文档库 最新最全的文档下载
当前位置:文档库 › M700驱动菲仕永磁同步电机参数调试

M700驱动菲仕永磁同步电机参数调试

M700驱动菲仕永磁同步电机参数调试
M700驱动菲仕永磁同步电机参数调试

CT Unidrive M700系列驱动器和菲仕永磁同步伺服马达调试案例●调试技术要求:

?菲仕永磁同步伺服电机闭环

?上位机罗克韦尔PLC以太网通讯

●驱动器参数调试步骤:

1.确认驱动器和电机型号、规格等参数:

CT Unidrive:M700-03400100A10100AB100+KI-Keypad

Phase Motor:U30730A15.3

2.驱动器初始化操作:

?断开STO/使能(T22和T31)或者Pr06.015=>OFF(初始化准备);

?Prmm.000=>1253(50Hz交流电源频率);

?Pr00.048=>RFC-S(运行模式设定);

?按下红色复位按键(初始化完成)。

?接通STO/使能(T22和T31)或者Pr06.015=>ON(驱动器使能待机)

3.更改用户安全级别/访问级别:

?Pr00.049=>1(所有菜单均允许编辑)

4.编码器相关接线和参数设定:

?菲仕电机编码器为绝对型,和CT驱动器完美兼容,接线图如下图所示:

?Pr03.024=>0(RFC反馈模式:Feedback);

?Pr03.026=>0(电机控制反馈选择:P1 Drive);

?Pr03.034=>2500(P1每转旋转脉冲数:2500PPR);

?Pr03.036=>0(P1电源电压:5V);

?Pr03.038=>3(P1设备类型:AB Servo);

?Pr03.039=>1(P1终端选择:AB启用,Z不启用);

?Pr03.118=>1(P1热敏电阻类型:KTY84)。

5.电机参数设定和参数自调谐:

?Pr05.007=>7.4(额定电流:7.4A);

?Pr05.008=>1500(额定转速:1500RPM);

?Pr05.009=>362(额定转速:1500RPM);

?Pr05.011=>8(电机极数:8Poles);

?Pr05.033=>224(每1000转电压:224V/1000RPM);

?Pr05.012=>2(电机自调谐方式:ROTATING,※电机旋转自调谐务必保证电机

光轴,无负载输出);

?Pr01.014=>4(给定选择器:Keypad);

?按下键盘绿色运行按键,键盘显示Auto Tune,电机旋转自调谐,如果自调谐成

功完成,键盘显示Inhibit。

?Pr06.015=>OFF(驱动器使能关闭);

?Pr06.015=>ON(驱动器使能打开);

观察电机参数变化,反复执行上述操作至少3次,直至Pr03.025保持一个恒定值:?Pr05.017=>?(M1定子阻抗);

?Pr05.024=>?(M1Ld);

?Pr05.072=>?(M1空载Lq);

?Pr03.025=>?(位置反馈相角);

至此,电机参数自调谐成功调试完毕。

?保存参数:Prmm.000=>1000,按下红色复位键(此步骤驱动器掉电之前务必操

做一次否则重新上电参数未保存驱动器E2PROM)。

6.其他参数:

?Pr01.007=>0(最小给定值:0.0RPM);

?Pr01.006=>1500(最小给定值:1500.0RPM);

?Pr02.011=>2(M1加速时间:2.0S);

?Pr02.021=>4(M1减速时间:4.0S);

?Pr02.007=>2.5(加速度的最大变化率:2.5S2/100Hz);

?Pr06.001=>1(停止方式:斜坡减速停机);

?Pr01.014=>3(给定选择器:Present,通讯给定预设转速命令Pr01.021);

?Pr06.043=>ON(控制字使能:通讯给定运行命令Pr06.042)。

7.驱动器以太网参数设定:

?Pr4.02.005=>OFF(DHCP启用:关闭);

?Pr4.02.006=>192.168.1.65(IP地址设定:根据现场实际情况设定);

8.以太网通讯地址映射参数设定:

?Pr4.20.020=>16(输入组合对象大小:16Bytes,根据上位机以太网组态配置数

据访问长度设定);

?Pr4.20.021=>16(输出组合对象大小:16Bytes,根据上位机以太网组态配置数

据访问长度设定);

?Pr4.21.001=>0.10.040(输入映射参数1:状态字);

?Pr4.21.002=>0.02.001(输入映射参数2:斜坡后给定);

?Pr4.21.003=>0.04.001(输入映射参数3:电流幅值);

?Pr4.21.004=>0.03.002(输入映射参数4:速度反馈);

?Pr4.22.001=>0.06.042(输出映射参数1:控制字);

?Pr4.22.002=>0.01.021(输出映射参数2:预设给定1);

?Pr4.22.003=>0.00.000(输入映射参数3:N/A,未分配);

?Pr4.22.004=>0.00.000(输入映射参数4:N/A,未分配)

?保存参数:Prmm.000=>1000,按下红色复位键(此步骤驱动器掉电之前务必操

做一次否则重新上电参数未保存驱动器E2PROM)。

9.闭环控制电流环增益调节参数:

?Pr04.013=>?(电流控制器Kp:根据给定速度和实际速度曲线波形情况调整,

通常电机自调谐后默认值即可)

?Pr04.014=>?(电流控制器Ki:根据给定速度和实际速度曲线波形情况调整,

通常电机自调谐后默认值即可)

10.常用控制字释义:

?正转:131(DEC)/1000 0011(BIN)

?反转:137(DEC)/1000 1001(BIN)

?有使能停止:129(DEC)/1000 0001(BIN)

?无使能停止:128(DEC)/1000 0000(BIN)

