文档库 最新最全的文档下载
当前位置:文档库 › 动平衡相关知识3-转子剩余不平衡量的计算方法

动平衡相关知识3-转子剩余不平衡量的计算方法

动平衡相关知识3-转子剩余不平衡量的计算方法
动平衡相关知识3-转子剩余不平衡量的计算方法

转子允许的剩余不平衡量的计算

东莞市元创机械是动平衡专家,为您解决电机转子动平衡难题,提供电机转子动平衡机,全自动平衡机,在这篇文章中主要向大家介绍转子允许的剩余不平衡量的计算方法,首先我们就需要先了解动平衡机的常用术语。

一、动平衡机常用术语

1.不平衡量U:转子某平面上不平衡量的量值大小,不涉及不平衡的角度位置。

它等于不平衡质量m和转子半径r的乘积。其单位是gmm或者gcm,俗称“重径积”。

2. 不平衡相位:转子某平面上的不平衡质量相对于给定极坐标的角度值。

3. 不平衡度e:转子单位质量的不平衡量,单位是gmm/kg。

在静不平衡时相当于转子的质量偏心距,单位为μm。

4. 初始不平衡量:平衡前转子上存在的不平衡量。

5. 许用不平衡量:为保证旋转机械正常工作所允许的转子剩余不平衡量。

该指标用不平衡度表示时,称为许用不平衡度(亦称许用不平衡率)。

6. 剩余不平衡量:平衡校正后转子上的剩余不平衡量。

7. 校正半径:校正平面上校正质量的质心到转子轴线的距离,一般用mm表示。

8. 校正平面的干扰(相互影响):在给定转子某一校正面上不平衡量的变化引起另一校正平面上的

改变(有时称为平面分离影响)

9. 转子平衡品质:衡量转子平衡优劣程度的指标。

计算公式:G=e perω/1000

式中G-转子平衡品质,单位mm/s。从G0.4-G4000分11级。

e per-转子允许的不平衡率gmm/kg或转子质量偏心距μm。

ω-相应于转子最高工作转速的角速度=2πn/60≈n/10,n为转子的工作转速r/min。

10. 转子单位质量的允许不平衡度(率):

e per=(G×1000)/(n/10) 单位:gmm/kg或μm

11. 最小可达剩余不平衡量(U mar):指平衡机能使转子达到的剩余不平衡量的最小值,是衡量平衡

机最高平衡能力的性能指标。单位为gmm。

12. 不平衡量减少率(URR):经过一次平衡修正减少的不平衡量与初始不平衡量之比值。

它是衡量平衡机效率的性能指标,以百分数表示:

URR(%)=(U1-U2)/U1=(1-U2/U1)×100

式中:U1-初始不平衡量

U2-一次平衡修正后的剩余不平衡量

13. 校验转子:为校验平衡机性能而设计的刚性转子。

其质量、大小、尺寸均有规定,分立式和卧式两种。

立式转子质量为1.1,3.5,11,35,110 kg。

卧式转子质量为0.5,1.6,5,16,50,160,500kg。

二、计算转子允许的剩余不平衡量

1.e per=(G×1000)/(n/10)

式中e per―――转子允许的不平衡率gmm/kg或转子质量偏心距μm G―――平衡精度等级,一般为6.3

n-------工件工作转速,单位是rpm

例:某工件工作转速1500r/min,平衡精度等级取6.3

则:e per = (6.3×1000)/(1500/10)=6300/150=42μm=42g.mm/kg

2.允许残余不平衡量的计算。

m =(e per×M)/r

式中,m-----允许残余不平衡量,单位g

M------工件旋转质量,单位kg

r-----工件半径,单位mm

例:工件质量0.5kg,半径25mm,双面平衡,则该转子的允许不平衡量为:×M)/r=42×0.5/25=0.84g

m =(e

per

因电机转子是双面校正平衡,故分配到每面的允许不平衡量0.84/2=0.41g

因此,在选择动平衡机之前,应先考虑转子所要求的平衡精度。

更多动平衡机资料,请访问: https://www.wendangku.net/doc/1c5514869.html,

不平衡量计算方法

不平衡量的简化计算公式: M ----- 转子质量单位kg G ------精度等级选用单位 g.mm/kg r ------校正半径单位mm n -----工件的工作转速单位 rpm m------不平衡合格量单位g -------m=9549.M.G/r.n 1、风机动平衡标准:如动平衡精度≤ G 6.3 (指位移振幅6.3mm/s); 2、一般动平衡机采用350 rpm和720 rpm两种转速做动平衡测试; 3、一般动平衡机采用最大动平衡重量(Kg)命名型号;

4、动平衡方法:加重平衡和去重平衡; 平衡对象:轴,风轮,皮带轮和其它转子 6、平衡的原因:一个不平衡的转子将造成振动和转子本身及其支撑结构的应力(应力:材料内部互相拉推的力量,即作用与反作用力); 7、平衡的目的: A,增加轴承寿命; B,减少振动; C,减少杂音; D,减少操作应力; E,减少操作者的困扰和负担; F,减少动力损耗; G,增加产品品质; H,使顾客满意。 8、不平衡的影响 A,只有一个传动组件的不平衡会导致整个组合产生振动,在转动所引起的振动会造成轴承﹑轴套﹑轴心﹑卷轴﹑齿轮等的过大磨损,而减少其使用寿命; B,一旦很高的振动出现,则在结构支架和外框产生应力,经常导致其整个故障; C,且被支架结构吸收的能量会使得等效率的减低; D,振动也会经由地板传给邻近的机械,会严重影响其精确度或正常功能。 9、不平衡的原因: 不平衡为转子(风轮﹑轴心或皮带轮等)的重量分布不均匀。 一、叶轮产生不平衡问题的主要原因 叶轮在使用中产生不平衡的原因可简要分为两种:叶轮的磨损与叶轮的结垢。造成这两种情况与引风机前接的除尘装置有关,干法除尘装置引起叶轮不平衡的原因以磨损为主,而湿法除尘装置影响叶轮不平衡的原因以结垢为主。现分述如下。 1.叶轮的磨损 干式除尘装置虽然可以除掉烟气中绝大部分大颗粒的粉尘,但少量大颗粒和许多微小的粉尘颗粒随同高温、高速的烟气一起通过引风机,使叶片遭受连续不断地冲刷。长此以往,在叶片出口处形成刀刃状磨损。由于这种磨损是不规则的,因此造成了叶轮的不平衡。此外,叶轮表面在高温下很容易氧化,生成厚厚的氧化皮。这些氧化皮与叶轮表面的结合力并不是均匀的,某些氧化皮受振动或离心力的作用会自动脱落,这也是造成叶轮不平衡的一个原因。2.叶轮的结垢 经湿法除尘装置(文丘里水膜除尘器)净化过的烟气湿度很大,未除净的粉尘颗粒虽然很小,但粘度很大。当它们通过引风机时,在气体涡流的作用下会被吸附在叶片非工作面上,特别在非工作面的进口处与出口处形成比较严重的粉尘结垢,并且逐渐增厚。当部分灰垢在离心力和振动的共同作用下脱落时,叶轮的平衡遭到破坏,整个引风机都会产生振动。 二、解决叶轮不平衡的对策 1.解决叶轮磨损的方法 对干式除尘引起的叶轮磨损,除提高除尘器的除尘效果之外,最有效的方法是提高叶轮的抗磨损能力。目前,这方面比较成熟的方法是热喷涂技术,即用特殊的手段将耐磨、耐高温的金属或陶瓷等材料变成高温、高速的粒子流,喷涂到叶轮的叶片表面,形成一层比叶轮本身材料耐磨、耐高温和抗氧化性能高得多的超强外衣。这样不仅可减轻磨损造成叶轮动平衡的

