年一度的京东购物节和淘宝节让物流人员高压负重,喘不过气,就连现在的日常外卖派送,超市派送也使得快递人员人手不断速增,美团外卖布局无人物流,京东机器人物流拣货已开始应用,机器人工作,为人们的生活带来了巨大的便利性。机器人逐渐成为市场的宠儿。 如今,我们的身边已然充斥着各种类型的机器人,在制造、运输、生活等各领域起着非常重要的作用。比如机器人代步车,扫地机器人等。而让这些机器人拥有一双“智慧”双眼的正是机器视觉技术,得益于机器人产业的规划发展,机器视觉技术的应用就有非常广阔的空间。 机器视觉的定义机器视觉是人工智能正在快速发展的一个分支。简单说来,机器视觉就是用机器代替人眼来做测量和判断。机器视觉基于仿生的角度发展而来,比如模拟眼睛是通过视觉传感器进行图像采集,并在获取之后由图像处理系统进行图像处理和识别。 二、机器视觉的分类 机器视觉主要分为三类: 单目视觉技术,即安装单个摄像机进行图像采集,一般只能获取到二维图像。单目视觉广泛应用于智能机器人领域。然而,由于该技术受限于较低图像精度以及数据稳定性的问题,因此需要和超声、红外等其它类型传感器共同工作。 双目视觉技术,是一种模拟人类双眼处理环境信息的方式,通过两个摄像机从外界采集一副或者多幅不同视角的图像,从而建立被测物体的三维坐标。双目视觉技术大致分为机械臂视觉控制、移动机器人视觉控制、无人机无人船视觉控制等方向。 多目视觉技术,是指采用了多个摄像机以减少盲区,降低错误检测的机率。该技术主要用于物体的运动测量工作。在机械臂手眼协调方面,多目视觉技术能够克服物体捕捉的盲区,使机械臂进行抓取更加有效。在工业机器人进行装配领域,多目视觉也能够精确识别和定位被测物体,进而提高装配机器人的智能程度和定位精度。 三、机器视觉的应用 机器视觉的应用主要有检测和机器人视觉两个方面:

基于视觉的智能机器人的生产技术

图片简介: 本技术介绍了基于视觉的智能机器人,包括:机器人本体和设置在机器人本体内的控制系统;机器人本体包括:Kinect设备、网络摄像头、控制箱体、电池层以及四轮差动平台;Kinect设备通过支撑板设在控制箱体的顶部,网络摄像头设在Kinect设备的上表面,电池层固定在控制箱体的下表面,电池层的下表面通过伸缩柱连接有四轮差动平台,控制系统设在控制箱体中,该智能机器人克服现有技术中的机器人使用GPS来实现机器人自主定位,使用人工输入已知的环境地图和建筑物结构图来代替机器人自主学习和构建地图,但GPS定位的精度不够,仅适用于室内,人工输入地图的方式限制了机器人的工作范围,对于室外变化的环境不适用的问题。 技术要求 1.一种基于视觉的智能机器人,其特征在于,所述基于视觉的智能机器人包括:机器人本体和设置在所述机器人本体内的控制系统;其中, 所述机器人本体包括:Kinect设备(8)、网络摄像头(7)、控制箱体(5)、电池层(9)以及四轮 差动平台(1);所述Kinect设备(8)通过支撑板(6)设置在所述控制箱体(5)的顶部,所述网络 摄像头(7)设置在所述Kinect设备(8)的上表面,所述电池层(9)固定在所述控制箱体(5)的下 表面,所述电池层(9)的下表面通过伸缩柱(2)连接有四轮差动平台(1),所述控制系统设置在所述控制箱体(5)中;

