文档库 最新最全的文档下载
当前位置:文档库 › 平面向量与三角形四心学案

平面向量与三角形四心学案

平面向量与三角形四心学案
平面向量与三角形四心学案

向量与三角形内心、外心、重心、垂心知识的交汇

一、四心的概念介绍

(1)重心——中线的交点:重心将中线长度分成2:1;

(2)垂心——高线的交点:高线与对应边垂直;

(3)内心——角平分线的交点(内切圆圆心):角平分线上的任意点到角两边的距离相等;

(4)外心——中垂线的交点(外接圆圆心):外心到三角形各顶点的距离相等。

二、典例分析

[例]已知点G 是ABC ?内任意一点,点 M 是ABC ?所在平面内一点.

(1)动点P 满足)(++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ?的_________.

(2)若存在常数λ,满足()(0)AB AC MG MA AB AC

λλ=++≠ ,则点G 的轨迹可能通过ABC ?的__________.

(3)动点P 满足:???

? ??++=B AC C MA MP sin sin λ,()0,λ∈+∞,则直线AG 一定通过ABC ?的 .

(4)若存在常数λ,满足()(0)sin sin AB AC MG MA AB B AC C

λλ=++≠ ,则点G 的轨迹可能通过ABC ?的__________.

(5)若存在常数λ,满足()(0)cos cos AB AC MG MA AB B AC C

λλ=++≠ ,则点G 的轨迹可能通过ABC ?的__________.

(6)若点D 是ABC 的底边BC 上的中点,满足GD GB GD GC = ,则点G 的轨迹可能通过

ABC ?的__________.

(7)??=?=?GA GC GC GB GB GA G 为ABC ?的___________.

(8)?=++G 是ABC ?的___________.

(9

)==?G 为ABC ?的___________.

三、练习:

1.已知ABC ?三个顶点C B A 、、及平面内一点P ,满足=++,若实数λ满足:AP AC AB λ=+,则λ的值为( )

A .2

B .2

3 C .3 D .6 2.若ABC ?的外接圆的圆心为O ,半径为1,=++,则=?OB OA ( )

A .21

B .0

C .1

D .2

1- 3.点O 在ABC ?内部且满足22=++,则ABC ?面积与凹四边形ABOC 面积之比是( )

A .0

B .23

C .45

D .3

4 4.ABC ?的外接圆的圆心为O ,若++=,则H 是ABC ?的( )

A .外心

B .内心

C .重心

D .垂心

5.ABC ?的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=, 则实数m =

6.O 是平面上一定点,C B A 、、是平面上不共线的三个点,若222=+ 2

22AB OC CA +=+,则O 是ABC ?的( )

A .外心

B .内心

C .重心

D .垂心

7.(06陕西)已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →=0且AB →|AB

→| ·AC →|AC →| =12 , 则△ABC 为( )

A .三边均不相等的三角形

B .直角三角形

C .等腰非等边三角形

D .等边三角形

8.已知ABC ?三个顶点C B A 、、,若?+?+?=2,则ABC ?为( )

A .等腰三角形

B .等腰直角三角形

C .直角三角形

D .既非等腰又非直角三角形

第十一章三角形全章教学设计

三角形的边

检测练习一、如图,在三角形ABC中, (1)AB+BC AC AC+BC AB AB+AC BC (2)假设一只小虫从点B出发,沿三角形的边爬到点C, 有路线。路线最近,根据是:, 于是有:(得出的结 论)。 (3)下列下列长度的三条线段能否构成三角形,为什么? ①3、4、8 ②5、6、11 ③5、6、10 研读三、认真阅读课本认真看课本( P64例题,时间:5分钟) 要求:(1)、注意例题的格式和步骤,思考(2)中为什么要分情况讨论。 (2)、对这例题的解法你还有哪些不理解的? (3)、一边阅读例题一边完成检测练习三。 检测练习二 9、一个等腰三角形的周长为28cm.①已知腰长是底边长的3倍,求各边的长; ②已知其中一边的长为6cm,求其它两边的长.(要有完整的过程啊!) 解: (三)在研读的过程中,你认为有哪些不懂的问题? 四、归纳小结 (一)这节课我们学到了什么?(二)你认为应该注意什么问题? 五、强化训练 【A】组 1、下列说法正确的是 (1)等边三角形是等腰三角形 (2)三角形按边分类课分为等腰三角形、等边三角形、不等边三角形 (3)三角形的两边之差大于第三边 (4)三角形按角分类应分锐角三角形、直角三角形、钝角三角形 其中正确的是() A、1个 B、2个 C、3个 D、4个 2、一个不等边三角形有两边分别是 3、5另一边可能是() A、1 B、2 C、3 D、4 3、下列长度的各边能组成三角形的是() A、3cm、12cm、8cm B、6cm、8cm、15cm 、3cm、5cm D、6.3cm、6.3cm、12cm 【B】组 4、已知等腰三角形的一边长等于4,另一边长等于9,求这个三角形的周长。 5、已知三角形的一边长为5cm,另一边长为3cm.则第三边的长取值范围是多少? 【C】组(共小1-2题) 6、已知三角形的一边长为5cm,另一边长为3cm.则第三边的长取值范围是。 小方有两根长度分别为5cm、8cm的游戏棒,他想再找一根,使这三根游戏棒首尾相连能搭成一个三角形. (1)你能帮小方想出第三根游戏棒的长度吗?(长度为正整数) (2)想一想:如果已知两边,则构成三角形的第三边的条件是什么?