转子动平衡

实验六转子动平衡 一、实验目的 1.巩固转子动平衡知识,加深转子动平衡概念的理解; 2.掌握刚性转子动平衡实验的原理及基本方法。 二、实验设备与工具 1.CS-DP-10型动平衡试验机; 2.试件(试验转子); 3.天平; 4.平衡块(若干)及橡皮泥(少许)。 三、实验原理与方法 本实验采用的CS-DP-10型动平衡试验机的简图如图1所示。待平衡的试件1安放在框形摆架的支承滚轮上,摆架的左端与工字形板簧3固结,右端呈悬臂。电动机4通过皮带带动试件旋转,当试件有不平衡质量存在时,则产生的离心惯性力将使摆架绕工字形板簧做上下周期性的微幅振动,通过百分表5可观察振幅的大小。 1. 转子试件 2. 摆架 3. 工字形板簧 4. 电动机 5. 百分表 6. 补偿盘 7. 差速器 8. 蜗杆 图1 CS-DP-10型动平衡试验机简图 试件的不平衡质量的大小和相位可通过安装在摆架右端的测量系统获得。这个测量系统由补偿盘6和差速器7组成。差速器的左端为转动输入端(n1)通过柔性联轴器与试件联接,右端为输出端(n3)与补偿盘联接。 差速器由齿数和模数相同的三个圆锥齿轮和一个蜗轮(转臂H)组成。当转臂蜗轮不转动时:n3=-n1,即补偿盘的转速n3与试件的转速n1大小相等转向相反;当通过手柄摇动蜗杆8从而带动蜗轮以n H转动时,可得出:n3=2n H-n1,即n3≠-n1,所以摇动蜗杆可改变补偿盘与试件之间的相对角位移。

图2所示为动平衡机工作原理图,试件转动后不平衡质量产生的离心惯性力F =ω2mr,它可分解为垂直分力F y和水平分力F x,由于平衡机的工字形板簧在水平方向(绕y轴)的抗弯刚度很大,所以水平分力F x对摆架的振动影响很小,可忽略不计。而在垂直方向(绕x轴)的抗弯刚度小,因此在垂直分力产生的力矩M = F y·l =ω2mrlsinφ的作用下,摆架产生周期性上下振动。 图2 动平衡机工作原理图 由动平衡原理可知,任一转子上诸多不平衡质量,都可以用分别处于两个任选平面Ⅰ、Ⅱ内,回转半径分别为rⅠ、rⅡ,相位角分别为θⅠ、θⅡ,的两个不平衡质量来等效。只要这两个不平衡质量得到平衡,则该转子即达到动平衡。找出这两个不平衡质量并相应的加上平衡质量(或减去不平衡质量)就是本试验要解决的问题。 设试件在圆盘Ⅰ、Ⅱ各等效着一个不平衡质量mⅠ和mⅡ,对x轴产生的惯性力矩为: MⅠ=0 ;MⅡ=ω2mⅡrⅡlsin(θⅡ+ωt) 摆架振幅y大小与力矩MⅡ的最大值成正比:y∝ω2mⅡrⅡl ;而不平衡质量mⅠ产生的惯性力以及皮带对转子的作用力均通过x轴,所以不影响摆架的振动,因此可以分别平衡圆盘Ⅱ和圆盘Ⅰ。 本实验的基本方法是:首先,用补偿盘作为平衡平面,通过加平衡质量和利用差速器改变补偿盘与试件转子的相对角度,来平衡圆盘Ⅱ上的离心惯性力,从而实现摆架的平衡;然后,将补偿盘上的平衡质量转移到圆盘Ⅱ上,再实现转子的平衡。具体操作如下: 在补偿盘上带刻度的沟槽端部加一适当的质量,在试件旋转的状态下摇动蜗杆手柄使蜗轮转动(正转或反转),从而改变补偿盘与试件转子的相对角度,观察百分表振动使其达到最小,停止转动手柄。(摇动手柄要讲究方法:蜗杆安装在机架上,蜗轮安装在摆架上,两者之间有很大间隙。蜗杆转动一定角度后,稍微反转一下,脱离与蜗轮的接触,这样才能使摆架自由振动,这时观察振幅。通过间歇性地使蜗轮向前转动和观察振幅变化,最终可找到振幅最小的位置。)停机后在沟槽内再加一些平衡质量,再开机左右转动手柄,如振幅已很小(百分表摆动±1~2格)可认为摆架已达到平衡。亦可将最后加在沟槽内的平衡质量的位置沿半径方向作一定调整,来减小振幅。将最后调整到最小振幅的手柄位置保持不动,停机后用手转动试件使补偿盘上的平衡质量转到最高位置。由惯性力矩平衡条件可知,圆盘Ⅱ上的不平衡质量mⅡ必在圆盘Ⅱ的最低位置。再将补偿盘上的平衡质量m p'按力矩等效的原则转换为位于圆盘Ⅱ上最高位置的平衡质量m p,即可实现试件转子的平衡。根据等效条件有:

三相不平衡损耗计算

农村低压电网改造后低压电网结构发生了很大的变化,电网结构薄弱环节基本上已经解决,低压电网的供电能力大大增强,电压质量明显提高,大部分配电台区的低压线损率降到了11%以下,但仍有个别配电台区因三相不平衡负载等原因而造成线损率居高不下,给供电管理企业特别是基层供电所电工组造成较大的困难和损失,下面针对这些情况进行分析和探讨。 一、原因分析 在前几年的农网改造时,对配电台区采取了诸如增添配电变压器数量,新增和改造配电屏,配电变压器放置在负荷中心,缩短供电半径,加大导线直径,建设和改造低压线路,新架下户线等一系列降损技术措施,也收到了很好的效果。但是个别台区线损率仍然很高,针对其原因,我们做了认真的实地调查和分析,发现一些台区供电采取单相二线制、二相三线制,即使采用三相四线制供电,由于每相电流相差很大,使三相负荷电流不平衡。从理论和实践上分析,也会引起线路损耗增大。 二、理论分析 低压电网配电变压器面广量多,如果在运行中三相负荷不平衡,会在线路、配电变压器上增加损耗。因此,在运行中要经常测量配电变压器出口侧和部分主干线路的三相负荷电流,做好三相负荷电流的平衡工作,是降低电能损耗的主要途经。 假设某条低压线路的三相不平衡电流为IU、IV、IW,中性线电流为IN,若中性线电阻为相线电阻的2倍,相线电阻为R,则这条线路的有功损耗为ΔP1=(I2UR+I2VR+I2WR+2I2NR)×10-3 (1) 当三相负荷电流平衡时,每相电流为(IU+IV+IW)/3,中性线电流为零,这时线路的有功损耗为 ΔP2=■2R×10-3 (2)

三相不平衡负荷电流增加的损耗电量为 ΔP=ΔP1-ΔP2=■(I2U+I2V+I2W-I2UI2V-I2VI2W+I2WI2U+3I2N)R×10-3 (3)同样,三相负荷电流不平衡时变压器本身也增加损耗,可用平衡前后的负荷电流进行计算。由此可见三相不平衡负荷电流愈大,损耗增加愈大。 三相负荷电流不平衡率按下式计算 K=■×100 (4)■代表平均电流 一般要求配电变压器出口三相负荷电流的不平衡率不大于10%,低压干线及主要支线始端的三相电流不平衡率不大于20%。可见若不平衡,线损可能增加数倍。据了解,目前农村单相负荷已成为电力负荷的主要方面,农村低压线路虽多为三相四线,但很多没有注意到把单相负荷均衡的分配到三相电路上,并且还有一定数量的单相两线、三相三线制供电。按一般情况平均测算估计,单相负荷的线损可能增加2~4倍,由此可知,调整三相负荷平衡用电是降损的主要环节。 三、现场调查分析、试验情况 实践是检验真理的标准,理论需要在实践中验证。2004年我们在庄寨供电所检查分析个别台区线损率高的原因,发现庄寨供电所杨小湖配电台区损耗严重,我们重点进行了解剖分析: 该台区配电变压器容量为100kV·A,供电半径最长550m,由上表得该配变台区267户用电量12591kW·h,没有大的动力用户,只有1户轧面条机,户均月用电46.98kW·h,低压线损一直17%左右,用钳流表测量变压器出口侧24h电流平均值为: IU=9A,IV=15A,IW=35A,IN=21A。三相负荷电流不平衡率计算为: K=■×100%=■×100%=35.59%

转子动平衡标准

平衡精度等级 考虑到技术的先进性和经济上的合理性,国际标准化组织(ISO)于1940年制定了世界公认的 ISO1940平衡等级,它将转子平衡等级分为11个级别,每个级别间以2.5倍为增量,从要求最高的G0.4到要求最低的G4000。单位为公克×毫米/公斤(gmm/kg),代表不平衡对于转子轴心的偏心距离。如下表所示: G4000 具有单数个气缸的刚性安装的低速船用柴油机的曲轴驱动件 G1600 刚性安装的大型二冲程发动机的曲轴驱动件 G630 刚性安装的大型四冲程发动机的曲轴驱动件弹性安装的船用柴油机的曲轴驱动件 G250 刚性安装的高速四缸柴油机的曲轴驱动件 G100 六缸和多缸高速柴油机的曲轴传动件;汽车、货车和机车用的发动机整机 G40 汽车车轮、轮毂、车轮整体、传动轴,弹性安装的六缸和多缸高速四冲程发动机的曲轴驱动件 G16 特殊要求的驱动轴(螺旋桨、万向节传动轴);粉碎机的零件;农业机械的零件;汽车发动机的个别零件;特殊要求的六缸和多缸发动机的曲轴驱动件 G6.3 商船、海轮的主涡轮机的齿轮;高速分离机的鼓轮;风扇;航空燃气涡轮机的转子部件;泵的叶轮;机床及一般机器零件;普通电机转子;特殊要求的发动机的个别零件 G2.5 燃气和蒸汽涡轮;机床驱动件;特殊要求的中型和大型电机转子;小电机转子;涡轮泵 G1 磁带录音机及电唱机、CD、DVD的驱动件;磨床驱动件;特殊要求的小型电枢 G0.4 精密磨床的主轴;电机转子;陀螺仪 在您选择平衡机之前,应该先确定转子的平衡等级。 举例:允许不平衡量的计算 允许不平衡量的计算公式为: (与JPARC一样的计算 gys)式中m per为允许不平衡量,单位是g; M代表转子的自身重量,单位是kg; G代表转子的平衡精度等级,单位是mm/s; r 代表转子的校正半径,单位是mm; n 代表转子的转速,单位是rpm。 举例如下: 如一个电机转子的平衡精度要求为G6.3级,转子的重量为0.2kg,转子的转速为1000rpm,校正半径20mm,则该转子的允许不平衡量为:

转子允许动不平衡量的计算

转子允许动不平衡量的计算 允许不平衡量的计算公式 U per=M X G X n r x x 260 Π X 103 (g ) 转子重量M,Kg 0.2 0.3 0.2 0.2 平衡精度G ,gmm/kg 6.3 2.5 6.3 6.3 转子的校正半径r ,mm 20 20 20 20 转子的转速n ,rpm 1000 1000 1000 1000 允许不平衡量,g 0.602 0.358 0.602 0.602 每面的允许不平衡量,g 0.301 0.179 0.301 0.301 U per 为允许不平衡量 M 代表转子的自身重量,单位是kg ; G 代表转子的平衡精度等级,单位是mm/s ; r 代表转子的校正半径,单位是mm ; n 代表转子的转速,单位是rpm 。 一、动平衡机常用术语 1.不平衡量U :转子某平面上不平衡量的量值大小,不涉及不平衡的角度位置。 它等于不平衡质量m 和转子半径r 的乘积。其单位是gmm 或者gcm ,俗称“矢径积”。 2.不平衡相位:转子某平面上的不平衡质量相对于给定极坐标的角度值。 3.不平衡度e :转子单位质量的不平衡量,单位是gmm/kg 。 在静不平衡时相当于转子的质量偏心距,单位为μm 。 4.初始不平衡量:平衡前转子上存在的不平衡量。 5.许用不平衡量:为保证旋转机械正常工作所允许的转子剩余不平衡量。 该指标用不平衡度表示时,称为许用不平衡度(亦称许用不平衡率)。 6.剩余不平衡量:平衡校正后转子上的剩余不平衡量。 7.校正半径:校正平面上校正质量的质心到转子轴线的距离,一般用mm 表示。 8.校正平面的干扰(相互影响):在给定转子某一校正面上不平衡量的变化引起另一校正平面上的改变(有时称为平面分离影响) 9.转子平衡品质:衡量转子平衡优劣程度的指标。

