文档库 最新最全的文档下载
当前位置:文档库 › 聚合物测试表征复习重点

聚合物测试表征复习重点

聚合物测试表征复习重点
聚合物测试表征复习重点

第一章:红外吸收光谱法

1.红外吸收法的基本原理及仪器组成;

2.样品的制备方法;

3.红外吸收光谱法在高聚物定性分析中的应用,熟悉高聚物红外吸收谱图横、

纵坐标表示的物理意义,熟悉常见官能团吸收峰位置,能够给出红外图谱上主要吸收峰的归属,从而判断该聚合物的种类;能够通过红外图谱中可反应官能团的消失或新官能团的出现来判断高聚物化学反应的进程。

第二章:热分析

1.热分析方法的种类;

2-1.差示量热扫描法(DSC)的基本原理、实验技术和主要影响因素;

2-2.DSC在高分子材料领域的应用,分物理转变的研究和化学反应的研究两类。物理转变包括结晶/熔融、液晶转变等相转变以及玻璃化转变等;化学反应包括聚合、交联等。可以用来测定聚合物的结晶度、反应热,研究结晶动力学和反应动力学。

2-3.重点:用DSC研究聚合物结晶行为时常采用的两种测试方法(非等温结晶法和等温结晶法):熟悉结晶聚合物的升温曲线和降温曲线中各个参数的物理意义,掌握熔点和结晶点的确定方法,能够通过熔融峰面积计算聚合物的结晶度。

2-4.玻璃化转变温度的确定。如何通过熔融DSC曲线判断两相聚合物共混物的相容性好坏?(玻璃化转变温度、熔点间位置的变化)

3-1.热重法(TG)的基本原理、实验技术和主要影响因素;

3-2.TG的应用-广泛应用于高分子材料的组成分析、热稳定性测定、氧化或分解反应及其动力学研究、失去低分子物的缩聚反应研究和材料老化研究等;

3-3.重点:熟悉TG曲线各项参数的物理含义;如何通过TG曲线判断聚合物耐热性能的好坏(失重百分数温度1%、5%、50%);如何通过TG曲线分析材料的组成。

第三章:X射线法(大角X射线衍射法-WAXD、小角X射线散射法-SAXS)

1.X射线在晶体中衍射的基本原理及测定方法-布拉格方程:nλ=2dsinθ,其中

θ为掠射角,晶面间距d,n为正整数(1,2,3……),称衍射级数;

2.了解X射线衍射法在聚合物中的应用;

3.重点:熟悉WAXD曲线各项参数的物理含义,了解结晶聚合物和非晶聚合物

在WAXD图谱上的区别;能够用布拉格方程计算规则排列晶面的层间距;第四章:偏光显微镜

1.偏光显微镜的基本原理及其在高分子材料中的应用;

2.重点:熟悉聚合物结晶结构在偏光显微镜中的典型形态,结合DSC数据判断

聚合物的结晶度和结晶速率大小;

第五章:扫描电镜和透射电镜

1.扫描电镜(SEM)的基本原理、影响成像质量的主要因素及样品制备技术;

2.透射电镜(TEM)的基本原理、影响成像质量的主要因素及样品制备技术;

3.SEM和TEM在高分子材料中的应用;

4.重点:结合其他测试手段,通过电镜照片判断聚合物共混物组分的相容性、

复合材料中无机填料在聚合物基体中的分散效果及界面作用的强弱,能够判断拉伸断面或冲击断面所呈现的断裂形貌是脆性断裂还是韧性断裂。

第六章:色谱法

1.气相色谱法基本原理及其在高分子材料中的应用;

2.裂解色谱法基本原理及其在高分子材料中的应用;

3.反相色谱法基本原理及其在高分子材料中的应用;

4.凝胶色谱法基本原理及其在高分子材料中的应用

第七章:核磁共振法(NMR)(讲义和教科书并重)

1.核磁共振基本原理(重点:化学位移、自旋-自旋偶合)、样品制备技术;

2.1H NMR在有机化合物及有机高分子材料中的应用(重点:定量计算、结合

其他测试手段确定有机化合物的结构式);

3.13C NMR在有机高分子材料中的应用。

教学目的:对涉及高分子材料的各种主要现代测试技术有初步的了解和掌握,了解其测试原理和测试用途,能够对所得测试数据和图谱进行一定程度的解读和计算。初步掌握用两种或两种以上测试手段对同一假设或同一结果进行验证的能力。

聚合物材料表征测试题库

高分子研究方法题库 1 在对聚合物进行各种光谱分析时,红外光谱主要来源于分子振动-转动能级间的跃迁;紫外-可见光谱主要来源于分子的电子能级间的跃迁;核磁共振谱主要来源于置于磁场中的原子核能级间的跃迁,它们实际上都是吸收光谱。 2、SEM 和TEM的三要素是分辨率、放大倍数、衬度。 2、在有机化合物中,解析谱图的三要素为谱峰的位置、形状和强度。 2 苯、乙烯、乙炔、甲醛,其1H化学位移值最大的是甲醛,最小的是乙炔,13C的化学位移值最大的是甲醛最小的是乙炔。 4、紫外光谱主要决定于分子中发色和助色基团的特性,而不是整个分子的特性。 3 差示扫描量热仪分功率补偿型和热流型两种。第107页 4 产生核磁共振的首要条件是核自旋时要有磁距产生。 5 当原子核处于外磁场中时,核外电子运动要产生感应磁场,核外电子对原子核的这种作用就是屏蔽作用. 6 分子振动可分为伸缩振动,弯曲振动 7 傅里叶红外光声光谱英文简称为FTIR-PAS.P28 8 干涉仪由光源,定镜,分束器,检测器等几个主要部分组成。P19 9 高聚物的力学性能主要是测定材料的强度和模量以及变形. 10 共混物的制样方法有流延薄膜法热压薄膜法溴化钾压片法P11 11 光声探测器和红外光谱技术结合即为红外声光谱技术. P27 12 核磁共振普与红外、紫外一样,实际上都是吸收光谱。红外光谱来源于分子振动-转动能级间的跃迁,紫外-可见吸收光谱来源于分子的电子能级间的跃迁。[P46] 13 核磁共振谱图上谱峰发生分裂,分裂峰数是由相邻碳原子上的氢数决定的,若分裂峰数为n,则邻碳原子氢数为n-1。 P50 15 红外光谱在聚合物研究中占有十分重要的位置,能对聚合物的化学性质、立体结构、构象、序态、取向等提供定性和定量的信息。P6 16 红外光谱中,波动的几个参数为波长、频率、波数和光速。 17 红外光谱中,在1300~1400cm,基团和频率的对应关系比较明确,这对确定化合物中的官能团很有帮助,称为官能团区. 18 红外活性振动能引起分子偶极矩变化P8 19 红外区是电磁总谱中的一部分,波长在0.7~1000之间。 20 红外吸收光谱是直接地反映分子中振动能级的变化;而拉曼光谱是间接地反映分子中振动能级的变化。 21 记录X射线的方法有照相法和计数器法。P68 22 解析谱图三要素为谱峰位置形状和强度P/13 2 在紫外光谱中不同浓度的同一种物质,在某一定波长下的λmax处吸光度A的差异最大.所以测定最灵敏 23 聚合物的一般制样方法主要有流延薄膜法,热压薄膜法,溴化钾压片法 24 拉曼光谱研究高分子样品的最大缺点是:荧光散射。 25 拉曼位移的大小与入射光的频率无关,只与分子的能级结构有关。P30 26 凝胶渗透色谱对分子链分级的原理是体积排除理论。P96 27 凝胶渗透色谱仪的组成:系统自动进样系统加热恒温系统分离系统检测系统 28 强迫非共振法是研究聚合物粘弹动力学性能有效、普遍、重要的方法。P146 29 斯托克斯线或反斯托克斯线与入射光频率之差称为拉曼位移。P30 30 温度由低到高时,高聚物历经三种状态,即玻璃态,高弹态和粘流态。P2 31 现代热分析是指在程序控温之下,测量物质的物理性质随温度变化的一类技术P105

