文档库 最新最全的文档下载
当前位置:文档库 › 铅芯橡胶支座的构造及性能

铅芯橡胶支座的构造及性能

铅芯橡胶支座的构造及性能
铅芯橡胶支座的构造及性能

铅芯橡胶支座的构造及性能

铅芯橡胶支座的构造

铅芯橡胶支座构造如图所示,铅芯橡胶支座是在RB支座的中心压入铅芯构成的。铅芯压入后与橡胶支座融为一体追随剪切变形,这种支座是由橡胶支座安定的复原装置和铅的能量吸收装置所构成的阻尼机构一体型的隔震装置。

铅是一种具有良好塑性变形能力和能量吸收能力的金属。铅芯橡胶支座也是最早用于隔震结构的支座之一。铅芯橡胶支座凭借其优良的力学性能,较为简单的构造和高性价比,已经在工程中广泛应用。

铅芯橡胶支座的基本性能

1、铅阻尼器的能量吸收能力

橡胶本身是一种易拉压变形的材料,单独做成支座加力后变形巨大(如图)。工程用橡胶支座是由薄钢板与薄橡胶层叠组成,钢板对橡胶竖向变形有优秀的约束作用,竖向压缩刚度非常高,但与天然橡胶支座一样,LRB支座拉伸刚度较低,约为压缩刚度的1/7~1/10。

2、铅芯橡胶支座LBR的水平变形能力

钢板约束橡胶的竖向变形但对其水平变形没有影响。同时铅芯能够很好地追随支座变形,吸收地震能量。LRB支座水平性能稳定,LRB支座由于铅芯的存在,能够限制支座的水平变形,如下图所示,装有LRB支座的隔震结构的水平变形要比装有RB支座的小(不考虑外加阻尼作用下)。

3、铅芯橡胶支座LRB的工作特点

铅芯橡胶支座通过铅芯的大小来调整阻尼的大小。铅芯直径增大后,屈服力变大,阻尼量增加,但中心孔过大也会给支座的性能带来不良影响。

4、铅芯橡胶支座LRB的耐久性

日本等国家的工程调查表明,LRB支座与RB支座基本一致,隔震橡胶即使在使用100年后,其内部橡胶依然完好。有调查显示,LRB支座使用10年后,其特性基本保持不变,并预测出60年后其性能仅会下降3%。

5、铅芯橡胶支座LRB的基本力学性能

铅芯橡胶支座的滞回性能可用下图的双线型模型表示。其中细实线为橡胶支座的滞回特性。LRB支座的水平特性是与图示的橡胶部分与铅芯部分水平性能叠加而成,如图粗实线所示。铅芯橡胶支座在剪切变形为250%能表现出稳定的双线型滞回特性

板式橡胶支座的力学性能试验研究

板式橡胶支座的力学性能试验研究 1979—1981年铁道部科学研究院曾对160块小同硬度、不同规格、不向厚度的板式橡胶支座进行了系统的力学性能试验研究。由此确定了板式橡胶文座的各项力学性能指标,做为设计规范的 技术依据。所进行的主要试验项目为: 支座的中心受压试验; 剪切试验; 转动性能试验; 疲劳强度试验; 极限抗压强度试验; 加载速度对文座剪切模量的影响试验; 负温度对支座力学性能的影响试验; 支座与钢和yK凝土的摩擦性能试验等。 试验支座采用氯1”橡胶,其胶料配方相机械性能如表3-10。 表3—10 试验用支座胶料配方及机械性能 一、板式橡胶支座中心受压试验 中心受压试验共计160块。支座的平面尺寸从150 mm×200mm到350 mm×770mm分为7组,厚度从14—105mm分为13种,中间橡胶层厚度为5mm、8mm、11mm三种,胶料硬度为HSA 50、HSA60、HSA 70三种。通过中心受比试验得出橡胶支座的应力—应变曲线,抗压弹性模量和使用应力下的最大压缩量。 1.形状系数露与橡胶文座抗压模量5的义系 橡胶支座在—定压力作用下,其竖向变形的大小主要取决J—6n劲钢板的约束作甩,也就是和支座受压面积与橡胶自由膨胀侧而积之比值,即形状系数5有关。