动平衡相关知识3-转子剩余不平衡量的计算方法

转子允许的剩余不平衡量的计算 东莞市元创机械是动平衡专家,为您解决电机转子动平衡难题,提供电机转子动平衡机,全自动平衡机,在这篇文章中主要向大家介绍转子允许的剩余不平衡量的计算方法,首先我们就需要先了解动平衡机的常用术语。 一、动平衡机常用术语 1.不平衡量U:转子某平面上不平衡量的量值大小,不涉及不平衡的角度位置。 它等于不平衡质量m和转子半径r的乘积。其单位是gmm或者gcm,俗称“重径积”。 2. 不平衡相位:转子某平面上的不平衡质量相对于给定极坐标的角度值。 3. 不平衡度e:转子单位质量的不平衡量,单位是gmm/kg。 在静不平衡时相当于转子的质量偏心距,单位为μm。 4. 初始不平衡量:平衡前转子上存在的不平衡量。 5. 许用不平衡量:为保证旋转机械正常工作所允许的转子剩余不平衡量。 该指标用不平衡度表示时,称为许用不平衡度(亦称许用不平衡率)。 6. 剩余不平衡量:平衡校正后转子上的剩余不平衡量。 7. 校正半径:校正平面上校正质量的质心到转子轴线的距离,一般用mm表示。 8. 校正平面的干扰(相互影响):在给定转子某一校正面上不平衡量的变化引起另一校正平面上的 改变(有时称为平面分离影响) 9. 转子平衡品质:衡量转子平衡优劣程度的指标。 计算公式:G=e perω/1000 式中G-转子平衡品质,单位mm/s。从G0.4-G4000分11级。 e per-转子允许的不平衡率gmm/kg或转子质量偏心距μm。 ω-相应于转子最高工作转速的角速度=2πn/60≈n/10,n为转子的工作转速r/min。 10. 转子单位质量的允许不平衡度(率): e per=(G×1000)/(n/10) 单位:gmm/kg或μm 11. 最小可达剩余不平衡量(U mar):指平衡机能使转子达到的剩余不平衡量的最小值,是衡量平衡 机最高平衡能力的性能指标。单位为gmm。 12. 不平衡量减少率(URR):经过一次平衡修正减少的不平衡量与初始不平衡量之比值。 它是衡量平衡机效率的性能指标,以百分数表示: URR(%)=(U1-U2)/U1=(1-U2/U1)×100 式中:U1-初始不平衡量 U2-一次平衡修正后的剩余不平衡量 13. 校验转子:为校验平衡机性能而设计的刚性转子。 其质量、大小、尺寸均有规定,分立式和卧式两种。 立式转子质量为1.1,3.5,11,35,110 kg。 卧式转子质量为0.5,1.6,5,16,50,160,500kg。

不平衡报价的结算公式

不平衡报价的结算公式 最终结算价: ①工程量减少超过10%的,按中标单价×实际量+(重新组价*(1-中标下浮率)-中标单价)×(实际量*中标量);②工程量增加超过10%的,按中标单价×招标工程量*+(重新组价*(1-中标下浮率))×(实际量*中标量)。当然如果标底价较合理重新组价可以用标底单价*(1-中标下浮率),采用这种方式合情合理,结算实际意义大于理论意义 即 ①工程量减少超过10%的,按中标单价×实际量+(标底单价*(1-中标下浮率)-中标单价)×(实际量*中标量);②工程量增加超过10%的,按中标单价×招标工程量*+(标底单价*(1-中标下浮率))×(实际量*中标量)。 如已按投标单价计算,再进行价格调增调减的公式: ①工程量减少超过10%的,按(重新组价*(1-中标下浮率)-中标单价)×(实际量*中标量);②工程量增加超过10%的,按(重新组价*(1-中标下浮率)-中标单价)×(实际量*中标量)。当然如果标底价较合理重新组价可以用标底单价*(1-中标下浮率),采用这种方式合情合理,结算实际意义大于理论意义 即: ①工程量减少超过10%的,按(标底单价*(1-中标下浮率)-中标单价)×(实际量*中标量);②工程量增加超过10%的,按(标底单价*(1-中标下浮率)-中标单价)×(实际量*中标量)。 上述公式是既减亦加的公式。 如只减不增,则按上述公式计算的结果为正时则不计。 工程变化幅度超过±10%且投标单价与下浮后的标底单价相比变化幅度在±15%以上时,实际工程量按投标价结算后,须对多出的工程量或少做的工程量以按以公式进行调整: ①工程量减少超过10%的,按(标底单价*(1-中标下浮率)-中标单价)×(实际量*中标量);②工程量增加超过10%的,按(标底单价*(1-中标下浮率)-中标单价)×(实际量*中标量)。 实际工程量增减超过10%以上的部分,且其投标单价与下浮后的标底价相比浮动超过15%的,其单价按下列原则调整:当结算工程量超过招标工程量+10%时,超出的工程量按标底下浮后的单价结算(标底下浮后的单价如高于投标单价仍按投标单价),当结算工程量超过招标工程量-10%时,按(标底下浮后的单价-中标单价)×(实际量*中标量)调减(标底下浮后的单价如低于投标单价仍按投标单价),除此之外均按中标单价结算不调整。

《转子动平衡原理方法和标准》

技术讲课教案 主讲人:范经伟 技术职称(或技能等级):高级工 所在岗位:锅炉辅机点检员 讲课时间: 2011年 06月24日 培训题目:《转子动平衡——原理、方法和标准》 培训目的: 多种原因会引起转子某种程度的不平衡问题,分布在转子上的所有不平衡矢量的和可以认为是集中在“重点”上的一个矢量,动平衡就是确定不平衡转子重点的位置和大小的一门技术,然后在其相对应的位置处移去或添加一个相同大小的配重。内容摘要: 动平衡前要确认的条件: 1.振动必须是因为动不平衡引起。并且要确认动不平衡力占振动的主导。 2.转子可以启动和停止。 3.在转子上可以添加可去除重量。 培训教案:

第一章不平衡问题种类 为了以最少的启停次数,获得最佳的平衡效果,我们不仅要认识到动不平衡问题的类型(静不平衡、力偶不平衡、动不平衡),而且还要知道转子的宽径比及转速决定了采用单平面、双平面还是多平面进行动平衡操作。同时也要认识到转子是挠性的还是刚性的。 刚性转子与挠性转子 对于刚性转子,任何类型的不平衡问题都可以通过任选的二个平面得以 平衡。 对于挠性转子,当在一个转速下平衡好后,在另一个转速下又会出现不 平衡问题。当一个挠性转子首先在低于它的70%第一监界转速下,在它的 两端平面内加配重平衡好后,这两个加好的配重将补偿掉分布在整个转 子上的不平衡质量,如果把这个转子的转速提高到它的第一临界转速的 70%以上,这个转子由于位于转子中心处的不平衡质量所产生的离心力的 作用,而产生变形,如图10所示。由于转子的弯曲或变形,转子的重心 会偏离转动中心线,而产生新的不平衡问题,此时在新的转速下又有必 要在转子两端的平衡面内重新进行动平衡工作,而以后当转子转速降下 来后转子又会进入到不平衡状态。为了能在一定的转速范围内,确保转 子都能处在平衡的工作状态下,唯一的解决办法是采用多平面平衡法。 挠性转子平衡种类 1.如果转子只是在一个工作转速下运转,小量的变形不会产生过快的磨

转子不平衡量的计算方法

转子不平衡量的计算方法 1、计算转子的允许不平衡度 Eper=(G×1000)/(n/10) Eqer---允用不平衡度单位μ G ---平衡精度等级一般取6.3 n----工作转速单位r/min 例某工件工作转速 1400r/min平衡精度等级取 6.3则Eper=(6.3×1000)/(1400/10)=6300/140=45μ 2、计算允许残余不平衡量 m=(Eper×M)/(r×2) m------允许残余不平衡量单位g M------工件旋转质量单位kg r------工件半径单位mm 例工件质量20kg 半径60mm 双面平衡故计算每个平衡面的允许的剩 余不平衡量为m=(Eper×M)/(r×2)=45×20/60×2=7.5g 不平衡机专用名 1、不平衡量――转子某平面上不平衡和量值大小,不涉及不平衡的角位置。它等于不平衡质量和其质心至转子轴线距离的乘积,不平衡量单位为g.mm或g.cm俗称“重径积” 2、不平衡度――转子某平面上的不平衡质相对于给定极坐标的角度值 3、不平衡度―――转子单位质量的不平衡量,单位为g.mm/kg,在静不平衡时相当于转子的质量偏心距,单位为微米。 4、初始不平衡量―――平衡前转子上存在的不平衡量。 5、许用不平衡量―――为保证旋转机械正常工作所允许的转子剩余不平衡量该指标用不平衡度表示时,称为许用不平衡度(亦有称许用不平衡率)

6、剩余不平衡量―――平衡后转子上剩余的不平衡度。 7、校正半径――――校正平面上校正质量的质心到转子轴线的距离,一般用mm表示。 8、校正平面干扰(相互影响)―――在给定转子某一校正面上不平衡量的变化所引起另一校正平面上平衡机指标值的改变(有时称平面分离影响)。 9、转子平衡品质―――衡量转子平衡优劣程度的指标。 G =Eperω/1000 试中G为转子平衡品质,mm/s, 从G0 4-G4000分11级,Eper为转子允许的不平衡率g.mm/kg或转子质量偏心距μmω相应于转子最高工作转速的角速度=2Ⅱn/60≈n/10 10、转子单位质量的允许残余不平衡度(率) Eper=(G×1000)/(n/10) 单位g.mm/kg或mm/s 11、最小可达剩余不平衡量 (umar)---单位g.m,平衡机能使转子达到的剩余不平衡量的最小值,是衡量平衡机最高平衡能力的性能指标,当该指标用不平衡度表示时,称为最小可达剩余不平衡度(单位g.mm/kg). 12、不平衡量减少率 (URR)---经过一次平衡校正所减少的不平衡量与初始不平衡量之比值,它是衡量平衡机效率的性能指标以百分数表示:URR(%)=(U1-U2)/U1=91-U2/U1)×100 式中:U1为初始不平衡量; U2为一次平衡校正后的剩余不平衡量 13、不平衡国偶干扰比 ---单面平衡机抑制不平衡力偶影响的性能指标。 14、校验转子―――为校验平衡机性能而设计的刚性转子,其质量、大小、尺寸均为有规定,分立式与卧式二种,立式转子质量为1.1、3.5、11、35、110kg, 卧式转子质量为0.5、1.6、5、16、50、160、500kg

转子允许不平衡量的计算

转子允许不平衡量的计算 允许不平衡量的计算公式 U per=M X G X n r x x 260 X 10 3 (g ) U per 为允许不平衡量 M 代表转子的自身重量,单位是kg ; G 代表转子的平衡精度等级,单位是mm/s ; r 代表转子的校正半径,单位是mm ; n 代表转子的转速,单位是rpm 。 一、动平衡机常用术语 1.不平衡量U :转子某平面上不平衡量的量值大小,不涉及不平衡的角度位置。 它等于不平衡质量m 和转子半径r 的乘积。其单位是gmm 或者gcm ,俗称“矢径积”。 2.不平衡相位:转子某平面上的不平衡质量相对于给定极坐标的角度值。 3.不平衡度e :转子单位质量的不平衡量,单位是gmm/kg 。 在静不平衡时相当于转子的质量偏心距,单位为μm 。 4.初始不平衡量:平衡前转子上存在的不平衡量。 5.许用不平衡量:为保证旋转机械正常工作所允许的转子剩余不平衡量。 该指标用不平衡度表示时,称为许用不平衡度(亦称许用不平衡率)。 6.剩余不平衡量:平衡校正后转子上的剩余不平衡量。