三角形四心的向量性质

三角形“四心”的向量性质及其应用 一、三角形的重心的向量表示及应用 命题一 已知A B C ,,是不共线的三点,G 是ABC △内一点,若 GA GB GC ++=0.则G 是ABC △的重心. 证明:如图1所示,因为GA GB GC ++=0, 所以 ()GA GB GC =-+. 以GB ,GC 为邻边作平行四边形BGCD , 则有GD GB GC =+, 所以GD GA =-. 又因为在平行四边形BGCD 中,BC 交GD 于点E , 所以BE EC =,GE ED =. 所以AE 是ABC △的边BC 的中线. 故G 是ABC △的重心. 点评:①解此题要联系重心的定义和向量加法的意义;②把平面几何知识和向量知识结合起来解决问题是解此类问题的常用方法. 例1 如图2所示,ABC △的重心为G O ,为坐标原点,OA =a ,=OB b , =OC c ,试用a b c ,,表示OG . 解:设AG 交BC 于点M ,则M 是BC 的中点, ?? ? ??=-=-=-GC OG c GB OG b GA OG a GC GB GA OG c b a ++=-++∴ 而03=-++∴OG c b a 图2

3 c b a OG ++= ∴ 点评:重心问题是三角形的一个重要知识点,充分利用重心性质及向量加、减运算的几何意义是解决此类题的关键. 变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则 AD BE CF ++=0. 证明:如图的所示, ??? ? ? ???? -=-=-=GC CF GB BE GA AD 232323 )(23 GC GB GA CF BE AD ++-=++∴ 0=++GC GB GA AD BE CF ∴++=0.. 变式引申:如图4,平行四边形ABCD 的中心为O ,P 为该平面上任意一点, 则1 ()4 PO PA PB PC PD =+++. 证明:1()2PO PA PC =+,1()2 PO PB PD =+, 1()4 PO PA PB PC PD ∴=+++. 点评:(1)证法运用了向量加法的三角形法则,证法2运用了向量加法的平行四边形法则.(2)若P 与O 重合,则上式变为OA OB OC OD +++=0. 二、三角形的外心的向量表示及应用 命题二:已知G 是ABC △内一点,满足MC MB MA ==,则点M 为△ABC 的外心。 例2 已知G 、M 分别为不等边△ABC 的重心与外心,点A ,B 的坐标分别为A (-1,0),B (1,0),且GM ∥AB ,(1)求点C 的轨迹方程;(2)若直线l 过 图3

讲义---平面向量与三角形四心的交汇

讲义---平面向量与三角形四心的交汇 一、四心的概念介绍 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 二、四心与向量的结合 (1)?=++O 是ABC ?的重心. 证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O ?=++???=-+-+-=-+-+-0)()()(0)()()(321321y y y y y y x x x x x x ??? ????++=++=?33 321 321y y y y x x x x ?O 是ABC ?的重心. 证法2:如图 [ OC OB OA ++ 2=+= ∴2= ∴D O A 、、三点共线,且O 分AD 为2:1 ∴O 是ABC ?的重心 (2)??=?=?OA OC OC OB OB OA O 为ABC ?的垂心. 证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂 足.0)(=?=-??=?CA OB OC OA OB OC OB OB OA AC OB ⊥? 同理⊥,⊥ ?O 为ABC ?的垂心 : (3)设a ,b ,c 是三角形的三条边长,O 是?ABC 的内心 O c b a ?=++为ABC ?的内心. 证明:b c 、 分别为 方向上的单位向量, ∴ b c +平分BAC ∠, ( λ=∴b c +),令c b a bc ++= λ ∴ c b a bc ++= (b c +) 化简得0)(=++++AC c AB b OA c b a B C D