图3—10为几种不同形状系数下橡胶支座的应力一应变曲线。 铁路板式橡胶支座的抗压弹性模量按支座全厚(包括钢板征内)计算,其抗压弹性模量与形状系数的关系见表3一11。 表3一11 铁路橡胶支座抗压弹性模量E与形状系数S的关系 2.橡胶硬度对支座抗压弹性模丝的影响 不同橡胶硬度的支座应力—应变曲线见图3—11。可见橡胶硬度越大,支座的抗压弹性模过越大。经试验数据统计分析,若以硬度为Hs60的支座抗压弹性模量为1,则不同硬度的支座抗压弹 性横量之比为: 1(HS60):1.3(HS70):o.7(HS50)

橡胶支座的分类及特性

橡胶支座的分类及特性 (2008-04-23 21:54:05) 转载 标签: 杂谈 分类:市政工程类 一、公路桥梁板式橡胶支座 橡胶板式支座性能与特点 板式橡胶支座(GJZ 、GYZ 系列)由多层橡胶与薄钢板镶嵌、粘合、硫化而成。 ·该产品有足够的竖向刚度以承受垂直荷载,且能将上部构造的压力可靠地传递给墩 台;有良好的弹性以适应梁端的转动;有较大的剪切变形以满足上部构造的水平位移;具有构造简单、安全方便、节省钢材、价格低廉、养护简便、易于更换等特点。 ·本品有良好的防震作用,可减少动载对桥跨结构与墩台的冲击作用。 桥梁板式橡胶支座 板式橡胶支座的结构 四氟滑板式支座性能与特点 聚四氟乙烯滑板式橡胶支座简称四氟滑板式支座(GJZF4、GYZF4系列),是于普通板式橡胶支座上按照支座尺寸大小粘复一层厚2-4mm 的聚四氟乙烯板而成. ·四氟滑板式支座除具有普通板式橡胶支座的竖向刚度与弹性变形,且能承受垂直荷载及适应梁端转动外,利用聚四氟乙烯板与不锈钢板间的低摩擦系数(μf≤0.08)可使桥梁上部构造水平位移不受限制。跨度〉. ·30米的大跨度桥梁、简支梁连续板桥和多跨连续梁桥可作活动支座使用;连续梁顶推、T 型梁横移和大型设备滑移可作滑块使用。 四氟滑板式支座

注:当温度低于-30℃时,抗剪模量[G]值应增大20%,四氟滑板与不锈钢板间摩擦系数μ应增大30%,不加润滑硅脂时,摩擦系数μ加倍 二、球冠圆板式橡胶支座 性能与特点

球冠圆板式橡胶支座在平面上各向同性,并以其球冠调节受力状况。 ·不但适用于一般桥梁,也适用于各种布置复杂、纵横较大的立交桥及高架桥,·其坡度使用范围为3~5%,也可根据不同坡度需要调整球冠半径。 球冠直径与球冠高度对照表 1.球冠圆板式橡胶支座; 2.聚四氟乙烯球冠圆板式橡胶支座。若在支座底面粘贴一块与支座平面尺寸相同的聚四氟乙烯板则称为聚四氟乙烯球冠圆板式橡胶支座; 球冠圆板式橡胶支座安装图示 三、坡型板式橡胶支座

铅芯隔震橡胶支座设计指南

目录 1. 桥梁减隔震技术概述 (1) 1.1减隔震技术基本原理 (1) 1.2减隔震支座发展及现状 (1) 2. 支座结构设计 (2) 2.1设计依据 (2) 2.2支座分类 (3) 2.3支座型号 (3) 2.4支座结构 (3) 2.5产品特点 (4) 3. 支座技术性能 (4) 3.1规格系列 (4) 3.2剪切模量 (5) 3.3水平等效刚度 (5) 3.4等效阻尼比 (5) 3.5设计剪切位移 (5) 3.6温度适用范围 (5) 4. 支座布置原则 (5) 5. 支座选用原则 (6) 6. 减隔震计算 (7) 7. 支座安装、更换、养护及尺寸 (8) 7.1支座安装工艺细则 (8) 7.2支座更换工艺 (14) 7.3支座的养护与维修 (14) 7.4支座安装尺寸 (16)