永磁同步电机参数测量试验方法

一、实验目的 1. 测量永磁同步电机定子电阻、交轴电感、直轴电感、转子磁链以及转动惯量。 二、实验内容 1. 掌握永磁同步电机dq 坐标系下的电气数学模型以及机械模型。 2. 了解三相永磁同步电机内部结构。 3. 确定永磁同步电机定子电阻、交轴电感、直轴电感、反电势系数以及转动惯量。 三、拟需实验器件 1. 待测永磁同步电机1台; 2. 示波器1台; 3. 西门子变频器一台; 4. 测功机一台及导线若干; 5. 电压表、电流表各一件; 四、实验原理 1. 定子电阻的测量 采用直流实验的方法检测定子电阻。通过逆变器向电机通入一个任意的空间电压矢量U i (例如U 1)和零矢量U 0,同时记录电机的定子相电流,缓慢增加电压矢量U i 的幅值,直到定子电流达到额定值。如图1所示为实验的等效图,A 、B 、C 为三相定子绕组,U d 为经过斩波后的等效低压直流电压。I d 为母线电流采样结果。当通入直流时,电机状态稳定以后,电机转子定位,记录此时的稳态相电流。因此,定子电阻值的计算公式为: 1 ,2a d b c d I I I I I ===- (1) 23d s d U R I = (2)

图1 电路等效模型 2. 直轴电感的测量 在做直流实验测量定子电阻时,定子相电流达到稳态后,永磁转子将旋转到和定子电压矢量重合的位置,也即此时的d 轴位置。测定定子电阻后,关断功率开关管,永磁同步电机处于自由状态。向永磁同步电机施加一个恒定幅值,矢量角度与直流实验相同的脉冲电压矢量(例如 U 1),此时电机轴不会旋转(ω=0),d 轴定子电流将建立起来,则d 轴电压方程可以简化为: d d d q q d di u Ri L i L dt ω=-+d d d d di u Ri L dt =+ (3) 对于d 轴电压输入时的电流响应为: ()(1)d R t L U i t e R -=- (4) 利用式(4)以及测量得到的定子电阻值和观测的电流响应曲线可以计算得到直轴电感值。 其中U /R 为稳态时的电流反应,R 为测得的电机定子电阻。由上式可知电流上升至稳态值的倍时,1d R t L - =-,电感与电阻的关系式可以写成: 0.632d L t R =? (5) 其中为电流上升至稳态值倍时所需的时间. 3. 交轴电感的测量 测出L d 之后,在q 轴方向(d 轴加90°)施加一脉冲电压矢量。电压矢量的作用时间一般选取的很短 ,小于电机的机械时间常数,保证电机轴在电压矢量作用期间不会转动。则q 轴电压方

永磁同步电机驱动系统

永磁同步电机驱动系统 架线式电机车是煤矿井下和地面原煤运输和辅助运输的重要设备,被煤矿企业广泛应用。由于现有电机车大都采用直流电机驱动,存在维护工作量大、维修费用高、能量损耗大及相关配套人员量大等缺点,致使电机车使用效率低下,使用费用很高。本项目是针对架线式电机车的现状,开发适用以架线式电机车的永磁同步电动机及其控制装置。采用IGBT或IPM实现逆变器主电路,设计优良的IGBT或IPM驱动电路,保证开关器件工作的安全、可靠。选用高性能数字信号处理器为核心,设计专用控制器,实现电机车的传动控制和工艺控制。 本项目研制成功将会给架线式电机车带来全新的变化,大大提高系统的运行效率和控制性能,延长架线式电机车的使用周期,起到节能的效果,也有效减少维修工作量。 1、国内外现状 电机车是煤矿井下和地面广泛应用的运输设备,现在直流电机驱动设备每年使用费用很高。而现有的电机车驱动及其控制技术共有三代五个阶段:第一代技术为串励式直流电动机及其控制:这一代技术又经历了三个阶段,第一个阶段为电阻调速,存在调速性能差(为有极调速)、能耗大、电机易损、机械磨损大,以上问题直接导致维护工作量和维护费用高;第二个阶段为可控硅斩波调速,第三个阶段为IGBT斩波调速,第二和第三阶段相对于第一阶段仅解决了一个无极调速问题,能量损耗相对于第一阶段要小点,但其他问题均没有解决。 第二代技术为三相异步电动机及其控制,主要采用变频技术进行。由于三相异步电动机的效率较低,变频技术在车辆上应用故障高,而且异步电动机起步转矩较低,不符合煤矿电机车运行环境。目前机车应用的异步电动机存在诸多问题,暂不符合大面积推广使用技术条件。 第三代技术为永磁同步电动机及其控制技术,就是现在在做的技术。在同步电动机中用永磁体取代传统的电激磁磁极,简化了结构,消除了转子的滑环、电刷,实现了无刷结构,缩小了转子体积;省去了激磁直流电源,消除了激磁损耗和发热。在交流驱动中,永磁同步电动机具有结构简单、坚固耐用,工作可靠,