解三角形全章教案(整理)

数学5 第一章 解三角形 第1课时 课题: §1.1.1 正弦定理 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? B C Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的 定 义 , 有 sin a A =, sin b B =,又s i n 1c C == , A 则sin sin sin a b c c A B C = = = b c 从而在直角三角形ABC 中, sin sin sin a b c = = C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B = , C 同理可得sin sin c b C B = , b a 从而 sin sin a b A B = sin c C = A c B

与三角形四心相关的向量结论

与三角形“四心”相关的向量结论 濮阳市华龙区高中 张杰 随着新课程对平面几何推理与证明的引入,三角形的相关问题在高考中的比重有所增加。平面向量作为平面几何的解题工具之一,与三角形的结合就显得尤为自然,因此对三角形的相关性质的向量形式进行探讨,就显得很有必要。本文通过对一道高考模拟题的思考和探究,得到了与三角形“四心”相关的向量结论。希望在得出结论的同时,能引起一些启示。 问题:设点O 在ABC ?内部,且有03=++OC OB OA ,则BOC ?与AOC ?的面积的比值是____. 分析:∵03=++OC OB OA 设OD OB =3,则0=++OC OD OA , 则点O 为ADC ?的重心.∴ACD AOD COA DOC S S S S ????= ==31. 而 AOC COD BOC S S S ???==3131, ∴3 1:=??COA BOC S S . 探究:实际上,可以将上述结论加以推广,即可得此题的本源。 结论: 设O 点在ABC ?内部,若()+∈=++R r n m OC r OB n OA m ,,0,则r n m S S S A O B C O A B O C ::::=?? 证明: 已知O 点在ABC ?内部,且()+∈=++R r n m OC r OB n OA m ,,0 设:OF OC r OE OB n OD OA m ===,,,则点O 为△DEF 的重心, 又EOF BOC S nr S ??=1,DOF AOC S mr S ??=1,DOE AOB S mn S ??=1, ∴r n m S S S AO B CO A BO C ::::=?? 说明: 此结论说明当点O 在ABC ?内部时,点O 把ABC ?所分成的三个小三角形的面积之比等于从此点出发分别指向与三个小三角形相对应的顶点的三个向量所组成的线性关系式前面的系数之比。 应用举例:设点O 在ABC ?内部,且40OA OB OC ++= ,则ABC ?的面积与OBC ?的面积之比是: A .2:1 B .3:1 C .4:3 D .3:2 分析:由上述结论易得:1:1:4::=??AO B CO A BO C S S S ,所以2:34:6:==?O BC ABC S S ,故选D 当把这些点特定为三角形的“四心”时,我们就能得到有关三角形“四心”的一组统一的向量形式。 引申:设O 点在ABC ?内部,且角C B A ,,所对应的边分别为c b a ,, 结论1:若O 为ABC ?重心,则0=++OC OB OA 分析:重心在三角形的内部,且重心把ABC ?的面积三等分. 结论2 :O 为ABC ?内心,则0=++OC c OB b OA a 分析:内心在三角形的内部,且易证S △BOC :S △COA :S △AOB =c b a :: 结论3: O 为ABC ?的外心,则02sin 2sin 2sin =++OC C OB B OA A 分析: 易证S △BOC :S △COA :S △AOB =sin2A :sin2B :sin2C.

平面向量与三角形四心学案

向量与三角形内心、外心、重心、垂心知识的交汇 一、四心的概念介绍 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆圆心):外心到三角形各顶点的距离相等。 二、典例分析 [例]已知点G 是ABC ?内任意一点,点 M 是ABC ?所在平面内一点. (1)动点P 满足)(++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ?的_________. (2)若存在常数λ,满足()(0)AB AC MG MA AB AC λλ=++≠ ,则点G 的轨迹可能通过ABC ?的__________. (3)动点P 满足:??? ? ??++=B AC C MA MP sin sin λ,()0,λ∈+∞,则直线AG 一定通过ABC ?的 . (4)若存在常数λ,满足()(0)sin sin AB AC MG MA AB B AC C λλ=++≠ ,则点G 的轨迹可能通过ABC ?的__________. (5)若存在常数λ,满足()(0)cos cos AB AC MG MA AB B AC C λλ=++≠ ,则点G 的轨迹可能通过ABC ?的__________. (6)若点D 是ABC 的底边BC 上的中点,满足GD GB GD GC = ,则点G 的轨迹可能通过 ABC ?的__________. (7)??=?=?GA GC GC GB GB GA G 为ABC ?的___________. (8)?=++G 是ABC ?的___________. (9 )==?G 为ABC ?的___________.