L R B系列铅芯隔震橡胶支座 1. 桥梁减隔震技术概述 1.1 减隔震技术基本原理 我国是一个强震多发国家,地震发生频率高、强度大、分布范围广、伤亡多、灾害严重,特别是近年发生的四川汶川特大地震、青海玉树大地震等地震灾害,给我们带来了惨痛的教训。与此同时,桥梁作为生命线系统工程中的重要组成部分,一旦损毁、中断便等于切断了地震区的生命线,同时,遭受破坏的大型桥梁修复往往非常困难,严重影响交通的抢通及恢复,从而影响救灾工作的开展,继而引发更大的次生灾害。受到这些地震灾害的教训以后,基于桥梁抗震设计的结构控制技术开始在我国桥梁工程界得到日益重视,国内相关部门积极开展了桥梁减隔震设计及研究工作。 对于地震作用,传统结构设计采用的对策是“抗震”,即主要考虑如何为结构提供抵抗地震作用的能力。一般来说,通过正确的“抗震”设计可以保证结构的安全,防止结构整体破坏或倒塌,然而,结构构件的损伤却无法避免。在某些情况下,靠结构自身来抵抗地震作用显得非常困难,需要付出很大的代价。因此,我们必须寻求更为有效的抗震手段,如基于减隔震装置的结构控制技术等。 结构控制技术的应用,不仅可以提高结构的抗震性能,还可以节省造价,从某种意义上来说,这是解决实际结构抗震问题的唯一有效途径。对于桥梁或建筑结构,目前发展相对成熟、实际应用较为广泛的是减隔震技术。减隔震技术是一种简便、经济、先进、有效的工程抗震手段。 图1 加速度反应谱图2 位移反应谱通过地震时的加速度反应谱(图1)与位移反应谱(图2)可以清楚地反映出不同阻尼下,加速度和位移随着地震周期的变化规律,当延长结构周期,增加结构阻尼可有效降低地震时的加速度和位移响应。减隔震设计就是利用结构地震响应的这种性质,通过延长结构周期和提高阻尼达到减轻地震作用的目的。 1.2 减隔震支座发展及现状 为了减小地震引起桥梁结构的破坏,各国学者对桥梁结构的减震、隔震进行了广泛、深入的研究,并取得了大量的研究成果。研究成果表明:对于桥梁结构比较容易实现和有效的减隔震方法主

公路桥梁板式橡胶支座力学性能试验作业指导书

公路桥梁板式橡胶支座力学性能试验作业指导书 1、目的和范围 测定板式橡胶支座的抗压弹性模量、抗剪弹性模量、抗剪粘结性能、抗剪老化、摩擦系数、转角、极限抗压强度的试验方法。它适用于检测公路桥梁用板式橡胶支座的力学性能试验。 2、仪具 2.1 试验机宜具备下列功能:微机控制,能自动、平稳连续、加载、卸载,且无冲动和颤动现象,自动持荷(试验机满负荷保持时间不少于4h,且试验荷载的示值变动不应大于0.5%),自动采集数据,自动绘制应力—应变图,自动存储试验原始记录及曲线图和自动打印结果的功能。试验用承载板应具有足够的刚度。平面尺寸必须大于测试试样的平面尺寸,在最大荷载下不应发生饶曲。 2.2 进行剪切试验时,其剪切试验机构的水平油缸、负荷传感的轴线应和中间钢拉板的对称轴相重合,确保被测试样水平轴向受力。 2.3 试验机的级别为Ⅰ级,示值相对误差最大允许值为±1.0%,试验机正压力使用可在最大力值的0.4%~90%范围内。水平力的使用可在最大力值的1%~90%范围内,其示值的准确度和相关技术要求

应满足JJG175的规定。 2.4 测量支座试样变形量的仪表量程应满足支座试样变形量的需要,测量转角变形量的分度值为0.001mm,测量竖向压缩变形量和水平位移变形量的分度值为0.01mm,其示值误差和相关技术要求应按相关的检测规程进行检定。 3、试验方法 3.1 抗压弹性模量 3.1.1试验步骤 a)将试样置于试验机的承载板上,上下承载板与支座接触面不得有油污;对准中心,精度应小于1%的试件短边或直径。缓缓加载至压应力为1.0Mpa且稳压,核对承载板四角对称安置的四只位移传感器,确认无误后,开始预压;预压。将压应力以(0.03~0.04)Mpa/s速率连续地增至平均压应力σ=10Mpa,持荷2min ,然后以连续均匀的速度将压应力卸至1.0Mpa,持荷5min,记录初试值,绘制应力—应变图,预压三次;