材料测试与表征(无机非金属材料)

Introduction to Analysis and Characterization of Materials
材料测试与表征概述
内容
本课程的目的 本课程的内容 材料测试与表征的内容 材料测试与表征的基本原理和意义 材料组成的研究方法 材料结构的研究方法
叶建东 材料学院
版权所有
本课程的目的
本课程的内容
? X射线衍射(XRD)
掌握材料组成分析和结构表征的方法、原理 以及它们在无机材料研究中的应用。
? X射线荧光光谱(XRF) ? 电子显微镜(SEM、TEM、EDS、WDS) ? 电子能谱(XPS、AES) ? 扫描探针显微镜(SPM) ? 热分析(DSC、DTA、TG) ? 分子光谱(FTIR、RS) ? 原子光谱(AAS、AES)
材料测试与表征的内容
材料测试与表征的基本原理和意义
利用波、光、粒子与物质作用时所产生的 现象(如吸收、发射、散射、反射、干涉和衍 射等)来分析材料的组成、表征材料的结构, 为弄清材料的组成、结构及它们与性能的关系, 为设计、合成和制备新材料、改善材料的性能 提供依据。
组成分析(元素组成、化合物组成、物相组成) 结构分析(原子结构、分子结构、晶体结构、 显微结构、表面形貌) 状态分析(化学态) 表面分析 微区分析
1

材料测试与表征的作用
材料制备 配方 (原料) 工艺 组成 性能 结构 材料设计 应用
材料组成的研究方法
化学分析法:各种滴定法、各种分离法等 光谱分析法:紫外、红外、荧光、原子光谱等 色谱分析法:气相、液相、凝胶色谱等 热谱分析法:DSC、DTA、TG等 电子能谱分析法:XPS、AES等 X射线分析法:XRD、XRF、EDS、WDS等 图像分析法:偏光显微术、BSE 、EDS、AES等
基本原理
基本原理
化学分析法:主要利用化学反应及其计量关系 来进行分析。
光谱分析法:以特定或不同波长的电磁波与物 质相互作用为基础,根据物质内部能级跃迁所产生 的发射光谱、吸收光谱或散射光谱的波长和强度进 行定性分析、定量分析以及结构分析。
分子的能量和对应的电磁波段
分子的能量由3个方面构成: 电子的能量 核 / 分子的振动能量 分子的转动能量 与它们相当的电磁波的波长分别为数百nm、几十μm 及数百μm,相应的波段分别属可见紫外区,近、中红外 区,远红外及微波区。
电磁波各光谱区及对应的分析方法
光谱区
波长λ (nm)
波数
(ν ) / cm ?1
频率(ν) (Hz)
无线电波 1013~1010 10-6~10-4 105~109 微波 红外光 可见光 紫外光 X 射线 109~106 106~103 10-3~101 109~1011
量子跃迁 能级 电子和核 10-10~10-5 的自旋 10-5~10-3 分子转动 能量 (eV)
对应分析 方法 核磁共振 顺磁共振
101~104 1012~1014 10-2~100 分子振动 红外光谱 8×102~4× 1.3×104~ 1 可见光谱 3.8×1014~1015 1.6~10 价电子 2 4 10 2.5×10 2 4 4×10 ~1× 2.5×10 1 2 15 16 10 ~1.5×10 10 ~10 内层电子 紫外光谱 ~105 102 102~10-2 106~108 1016~1018
L 层电子 X 射线光谱 103~106 K、
2

纳米材料的测试与表征

纳米材料的测试与表征 目录 一、纳米材料分析的特点 二、纳米材料的成分分析 三、纳米材料的结构分析 四、纳米材料的形貌分析 一、纳米材料分析的特点 纳米材料具有许多优良的特性诸如高比表面、高电导、高硬度、高磁化率等; 纳米科学和技术是在纳米尺度上(0.1nm~100nm之间)研究物质(包括原子、分子)的特性和相互作用,并利用这些特性的多学科的高科技。 纳米科学大体包括纳米电子学、纳米机械学、纳米材料学、纳米生物学、纳米光学、纳米化学等领域。 纳米材料分析的意义 纳米技术与纳米材料属于高技术领域,许多研究人员及相关人员对纳米材料还不是很熟悉,尤其是对如何分析和表征纳米材料,获得纳米材料的一些特征信息。 主要从纳米材料的成分分析,形貌分析,粒度分析,结构分析以及表面界面分析等几个方面进行了检测分析。 通过纳米材料的研究案例来说明这些现代技术和分析方法在纳米材料表征上的具体应用。 二、纳米材料的成分分析 ●成分分析的重要性 ?纳米材料的光电声热磁等物理性能与组成纳米材料的化学成分和结构具有密切关 系 ?TiO2纳米光催化剂掺杂C、N ?纳米发光材料中的杂质种类和浓度还可能对发光器件的性能产生影响据报;如通过 在ZnS中掺杂不同的离子可调节在可见区域的各种颜色。 ?因此确定纳米材料的元素组成测定纳米材料中杂质种类和浓度是纳米材料分析的 重要内容之一。 ●成分分析类型和范围 ?纳米材料成分分析按照分析对象和要求可以分为微量样品分析和痕量成分分 析两种类型; ?纳米材料的成分分析方法按照分析的目的不同又分为体相元素成分分析、表面 成分分析和微区成分分析等方法; ?为达此目的纳米材料成分分析按照分析手段不同又分为光谱分析、质谱分析、 能谱分析 ●纳米材料成分分析种类 ?光谱分析:主要包括火焰和电热原子吸收光谱AAS,电感耦合等离子体原