所述Kinect设备(8)和所述网络摄像头(7)用于采集机器人周围的环境信息,所述控制系统对获取的环境信息进行分析并且执行SLAM程序,实现环境地图构建和自主定位,并且通过串口线路控制所述四轮差动平台的运动;所述电池层(9)中设置有电池组,用于提供系统运行的电能。 2.根据权利要求1所述的基于视觉的智能机器人,其特征在于,所述控制系统包括:中央处理器和存储器,所述Kinect设备(8)、所述网络摄像头(7)、所述存储器以及所述电池组分别与所述中央处理器相连,所述存储器对所述中央处理器构建的环境地图数据进行存储。 3.根据权利要求2所述的基于视觉的智能机器人,其特征在于,所述控制系统还包括人体传感器,所述人体传感器用于识别人体,在识别到人体的情况下,所述中央处理器控制所述四轮差动平台围绕所述人体的周围运动,以使得所述Kinect装置采集到所述人体的周围的数据,通过中央处理器实现构建环境地图以及自主定位。 4.根据权利要求1所述的基于视觉的智能机器人,其特征在于,所述控制箱体(5)的外侧面铰接设置有暗门(3),所述暗门(3)的背面与所述控制箱体(5)的内部相连通。 5.根据权利要求4所述的基于视觉的智能机器人,其特征在于,所述暗门(3)上嵌入显示器(4),所述暗门(3)与所述中央处理器电性连接,用于显示所述中央处理的信息。 6.根据权利要求5所述的基于视觉的智能机器人,其特征在于,所述显示器(4)为触摸式液晶显示屏。 7.根据权利要求1所述的基于视觉的智能机器人,其特征在于,所述四轮差动平台四轮独立驱动的平台,且设置在平台侧面的驱动轮为表面布设有防滑凸起条的橡胶轮。 8.根据权利要求1所述的基于视觉的智能机器人,其特征在于,所述网络摄像头(7)至少设置两个,且间隔设置在所述Kinect设备(8)的上表面,经过标定之后构成双目视觉传感设备。 9.根据权利要求1所述的基于视觉的智能机器人,其特征在于,所述机器人本体的材料为木头。

工业机器人视觉系统

工业机器人及机器人视觉系统 人类想要实现一系列的基本活动,如生活、工作、学习就必须依靠自身的器官,除脑以外,最重要的就是我们的眼睛了,(工业)机器人也不例外,要完成正常的生产任务,没有一套完善的,先进的视觉系统是很难想象的。 机器视觉系统就是利用机器代替人眼来作各种测量和判断。它是计算科的一个重要分支,它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。图像处理和模式识别等技术的快速发展,也大大地推动了机器视觉的发展。 机器视觉系统的应用 在生产线上,人来做此类测量和判断会因疲劳、个人之间的差异等产生误差和错误,但是机器却会不知疲倦地、稳定地进行下去。一般来说,机器视觉系统包括了照明系统、镜头、摄像系统和图像处理系统。对于每一个应用,我们都需要考虑系统的运行速度和图像的

处理速度、使用彩色还是黑白摄像机、检测目标的尺寸还是检测目标有无缺陷、视场需要多大、分辨率需要多高、对比度需要多大等。从功能上来看,典型的机器视觉系统可以分为:图像采集部分、图像处理部分和运动控制部分 工作过程 ?一个完整的机器视觉系统的主要工作过程如下: ?1、工件定位检测器探测到物体已经运动至接近摄像系统的视野中心,向图像采集部分发送触发脉冲。 ?2、图像采集部分按照事先设定的程序和延时,分别向摄像机和照明系统发出启动脉冲。 ?3、摄像机停止目前的扫描,重新开始新的一帧扫描,或者摄像机在启动脉冲来到之前处于等待状态,启动脉冲到来后启动一帧扫描。 ?4、摄像机开始新的一帧扫描之前打开曝光机构,曝光时间可以事先设定。

机器人视觉物体定位方法

机器人视觉物体定位方法 本次设计的题目是机器人视觉物体定位。伴随社会发展,机器人的利用越来越普及,出现了多种多样的智能机器人,由此也引发了对机器视觉的研究热潮。文章首先介绍了机器视觉的发展历程,并详细说明了各阶段的特点。接着概述了机器视觉技术的原理,深入剖析了主流视觉物体定位方法。然后介绍了机器人视觉物体定位方法常用的几种应用。最后介绍了几种新颖的视觉物体定位方法,并猜想机器人视觉物体定位技术未来发展方向。 关键词:机器视觉 SLAM技术单目视觉双目视觉多目视觉 第一章:绪论 1.1选题的背景及意义 在我国持续爆发的2019新型冠状病毒(即2019-nCoV)事件中,自动化食品仓储配送系统服务包括机器人、无人驾驶、无人机等再次成为讨论的焦点。配送机器人如何实现自动取货送货?无人驾驶汽车是怎么躲避行人?无人机巡航中怎么确定物体之间的距离?当我们谈到相关的话题时,机器视觉定位是无论如何也绕不开的问题。 自被誉为“机器人之父”的恩格尔伯格先生1959年发明第一台机器人以来,科学家一直把对机器人的研究作为研究的重点方向。传统的机器人缺乏环境感知能力和自动应变能力,仅仅只能在严格的预定义的环境中完成一些预定义和指令下的动作,应用非常有限局限。随着机器人逐渐走进人们的生产和生活中,人们也对机器人提出了更高的要求,希望实现在生产加工中对物体的自动加工、对自身运动轨迹实时的随动检测,节省对其运动轨迹的预先编程,提高生产效率。要达到这些要求,必须同时满足图像信息的获取、采集、处理和输出,这就是本文的研究重点:机器人视觉物体定位方法。