菲仕伺服电机选型样本

Type U301.20.30.94Nm 1.18Nm 2000Rpm 2500Rpm 0.45A 0.57A 0.20Kw 2.30Nm/A 139V/Krpm 133Hz 118.34Ohm 120.80mH -V 370V 0.13mkgm2 2.2kg 2.9kg U301.60.30.95Nm 1.39Nm 6000Rpm 7400Rpm 1.30A 2.00A 0.60Kw 0.48Nm/A 29V/Krpm 400Hz 10.17Ohm 14.53mH -V 372V 0.13mkgm2 2.2kg 2.9kg U302.20.3 2.00Nm 2.48Nm 2000Rpm 2500Rpm 0.98A 1.19A 0.42Kw 2.30Nm/A 139V/Krpm 133Hz 41.30Ohm 59.20mH -V 371V 0.194mkgm2 2.7kg 3.4kg U302.50.3 2.00Nm 2.60Nm 5000Rpm 6000Rpm 2.00A 2.60A 1.05Kw 1.09Nm/A 66V/Krpm 333Hz 8.51Ohm 14.55mH -V 333V 0.194mkgm2 2.7kg 3.4kg U304.10.3 3.90Nm 3.95Nm 1000Rpm 1500Rpm 1.00A 1.10A 0.41Kw 3.95Nm/A 239V/Krpm 67Hz 87.44Ohm 120.36mH -V 380V 0.156mkgm2 4.5kg 5.2kg U304.20.3 4.18Nm 4.91Nm 2000Rpm 2500Rpm 2.00A 2.36A 0.88Kw 2.29Nm/A 139V/Krpm 133Hz 15.85Ohm 29.58mH -V 371V 0.156mkgm2 4.5kg 5.2kg U304.50.2 3.95Nm 4.00Nm 5000Rpm 7500Rpm 10.00A 10.00A 2.07Kw 0.43Nm/A 26V/Krpm 333Hz 0.48Ohm 1.40mH 201V -V 0.156mkgm2 4.5kg 5.2kg U304.50.3 3.95Nm 4.00Nm 5000Rpm 7500Rpm 5.50A 6.10A 2.07Kw 0.73Nm/A 44V/Krpm 333Hz 1.40Ohm 4.10mH -V 344V 0.156mkgm2 4.5kg 5.2kg U503.20.3 3.80Nm 4.42Nm 2000Rpm 2628Rpm 1.65A 1.80A 0.80Kw 2.28Nm/A 138V/Krpm 133Hz 16.88Ohm 63.67mH -V 338V 0.97mkgm2 4.8kg 5.8kg U503.30.3 3.00Nm 3.50Nm 3000Rpm 3200Rpm 2.20A 2.56A 0.94Kw 1.36Nm/A 82V/Krpm 200Hz 7.01Ohm 31.60mH -V 374V 0.97mkgm2 4.8kg 5.8kg U503.40.3 2.80Nm 3.50Nm 4000Rpm 6000Rpm 3.20A 4.30A 1.17Kw 0.93Nm/A 56V/Krpm 267Hz 3.30Ohm 9.00mH -V 375V 0.97mkgm2 4.8kg 5.8kg U503.50.3 2.00Nm 3.50Nm 5000Rpm 5200Rpm 2.20A 3.80A 1.05Kw 1.00Nm/A 61V/Krpm 333Hz 3.14Ohm 14.30mH -V 376V 0.97mkgm2 4.8kg 5.8kg U505.20.3 5.08Nm 5.30Nm 1500Rpm 2244Rpm 2.00A 2.10A 0.80Kw 2.71Nm/A 164V/Krpm 133Hz 13.96Ohm 56.43mH -V 295V 1.13mkgm2 5.7kg 6.7kg U505.30.2 3.50Nm 5.00Nm 3000Rpm 4000Rpm 6.00A 7.00A 1.10Kw 0.65Nm/A 39V/Krpm 200Hz 0.97Ohm 2.94mH 170V -V 1.13mkgm2 5.7kg 6.7kg U505.40.3 4.00Nm 5.52Nm 4000Rpm 4800Rpm 4.20A 4.30A 1.68Kw 1.36Nm/A 82V/Krpm 267Hz 3.65Ohm 14.05mH -V 372V 1.13mkgm2 5.7kg 6.7kg U506.20.3 6.44Nm 7.34Nm 2000Rpm 2568Rpm 2.90A 3.30A 1.35Kw 2.32Nm/A 141V/Krpm 133Hz 6.92Ohm 31.04mH -V 322V 1.13mkgm2 6.8kg 7.8kg U506.20.2 5.70Nm 7.62Nm 2000Rpm 2500Rpm 4.40A 5.87A 1.19Kw 1.36Nm/A 82V/Krpm 133Hz 2.12Ohm 9.68mH 180V -V 1.13mkgm2 6.8kg 7.8kg U506.30.3 5.50Nm 6.63Nm 3000Rpm 3200Rpm 3.53A 4.24A 1.73Kw 1.56Nm/A 94V/Krpm 200Hz 3.37Ohm 20.60mH -V 349V 1.13mkgm2 6.8kg 7.8kg U506.30.2 5.80Nm 7.62Nm 3000Rpm 4000Rpm 8.53A 13.96A 1.82Kw 0.68Nm/A 41V/Krpm 200Hz 0.65Ohm 2.42mH 175V -V 1.13mkgm2 6.8kg 7.8kg U506.40.3 4.50Nm 5.87Nm 4000Rpm 5000Rpm 3.20A 4.80A 1.88Kw 1.29Nm/A 78V/Krpm 267Hz 2.25Ohm 9.79mH -V 375V 1.13mkgm2 6.8kg 7.8kg U509.30.2 6.60Nm 9.20Nm 3000Rpm 4000Rpm 8.50A 12.40A 2.07Kw 0.85Nm/A 51V/Krpm 200Hz 0.54Ohm 2.03mH 211V -V 1.33mkgm28.8kg 9.8kg U509.20.39.16Nm 10.40Nm 2000Rpm 2378Rpm 3.70A 4.05A 1.92Kw 2.55Nm/A 154V/Krpm 133Hz 4.83Ohm 25.77mH -V 346V 1.33mkgm28.8kg 9.8kg U509.40.3 6.00Nm 9.98Nm 4000Rpm 4200Rpm 4.00A 8.00A 2.51Kw 1.28Nm/A 77V/Krpm 267Hz 1.12Ohm 7.74mH -V 378V 1.33mkgm28.8kg 9.8kg U512.20.311.24Nm 13.18Nm 2000Rpm 2473Rpm 4.80A 5.50A 2.35Kw 2.52Nm/A 153V/Krpm 133Hz 2.97Ohm 17.29mH -V 334V 1.42mkgm210.8kg 11.8kg U512.40.3 6.00Nm 12.84Nm 2500Rpm 4500Rpm 5.00A 11.00A 1.57Kw 1.22Nm/A 74V/Krpm 267Hz 0.80Ohm 5.27mH -V 378V 1.42mkgm210.8kg 11.8kg U710.10.3 6.40Nm 7.80Nm 1000Rpm 1500Rpm 1.50A 1.90A 0.67Kw 4.33Nm/A 262.08V/Krpm 67Hz 18.90Ohm 90.20mH -V 373V 0.73mkgm28.5kg 11.5kg U710.40.39.60Nm 10.50Nm 4000Rpm 4100Rpm 6.70A 6.70A 4.02Kw 1.58Nm/A 95.63V/Krpm 267Hz 1.99Ohm 10.73mH -V 391V 0.73mkgm28.5kg 11.5kg U710.50.3 5.89Nm 8.98Nm 5175Rpm 5300Rpm 5.35A 8.60A 3.19Kw 1.10Nm/A 66.58V/Krpm 333Hz 1.03Ohm 8.10mH -V 375V 0.73mkgm28.5kg 11.5kg U715.35.312.35Nm 12.74Nm 3500Rpm 5000Rpm 7.10A 7.70A 4.53Kw 1.74Nm/A 105.32V/Krpm 233Hz 1.38Ohm 12.08mH -V 394V 1.0mkgm210.2kg 13.2kg U715.50.2 6.00Nm 12.00Nm 4500Rpm 5000Rpm 10.00A 21.60A 2.83Kw 0.62Nm/A 37.53V/Krpm 333Hz 0.14Ohm 1.53mH 174V -V 1.0mkgm210.2kg 13.2kg U720.05.316.80Nm 18.40Nm 500Rpm 800Rpm 2.00A 2.20A 0.88Kw 9.20Nm/A 556.85V/Krpm 33Hz 26.90Ohm 193.60mH -V 330V 1.3mkgm211.9kg 14.9kg U720.15.317.00Nm 19.00Nm 1500Rpm 1800Rpm 5.73A 6.44A 2.67Kw 3.29Nm/A 199.13V/Krpm 100Hz 2.88Ohm 31.24mH -V 371V 1.3mkgm211.9kg 14.9kg U720.20.311.70Nm 16.00Nm 2000Rpm 2500Rpm 5.09A 6.61A 2.45Kw 2.53Nm/A 153.13V/Krpm 133Hz 2.33Ohm 14.88mH -V 322V 1.3mkgm211.9kg 14.9kg U720.30.216.00Nm 19.00Nm 3000Rpm 4000Rpm 16.50A 20.67A 5.03Kw 0.99Nm/A 59.92V/Krpm 200Hz 0.36Ohm 3.96mH 204V -V 1.3mkgm211.9kg 14.9kg U720.30.316.80Nm 16.80Nm 3000Rpm 3700Rpm 11.80A 11.80A 5.28Kw 1.59Nm/A 95.94V/Krpm 200Hz 0.67Ohm 5.70mH -V 291V 1.3mkgm211.9kg 14.9kg U720.40.312.40Nm 17.79Nm 4000Rpm 4800Rpm 10.50A 15.19A 5.19Kw 1.28Nm/A 77.47V/Krpm 267Hz 0.55Ohm 3.90mH -V 319V 1.3mkgm213.6kg 16.6kg U725.50.214.00Nm 23.16Nm 4500Rpm 5000Rpm 20.00A 37.95A 6.60Kw 0.67Nm/A 40.55V/Krpm 333Hz 0.08Ohm 1.03mH 176V -V 1.6mkgm213.6kg 16.6kg U730.15.322.00Nm 23.80Nm 1500Rpm 2000Rpm 7.50A 8.00A 3.46Kw 3.22Nm/A 194.90V/Krpm 100Hz 2.00Ohm 20.06mH -V 317V 1.9mkgm215.2kg 18.2kg U730.20.322.00Nm 23.00Nm 2000Rpm 2150Rpm 8.50A 9.70A 4.61Kw 2.65Nm/A 160.40V/Krpm 133Hz 2.00Ohm 23.20mH -V 345V 1.9mkgm215.2kg 18.2kg U730.30.316.90Nm 26.60Nm 3000Rpm 3200Rpm 11.60A 18.90A 5.31Kw 1.52Nm/A 92.00V/Krpm 200Hz 0.38Ohm 3.50mH -V 287V 1.9mkgm215.2kg 18.2kg U740.05.324.00Nm 42.00Nm 500Rpm 800Rpm 2.50A 5.23A 1.26Kw 9.00Nm/A 544.74V/Krpm 33Hz 10.30Ohm 96.50mH -V 314V 2.4mkgm218.5kg 21.5kg U740.20.324.00Nm 34.00Nm 2000Rpm 2180Rpm 7.08A 13.48A 5.03Kw 2.72Nm/A 164.63V/Krpm 133Hz 0.80Ohm 8.04mH -V 327V 2.4mkgm218.5kg 21.5kg U740.30.321.80Nm 33.00Nm 3000Rpm 3200Rpm 14.00A 21.70A 6.85Kw 1.63Nm/A 98.66V/Krpm 200Hz 0.29Ohm 3.00mH -V 304V 2.4mkgm218.5kg 21.5kg We reserve the right to make technical changes. ULTRACT III Stand-still Weight (without Nominal Inductance Max Nominal Torque power Frequency Constant still speed torque brake)phase Weight (with brake)current Winding Stand-Back EMF between Nominal torque Nominal current Nominal speed Winding Resistance Rotor Inertia 400VAC Nominal Voltage (Supply Voltage)230VAC