聚合物结构与性能题目

《聚合物结构与性能》习题集考试为开卷考试,但只能带课本,不能带任何资料,就是希望大家完全掌握下列知识,做合格高分子专业研究生! 一、提高聚合物样品电镜下稳定性的方法 对样品进行支撑: 1.大目数电镜铜网,如 400目铜网; 2.无定型材料作支持膜:硝化纤维素(火棉胶),聚乙烯醇缩甲醛(PVF),或无定型碳;碳支持膜:通过真空蒸涂的办法,将碳沉积在光洁的载玻片或新剥离云母片表面,然后漂在蒸馏水表面,转移至铜网上。 二、提高聚合物样品成像衬度的方法有几个? (1)染色:将电子密度高的重金属原子渗入聚合物的某些区域通过提高其电子密度来增大衬度的。从最终效果上染色分正染色和负染色。从作用机制上染色分化学反应和物理渗透。从手段上分直接染色和间接染色。 最常用的染色剂有:四氧化锇(OsO4)、四氧化钌(RuO4) 四氧化锇(OsO4)染色:四氧化锇染色是利用其与-C=C-双键以及-OH和-NH2基团间的化学反应,使被染色的聚合物含有重金属锇,从而使图像的衬度提高。 四氧化钌(RuO4)染色:四氧化钌染色是利用其对不同聚合物或同一聚合物的不同部位(如晶区和非晶区)的不同渗透速率,使不同

聚合物或同一聚合物的不同部位含有不同量的重金属钌,从而使图像的衬度提高。 (2)晶粒方向: 为得到清晰的衬度,可调整晶体样品的取向,使得除透射电子束外,只出现一个很强的衍射束,一般称为双光束情况 (3)调整样品厚度; (4) 结构缺陷; (5)一次电子与二次电子相位 三、何为橡胶的高弹性?高弹性的本质是什么?什么化学结构和聚集态结构的高分子能够作为橡胶材料?请用应力应变曲线表达出橡胶、塑料、有机纤维三者的区别。 橡胶的高弹性:小应力下的大形变、外力除去后可以恢复; 高弹性的本质是熵弹性。橡胶弹性是由熵变引起的,在外力作用下,橡胶分子链由卷曲状态变为伸展状态,熵减小,当外力移去后,由于热运动,分子链自发地趋向熵增大的状态,分子链由伸展再回复卷曲状态,因而形变可逆。 具有橡胶弹性的化学结构条件: (1)由长分子链组成 (2)分子链必须有高度的柔性 (3)分子链必须结合在一个交联网络之中 第一个条件是熵弹性的本源;第二个条件是分子链迅速改变构想的可能;第三个条件保证了可恢复性,这是橡胶材料不同于单分子链之处。 (4)具有橡胶弹性的凝聚态结构:无定形态。(橡胶的聚集态是指很多生胶分子聚集在一起时分子链之间的几何排列方式和堆砌

聚合物材料的动态力学性能测试

测量形状记忆高聚物性能原理及应用 聚合物材料地动态力学性能测试 在外力作用下,对样品地应变和应力关系随温度等条件地变化进行分析,即为动态力学分析.动态力学分析能得到聚合物地动态模量( ′)、损耗模量(″)和力学损耗(δ).这些物理量是决定聚合物使用特性地重要参数.同时,动态力学分析对聚合物分子运动状态地反应也十分灵敏,考察模量和力学损耗随温度、频率以及其他条件地变化地特性可得到聚合物结构和性能地许多信息,如阻尼特性、相结构及相转变、分子松弛过程、聚合反应动力学等.b5E2R。 实验原理 高聚物是黏弹性材料之一,具有黏性和弹性固体地特性.它一方面像弹性材料具有贮存械能地特性,这种特性不消耗能量;另一方面,它又具有像非流体静应力状态下地黏液,会损耗能量而不能贮存能量.当高分子材料形变时,一部分能量变成位能,一部分能量变成热而损耗.能量地损耗可由力学阻尼或内摩擦生成地热得到证明.材料地内耗是很重要地,它不仅是性能地标志,而且也是确定它在工业上地应用和使用环境地条件.p1Ean。 如果一个外应力作用于一个弹性体,产生地应变正比于应力,根据虎克定律,比例常数就是该固体地弹性模量.形变时产生地能量由物体贮存起来,除去外力物体恢复原状,贮存地能量又释放出来.如果所用应力是一个周期性变化地力,产生地应变与应力同位相,过程也没有能量损耗.假如外应力作用于完全黏性地液体,液体产生永久形变,在这个过程中消耗地能量正比于液体地黏度,应变落后于应力,如图()所示.聚合物对外力地响应是弹性和黏性两者兼有,这种黏弹性是由于外应力与分子链间相互作用,而分子链又倾向于排列成最低能量地构象.在周期性应力作用地情况下,这些分子重排跟不上应力变化,造成了应变落后于应力,而且使一部分能量损耗.图()是典型地黏弹性材料对正弦应力地响应.正弦应变落后一个相位角.应力和应变可以用复数形式表示如下.DXDiT。 σ*σ(ω) γ*γ [ (ωδ) ] 式中,σ和γ为应力和应变地振幅;ω是角频率;是虚数.用复数应力σ*除以复数形变γ*,便得到材料地复数模量.模量可能是拉伸模量和切变模量等,这取决于所用力地性质.为了方便起见,将复数模量分为两部分,一部分与应力同位相,另一部分与应力差一个地相位角,如图()所示.对于复数切变模量RTCrp。 *′″ (-) 式中

最新聚合物材料表征与测试考点

一、红外光谱中,什么是特征频率区、指纹区?二者的频率范围是多少?三键、 双键和单键分别在哪个频率范围内会产生吸收峰? 能代表某种基团存在并具有较高强度的吸收峰所在的频率位置称为基团特征吸收频率。一些同系物或结构相似的化合物,在这个区域的谱带往往存在一定的区分,可以区别开来,如同人的指纹,因此称为指纹区 三键在2400-2100cm-1处产生吸收峰 双键在1900-1500cm-1处产生吸收峰 单键在1300cm-1以下产生吸收峰 二、什么是热分析?常用的热分析方法有哪些?(至少三种) 热分析是在受控程序温度条件下和规定的气氛测量物质的物理性质随温度或时间变化的技术。常用的热分析方法有差式扫描量热和差热分析、热重分析和动态力学分析 三、核磁共振氢谱图可以提供哪些主要信息? 峰的数目:标志分子中磁不等性质子的种类,多少种; 峰的强度(面积)比:每类质子的数目(相对),多少个; 峰的位移值(δ):每类质子所处的化学环境、化合物中位置; 峰的裂分数:相邻碳原子上质子数; 偶合常数(J):确定化合物构型。 四、X射线衍射谱图物相分析的基本思想是什么?说出晶态、非晶态、半晶态衍射谱图的特征分别是什么?(p78) 1)