7.校正半径:校正平面上校正质量的质心到转子轴线的距离,一般用mm表示。 8.校正平面的干扰(相互影响):在给定转子某一校正面上不平衡量的变化引起另一校正平面上的改变(有时称为平面分离影响) 9.转子平衡品质:衡量转子平衡优劣程度的指标。 计算公式:G=e perω/1000 式中G-转子平衡品质,单位mm/s。从G0.4-G4000分11级。 eper-转子允许的不平衡率gmm/kg或转子质量偏心距μm。 ω-相应于转子最高工作转速的角速度=2πn/60≈n/10,n为转子的工作转速r/min。 10.转子单位质量的允许不平衡度(率): eper=(G×1000)/(n/10)单位:gmm/kg或μm 11.最小可达剩余不平衡量(Umar):指平衡机能使转子达到的剩余不平衡量的最小值,是衡量平衡机最高平衡能力的性能指标。单位为gmm。 12.不平衡量减少率(URR):经过一次平衡修正减少的不平衡量与初始不平衡量之比值。它是衡量平衡机效率的性能指标,以百分数表示: URR(%)=(U1-U2)/U1=(1-U2/U1)×100 式中:U1-初始不平衡量 U2-一次平衡修正后的剩余不平衡量 13.校验转子:为校验平衡机性能而设计的刚性转子。 其质量、大小、尺寸均有规定,分立式和卧式两种。 立式转子质量为1.1,3.5,11,35,110 kg。 卧式转子质量为0.5,1.6,5,16,50,160,500kg。

多转子动平衡计算方法

多转子动平衡计算方法 【摘要】航空发动机转子多采用多转子套齿或端齿连接、拉杆压紧结构的转子结构,且转子装配要求不采用增加或减少重量的方式达到平衡要求,为此本文旨在从平衡理论着手通过计算进行多转子连接的动平衡技术研究,提供平衡方法。 【关键词】动平衡;静不平衡;动不平衡量 转子动平衡是在转子制成后采取的一种减振措施,通过转子上某些界面增加或减少质量,使转子的重心和其几何重心靠近及其一主惯性轴尽量和旋转轴线靠近,以减少转子工作时的不平衡力、力偶或临界转速附近的振动量。 实际转子在运转时,转子动不平衡量的惯性力将在运转中引起附加的动压力。这不仅会增大转子的内应力,降低机械效率和使用寿命,而且这些惯性力都将传到发动机的上,特别是由于这些惯性力的大小及方向一般都是周期性变化的,所以必将引起发动机产生强迫振动。为了完全地或部分地消除惯性力的不良影响,就必须设法将转子不平衡量所引起的惯性力加以消除或减小,这就是转子平衡的目的。转子的平衡是现代发动机的一个重要问题,尤其现在发动机的转速越来越高,更具重要的意义。 中小型航空发动机装配转子件由套齿或端齿连接、拉杆压紧结构,而且转子装配要求不采用增加或减少重量的方式达到平衡要求,与以往的平衡方式有很大的区别,为此应从动平衡理论着手通过计算找到最佳平衡的方式。 1 动平衡的基本理论 由于转子材料的不均匀、制造的误差、结构的不对臣等因素保存转子存在不平衡质量。因此当转子旋转后就会产生离心惯性力组成一个空间力系,使转子动不平衡。要使转子达到动平衡,则必须满足空间力系的平衡条件,这是转子动平衡的力学条件:力平衡和力矩平衡。 在转子的设计阶段,尤其在设计高速转子及精密转子结构时,必须进行平衡计算,以检查惯性力和惯性力偶是否平衡。若不平衡则需要在结构上采取措施,以消除不平衡惯性力的影响,这一过程称为转子的平衡设计。转子的平衡设计分为静平衡设计和动平衡设计,静平衡设计指对于D/b≥5的盘状转子,近似认为其不平衡质量分布在同一回转平面内,忽略惯性力矩的影响。动平衡设计指径宽比D/b<5的转子(如航空发动机转子、汽轮机转子等),其特点是轴向宽度较大,偏心质量可能分布在几个不同的回转平面内,因此,不能忽略惯性力矩的影响。此时,即使不平衡质量的惯性力达到平衡,惯性力矩仍会使转子处于不平衡状态。由于这种不平衡只有在转子运动时才能显示出来,因此称为动不平衡。为避免动不平衡现象,在转子设计阶段,根据转子的功能要求设计转子后,需要确定出各不同回转平面内偏心质量的大小和位置,然后运用理论力学中平行力的合成与分

不平衡力计算及校核

不平衡力计算及校核 1 不平衡力和不平衡力距计算 流体通过调节阀时,受流体作用力影响,产生使阀芯上下移动的轴向力或使阀芯旋转的切向力。对于直行程的调节阀,轴向力影响信号与位移的关系,这一轴向力称为不平衡力,以ft(任意位置时),Ft(关闭位置时)表示。对角位移的调节阀,如蝶阀、偏心旋转阀等,影响其角位移的切向合力矩称为不平衡力矩,以M表示。 影响不平衡力(矩)的因素很多,主要是阀的结构型式、压差、流向因素。阀的结构型式中又包括阀的类型、节流形式、阀芯(塞)形状、阀芯正装或反装、阀杆直径与阀座直径大小等关系。 从表3-1中工作状态中,可以非常直观地看出对单座式调节阀,阀芯正装,流开型,阀关闭时的阀芯所受的不平衡力Ft为: 其它阀的不平衡力(距)的推导道理一样,是一个简单的受力计算。常见的阀计算公式汇总在表3-1中。 表3-1 常用调节阀不平衡力和许用压差计算公式2 输出力定义及计算

2.1 输出力的正确定义 首先我们引入几个符号:ft 表示任意 开度的不平衡力;Ft 表示阀关闭时的不平衡力;“-”表示不 平衡力的作用方向是将阀芯顶开的;“+”表示不平衡力的作 用方向是将阀芯压闭的。