M700驱动菲仕永磁同步电机参数调试

CT Unidrive M700系列驱动器和菲仕永磁同步伺服马达调试案例●调试技术要求: ?菲仕永磁同步伺服电机闭环 ?上位机罗克韦尔PLC以太网通讯 ●驱动器参数调试步骤: 1.确认驱动器和电机型号、规格等参数: CT Unidrive:M700-03400100A10100AB100+KI-Keypad Phase Motor:U30730A15.3 2.驱动器初始化操作: ?断开STO/使能(T22和T31)或者Pr06.015=>OFF(初始化准备); ?Prmm.000=>1253(50Hz交流电源频率); ?Pr00.048=>RFC-S(运行模式设定);

?按下红色复位按键(初始化完成)。 ?接通STO/使能(T22和T31)或者Pr06.015=>ON(驱动器使能待机) 3.更改用户安全级别/访问级别: ?Pr00.049=>1(所有菜单均允许编辑) 4.编码器相关接线和参数设定: ?菲仕电机编码器为绝对型,和CT驱动器完美兼容,接线图如下图所示: ?Pr03.024=>0(RFC反馈模式:Feedback); ?Pr03.026=>0(电机控制反馈选择:P1 Drive); ?Pr03.034=>2500(P1每转旋转脉冲数:2500PPR); ?Pr03.036=>0(P1电源电压:5V); ?Pr03.038=>3(P1设备类型:AB Servo); ?Pr03.039=>1(P1终端选择:AB启用,Z不启用); ?Pr03.118=>1(P1热敏电阻类型:KTY84)。 5.电机参数设定和参数自调谐:

?Pr05.007=>7.4(额定电流:7.4A); ?Pr05.008=>1500(额定转速:1500RPM); ?Pr05.009=>362(额定转速:1500RPM); ?Pr05.011=>8(电机极数:8Poles); ?Pr05.033=>224(每1000转电压:224V/1000RPM); ?Pr05.012=>2(电机自调谐方式:ROTATING,※电机旋转自调谐务必保证电机 光轴,无负载输出); ?Pr01.014=>4(给定选择器:Keypad); ?按下键盘绿色运行按键,键盘显示Auto Tune,电机旋转自调谐,如果自调谐成 功完成,键盘显示Inhibit。 ?Pr06.015=>OFF(驱动器使能关闭); ?Pr06.015=>ON(驱动器使能打开); 观察电机参数变化,反复执行上述操作至少3次,直至Pr03.025保持一个恒定值:?Pr05.017=>?(M1定子阻抗); ?Pr05.024=>?(M1Ld); ?Pr05.072=>?(M1空载Lq); ?Pr03.025=>?(位置反馈相角); 至此,电机参数自调谐成功调试完毕。 ?保存参数:Prmm.000=>1000,按下红色复位键(此步骤驱动器掉电之前务必操 做一次否则重新上电参数未保存驱动器E2PROM)。 6.其他参数: ?Pr01.007=>0(最小给定值:0.0RPM);

270V高压大功率永磁同步电机驱动器设计

270V高压大功率永磁同步电机驱动器设计 摘要:近年来270V高压直流供电体制在各种装备上开始大量应用,本文给出了 一种由TMS320F2812、高精度转子位置速度检测装置及高压MOS管组成的高压 大功率永磁同步电机驱动控制方案,详细描述了系统的硬件组成和软件设计结构。试验结果表明,该系统较好的解决了高压供电带来的干扰问题,具有调速性能良好、效率高、抗干扰能力强等特点,满足型号的使用要求。 关键词:270V高压;永磁同步电机驱动器;抗干扰 0 引言 随着我国对高压直流电源系统的深入研究,新一代装备已开始采用270V高压直流供电系统,这种新型电源体制不但具有传输功率大、传输效率高、供电可靠 性高和电源配电重量轻的特点,而且还将大大减小低压直流供电系统的电器设备 的大电流电弧干扰,提高了武器装备的综合能力[1]。 本文给出了一种由TMS320F2812、高精度转子位置速度检测装置及高压MOS 管组成的大功率PMSM驱动控制方案,详细叙述了系统的硬件组成和软件设计结构。并在此基础上,设计了一套大功率PMSM驱动控制系统,该系统具有调速性 能良好,效率高等特点,满足型号的使用要求。 1 系统总体设计 1.1 永磁同步电机(PMSM)数学模型 永磁同步电机由于具备小体积、高效率及功率密度、调速性能良好等优点得 到了越来越广泛的应用。PMSM的数学模型包括电动机的运动方程,物理方程和 转矩方程,这些方程是永磁同步电机数学模型的基础。控制对象的数学模型能够 准确的反应被控系统的静态和动态特性。为方便分析,先做以下假设[2~4]: 1)磁路不饱和,即电机电感大小不受电流变化影响,不计涡流和磁滞损耗; 2)忽略齿槽、换相过程和电枢反应等的影响; 3)三相绕组完全对称,永久磁钢的磁场沿气隙周围正弦分布; 4)电枢绕组在定子内表面均匀连续分布; 5)驱动开关管和续流二极管为理想元件。 优化设计后的永磁同步电机经过Park变换后,其dq坐标系下的数学模型可 表示为方程式: 式1.1 式1.2 式1.3 式中:、—定子电压dq轴分量;、—定子电流dq轴分量; —定子电阻;—转子极对数; —转子角速度;—定子电感; —电磁转矩;—永磁体产生的磁链,为常数; 从电磁转矩方程可以看出只要能准确地检出转子空间位置(d轴),通过控 制逆变器使三相定子的合成电流在q轴上,那么永磁同步电机的电磁转矩只与定 子电流的幅值成正比,即控制定子电流的幅值,就能很好地控制电磁转矩。 1.2 驱动控制策略 永磁同步电机的控制策略有很多种,如直接转矩控制、转子磁场定向控制等[5~6],本系统采用转子磁场定向控制,其基本原理是通过坐标变换,在转子磁场 定向的同步坐标系上对电机的磁场电流和转矩电流进行解耦控制,使其具有和传

菲仕伺服电机原理

菲仕伺服电机原理 一、产品简介 菲仕伺服电机与国内外同类产品相比具有很高的力矩/体积和功率比,低速时具有最好的稳定性,从面克服机械传动装置的诸多限制,使众多的应用场合采用直接驱动技术,满足高端机械设备对精度、速度和效率的要求,满足了用户对节能和环保的苛刻要求。菲仕系列产品,设计额定力矩从1N.M到10000N.M,额定功率从100W到5MW,将势必成为中国功率规格系列最全的高性能伺服系统产品,并可以直接和全面地取代进口伺服系统产品。 二、电机产品系列化定型研制工艺流程 三、工作原理 交流伺服电动机在没有控制电压时,伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电在定子内绕组形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。 四、设计参数的选取及设备结构 伺服电机主要由定子铁芯及绕组、永磁体转子模块、高精度轴承及轴承支架、电气插头及接线盒等附件组成,如下图所示:

1、定子铁芯 1)、矽钢冲片采用高速冲床进行,冲片和叠片在冲压过程中一次完成,大大的提高了生产效率。高速冲片代替以往的粉末冶金制造铁芯使铁芯的电磁特性不再受粉末成分和烧结条件的影响,使铁芯的电磁特性得以稳定。在组装和总装过程中也不会因操作不慎而使铁芯缺角少肉而影响质量,使操作过程得以简化; 2)、我们对比了高速冲片与低速冲片对电机的性能的影响,数据表明高速冲片制作的铁芯,电机的漏磁及涡流损耗大大减少,电机整体发热量大大降低,故选用了从英国进口过来的高速冲床及长寿命模具,来保证矽钢冲片的稳定性及低损耗性。 3)、我们对比了0。5MM高速冲片与0。3MM高速冲片对电机的性能的影响,数据表明0。3MM高速冲片制作的电机的漏磁及涡流损耗更进一步减少,电机整体发热量也进一步降低,故选用了0。3MM矽钢片的模具。 2、定子绕组 电机所采用的力矩绕组设计是一种具有特殊Ke和Kt常数的绕组,可适用于无齿轮传动的低速场合和直接驱动。取消减速机构可以增强力矩和刚性以及获得低速下的良好的运动平稳性。而且绕组采用符合DIN530标准的H级,保证了电机能在很高的温度情况下正常运行;特殊的高频绕组设计,适合于长配线时的高频PWM波形。 3、永磁体转子组件 1)具有设计专利技术的转子模块扣套设计保证了磁钢的机械固定,而