平面向量中的三角形四心问题

平面向量中的三角形四心问题 向量是高中数学中引入的重要概念,是解决几何问题的重要工具。本文就平面向量与三角形四心的联系做一个归纳总结。在 给出结论及证明结论的过程中,可以体现数学的对称性与推论的相互关系。 一、重心(baryce nter) 三角形重心是三角形三边中线的交点。重心到顶点的距离与重心到对边中点的距离之比为2:1。在重心确定上,有著名的帕普斯定理。 结论1 : 若G为ABC所在平面内一点,则G 是三角形的重心 证明:设BC中点为D,则2GD GA GB GC 0 GA GB GA 2GD, 这表明,G在中线AD上 同理可得G在中线BE,CF上 故G为ABC的重心

结论2: 1 —. 若P 为 ABC 所在平面内 点,贝S PG (PA PB 3 G 是ABC 的重心 PC) - 1 — 证明:PG (PA PB PC) (PG PA) (PG PB) (PG PC) 0 GA GB GC 0 G 是ABC 的重心 二、垂心(orthocenter) 三角形的三条高线的交点叫做三角形的垂心。 结论3: H 是ABC 的垂心 证明:HA HB HB HC HB ? S- HB AC 0 HB AC 同理,有 HA CB,HC AB 故H 为三角形垂心 若H 为ABC 所在平面内一点,则HA HB HB HC HC HA (HA

结论4: 2 ------ 2 ------ 2 ------ 2 -------- 2 ------ 2 若H 为 ABC 所在平面内一点,贝U HA BC HB AC HC AB H 是ABC 的垂心 2 2 2 2 HB CA 得,HA (HB HC)2 HB (HC HA)2 HB HC HC HA 同理可证得,HA HB HB HC HC HA 由结论3可知命题成立 三、外心(circumcenter) 三角形三条边的垂直平分线(中垂线)的相交点。用这个点 做圆心可以画三角形的外接圆。 结论5: 若0是ABC 所在平面内一点,则 OA OB OC 0是ABC 的外心 证明:由外心定义可知 命题成立 2 2 证明:由HA BC 结论6: 若0是ABC 所在平面内一点,则

高中数学必修5第一章解三角形全章教案整理

课题: §1.1.1正弦定理 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中, 角与边的等式关系。 从而在直角三角形ABC 中,sin sin sin a b c A B C == 思考:那么对于任意的三角形,以上关系式是否仍然成立? 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则 sin sin a b A B =, C 同理可得 sin sin c b C B =, b a 从而sin sin a b A B =sin c C = A c B 从上面的研探过程,可得以下定理 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 sin sin a b A B =sin c C = [理解定理] (1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2)sin sin a b A B =sin c C =等价于sin sin a b A B =,sin sin c b C B =,sin a A =sin c C 从而知正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B =; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b =。 一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。 例1.在?ABC 中,已知045A =,075B =,40a =cm ,解三角形。 例2.在?ABC 中,已知20=a cm ,202b =cm ,045A =,解三角形。

平面向量与三角形四心问题

平面向量基本定理与三角形四心 已知0是 ABC 内的一点, BOC, AOC, AOB 的面积分别为 S A , S B , S C ,求证: S A ?0A S B ?0B S C ?0C 0 °D 罟0B 誥0C 0D S B0D S C0D S B0D S C0D S A 0A S B0A E OA S B0A S C0A S B S C 0D S B S C S A ?0A S B ?0B S C ?0C 0 推论o 是 ABC 内的一点,且x ?0A y ?0B z ?0c 0,则 S B0C : S C0A : S A0B X : y : z 如图2延长0A 与BC 边相交于点D 则 BD DC S A BD S B0D S ABD S B0D S ACD S C0D S ACD S C0D S C S 鱼 0B 生 0C S B S C S B S C 0A oA S B S B S C S B S C 0B 二0 C