过去的定义是:执行机构用来克服不平衡力的力。这个定义有两个问题:①调节阀任意开度都存在着不平衡力ft,这样,执行机构任意开度都有输出力克服Ft,使阀信号压力与开度一一对应,ft变化不影响阀位。实际并非如此,只有带定位器时才有这种功能。②克服“+”、“-”ft问题没有区分,造成混为一体的模糊概念,导致计算错误。表现在现场时,就是有的阀关不死或打不开。 我们知道,“-” Ft对阀芯产生顶开趋势,所需执行机构的输出力应该是克服它顶开,并保证阀密封的力;“+” Ft对阀芯产生压闭趋势,所需输出力应该是保证阀启动并能走完全行程的力。于是,我们得出输出力的正确定义为:阀处关闭位置时,执行机构具有克服“—” Ft,以保证阀的密封,克服“+” Ft,以保证阀正常启动并能走完全行程的力,这种力称为执行机构输出力,以F表示。 2.2 气动薄膜执行机构输出力的正确计算 过去F计算,没考虑Ft的不同作用方向,笼统地按阀处在“-” Ft情况来处理,造成阀处在“+” Ft的情况下 工作时打不开等问题。下面分两种情 况讨论。 1)“-” Ft时的F计算 1.Ft,以保证阀密封。故其F为:(0﹤Po≤Pmax-Pr) (18) 2.Ft,以 保证阀的密封,故其F为: F=(P-Pr)·Ae (PL<P≤Pmax = (19) 2)“+” Ft时的F计算 “+” Ft所需的输出力是将阀芯打开的力。阀关闭时,阀芯受力为“+” Ft,阀一旦启动,它随开度的增加而按ft变化规律下降。由于阀从关至全开的弹簧张力变化为PrAe,所以当Ft ≥PrAe时,只要Ft 下降PrAe,则弹簧张力相应补偿PrAe,阀靠Ft减小而启动至全开。这种阀一旦启动,信号压力不变,靠Ft减小而使阀突然打开一个范围,就是我们常说“突然启跳”。当Ft﹤PrAe时,小于部分则信号压力的正常改变使阀全开。 从上述讨论中可以看出:当“+” Ft≥ PrAe时,只要保证阀启动就可保证阀全开,不必在信号压力P 中考虑阀全开而扣除Pr,即“+” Ft的F计算,不考虑Pr的影响。具体计算如下: 1.Ft,把阀芯拉开,故其F为: F=(P-Po)·Ae (Po﹤P≤Pmax) (20) 2.(2)对气闭阀,阀的启动是靠信号压力的减小,靠弹簧张力把阀拉开。故静态时,阀关闭到位时弹簧所具有 的张力,就是把阀启开的作用力,即 F=P L·Ae (PrBP L≤Pmax) (21) 3)小结 通过上述分析,还可得出如下有用的结论: 1.Ft的F计算,不扣除Pr,所以比原笼统地按“-” Ft计算要扣除Pr的输出力大得多,否定了笼统地说气动薄膜执行机构输出力小的结论。如最大执行机构的Ae=1600cm,Fmax= 2.5×1600=4吨。通常,它可比“-” Ft条件下的F大3~5倍以上。 2.(2)选用大的Pr,即可提高稳定性,又可提高“+” Ft时气闭阀的输出力。 2.Ft方向相反,故所需输出力方向也相反。如气开阀,对“-” Ft,增加F是调紧,即增大P0;对“+” Ft,增加F是调松,即要减小P0。由于过去笼统地按“-” Ft考虑,因而造成阀在“+” Ft情况下工作时F正好是减小,这就是“+” Ft时有的阀关不死,或打不开的原因所在。 3.Ft比“-” Ft获得更大的F,故阀在“-” Ft的情况下不能正常工作时,可以通过改变流向的办法,使阀在“+” Ft的情况下工作,使之克服不平衡力。 4.Ft情况下工作(通常为流闭型)。这样,一方面它可获得比“-” Ft大3~5倍以上的许用压差,另一方面,“+”Ft的作用是将阀芯压紧,增加了阀芯对阀座的密封力,提高了切断效果,通常泄漏量可比“-” Ft小(80~90)%。 2.3 活塞执行机构的输出

转子动平衡标准

转子动平衡标准文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

平衡精度等级考虑到技术的先进性和经济上的合理性,国际标准化组织(ISO)于1940年制定了世界公认的ISO1940平衡等级,它将转子平衡等级分为11个级别,每个级别间以倍为增量,从要求最高的到要求最低的G4000。单位为公克×毫米/公斤(gmm/kg),代表不平衡对于转子轴心的偏心距离。如下表所示: G4000具有单数个气缸的刚性安装的低速船用柴油机的曲轴驱动件 G1600刚性安装的大型二冲程发动机的曲轴驱动件 G630刚性安装的大型四冲程发动机的曲轴驱动件弹性安装的船用柴油机的曲轴驱动件 G250刚性安装的高速四缸柴油机的曲轴驱动件 G100六缸和多缸高速柴油机的曲轴传动件;汽车、货车和机车用的发动机整机 G40汽车车轮、轮毂、车轮整体、传动轴,弹性安装的六缸和多缸高速四冲程发动机的曲轴驱动件 G16特殊要求的驱动轴(螺旋桨、万向节传动轴);粉碎机的零件;农业机械的零件;汽车发动机的个别零件;特殊要求的六缸和多缸发动机的曲轴驱动件 商船、海轮的主涡轮机的齿轮;高速分离机的鼓轮;风扇;航空燃气涡轮机的转子部件;泵的叶轮;机床及一般机器零件;普通电机转子;特殊要求的发动机的个别零件 燃气和蒸汽涡轮;机床驱动件;特殊要求的中型和大型电机转子;小电机转子;涡轮泵 G1磁带录音机及电唱机、CD、DVD的驱动件;磨床驱动件;特殊要求的小型电枢 精密磨床的主轴;电机转子;陀螺仪 在您选择平衡机之前,应该先确定转子的平衡等级。 举例:允许不平衡量的计算 允许不平衡量的计算公式为: (与JPARC一样的计算 gys) 式中m per为允许不平衡量,单位是g; M代表转子的自身重量,单位是kg; G代表转子的平衡精度等级,单位是mm/s; r 代表转子的校正半径,单位是mm; n 代表转子的转速,单位是rpm。 举例如下: 如一个电机转子的平衡精度要求为级,转子的重量为0.2kg,转子的转速为1000rpm,校正半径20mm, 则该转子的允许不平衡量为: 因电机转子一般都是双面校正平衡,故分配到每面的允许不平衡量为0.3g。 目前T0转动部分重量大约为180Kg(包括电机转子、旋变转子、轴承等回转体)不包括为166Kg。 按照180Kg,转速3000rpm,标准,校正半径为220mm,

滚筒允许残余不平衡量的计算

滚筒允许残余不平衡量的计算 本计算方法,主要参考IS01940--73《刚性旋转体的平衡品质》中的有关内容制订的。 A1 平衡精度等级 滚筒为刚性转子,其平衡精度等级系指许用偏心距(e)与刚性转子角速度(ω)的乘积(eω)。按eω乘积的大小,分G0.4、G1、G2.5、G6.3、G16……等11个精度等级。eω的单位为mm/S.ω=2πn/60-n/10,n为最高工作转速 (r/min)。 A2 允许残余不平衡量的确定。 A2.1 允许残余不平衡量的允差为±15%。 A2.2 允许残余不平衡量的计算 A2.2.1 滚筒动平衡为双面平衡,在两个校正平面中,每一个平面上的允许残余不平衡量按公式(A1)计算。 式中:M-允许残余不平衡量,g·mm; e-许用偏心距,μm; m-滚筒质量,g。 A2.2.2 允许残余不平衡量的计算实例