2) 3)区分晶态与非晶态(鉴别是否有结晶) 聚合物鉴定 识别晶体类型 尖锐峰——结晶存在 弥散“隆峰”——样品中有非晶态 不尖锐不弥散的“突出峰”——有结晶存在,但不完善 五、拉曼与红外 一般说来极性基团的振动和分子非对称振动使分子的偶极矩变化,所以是红外活性的。非极性基团的振动和分子的全对称振动使分子极化率变化,所以是拉曼活性的。 拉曼光谱最适用于研究同种原子的非极性健如S-S,N=N,C=C,C≡C等的振动。 红外光谱适用于研究不同种原子的极性键如C=O,C—H,N—H,O-H等的振动。 名词解释: 1双折射现象: 光束入射到各向异性的晶体上时,入射光分解为两束光而沿不同方向折射的现象。它们为振动方向互相垂直的线偏振光。 2化学位移: 由于原子核外电子运动产生了感应磁场,对外磁场产生屏蔽作用(σ屏蔽常数,反映核所处的化学环境),使质子的共振频率发生变化,在谱图上反映出谱峰的位置移动了

实验五 聚合物材料冲击强度的测定(定稿)

实验五聚合物材料冲击强度的测定 一、实验目的 1. 了解高分子材料的冲击性能; 2. 理解摆锤式抗冲击强度试验机的原理; 3. 掌握冲击强度的测试方法; 二、实验原理 冲击强度是衡量材料韧性的一种强度指标,表征材料抵抗冲击载荷破坏的能力。通常定义为试样受冲击载荷而折断时单位面所吸收的能量。 ()=/K A bh α 式中,K α为冲击强度;单位为J/cm 2;A 为冲断试样所消耗的功;b 为试样宽度;h 为试样厚度。冲击强度的测试方法很多,应用较广的有以下三种: (1)摆锤式冲击试验; (2)落球法冲击试验; (3)高速拉伸试验。 本实验采用摆锤式冲击试验法。摆锤冲击试验,是将标准试样放在冲击机规定的位置上,然后让重锤自由落下冲击试样,测量摆锤冲断试样所消耗的功,根据上述公式计算试样的冲击强度。摆锤冲击试验机的基本构造有3部分:机架部分、摆锤冲击部分和指示系统部分。根据试样的按放方式,摆锤式冲击试验又分为简支梁型(Charpy 法)和悬臂梁型。前者试样两端固定,摆锤冲击试样的中部;后者试样一端固定,摆锤冲击自由端。如图1所示。 图1摆锤冲击试验中试样的安放方式 试样可采用带缺口和无缺口两种。采用带缺口试样的目的是使缺口处试样的截面积大为减小,受冲击时,试样断裂一定发生在这一薄弱处,所有的冲击能量都能在这局部的地方被吸收,从而提高试验的准确性。 测定时的温度对冲击强度有很大影响。温度越高,分子链运动的松弛过程进行越

快,冲击强度越高。相反,当温度低于脆化温度时,几乎所有的塑料都会失去抗冲击的能力。当然,结构不同的各种聚合物,其冲击强度对温度的依赖性也各不相同。湿度对有些塑料的冲击强度也有很大影响。如尼龙类塑料,特别是尼龙6、尼龙66等在湿度较大时,其冲击强度更主要表现为韧性的大大增加,在绝干状态下几乎完全丧失冲击韧性。这是因为水分在尼龙中起着增塑剂和润滑剂的作用。 试样尺寸和缺口的大小和形状对测试结果也有影响。用同—种配方,同一种成型条件而厚度不同的塑料作冲击试验时,会发现不同厚度的试样在同一跨度上作冲击试验,以及相同厚度在不同跨度上试验,其所得的冲击强度均不相同,且都不能进行比较和换算。而只有用相同厚度的试样在同一跨度上试验,其结果才能相互比较,因此在标准试验方法中规定了材料的厚度和跨度。缺口半径越小,即缺口越尖锐,则应力越易集中,冲击强度就越低。因此,同一种试样,加工的缺口尺寸和形状不同,所测得冲击强度数据也不——样。这在比较强度数据时应该注意。 三、实验仪器和材料 1、试验机 试验机为摆锤式(悬臂梁),并由摆锤、试样支座、能量指示机构和机体等主要构件组成。能指示试样破坏过程中所吸收的冲击能量。 2、摆体 摆体是试验机的核心部分,它包括旋转轴、摆杆、摆锤和冲击刀刃等部件。旋转轴心到摆锤打击中心的距离与旋转轴心至试样中心距离应一致。两者之差不应超过后者的±1%。冲击刀刃规定夹角为30士1o。端部圆弧半径为2.0士0.5 mm。摆锤下摆时,刀刃通过两支座问的中央偏差不得超过士0.2 mm,刀刃应与试样的冲击面接触。接触线应与试样长轴线相垂直,偏差不超过士2o。 3、试样支座 为两块安装牢固的支撑块,能使试样成水平,其偏差在1/20以内。在冲击瞬间应能使试样打击面平行于摆锤冲击刀刃,其偏差在1/200以内。支撑刃前角为 5o,后角为10士1o,端部圆弧半径为1mm。 4、能量指示机构 能量指示机构包括指示度盘和指针。应对能量度盘的摩擦、风阻损失和示值误差做准确的校正。 5、机体 机体为刚性良好的金属框架,并牢固地固定在质量至少为所用最重摆锤质量40倍的基础上。本试验采用带缺口试样。试样表面应平整、无气泡、裂纹、分 层和明显杂质。试样缺口处应无毛刺。