永磁同步伺服电机驱动器设计原理

永磁同步伺服电机(PMSM) 驱动器设计原理 周瑞华周瑞华先生,中达电通股份有限公司应用工程师。 关键词:PMSM 整流功率驱动单元控制单元 永磁交流伺服系统的驱动器经历了模拟式、模拟数字混合式的发展后,目前已经进入了全数字的时代。全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等缺点,还充分发挥了数字控制在控制精度上的优势和控制方法的灵活,使伺服驱动器不仅结构简单,而且性能更加可靠。现在,高性能的伺服系统大多数采用永磁交流伺服系统,其中包括永磁同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。后者由两部分组成:驱动器硬件和控制算法。控制算法是决定交流伺服系统性能好坏的关键技术之一,是国外交流伺服技术封锁的主要部分,也是技术垄断的核心。 一交流永磁伺服系统的基本结构 交流永磁伺服系统主要有伺服控制单元、功率驱动单元、通信接口单元、伺服电机及相应的反馈检测器件组成。 其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等。我们的交流永磁同步驱动器集先进的控制技术和控制策略为一体,使其非常适用于高精度、高性能要求的伺服驱动领域,还体现了强大的智能化、柔性化,是传统的驱动系统所 不可比拟的。 目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,其优点是可以实现比较复杂的控制算法,实现数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软起动电路,以减小起动过程对驱动器的冲击。 伺服驱动器大体可以划分为功能比较独立的两个模块,如图1所示。功率板(驱动板)是强电部分其中包括两个单元,一是功率驱动单元用于电机的驱动,二是开关电源单元为整个系统提供数字和模拟电源;控制板是弱电部分,是电机的控制核心也是伺服驱动器技术核心,控制算法的运行载体。控制板通过相应的算法输出PWM信号,作为驱动电路的驱动信号,来改变逆变器的输出功率,以达到控制三相永磁式同步交流伺服电机的目的。

永磁同步电机参数测量试验方法

永磁同步电机参数测量实验 一、实验目的 1. 测量永磁同步电机定子电阻、交轴电感、直轴电感、转子磁链以及转动惯量。 二、实验内容 1. 掌握永磁同步电机dq 坐标系下的电气数学模型以及机械模型。 2. 了解三相永磁同步电机内部结构。 3. 确定永磁同步电机定子电阻、交轴电感、直轴电感、反电势系数以及转动惯量。 三、拟需实验器件 1. 待测永磁同步电机1台; 2. 示波器1台; 3. 西门子变频器一台; 4. 测功机一台及导线若干; 5. 电压表、电流表各一件; 四、实验原理 1. 定子电阻的测量 采用直流实验的方法检测定子电阻。通过逆变器向电机通入一个任意的空间电压矢量U i (例如U 1)和零矢量U 0,同时记录电机的定子相电流,缓慢增加电压矢量U i 的幅值,直到定子电流达到额定值。如图1所示为实验的等效图,A 、B 、C 为三相定子绕组,U d 为经过斩波后的等效低压直流电压。I d 为母线电流采样结果。当通入直流时,电机状态稳定以后,电机转子定位,记录此时的稳态相电流。因此,定子电阻值的计算公式为: 1 ,2 a d b c d I I I I I ===- (1) 23d s d U R I = (2) 图1 电路等效模型 2. 直轴电感的测量 在做直流实验测量定子电阻时,定子相电流达到稳态后,永磁转子将旋转到和定子电压矢量重合的位置,也即此时的d 轴位置。测定定子电阻后,关断功率开关管,永磁同步电机处于自由状

态。向永磁同步电机施加一个恒定幅值,矢量角度与直流实验相同的脉冲电压矢量(例如U 1),此时电机轴不会旋转(ω=0),d 轴定子电流将建立起来,则d 轴电压方程可以简化为: d d d q q d di u Ri L i L dt ω=-+d d d d di u Ri L dt =+ (3) 对于d 轴电压输入时的电流响应为: ()(1)d R t L U i t e R -=- (4) 利用式(4)以及测量得到的定子电阻值和观测的电流响应曲线可以计算得到直轴电感值。 其中U /R 为稳态时的电流反应,R 为测得的电机定子电阻。由上式可知电流上升至稳态值的0.632倍时,1d R t L - =-,电感与电阻的关系式可以写成: 0.632d L t R =? (5) 其中t 0.632为电流上升至稳态值0.632倍时所需的时间. 3. 交轴电感的测量 测出L d 之后,在q 轴方向(d 轴加90°)施加一脉冲电压矢量。电压矢量的作用时间一般选取的很短,小于电机的机械时间常数,保证电机轴在电压矢量作用期间不会转动。则q 轴电压方程可以简化为: q q q d d q di u Ri L i L dt ωωψ=+++ q q q q di u Ri L dt =+ (6) q 轴电流将按如下的指数形式建立: ()(1)q R t L U i t e R -=- (7) 利用测量直轴电感的方法同样可以测量交轴电感。 此外,由于没有正好超前d 轴90°的电压矢量,需要施加一个60°和120°合成矢量来完成等效q 轴电压矢量的施加过程。并且在进行脉冲电压实验的过程中,电压幅值和作用时间 应选择适当。电压幅值选择太小,影响检测精度,过大可能使电流超过系统限幅值影响系统安全。作用时间过短,采样点少,获取的电流信息少,也会影响检测精度,作用时间过长,电流同样可能过大影响系统安全,并且电机容易发生转动。 4. 反电势系数的测量 采用空载实验法,即用测功机带动被测永磁同步电机以一定的转速旋转,同时保持被测电机负载开路,测试此时的电机空载相电压,即为反电势电压。结合转速、反电势可以计算得出相应的反电势系数,计算公式如下: 1000e E K n = ? (8) 式中:E 为反电势,n 为转速。电机的反电势系数,其定义为每1000PRM 时电机每相绕组上的反电势电压的有效值(请注意不是线线电压,是线到中性线的电压,单位为:V/KRPM/相) 这种方法需要将被测电机运行至发电状态,并且需要负载开路手动测试反电势。