橡胶隔震支座在建筑结构中的应用-施卫星

橡胶隔震支座在建筑结构中的应用 施卫星1),汪洋2) (1.同济大学结构工程与防灾研究所,同济大学,上海200092; 2.上海路博橡胶减振器技术有限公司,上海201401) 摘要:铅芯橡胶支座是目前国内外隔震结构设计中应用最广的一类隔震装置和弱连接装置,被广泛应用于新建隔震结构、加固改造工程以及连廊、连体结构、雨篷、网架屋盖等与主体结构之间。本文对铅芯橡胶隔震支座的构造、工作原理、主要特点、类型及选用、设计及有限元分析、安装维护及工程应用等进行概述和讨论,为隔震结构、连体结构的设计和应用提供参考。 关键词:橡胶支座;铅芯橡胶支座;隔震支座;隔震结构;弱连体结构;连廊Application and Types of Spherical Bearings in Building Structures SHI Weixing1),WANG Yang2) (1.Tongji University, Shanghai 200092, China; 2.Shanghai RB Rubber Isolator Technology Co., Ltd., Shanghai 201401, China) Abstract: Lead rubber bearings are widely used as seismic isolation devices in seismic isolation design of building structures and weakly connected devices in design of weakly connected structures. Main aspects of lead rubber bearings were summarized and discussed, such as configuration, working principle, types and adoption, design basis, finite element analysis, installation and maintenance, project application of spherical bearings. Furthermore, reference for design and adoption of lead rubber bearings in design of seismic isolation structures and connected structures could be provided. Keywords: Rubber bearing; lead rubber bearing (LRB); seismic isolation bearing; seismic isolation structure; connected structure; weakly connected structure; joint gallery 1 引言 支座是连接上部结构和下部结构的重要构件,起到将上部结构的反力可靠地传递下部结构,并协调或释放上部结构的变形(变形和转角),从而使整个结构的受力情况与理论计算图式相符合。目前在建筑结构工程中广泛使用的支座类型主要有球型钢支座和橡胶支座。橡胶隔震支座(Elastomeric isolator)是目前世界范围内各类隔震结构中最常用的一类隔震装置,主要包括天然橡胶支座(Linear natural rubber bearing)、铅芯橡胶支座(Lead rubber bearing)和高阻尼橡胶支座(High damping rubber bearing)以及各类改进型支座[1]~[5]。其中,铅芯橡胶支座是目前国内外隔震结构设计中应用最广的一种隔震装置和弱连接装置,被广泛应用于新建隔震结构、加固改造工程以及连廊、连体结构、雨篷、网架屋盖等与主体结构之间。本文对铅芯橡胶隔震支座的构造、工作原理、主要特点、类型及选用、设计及有限元分析、安装维护及工程应用等进行概述和讨论。 2 构造及特点 铅芯橡胶支座是在天然橡胶支座的中心或中心周围部位竖直压入一个或几个纯度为

桥梁支座及其作用、特点、要求和分类

√桥梁支座及其作用、特点、要求和分类 在桥梁结构中,支座是桥梁上、下部结构的连接点,其作用是将上部结构的荷载顺适、安全地传递到桥墩台上去,同时保证上部结构在荷载、温度变化、混凝土收缩等因素作用下的自由变形,以便使结构的实际受力情况符合计算图式,并保护梁端、墩台帽不受损伤。这就要求它具有足够的竖向刚度和弹性,能将桥梁上部结构的全部荷载可靠地传递到墩台上,并同时承受由荷载作用引起的桥跨结构端部的水平位移、转角和变形,减轻和缓解桥墩承受的震动,适应因温度、湿度变化引起的桥跨结构胀缩。 就支座的安装位置而言,虽然在使用中可以进行更换,但更换的成本费用、技术性以及困难性均很大,桥梁中大部分支座可谓是永久性的安装,支座寿命应该与桥梁的寿命相吻合,否则会对桥梁的使用造成不良的后果。尽管在桥梁的成本造价中支座成本仅占很小的比例,但作用远远超过其成本,为此,支座就成为桥梁建设和使用的重要材料之一。 近年来在桥梁支座使用过程中,支座出现了各种各样的质量问题和质量隐患,究其原因可分为产品质量、施工质量和设计选型三方面。板式橡胶支座的产品质量、施工质量和设计选型关系到橡胶支座的使用寿命,需要生产方、施工方和设计方的紧密配合,任何一方出现问题都将严重影响橡胶支座的使用寿命。 桥梁支座按照其结构可分为3大类:一是桥梁板式橡胶支座;二是盆式支座;三是球形支座。此外,还可按其功能、用途、特性、发展阶段等等。 桥梁盆式橡胶支座的典型事故 案例分析与防治 周明华 东南大学土木工程学院南京 210096 摘要:盆式橡胶支座与板式橡胶支座相比,具有承载力大,橡胶层在钢盆内不易老化,使用寿命长等突出优点,而在大跨度公路和铁路桥梁以及市政桥梁中得以广泛应用。但在实际桥梁中发现应用不当,也经常会出现病害和质量事故。本文通过实际工程中的盆式支座病害和事故案例分析,提出了相应的防治措施。 关键词:盆式橡胶支座、支座安装连接板、支座布置、支座转角、钢盆开裂、梁体滑移、病害和事故案例、防治措施。 1、应用概述: 盆式橡胶支座在我国公路与铁路桥梁上应用已有近30年历史,最早在上世纪70年代京包和京唐铁路的铁路大桥上应用;90年代在京九铁路上推广应用抗震盆式支座;1998年在南京长江二桥的北汊桥5跨连续箱梁(90m+3×165m+90m)上应用大吨位盆式支座,最大设计承载力达到6500吨,是当时国内设计承载力最大的盆式支座。由于盆式支座具有承载力大,其橡胶层在钢盆内不易老化,维护保养简单,使用寿命长,特别适用于大跨度桥梁等突出优点,所以近十多年来,在全国高速公路上的桥梁、铁路桥梁和城市市政桥梁中得以大量推广应用。在长江、黄河、珠江、黄浦江等所建成的跨江特大桥上使用的几乎都是盆式支座。为了规范使用,上世纪90年代初和90年代末,铁道部和交通部相继出台了“盆式橡胶支座产品标准”,这对盆式支座的推广应用起了有力的促进作用。然而随着盆式支座的大量推广应用,近几年也相继出现了不少盆式支座安装质量事故和产品质量事