聚合物测试表征复习重点

第一章:红外吸收光谱法 1.红外吸收法的基本原理及仪器组成; 2.样品的制备方法; 3.红外吸收光谱法在高聚物定性分析中的应用,熟悉高聚物红外吸收谱图横、 纵坐标表示的物理意义,熟悉常见官能团吸收峰位置,能够给出红外图谱上主要吸收峰的归属,从而判断该聚合物的种类;能够通过红外图谱中可反应官能团的消失或新官能团的出现来判断高聚物化学反应的进程。 第二章:热分析 1.热分析方法的种类; 2-1.差示量热扫描法(DSC)的基本原理、实验技术和主要影响因素; 2-2.DSC在高分子材料领域的应用,分物理转变的研究和化学反应的研究两类。物理转变包括结晶/熔融、液晶转变等相转变以及玻璃化转变等;化学反应包括聚合、交联等。可以用来测定聚合物的结晶度、反应热,研究结晶动力学和反应动力学。 2-3.重点:用DSC研究聚合物结晶行为时常采用的两种测试方法(非等温结晶法和等温结晶法):熟悉结晶聚合物的升温曲线和降温曲线中各个参数的物理意义,掌握熔点和结晶点的确定方法,能够通过熔融峰面积计算聚合物的结晶度。 2-4.玻璃化转变温度的确定。如何通过熔融DSC曲线判断两相聚合物共混物的相容性好坏?(玻璃化转变温度、熔点间位置的变化) 3-1.热重法(TG)的基本原理、实验技术和主要影响因素; 3-2.TG的应用-广泛应用于高分子材料的组成分析、热稳定性测定、氧化或分解反应及其动力学研究、失去低分子物的缩聚反应研究和材料老化研究等; 3-3.重点:熟悉TG曲线各项参数的物理含义;如何通过TG曲线判断聚合物耐热性能的好坏(失重百分数温度1%、5%、50%);如何通过TG曲线分析材料的组成。 第三章:X射线法(大角X射线衍射法-WAXD、小角X射线散射法-SAXS) 1.X射线在晶体中衍射的基本原理及测定方法-布拉格方程:nλ=2dsinθ,其中 θ为掠射角,晶面间距d,n为正整数(1,2,3……),称衍射级数; 2.了解X射线衍射法在聚合物中的应用;

2010年聚合物结构分析习题

《聚合物结构分析》基础习题 。 第二章红外光谱 1、红外光谱试验中有哪几种制样方法?分别适应于哪种类型的样品?对于那些易于溶解 的聚合物可以采用哪一种制样方法?对于那些不容易溶解的热塑性聚合物可以采用哪一种制样方法?对于那些仅仅能在溶剂中溶胀的橡胶样品,可以采用哪一种制样方法? 对于粘稠的低聚物和黏合剂可以采用哪种方法制样? 2、红外光谱仪中常用的附件有哪些?各自的用途是什么? 3、红外光谱图的表示方法,即纵、横坐标分别表示什么? 4、记住书中表2-1中红外光谱中各种键的特征频率范围。 5、名词:红外光谱中基团的特征吸收峰和特征吸收频率,官能团区,指纹区,透过率,吸光度,红外二向色性,衰减全反射,光声效应 6、红外光谱图中,基团的特征频率和键力常数成___正比____,与折合质量成___反比____。 7、官能团区和指纹区的波数范围分别是1300-4000cm-1和400-1300cm-1。 9、论述影响吸收谱带位移的因素。 10、在红外谱图中C=O的伸缩振动谱带一般在1650-1900cm-1,该谱带通常是含C=O 聚合物的最强谱带;记住表2-2中C=O在不同分子中红外光谱图上对应的吸收谱带的位置。对于聚丙烯酸、聚丙烯酰胺、聚丙烯酸甲酯来说,按C=O的伸缩振动谱带波数高低,依次是聚丙烯酰胺、聚丙烯酸、聚丙烯酸甲酯。 12、为什么可以用红外光谱技术来判断两种聚合物的相容性?p14 13、对于伸缩振动,氢键会使基团的吸收频率下降,谱带变宽;对于弯曲振动,氢键会使基团的吸收频率升高,谱带变窄。

14、共轭效应会造成基团的吸收频率降低。 16、叙述傅立叶变换红外光谱仪工作原理。会画图2-7的原理图。 17、简述红外光谱定量分析的基础。p25 19、接枝共聚物和相应均聚物的共混物的红外谱图是相同的,可以用共混物模拟接枝共聚物。 22、如何用红外光谱鉴别(1)PMMA和PS;(2)PVC和PP;(3)环氧树脂和不饱和聚酯。 24、写出透过率和吸光度的定义式,并标明各符号意义。 第三章激光拉曼散射光谱法 2、与红外光谱相比,拉曼光谱有什么优缺点? 3、名词:拉曼散射,瑞利散射,斯托克斯线,反斯托克斯线,拉曼位移, 4、红外吸收的选择定则是分子振动时只有伴随有分子偶极矩发生变化的振动才能产生红外吸收;拉曼活性的选择定则是分子振动时只有伴随有分子极化度发生变化的振动才能产生红外吸收。 5、对多数吸收光谱,只有频率和强度两个基本参数,但对激光拉曼光谱还有一个重要参数,即去偏振度或退偏振比。 7、如果一个化合物的红外和拉曼光谱中没有波数相同的谱带,说明该化合物具有对称中心。 8、拉曼光谱在聚合物结构研究中有哪些应用? 第四章紫外光谱

材料表征-XRD分析实验

材料表征-XRD分析 实验目的 1、了解X衍射的基本原理以及粉末X衍射测试的基本目的; 2、掌握晶体和非晶体、单晶和多晶的区别; 3、了解使用相关软件处理XRD测试结果的基本方法。 实验原理 1、晶体化学基本概念 晶体的基本特点与概念:①质点(结构单元)沿三维空间周期性排列(晶体定义),并有对称性。②空间点阵:实际晶体中的几何点,其所处几何环境和物质环境均同,这些“点集”称空间点阵。③晶体结构=空间点阵+结构单元。非晶部分主要为无定形态区域,其内部原子不形成排列整齐有规律的晶格。 对于大多数晶体化合物来说,其晶体在冷却结晶过程中受环境应力或晶核数目、成核方式等条件的影响,晶格易发生畸变。分子链段的排列与缠绕受结晶条件的影响易发生改变。晶体的形成过程可分为以下几步:初级成核、分子链段的表面延伸、链松弛、链的重吸收结晶、表面成核、分子间成核、晶体生长、晶体生长完善。Bravais提出了点阵空间这一概念,将其解释为点阵中选取能反映空间点阵周期性与对称性的单胞,并要求单胞相等棱与角数最多。 晶体内分子的排列方式使晶体具有不同的晶型。通常在结晶完成后的晶体中,不止含有一种晶型的晶体,因此为多晶化合物。反之,若严格控制结晶条件可得单一晶型的晶体,则为单晶。 2、X衍射的测试基本目的与原理 X射线是电磁波,入射晶体时基于晶体结构的周期性,晶体中各个电子的散射波可相互干涉。散射波周相一致相互加强的方向称衍射方向。衍射方向取决于晶体的周期或晶胞的大小,衍射强度是由晶胞中各个原子及其位置决定的。由倒易点阵概念导入X射线衍射理论, 倒易点落在Ewald球上是产生衍射必要条件。 1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。衍射线空间方位与晶体结构的关系可用布拉格方程表示: θn λ 2 d= sin 式中d为晶面间距;n为反射级数;θ为掠射角;λ为X射线的波长。布拉格方程是X射线衍射分析的根本依据。 X 射线衍射(XRD)是所有物质,包括从流体、粉末到完整晶体,重要的无损分析工具。对材料学、物理学、化学、地质、环境、纳米材料、生物等领域来说,X射线衍射仪都是物质结构表征,以性能为导向研制与开发新材料,宏观表象转移至微观认识,建立新理论和质量控制不可缺少的方法。其主要分析对象包括:物相分析(物相鉴定与定量相分析)。晶体学(晶粒大小、指标化、点参测定、解结构等)。薄膜分析(薄膜的厚度、密度、表面与界面