有此定理可得三角形四心向量式 O是ABC的重心 S BOC : S COA : S AOB 1:1:1 O A OB O C 0 0是 S ABC的内心 BOC : S COA :S AOB ■ a:b:c a ?OA b?oB c?oC 0 0是ABC的外心 S BOC : S COA :S AOB sin 2A:sin 2B :sin 2C sin 2A?OA sin2B ?O B sin2C ?OC 0 O是ABC的垂心 S BOC : S COA : S AOB tan A: tan B: tanC tan A?OA tan B?OB tan C ?OC 0 tanA 竺,tanB AD CD DB tan A: tanB DB: AD S BOC : S COA DB: AD S BOC : S COA tan A:tan B 同理得S COA : S AOB tan B :tanC, S BOC:S AOB tan A:tanC S BOC : S COA : S AOB tan A: tan B : tanC 奔驰定理是三角形四心向量式的完美统 证明:如图0为三角形的垂心,

解三角形(复习课)教学设计

解三角形(专题课)教学设计 一、教材分析 本节课是高中数学课本必修5第一章《解三角形》,而在本章中,学生应该在已有的知识基础上,通过对任意三角形的边角关系的探究,发现并掌握三角形中的边长与角度之间的关系数量关系,并认识到运用它们可以解决一些与测量和几何计算有关的实际问题。本章知识是初中解直角三角形的继续,通过本章内容的学习,学生能够系统地掌握解任意三角形的完整实施。可以从数量的角度认识三角形,使三角形成为研究几何问题的重要工具。是中学许多数学知识的交汇点,如向量、平面几何、三角函数、解析几何、立体几何等。 二、学情分析 学生已经学习并掌握了任意角及任意角的三角函数,诱导公式、三角恒等变换、正余弦定理等相关的知识。学习本节内容是对以上知识内容的综合应用,尤其是对正弦定理与余弦定理的熟练运用。通过解三角形的方法解决有关的实际问题,可以培养学生的数学应用意识,提高学生运用数学知识解决实际问题的能力,使学生逐渐形成数学的思维方式去解决问题、认识世界的意识。 三、教学目标 知识与技能:引导学生准确理解正弦定理、余弦定理、三角形面积公式,会对正余弦定理会进行简单的变形;引导学生通过观察,推导,比较等出一些结论,如射影定理,三角形边角之间的关系;会运用所学知识解三角形以及与三角形有关的实际问题。 过程与方法:引导学生通过观察,推导,比较,由特殊到一半归纳出正余弦定理以及三角形面积公式等结论。培养学生的创新意识,观察能力,总结归纳的逻辑思维能力。让学生通过学习能体会用向量作为数形结合的工具,将几何问题转化为代数问题的数学思想方法。 情感态度与价值观:面向全体学生,创造平等的教学氛围,进行高效课堂教学,激情教育,通过学生之间,师生之间的交流与讨论、合作与评价,调动学生的主动性和积极性,让学生体验学习数学的的乐趣,感受成功的喜悦,增强学生学好数学的信心,激发学生学习的兴趣。 四、教学重难点 重点:正弦定理、余弦定理的内容及基本应用。 难点:正弦定理、余弦定理的内容及基本应用;正余弦定理的变形应用;用所学知识解决解三角形问题的题型归纳总结。 五、课堂结构设计 根据教材的内容和编排的特点,为更好有效地突出重点,攻破难点,以学生的发展为本,遵照学生的认知规律,本节主要以教师为主导,学生为主体,交流讨论,互助学习为主线的指导思想,采用“6+1”高效课堂教学模式,在教师的启发引导下,学生通过独立自主思考探究、同学之间相互交流讨论合作学习为前提,以“熟练运用正余弦定理解三角形”为基本

讲义平面向量与三角形四心的交汇

讲义---平面向量与三角形四心的交汇 一、四心的概念介绍 (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 二、四心与向量的结合 (1)?=++0OC OB OA O 是ABC ?的重心. 证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O ?=++???=-+-+-=-+-+-0)()()(0)()()(321321y y y y y y x x x x x x ??? ????++=++=?33 321 321y y y y x x x x ?O 是ABC ?的重心. 证法2:如图 ++ 02=+=OD OA ∴OD AO 2= ∴D O A 、、三点共线,且O 分AD 为2:1 ∴O 是ABC ?的重心 (2)??=?=?OA OC OC OB OB OA O 为ABC ?的垂心. 证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂足.0)(=?=-??=?CA OB OC OA OB OC OB OB OA ⊥? 同理BC OA ⊥,AB OC ⊥ ?O 为ABC ?的垂心 (3)设a ,b ,c 是三角形的三条边长,O 是?ABC 的内心 O c b a ?=++为ABC ?的内心. 证明:b AC c AB 、 分别为 AC AB 、方向上的单位向量, ∴ b c +平分BAC ∠, ( λ=∴b c +),令c b a bc ++= λ B C D