机器人视觉物体定位系统的设计和研发是为了更好地为工业机器人服务,它的本质是发挥摄像机定位以及跟踪性功能,很多企业在自身生产环节依赖于机器人,生产效率明显得到改善。然而很多的机器人是半自动的工作模式,只有在人工操控的指引下才能完成工作任务,这样的机器人实用性很差,无法彻底解放人工,实现自动化操作。为了提高机器人接收外界信息、感知外界信息的能力,进一步提高机器人的工作效率,保障工业生产的精度和质量,在以往的机器人系统中新增全新的计算机图像视觉获取系统,通过视觉图像获取系统中所捕捉的图像和外界信息,对捕捉的图像信息进行处理和分析识别,继而让机器人能够识别外界信息,然后再全面分析图像的基础上完成后续的重建和精准化计算,通过一系列的重建以及精准化的计算全面应用机器人控制柜通讯等等设备,掌控全面的工作,实现机器人对外界信息的跟踪和定位。 1.2国内外研究现状 国外研究现状 国外最先开始视觉物体定位技术的研究,应用领域也相对广泛,并且占据绝对的技术优势,其主要涉及机器人移动导航、三维立体测量、虚拟现实VR技术等。 20世纪60年代,美国mit的robert研究人员提出三维景物分析,标志着立体视觉和影像技术的结合点而诞生。立体视觉在此后20年的时间迅速地发展成为一门新的影像技术学科。到70年代时,以marr为主要代表的一批视觉物体定位方法研究学者已经整理和发展出了一整套关于视觉计算的理论基础。到80 年代后,大量利用空间几何研究双目立体视觉的学者提出了一系列理论与实际成果。 卡内基梅隆大学的Tomasi 和Kanade 等人对立体视觉的研究建立在摄像机为正交投影模型的假设下,分解出了三维结构和相机运行,成功研究出了基于图像的三维重建技术。但是,这项技术存在明显的缺点,由于假设相机为正交投影模型,而这个假设仅仅在物体深度远远大于物体尺寸时才是合理假设。美国

视觉机器人的发展现状与趋势

视觉机器人的发展现状与趋势 机器人技术是高新技术的重要组成部分,其产业化的进程在我国刚刚起步,虽然取得了一定的成绩,但仍然存在很多困难和不足,因此更需要多方面的关心和支持。 国家政策支持,是加速高新技术产业化的重要前提。我国政府有关部门应组织力量进行充分地调查研究,在此基础上,制定切实可行的推广、应用机器人和促进机器人研究开发的倾斜政策。如在税收、投资和贷款方面对机器人产业实行扶持政策。日本政府通过制定政策,采取一系列措施鼓励企业应用机器人,为日本机器人在国内开拓市场的经验值得我们借鉴。另外,对机器人用户,可以考虑给予一定的资金补贴,以鼓励购买。为了避免危险恶劣的工作环境导致的工伤事故和职业病,保护工人的身心安全,对一些特殊工种,如喷涂,铸造等通过劳动法强制采用工业机器人来代替,这样可以大大增加工业机器人的需求数量。 视觉机器人 我国的机器人产业化必须由市场来拉动,机器人作为高新技术,它的发展与社会的生产、经济状况密切相关。机器人的研制、开发只有从技术上实现可能性大为原则选择机器人优先应用的领域,并以此为突破口,向其他领域渗透、扩散至为重要。 随着工业4.0时代的到来,机器视觉在智能制造业领域的作用越来越重要,能让更多用户获取机器视觉的相关基础知识,包括机器视觉技术是如何工作的、它为什么是实现流程自动化和质量改进的正确选择等。

维视智造智能分拣机器人 机器视觉是一门学科技术,广泛应用于生产制造检测等工业领域,用来保证产品质量,控制生产流程,感知环境等。机器视觉系统是将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。

相关文档
相关文档 最新文档