纳米材料的表征方法

纳米材料的表征及其催化效果评价方式纳米材料的表征主要目的是确定纳米材料的一些物理化学特性如形貌、尺寸、粒径、等电点、化学组成、晶型结构、禁带宽度和吸光特性等。 纳米材料催化效果评价方式主要是在光照(紫外、可见光、红外光或者太阳光)条件下纳米材料对一些污染物质(甲基橙、罗丹明B、亚甲基蓝和Cr6+等)的降解或者对一些物质的转化(用于选择性的合成过程)。评价指标为污染物质的去除效率、物质的转化效率以及反应的一级动力学常数k的大小。

1 、结构表征 XRD,ED,FT-IR, Raman,DLS 2 、成份分析 AAS,ICP-AES,XPS,EDS 3 、形貌表征 TEM,SEM,AFM 4 、性质表征-光、电、磁、热、力等 … UV-Vis,PL,Photocurrent

1. TEM TEM为透射电子显微镜,分辨率为~,放大倍数为几万~百万倍,用于观察超微结构,即小于微米、光学显微镜下无法看清的结构。TEM是一种对纳米材料形貌、粒径和尺寸进行表征的常规仪器,一般纳米材料的文献中都会用到。 The morphologies of the samples were studied by a Shimadzu SSX-550 field-emission scanning electron microscopy (SEM) system, and a JEOL JEM-2010 transmission electron microscopy (TEM)[1]. 一般情况下,TEM还会装配High-Resolution TEM(高分辨率透射电子显微镜)、EDX(能量弥散X射线谱)和SAED(选区电子衍射)。High-Resolution TEM用于观察纳米材料的晶面参数,推断出纳米材料的晶型;EDX一般用于分析样品里面含有的元素,以及元素所占的比率;SAED用于实现晶体样品的形貌特征与晶体学性质的原位分析。

2013年聚合物结构及性能测试试题集 2

《聚合物结构及性能测试》基础习题 第一篇波谱分析 第一章红外光谱 1、红外光谱试验中有哪几种制样方法?分别适应于哪种类型的样品?对于那些易于溶解 的聚合物可以采用哪一种制样方法?对于那些不容易溶解的热塑性聚合物可以采用哪一种制样方法?对于那些仅仅能在溶剂中溶胀的橡胶样品,可以采用哪一种制样方法? 对于粘稠的低聚物和黏合剂可以采用哪种方法制样? 2、红外光谱图的表示方法,即纵、横坐标分别表示什么? 3、记住书中红外光谱中各种键的特征频率范围。 6、红外光谱图中,基团的特征频率和键力常数成___正比____,与折合质量成___反比____。 7、官能团区和指纹区的波数范围分别是1300-4000cm-1和400-1300cm-1。 9、论述影响吸收谱带位移的因素。 10、在红外谱图中C=O的伸缩振动谱带一般在1650-1900cm-1,该谱带通常是含C=O 聚合物的最强谱带;对于聚丙烯酸、聚丙烯酰胺、聚丙烯酸甲酯来说,按C=O的伸缩振动谱带波数高低,依次是聚丙烯酰胺、聚丙烯酸、聚丙烯酸甲酯。 12、为什么可以用红外光谱技术来判断两种聚合物的相容性? 13、对于伸缩振动,氢键会使基团的吸收频率下降,谱带变宽;对于弯曲振动,氢键会使基团的吸收频率升高,谱带变窄。 14、共轭效应会造成基团的吸收频率降低。 16、接枝共聚物和相应均聚物的共混物的红外谱图是相同的,可以用共混物模拟接枝共聚物。 17、如何用红外光谱鉴别(1)PMMA和PS;(2)PVC和PP;(3)环氧树脂和不饱和聚酯。 19、写出透过率和吸光度的定义式,并标明各符号意义。 、问答题 1. 某化合物的红外谱图如下。试推测该化合物是否含有羰基 (C=O),苯环及双键 (=C=C=)?为什么? 2.简单说明下列化合物的红外吸收光谱有何不同? A. CH3-COO-CO-CH3 B. CH3-COO-CH3

材料表征和性能测试过程中用到的仪器设备

材料表征和性能测试过程中用到的仪器设备 1.材料表征:材料的防腐蚀性能 表征方式:电化学阻抗谱 效果:得到材料的电容、电阻、电感等信息,获得材料的防腐蚀机理 需要注意的问题:保证基材的面积固定 表征方式:极化曲线 效果:获得材料腐蚀时的腐蚀电流密度、极化电阻、腐蚀电位、腐蚀速率等信息 需要注意的问题:保证基材的面积固定 表征方式:盐雾试验 效果:加速试验,获得材料耐腐蚀的耐久性 需要注意的问题:注意盐水浓度的变化 2. 材料表征:材料的成分分析 表征方式:X射线能谱 效果:得到材料的元素组成 需要注意的问题:样品不要太大,能放进样品室 表征方式:X射线光电子能谱 效果:得到材料的元素组成及价态或化合态 需要注意的问题:样品不能大于2mm厚,仅能测试表面元素,可以利用溅射一层一层的测试 表征方式:X射线衍射 效果:得到聚苯胺材料的掺杂状态及结晶状态 表征方式:紫外光谱 效果:得到聚苯胺材料的掺杂状态 需要注意的问题:要能溶于某种溶剂 表征方式:核磁共振谱 效果:获得分子结构 需要注意的问题:能溶于特定的溶剂 表征方式:裂解色谱 效果:得到聚合物材料的结构 需要注意的问题:裂解温度要适合 表征方式:凝胶渗透色谱 效果:得到聚合物材料的分子量 需要注意的问题:样品溶于特定的溶剂