平面向量与三角形的四心

专题9:平面向量与三角形的四心 三角形的四心: 1. 外心: 2. 内心: 3. 垂心: 4. 重心: 例1. O 是ABC ?所在平面上一点,且OA OB OC ==,则O 是ABC ?的( ) A. 内心 B. 外心 C. 垂心 D. 重心 例2. O 是平面上一定点,A,B,C 是平面上不共线的三个点,动点P 满足 (),0AB AC OP OA AB AC λλ=++>,则点P 的轨迹一定通过ABC ?的( ) A. 内心 B. 外心 C. 垂心 D. 重心 例3. 点P 是ABC ?所在平面上一点,若PA PB ?=PC PB ?=PA PC ?,则点P 是 ABC ?的( ) A. 内心 B. 外心 C. 垂心 D. 重心 例4. 证明:点P 是ABC ?所在平面上一点,有 G 是ABC ?的重心?1()3 PG PA PB PC =++

针对训练: 1. O ,P 两点在ABC ?所在平面内,且(OP OA)(AB AC)0-?-=,则点P 的轨迹一定通过ABC ?的( ) A. 内心 B. 外心 C. 垂心 D. 重心 2. 已知A,B,C 是平面上不共线的三点,O 是ABC ?的重心,动点P 满足 111(OA OB 2OC)322 OP =++,则点P 一定为ABC ?的( ) A. AB 边中线的中点 B. AB 边中线的三等分点(非重心) C. 重心 D. AB 边的中点 3. 在同一个平面上有ABC ?及一点O 满足关系式: 222222OA BC OB CA OC AB +=+=+,则点O 一定为ABC ?的( ) A. 内心 B. 外心 C. 垂心 D. 重心 4.已知O 是平面上的一定点,A,B,C 是平面上不共线的三点,动点P 满足: ()OP OA AB AC λ=++,则P 的轨迹一定通过ABC ?的( ) A. 内心 B. 外心 C. 垂心 D. 重心 5. 在ABC ?所在平面上的一动点M 满足22 2AM BC AC AB ?=-,则动点M 的轨迹必过ABC ?的________________(内心,垂心,外心,重心)。 6. 已知A,B,C,D 是平面上四个不共线的点,若0)()2(=-?-+,则ABC ?的形状是( ) A. 等腰三角形 B. 直角三角形 C. 等腰直角三角形 D. 等边三角形

平面向量与三角形四心问题

平面向量基本定理与三角形四心 已知O 是ABC ?内的一点,AOB AOC BOC ???,,的面积分别为A S ,B S ,C S ,求证: 0=++???OC S OB S OA S C B A 如图2延长OA 与BC 边相交于点D 则 B C COD ACD BOD ABD COD BOD ACD BD S S DC BD S S S S S S S S A =--===??????? 图1 = OD BC DC OB +BC BD OC =C B B S S S +OB +C B C S S S +OC C B A COA BOA COD BOD COA COD BOA BOD S S S S S S S S S S S OA OD +=++== = 图2 ∴ C B A S S S OD +- =OA ∴C B A S S S +- OA = C B B S S S +OB +C B C S S S +OC ∴0=++???OC S OB S OA S C B A 推论O 是ABC ?内的一点,且 0=++???OC OB OA z y x ,则 z y x S S S AOB COA BOC ::::=??? O A B C D O A B C

有此定理可得三角形四心向量式 O 是ABC ?的重心 ?1:1:1::=???AOB COA BOC S S S ?0=++OC OB OA O 是ABC ?的内心 ?c b a S S S AOB COA BOC ::::=????0=++???OC OB OA c b a O 是ABC ?的外心 ?C B A S S S AOB COA BOC 2sin :2sin :2sin ::=??? ?02sin 2sin 2sin =++???OC C OB B OA A O 是ABC ?的垂心 ?C B A S S S AOB COA BOC tan :tan :tan ::=??? ?0tan tan tan =++???OC C OB B OA A 证明:如图O 为三角形的垂心,DB CD B AD CD A == tan ,tan ?AD DB B A :tan :tan = =??COA BOC S S :AD DB : ∴B A S S COA BOC tan :tan :=?? 同理得C B S S AOB COA tan :tan :=??,C A S S AOB BOC tan :tan :=?? ∴C B A S S S AOB COA BOC tan :tan :tan ::=??? 奔驰定理是三角形四心向量式的完美统一