在线辨识永磁同步电动机参数

永磁同步电机参数在线辨识:模型参考与EKF 的比较 摘要:本文基于模型参考在线辨识的方法,对永磁同步电机进行参数辨识。运用李雅普诺夫第二方法和奇异扰动理论对增广系统的全局稳定性进行了分析。结果表明,该方法应用的解耦控制技术,改善了系统的收敛性和稳定性. 把这种方法与扩展卡尔曼滤波(EKF)的在线识别方法比较,结果表明,尽管基于扩展卡尔曼滤波(EKF)的在线辨识法在实现的复杂性上相对于所提出的方法更简单,但是该方法与所提出的方法相比不能给出更好的结果. 仿真结果以及对隐极式永磁同步电机实验的分析,证实了所提出方法的有效性。 永磁同步机因为他们的高效率和良好的可控性成功的应用于不同的领域。永磁同步机的控制主要是通过高性能的矢量控制实现的。控制变量如(速度,位置,或转矩),主要的困难在于控制转矩,这说明了控制定子电流的必要性。在矢量控制中,如果想实现这一点,定子电流和电压矢量需在d-q 坐标系下进行分析研究。为了控制定子电流,必须先控制其直轴电感(d)和正交电感(q)。永磁同步电机在d-q 坐标下的电气模型是一个两输入-两输出系统,如下: f q d e e ψ==,0 f K =ω Ω是反电动势矢量d-q 分量;q d q d i i v v ,,,是d-q 轴电压和电流,Ω=P ω是转子电角速度,Ω是转子机械角速度,P 是极对数量。系统的输入是q d v v ,,输出是q d i i ,。根据适当的控制律控制这些电流,是定子电压通过电压源逆变器得到应用。逆变器通常根据一个恒定增益v G 来建模。我们可以得到qr v q dr v d v G v v G v ==,,qr dr v v ,是电流调节器的输出。他们用于调节d-q 坐标系的电流。隐极永磁同步电机,d 轴基准电流通常固定为零,电机转矩和转度由q 轴基准电流控制。d q s f L L R ,,,ψ是参考模型的参数。电机时间常数是 s q q s d d R L R L /,/==ττ。 事实上,这些参数是不准确的,他们会慢慢的发生变化。这些变化可能是由于一个故障或一个变化的操作点[2]。他们有时对控制系统是致命的并可能损坏驱动器。在这些情况下,一个在线辨识算法是必要的。该算法对电机参数进行辨识,用于控制算法或检测故障中。

PMSM电机Ld Lq参数测量方法

哇哈哈 PMSM 参数测量实验 测量永磁同步电机定子电阻、交轴电感、直轴电感、转子磁链以及转动惯量。 1. 定子电阻的测量 采用直流实验的方法检测定子电阻。通过逆变器向电机通入一个任意的空间电压矢量U i (例如U 1)和零矢量U 0,同时记录电机的定子相电流,缓慢增加电压矢量U i 的幅值,直到定子电流达到额定值。如图1所示为实验的等效图,A 、B 、C 为三相定子绕组,U d 为经过斩波后的等效低压直流电压。I d 为母线电流采样结果。当通入直流时,电机状态稳定以后,电机转子定位,记录此时的稳态相电流。因此,定子电阻值的计算公式为: 1,2a d b c d I I I I I ===- (1) 23d s d U R I = (2) 图1 电路等效模型 2. 直轴电感的测量 在做直流实验测量定子电阻时,定子相电流达到稳态后,永磁转子将旋转到和定子电压矢量重合的位置,也即此时的d 轴位置。测定定子电阻后,关断功率开关管,永磁同步电机处于自由状态。向永磁同步电机施加一个恒定幅值,矢量角度与直流实验相同的脉冲电压矢量(例如U 1),此时电机轴不会旋转(ω=0),d 轴定子电流将建立起来,则d 轴电压方程可以简化为: d d d q q d di u Ri L i L dt ω=-+d d d d di u Ri L dt =+ (3) 对于d 轴电压输入时的电流响应为: ()(1)d R t L U i t e R -=- (4) 利用式(4)以及测量得到的定子电阻值和观测的电流响应曲线可以计算得到直轴电感值。 其中U /R 为稳态时的电流反应,R 为测得的电机定子电阻。由上式可知电流上升至稳态值的0.632倍时,1d R t L -=-,电感与电阻的关系式可以写成:

使用说明书(第二版)

宁波菲仕运动控制技术有限公司 宁波菲仕电机技术有限公司 永磁交流伺服电机 Ultract III (第二版) 使用说明书

目录 一、概述 (3) 二、规范说明 (3) 三、检查 (3) 四、安装 (4) 五、编码器配置 (4) 六、接线 (6) 七、PHASE电机与驱动器接线 (10) Ⅰ、匹配PHASE驱动器接线 (10) (1)、配置正余弦编码器接线 (10) (2)、配置绝对值编码器接线 (11) (3)、配置旋转变压器接线 (12) Ⅱ、匹配LENZE驱动器接线 (13) (1)、配置旋转变压器接线 (13) (2)、配置绝对值编码器接线 (14) (3)、配置数字增量式编码器接线 (15) Ⅲ、匹配KEB驱动器接线 (16) (1)、配置正余弦编码器接线 (16) (2)、配置旋转变压器接线 (17) (3)、配置绝对值编码器接线 (18) Ⅳ、匹配SIEMENS驱动器接线 (19) (1)、配置正余弦编码器接线 (19) (2)、配置旋转变压器接线 (20) Ⅴ、匹配Schneider驱动器接线 (21) (1)、配置旋转变压器接线 (21) (2/3)、配置绝对值编码器接线 (22) Ⅵ、匹配B&R驱动器接线 (24) (1)、配置绝对值编码器接线 (24) Ⅶ、匹配CT驱动器接线 (25) (1)、配置绝对值编码器接线 (25) Ⅷ、匹配Kinwaytech(御能)驱动器接线 (26) (1)、配置旋转变压器接线 (26) Ⅸ、匹配Inovance(汇川)、Modrol(蒙德)驱动器接线 (27) (1)、配置旋转变压器接线 (27) Ⅹ、匹配Vector(威科达)驱动器接线 (28) (1)、配置数字增量式编码器 (28) 八、运行与维护 (29)