1.表征方式:NMR 效果:有机样品的结构鉴定,常用的H谱,C谱,能够得到样品分子中H的种类,杂化类型,数量,主链C的信息等。 需要注意的问题:分为液体核磁和固体核磁 2. 表征方式:GC-MS,LC-MS: 效果:质谱一般联用气相、液相更为有用,用于分析有机小分子成分,有强大的谱库可以定性和定量分析样品组成。 需要注意的问题:对样品极性、溶解性和气化温度等有要求。 3.表征方式:ICP-MS,ICP-AES,ICP-OES等 效果:可以精确得到样品中某种无机金属元素含量,特别是微量金属元素含量; 需要注意的问题:需将样品首先溶解在溶液中,常用硝酸、盐酸、王水、其他各种有机酸作为溶解酸,得保证样品中的重金属可以溶。 4. 表征方式:EDS 效果:可以定性定量分析样品中元素,虽然有机元素如C、N、O等也可以分析,但对元素序数更大的无机元素分析更为精确。 需要注意的问题:EDS是SEM或TEM的附件,样品需按照SEM或TEM制样要求进行制备,所以制样要求较高。 5. 表征方式:EELS 效果:可以定性定量分析样品中元素,范围较EDS更大,同时分辨率较EDS高好几个数量级,做MAPPING分析时真正在纳米尺度上可以表征元素的分布; 需要注意的问题:EELS对TEM配置要求更高,一般TEM不含该附件,不是通用测试手段。 6. 表征方式:TGA-DSC-FTIR,或GC-MS: 效果:TGA可以对有机无机样品重量随温度变化进行记录,表征样品热稳定性,定量分析样品组成等,联用DSC可以分析样品随温度变化热焓效应,分析样品熔点,分界点,化学反应热量等,联用红外或气质可以分析热分解产物成分。 需要注意的问题:单独TGA样品用量5-10mg,但膨胀性样品用量必须减少,储能材料、炸药等不能做TGA或者只能用极微量样品测试,联用红外或气质需适当增加样品用量降低信噪比和本底干扰。 7.表征方式:AFM,AFM-IR联用 效果:AFM可以对样品表面形貌进行真正意义上的3维分析,AFM和红外联用可以同时对AFM图上任意一个区域进行红外官能团分析,做官能团的mapping,对复合材料、多层材料、微观相分离物质非常有效。 需要注意的问题:样品要求必须平整光滑,否则可能损坏探针,与红外联用时需保证样品不含水。 8. 表征方式:BET 效果:分析多孔材料比表面积,孔型,孔径,孔分布等,催化、粉体制备等领域常用仪器。 9.表征方式:GPC 效果:聚合物材料常用表征,可测出聚合物几种分子量,但需根据自身样品特点选择不同的填充柱和溶剂。 10.表征方式:离子色谱 效果:对常见阴离子如F-、Cl-、Br-、NO2-、NO3-、SO42-、PO43-和阳离子如Li+、Na+、NH4+、K+、Mg2+、Ca2+等进行定性定量分析,与ICP等手段组合应用是分析利器。

高分子材料测试方法

定义下列概念 标准:对重复性事物和概念所做的统一规定即为标准 标准化:为在一定的范围内获得最佳秩序,对实际的或潜在的问题制定共同的和重复使用的规则的活动,称为标准化。它包括制定、发布及实施标准的过程。 拉伸应力:试样在计量标距范围内,单位初始横截面上承受的拉伸负荷。 剪切应力:试验过程中任一时刻施加于试样的剪切负荷除以受剪面积的值。 压缩应力:压缩试验中,试样单位原始横截面上承受的压缩负荷,MPa。 弯曲应力:试样跨度中心外表面的正应力,MPa。 冲击强度试验速度: 蠕变:指材料在恒负载(外界给予的外力不变)的条件下,变形随时间增加的现象。 应力松弛:试样在恒定形变下,物体的应力随时间而逐渐衰减的现象。 裤形撕裂强度:用平行于割口平面的外力作用于规定的裤形试样上,将试样撕断所需的力除以试样厚度,并按GB/T12833计算得到的中位数。 无割口直角撕裂强度:用与试样长度方向一致的外力作用于规定的直角试样,将试样撕断所需的最大力除以试样厚度。 割口直角或新月形撕裂强度:垂直于割口平面的外力作用于规定的直角或新月形试样,拉伸试样撕断割口所需的最大力除以试样的厚度。 硬度:指材料抵抗其它较硬物体压入其表面的能力 熔点:熔点就是物质受热后,由固态变为液态的温度,高聚物通常没有明显的熔点。 线膨胀系数:指温度每变化1℃,试样长度变化值与其原始长度值之比。表示物质在某一温度区间的线膨胀特性的,称平均线膨胀系数。 热导率:是表明物体热传导能力的重要参数,即单位面积、单位厚度试样的温差为1 ℃时,单位时间内所通过的热量,单位是W/(m·K)。 冲击脆化温度:是常温下为软质的塑料在试验条件下,以冲击的方法使试样在低温下受到冲击弯曲,求出试样破坏概率为50%时的温度。 玻璃化温度:非结晶高聚物由玻璃态转变为高弹态的转变温度称为玻璃转变化温度,简称玻璃化温度Tg。 失强温度:标准试样在恒定重力作用下,发生断裂的温度。 列出5个标准组织,并给出其标准的代号 ISO:国际标准, ANSI:美国标准, ASTM:美国材料试验协会标准, BS:英国标准, CSA:加拿大标准, DIN:德国标准, JIS:日本工业标准, GB:中国标准, NF:法国标准, EC:国际电工委员会标准, UL:美国保险商试验室标准 弯曲试验有哪两种常见的试验方法,他们的区别在哪里? 弯曲试验有两种加载方法,一种为三点式加载方法,另一种为四点式加载方法。三点式加载方法在试验时将规定形状和尺寸的试样置于两支座上,并在两支座的中点施加一集中负荷,

高分子聚合物的主要表征方法

摘要 本文主要综述了高分子聚合物及其表征方法和检测手段。首先,从不同角度对高分子聚合物进行分类,并对高分子聚合物的结构,生产,性能做了一个简单的介绍。其次,阐述了表征和检测高分子聚合物的常用方法,例如:凝胶渗透色谱、核磁共振(NMR)、红外吸收光谱(IR)、激光拉曼光谱(LR)等。最后,介绍了检测高分子聚合物的常用设备,例如:偏光显微镜、金相显微镜、体视显微镜、X射线衍射、扫描电镜、透射电镜、原子力显微镜等。 关键词:聚合物;表征方法;检测手段;常用设备

ABSTRACT This paper mainly summarizes the polymer and its detection means.First of all, this paper made a simple introduction of the polymer structure, production performance. Secondly, it describes the detection methods of polymers, such as: gel permeation chromatography, nuclear magnetic resonance (NMR), infrared absorption spectroscopy (IR), laser Raman spectroscopy (LR).Finally, it describes the common equipment used to characterize and detection of polymers, such as: polarizing microscope, metallographic microscope, microscope, X ray diffraction, scanning electron microscopy, transmission electron microscopy, atomic force microscopy. Key words:Polymer; Characterization; Testing means; common equipment