必修5第一章《解三角形》全章教案

数学5 第一章 解三角形 课题: §1.1.1 正弦定理 授课类型:新授课 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c ==, A 则 sin sin sin a b c c A B C = = = b c 从而在直角三角形ABC 中, sin sin sin a b c A B C = = C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B = , C 同理可得 sin sin c b C B = , b a

向量与三角形四心的一些结论

【一些结论】:以下皆是向量 1 若P是△ABC的重心PA+PB+PC=0 2 若P是△ABC的垂心PA?PB=PB?PC=PA?PC(内积) 3 若P是△ABC的内心aPA+bPB+cPC=0(abc是三边) 4 若P是△ABC的外心|PA|2=|PB|2=|PC|2(AP就表示AP向量|AP|就是它的模) 5 AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞) 则直线AP经过△ABC内心 6 AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞) 经过垂心 7 AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)或AP=λ(AB+AC),λ∈[0,+ ∞) 经过重心 8.若aOA=bOB+cOC,则0为∠A的旁心,∠A及∠B,C的外角平分线的交点 【以下是一些结论的有关证明】 1.O是三角形内心的充要条件是aOA向量+bOB向量+cOC向量=0向量充分性:已知aOA向量+bOB向量+cOC向量=0向量,延长CO交AB于D,根据向量加法得:OA=OD+DA,OB=OD+DB,代入已知得:a(OD+DA)+b(OD+DB) +cOC=0,因为OD与OC共线,所以可设OD=kOC,上式可化为(ka+kb+c) OC+( aDA+bDB)=0向量,向量DA与DB共线,向量OC与向量DA、DB不共线,所以只能有:ka+kb+c=0,aDA+bDB=0向量,由aDA+bDB=0向量可知:DA与DB的长度之比为b/a,所以CD为∠ACB的平分线,同理可证其它的两条也是角平分线。必要性:已知O是三角形内心,设BO与AC相交于E,CO与

平面向量的应用——三角形四心的性质

平面向量的应用——三角形四心的性质 一 知识点精讲 三角形四“心”向量形式的充要条件 设O 为ABC ?所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则 (1)O 为ABC ?的外心2 22O A O B O C ?== . (2)O 为ABC ?的重心 0OA OB OC ?++= . 证明: 证明: (3)O 为ABC ?的垂心OA OB OB OC OC OA ??=?=? . 证明: (4)O 为ABC ?的内心0aOA bOB cOC ?++= . 证明: 二 典例解析 一、重心 1. 已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足()OP OA AB AC λ=++ ,(0)λ∈+∞, ,则P 的轨迹一定通过ABC △的( ). A.外心 B.内心 C.重心 D.垂心 2. 已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足sin ||sin ||( C AC B AB + +=λ,(0)λ∈+∞,,则动点P 的轨迹一定通过 ABC △的( ). A.外心 B.内心 C.重心 D.垂心 二、垂心 3. O 是ABC △所在平面上一点,222222||||||||||||+=+=+,O 是ABC △___ A.外心 B.内心 C.重心 D.垂心 4. 已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足

cos ||cos ||( C AC B AB + +=λ,(0)λ∈+∞,,则动点P 的轨迹一定通过 ABC △的( ). A.外心 B.内心 C.重心 D.垂心 三、内心 4.(2003江苏) 已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足AB AC OP OA AB AC λ?? ? =++ ??? ,(0)λ∈+∞, ,则动点P 的轨迹一定通过ABC △的( ). A.外心 B.内心 C.重心 D.垂心 四、外心 5. 已知O 是平面上的一定点,A B C ,,是平面上不共线的三个点,动点P 满足2 cos cos OB OC AB AC OP AB B AC C λ??+ ?=++ ??? ,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的. A.外心 B.内心 C.重心 D.垂 心 6. (2005湖南).设P 是△ABC 内任意一点,S △ABC 表示△ABC 的面积,λ1= ABc PBC S S ??, λ2= ABC PCA S S ??, λ3= ABC PAB S S ??,定义),,()(321λλλ=p f ,若G 是△ABC 的重心,)61 ,31,21()(=Q f ,则( ) A .点Q 在△GA B 内 B .点Q 在△GB C 内 C .点Q 在△GCA 内 D .点Q 与点G 重合 定理:设P 是△ABC 内任意一点,S △ABC 表示△ABC 的面积,则有 =++???S S S PBC PAC PAB 五 判断三角形的形状及求最值 7.在△ABC 中,已知向量2 1 0( = =?+ BC AC AB 满足与,则△ABC 为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三