永磁同步电机参数测量试验方法.docx

一、实验目的 1.测量永磁同步电机定子电阻、交轴电感、直轴电感、转子磁链以及转动惯量。 二、实验内容 1.掌握永磁同步电机 dq 坐标系下的电气数学模型以及机械模型。 2.了解三相永磁同步电机内部结构。 3.确定永磁同步电机定子电阻、交轴电感、直轴电感、反电势系数以及转动惯量。 三、拟需实验器件 1.待测永磁同步电机 1 台; 2.示波器 1 台; 3.西门子变频器一台; 4.测功机一台及导线若干; 5.电压表、电流表各一件; 四、实验原理 1.定子电阻的测量 采用直流实验的方法检测定子电阻。通过逆变器向电机通入一个任意的空间电压矢量U i(例如 U1)和零矢量U0,同时记录电机的定子相电流, 缓慢增加电压矢量U i的幅值,直到定子电流达到额定值。如图 1 所示为实验的等效图,A 、B、C 为三相定子绕组, U d为经过斩波后的等效 低压直流电压。 I d为母线电流采样结果。当通入直流时,电机状态稳定以后,电机转子定位,记录此时的稳态相电流。因此,定子电阻值的计算公式为: I a I d , I b I c 1 (1) I d 2 2U d (2) R s 3I d

I d A O U d B C 图 1 电路等效模型 2.直轴电感的测量 在做直流实验测量定子电阻时, 定子相电流达到稳态后, 永磁转子将旋转到和定子电压矢量 重合的位置 , 也即此时的 d 轴位置。测定定子电阻后, 关断功率开关管, 永磁同步电机处于自 由状态。向永磁同步电机施加一个恒定幅值, 矢量角度与直流实验相同的脉冲电压矢量( 例如U1),此时电机轴不会旋转( ω=0),d轴定子电流将建立起来,则 d 轴电压方程可以简化为: di d u d Ri d di d u d Ri d L q i q L d dt L d dt (3)对于 d 轴电压输入时的电流响应为: i (t) R t U (1 e L d )(4) R 利用式 (4) 以及测量得到的定子电阻值和观测的电流响应曲线可以计算得到直轴电感值。 其中 U/ R为稳态时的电流反应,R 为测得的电机定子电阻。由上式可知电流上升至稳态值的 倍时,R t1,电感与电阻的关系式可以写成: L d L d t 0.632 ? R (5) 其中为电流上升至稳态值倍时所需的时间. 3.交轴电感的测量 测出 L d之后,在q轴方向(d轴加90°)施加一脉冲电压矢量。电压矢量的作用时间一般选取 的很短 , 小于电机的机械时间常数, 保证电机轴在电压矢量作用期间不会转动。则q轴电压方

永磁同步电机性能要求与技术现状分析

在各类驱动电机中, 永磁同步电机能量密度高, 效率高、体积小、惯性低、响应快, 有很好的应用前景。永磁电动机既具有交流电动机的无电刷结构、运行可靠等优点, 又具有直流电动机的调速性能好的优点, 且无需励磁绕组, 可以做到体积小、控制效率高, 是当前电动汽车电动机研发与应用的热点。 永磁同步电动机( PMSM)系统具有高控制精度、高转矩密度、良好的转矩平稳性以及低噪声的特点, 通过合理设计永磁磁路结构能获得较高的弱磁性能, 提高电动机的调速范围, 因此在电动汽车驱动方面具有较高的应用价值。 作为车辆电驱动系统的中心环节, 驱动电机的总体性能是设计研制技术的关键之一。根据车辆运行的特殊环境以及电驱动车辆自身的特点, 对驱动电机的技术要求主要是: ( 1)体积小、重量轻; 有较高的功率和转矩密度; ( 2)要求在宽速域范围内, 电动机和驱动控制器都有较高的效率; ( 3)有良好的控制性能以及过载能力, 以提高车辆的起动和加速性能。 永磁同步电机的功率因数大, 效率高, 功率密度大, 是一种比较理想的驱动电机。但正由于电磁结构中转子励磁不能随意改变, 导致电机弱磁困难, 调速特性不如直流电机。目前, 永磁同步电机理论还不如直流电机和感应电机完善, 还有许多问题需要进一步研究, 主要有以下方面。 1) 电机效率: 永磁同步电机低速效率较低, 如何通过设计降低低速损耗, 减小低速额定电流是目前研究的热点之一。 2)提高电机转矩特性 电动车驱动电机要求低速大转矩且有一定的高速恒功率运行范围, 所以相应控制策略的研究也主要集中在提高低速转矩特性和高速恒功率特性上。 1.低速控制策略: 为了提高驱动电机的低速转矩,一般采用最大转矩控制。早期永磁同步电机转子采用表面式磁钢, 由于直轴和交轴磁路的磁阻相同, 所以采用 id= 0 控制。控制命令中直轴电流设为 0, 从而实现最大转矩控制。随着同步电机结构的发展, 永磁同步电机转子多采用内置式磁钢, 利用磁阻转矩增加电机的输出转矩。id= 0 控制电机电枢电流的直轴分量为 0, 不能利用电机的磁阻转矩, 控制效果不好。目前, 永磁同步电机低速时常采用矢量控制, 包括气隙磁场定向、转子磁链定向、定子磁链定向等。 2.高速控制策略: 为了获得更宽广的恒功率运行范围, 永磁同步电机高速运行通常采用弱磁控制。另外, 在电机采用低速转矩控制和高速弱磁控制的同时, 还要考虑如何

相关文档