结构与性能(聚合物部分)整理

高聚物结构与性能 一、高聚物的分子结构 概念: 1大分子(macromolecule);是由大量原子组成的,具有相对高的分子质量或分子重量 2聚合物分子(polymer molecule);也叫高聚物分子,通常简称为高分子,它意味着:(1) 这些部分是由相对低分子质量的分子衍生的单元(所谓的单体单元或链节);(2) 并且只有一种或少数几种链节;(3) 这些需要的链节多重重复重现 3星形大分子(star macromolecule);从一个公共的核伸出三个或多个臂(支链)的分子若从一个公共的核伸出三个或多个臂(支链)则称为星型高分子 则称为星型高分子 4共聚物(copolymer);由两种或两种以上不同单体经聚合反应而得的聚合物 5共聚物分子(copolymer molecule); 6构型(configuration);是指分子中通过化学键所固定的原子的空间排列 7构象(conformation);构象指一个分子中,不改变共价键结构,仅单键周围的原子放置所产生的空间排布(由于单键内旋转而产生的分子在空间的不同形态称为~) 8链段(macromolecular segments);高分子链上对应于伸直长度和柔性与该高分子链相同的自由连结链内一个统计单元的一段分子链 9高分子链的柔性(flexibility of polymer chain), 高分子链在绕单键内旋转自由度,内旋转可导致高分子链构象的变化,因为伴随着状态熵增大,自发地趋向于蜷曲状态,这种特性就称为高分子链柔性 10聚合度(degree of polymerization); 指聚合物大分子中重复结构单元的数目 11侧基(side group);连接在有机物碳链上的取代基 12端基(end group);聚合物分子链端的基团 13无规共聚物(random copolymer);具有Bernoullian序列统计的统计聚合物(聚合物中组成聚合物的结构单元呈无规排列) 14嵌段共聚物(block copolymer);由通过末端连接的均匀序列的嵌段组成的共聚物(聚合物由较长的一种结构单元链段和其它结构单元链段构成) 15统计共聚物(statistic copolymer);通过聚合反应的统计处理给出单体单元在共聚物分子中的序列 16交替共聚物(alternating copolymer)单体单元A和单体单元B在共聚物分子中交替分布

纳米材料的测试与表征

报告 课程名称纳米科学与技术专业班级电气1241 姓名张伟 学号32 电气与信息学院 和谐勤奋求是创新

纳米材料的测试与表征 摘要:介绍了纳米材料的特性及测试与表征。综合使用各种不同的分析和表征方法,可对纳米材料的结构和性能进行有效研究。 关键词:测试技术;表征方法;纳米材料 引言 纳米材料具有许多优良的物理及化学特性以及一系列新异的力、光、声、热、电、磁及催化特性,被广泛应用于国防、电子、化工、建材、医药、航空、能源、环境及日常生活用品中,具有重大的现实与潜在的高科技应用前景。纳米材料的化学组成及其结构是决定其性能和应用的关键因素,而要探讨纳米材料的结构与性能之间的关系,就必须对其在原子尺度和纳米尺度上进行表征。其重要的微观特征包括:晶粒尺寸及其分布和形貌、晶界及相界面的本质和形貌、晶体的完整性和晶间缺陷的性质、跨晶粒和跨晶界的成分分布、微晶及晶界中杂质的剖析等。如果是层状纳米结构,则要表征的重要特征还有:界面的厚度和凝聚力、跨面的成分分布、缺陷的性质等。总之,通过对纳米材料的结构特性的研究,可为解释材料结构与性能的关系提供实验依据。 纳米材料尺度的测量包括:纳米粒子的粒径、形貌、分散状况以及物相和晶体结构的测量;纳米线、纳米管的直径、长度以及端面结构的测量和纳米薄膜厚度、纳米尺度的多层膜的层厚度的测量等。适合纳米材料尺度测量与性能表征的仪器主要有:电子显微镜、场离子显微镜、扫描探测显微镜Χ光衍射仪和激光粒径仪等。 紫外和可见光谱是纳米材料谱学分析的基本手段,分为吸收光谱、发射光谱和荧光光谱。吸收光谱主要用于监测胶体纳米微粒形成过程;发射光谱主要用于对纳米半导体发光性质的表征,荧光光谱则主要用来对纳米材料特别是纳米发光材料的荧光性质进行表征。红外和喇曼光谱的强度分别依赖于振动分子的偶极矩变化和极化率的变化,因而,可用于揭示纳米材料中的空位、间隙原子、位错、晶界和相界等方面的信息。纳米材料中的晶界结构比较复杂,与材料的成分、键合类型、制备方法、成型条件以及热处理过程等因素均有密切的关系。喇曼频移与物质分子的转动和振动能级有关,不同的物质产生不同的喇曼频移。喇曼频率特征可提供有价值的结构信息,利用喇曼光谱可以对纳米材料进行分子结构、键态特征分析和定性鉴定等。喇曼光谱具有灵敏度高、不破坏样品、方便快速等优点,是研究纳米材料,特别是低维纳米材料的首选方法。 目前对纳米微观结构的分析表征手段主要有扫描探针显微技术,它包括扫描隧道电子显微镜、原子力显微镜、近场光学显微镜等。利用探针与样品的不同相互作用,在纳米级至原子级水平上研究物质表面的原子和分子的几何结构及与电子行为有关的物理、化学性质。例如用STM不仅可以观察到纳米材料表面的原子或电子结构,还可以观察表面存在的原子台阶、平台、坑、丘等结构缺陷。高分辨电子显微镜用来观察位错、孪晶、晶界、位错网络等缺陷,核磁共振技术可以用来研究氧缺位的分布、原子的配位情况、运动过程以及电子密度的变化;用核磁共振技术可以研究未成键电子数、悬挂键的类型、数量以及键的结构特征等。 测试技术的发展 纳米测试技术的研究大致分为三个方面:一是创造新的纳米测量技术,建立新理论、新方法;二是对现有纳米测量技术进行改造、升级、完善,使它们能适应纳米测量的需要;三是多种不同的纳米测量技术有机结合、取长补短,使之能适应纳米科学技术研究的需要。纳米测试技术是多种技术的综合,如何将测试技术与控制技术相融合,将探测、定位、测量、控制、信号处理等系统结合在一起构成一个大系统,开发、设计、制造出实用新型的纳米测量系统,是亟待解决的问题,也是今后发展的方向。随着纳米材料科学的发展和纳米制备技术的进步,将需要更新的测试技术和手段来表征、评价纳米粒子的粒径、形貌、分散和团聚

相关文档
相关文档 最新文档