三角形“四心”与向量的完美结合

三角形的“四心”与向量的完美结合 三角形重心、垂心、外心、内心向量形式的充要条件的向量形式 一. 知识点总结 1)O 是ABC ?的重心?=++; 若O 是ABC ?的重心,则 ABC AOB AOC BOC S 31 S S S ????= == 故0OC OB OA =++; 1()3 PG PA PB PC =++?G 为ABC ?的重心. 2)O 是ABC ?的垂心?OA OC OC OB OB OA ?=?=?; 若O 是ABC ?(非直角三角形)的垂心, 则 C tan B tan A tan S S S AOB AOC BOC ::::=??? 故0OC C tan OB B tan OA A tan =++ 3)O 是ABC ?的外心?|OC ||OB ||OA |==(或2 2 2 ==) 若O 是ABC ?的外心 则 C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=???:::: 故C 2sin B 2sin A 2sin =++ 4)O 是内心ABC ?的充要条件是 ( =- ?=- ?=- ? 引进单位向量,使条件变得更简洁。如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是ABC ?内 心的充要条件可以写成 0)e e ()e e ()e e (322131=+?=+?=+? O 是ABC ?内心的充要条件也可以是0OC c OB b OA a =++ 若O 是ABC ?的内心,则 c b a S S S AOB AOC BOC ::::=??? 故 C sin B sin A sin c b a =++=++或; ||||||0AB PC BC PA CA PB P ++=?ABC ?的内心;

第11章三角形全章教案资料

第十一章三角形 教材内容 本章主要内容有三角形的有关线段、角,多边形及内角和,镶嵌等。 三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上,进行推理论证,从而得出三角形外角的性质。接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用. 教学目标 〔知识与技能〕 1、理解三角形及有关概念,会画任意三角形的高、中线、角平分线; 2、了解三角形的稳定性,理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形; 3、会证明三角形内角和等于1800,了解三角形外角的性质。 4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题。 5、理解平面镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用它们进行简单的平面镶嵌设计。 〔过程与方法〕 1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯; 2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。 〔情感、态度与价值观〕 1、体会数学与现实生活的联系,增强克服困难的勇气和信心; 2、会应用数学知识解决一些简单的实际问题,增强应用意识; 3、使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点。 重点难点 三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和等于1800的证明,根据三条线段的长度判断它们能否构成三角形及简单的平面镶嵌设计是难点。 课时分配 11.1与三角形有关的线段……………………………………… 2课时 11.2 与三角形有关的角………………………………………… 2课时 11.3多边形及其内角和………………………………………… 2课时 本章小结………………………………………………………… 2课时

(完整版)平面向量与三角形四心问题

平面向量基本定理与三角形四心 已知0是 ABC 内的一点, BOC, AOC, AOB 的面积分别为 S A , S B , S C ,求证: S A ?0A S B ?0B S C ?0C 0 0D 罟0B 誥0C 0D S B0D S C0D S B0D S C0D S A 0A S B0A E OA S B0A S C0A S B S C 0D S B S C S A ?0A S B ?0B S C ?0C 0 推论o 是ABC 内的一点,且 x ?0A y ?0B z ?0c 0,则 S B0C : S C0A : S A0B X : y : z 如图2延长0A 与BC 边相交于点D 则 BD DC S A BD S B0D S ABD S B0D S ACD S C0D S ACD S C0D S C S 鱼 0B 生 0C S B S C S B S C 0A oA S B S B S C S B S C 0B 二0C

有此定理可得三角形四心向量式 O是ABC的重心 S BOC : S COA : S AOB 1:1:1 O A OB O C 0 是 S ABC的内心 BOC : S COA :S AOB ■ a:b:c a ?OA b?oB c?oC 0 0是ABC的外心 S BOC : S COA :S AOB sin 2A:sin 2B :sin 2C sin 2A?OA sin2B ?O B sin2C ?OC 0 O是ABC的垂心 S BOC : S COA : S AOB tan A: tan B: tanC tan A?OA tan B?OB tan C ?OC 0 tanA 竺,tanB AD CD DB tan A: tanB DB: AD S BOC : S COA DB: AD S BOC : S COA tan A:tan B 同理得S COA : S AOB tan B :tanC, S BOC:S AOB tan A:tanC S BOC : S COA : S AOB tan A: tan B : tanC 奔驰定理是三角形四心向量式的完美统 证明:如图0为三角形的垂心,

相关文档
相关文档 最新文档