例:车速台滚筒直径为185mm,滚筒两端面的距离为1000mm,最高工作转速3450r/min,质量为67.8kg,试求滚筒允许残余不平衡量。 解: a.因为滚筒两端面距离(1000mm)与直径(185mm)之比等于5.4大于0.2,所以平衡方式为动平衡。 b.选择平衡精度等级为G6.3,见图A1。 c.由图A1查出滚筒最高工作转速为3450r/min时,许用偏心距e=16μm。 d.按公式(A1)计算允许残余不平衡量为: e.当允差为±15%时,则允许残余不平衡量的允许范围在453-610g·mm之间。

平衡精度等级 考虑到技术的先进性和经济上的合理性,国际标准化组织(ISO)于1940年制定了世界公认的 ISO1940平衡等级,它将转子平衡等级分为11个级别,每个级别间以2.5倍为增量,从要求最高的G0.4到要求最低的G4000。单位为公克×毫米/公斤(gmm/kg),代表不平衡对于转子轴心的偏心距离。如下表所示: G4000 具有单数个气缸的刚性安装的低速船用柴油机的曲轴驱动件 G1600 刚性安装的大型二冲程发动机的曲轴驱动件 G630 刚性安装的大型四冲程发动机的曲轴驱动件 弹性安装的船用柴油机的曲轴驱动件 G250 刚性安装的高速四缸柴油机的曲轴驱动件 G100 六缸和多缸高速柴油机的曲轴传动件;汽车、货车和机车用的发动机整机 G40 汽车车轮、轮毂、车轮整体、传动轴,弹性安装的六缸和多缸高速四冲程发动机的曲轴驱动件 G16 特殊要求的驱动轴(螺旋桨、万向节传动轴);粉碎机的零件;农业机械的零件;汽车发动机的个别零件;特殊要求的六缸和多缸发动机的曲轴驱动件 G6.3 商船、海轮的主涡轮机的齿轮;高速分离机的鼓轮;风扇;航空燃气涡轮机的转子部件;泵的叶轮;机床及一般机器零件;普通电机转子;特殊要求的发动机的个别零件 G2.5 燃气和蒸汽涡轮;机床驱动件;特殊要求的中型和大型电机转子;小电机转子;涡轮泵 G1 磁带录音机及电唱机、CD、DVD的驱动件;磨床驱动件;特殊要求的小型电枢 G0.4 精密磨床的主轴;电机转子;陀螺仪

不平衡量的计算

个一般是根据ISO-1940来的 平衡品质级别G=e*w/1000 其中e为偏心距,w为转速 最大许用不平衡量=e*转子总质量 对于汽轮机而言,一般要达到G2.5的平衡品质级别 算出转子的许用不平衡量m,首先要知道转子的质量M,校正半径r,转子的角速度w, 转子的动平衡精度等级G(可查到,已知量)。 然后根据公式: m=Mx(G/wxr) m.M的单位是g w的单位是rad/s r的单位是mm G的单位是mm/s 注:本文来自网络,非原创,其实这些东西一搜就能弄到的大家多动手才是

转子动平衡精度等级(品质等级)国际标准 及许用不平衡量计算方法 考虑到技术的先进性和经济上的合理性,国际标准化组织(ISO)于1940年制定 了世界公认的ISO1940平衡等级,它将转子平衡等级分为11个级别,每个级别间以2.5 倍为增量,从要求最高的G0.4到要求最低的G4000。单位为公克×毫米/公斤(gmm/kg) ,代表不平衡对于转子轴心的偏心距离。 常用各种刚性转子的平衡品质等级见下表:平衡品 质等级G eperω (mm/s) 转子类型举例 G4000 4000 具有奇数个汽缸刚性安装的低速用柴油机的曲轴驱动装置 。 G1600 1600 刚性安装的大型二冲程发动机的曲轴驱动装置。

G630 630 刚性安装的船用柴油机的曲轴驱动件;刚性安装的大型四冲 程发动机的曲轴驱动件。 G250 250 刚性安装的高速四缸柴油机的曲轴驱动。 G100 100 六缸或更多缸高速柴油机的曲轴驱动件;汽车、货车和机车 用的(汽油、柴油)发动机整机。 G40 40 汽车车轮、箍轮、车轮总成、驱动轴;弹性安装的六缸或更多 缸高速四冲程(汽油或柴油)发动机曲轴驱动件;汽车、货车和机车用的发动机的曲 轴驱动件。 G16 16 粉碎机、农业机械的零件;汽车、货车和机车用的(汽油、柴 油)发动机个别零件;特殊要求的六缸或更多缸发动机曲轴驱动件。

《转子动平衡——原理、方法和标准》

技术讲课教案 主讲人: 罗仁波 培训题目:《转子动平衡——原理、方法和标准》 培训目的: 多种原因会引起转子某种程度的不平衡问题,分布在转子上的所有不平衡矢量的和可以认为是集中在“重点”上的一个矢量,动平衡就是确定不平衡转子重点的位置和大小的一门技术,然后在其相对应的位置处移去或添加一个相同大小的配重。

内容摘要: 动平衡前要确认的条件: 1.振动必须是因为动不平衡引起。并且要确认动不平衡力占 振动的主导。 2.转子可以启动和停止。 3.在转子上可以添加可去除重量。 培训教案: 第一章不平衡问题种类 为了以最少的启停次数,获得最佳的平衡效果,我们不仅要认识到动不平衡问题的类型(静不平衡、力偶不平衡、动不平衡,如下图),而且还要知道转子的宽径比及转速决定了采用单平面、双平面还是多平面进行动平衡操作。 同时也要认识到转子是挠性的还是刚性的。 ● ●刚性转子与挠性转子

?对于刚性转子,任何类型的不平衡问题都可以通过 任选的二个平面得以平衡。 ?对于挠性转子,当在一个转速下平衡好后,在另一 个转速下又会出现不平衡问题。当一个挠性转子首先在低于它的70%第一监界转速下,在它的两端平面内加配重平衡好后,这两个加好的配重将补偿掉分布在整个转子上的不平衡质量,如果把这个转子的转速提高到它的第一临界转速的70%以上,这个转子由于位于转子中心处的不平衡质量所产生的离心力的作用,而产生变形,如图10所示。由于转子的弯曲或变形,转子的重心会偏离转动中心线,而产生新的不平衡问题,此时在新的转速下又有必要在转子两端的平衡面内重新进行动平衡工作,而以后当转子转速降下来后转子又会进入到不平衡状态。为了能在一定的转速范围内,确保转子都能处在平衡的工作状态下,唯一的解决办法是采用多平面平衡法。 ?挠性转子平衡种类 1.如果转子只是在一个工作转速下运转,小量的变 形不会产生过快的磨损或影响产品的质量,那么 可以在任意二个平面内进行平衡,使轴承的振动

相关文档