桥梁板式橡胶支座的结构及分类

板式橡胶支座 一、板式橡胶支座的结构 及性能 桥梁板式橡胶支座是由多 层橡胶片与薄钢板硫化、粘 合而成,它有足够的竖向钢 度,能将上部构造的反力可 靠的传递给墩台;有良好的 弹性,以适应梁端的转动, 又有教大的剪切变形能力,以满足上部构造的水平位移. 在上述的板式橡胶支座表面粘复一层1.5mm-3mm厚的聚四氟乙烯板,就能制作成聚四氟乙烯滑板式橡胶支座.它除了竖向钢度与弹性变形,能承受垂直荷载及适应梁端转动外,因聚四氟乙烯板的低摩擦系数,可使梁端在四氟板表面自由滑动,水平位移不受限制,特别适宜中、小荷载,大位移量的桥梁使用. 板式橡胶支座不仅技术性能优良,还具有构造简单、价格低廉、无需养护易于更换缓冲隔震、建筑高度低等特点.因而在桥梁界颇受欢迎,被广泛使用。

二、板式橡胶支座的分类及表示方法 1、根据桥梁板式橡胶支座的结构型式分类如下: 球冠圆板式橡胶支座(TCYB系列) 普通板式橡胶支座---矩形普通板式橡胶支座(GJZ 系列) 圆形普通板式橡胶支座(GYZ系列) 板式橡胶支座 圆形四氟板式橡胶支座(GYZF4系列) 聚四氟乙烯板式橡胶支座---矩形四氟板式橡胶支座(GJZF4系列) 球冠四氟板式橡胶支座(TCYBF4系列) 2、板式橡胶支座按胶种适用温度分类如下: a、氯丁橡胶:适用温度+60℃∽-25℃ b、天然橡胶:适用温度+60℃∽-40℃ c、三元乙丙橡胶:适用温度+60℃∽-45℃ 三、板式橡胶支座的适用范围 1、普通板式橡胶支座适用于跨度小于30m、位移量较小的桥梁.不同的平面形状适用于不同的桥跨结构,正交桥梁用矩形支座;曲线桥、斜交桥及圆柱墩桥用圆形支座. 2、四氟板式橡胶支座适用于大跨度、多跨连续、简支梁连续板等结构的大位移量桥梁.它还可用作连续

20121020-LRB铅芯隔震橡胶支座设计指南

桥梁标准构件系列产品 LRB 系列铅芯隔震橡胶支座 设计指南 2012 年08 月

〖LRB 系列铅芯隔震橡胶支座〗设计指南 目录 1. 桥梁减隔震技术概述 (1) 1.1 减隔震技术基本原理 (1) 1.2 减隔震支座发展及现状 (1) 2. 支座结构设计 (2) 2.1 设计依据 (2) 2.2 支座分类 (3) 2.3 支座型号 (3) 2.4 支座结构 (3) 2.5 产品特点 (4) 3. 支座技术性能 (4) 3.1 规格系列 (4) 3.2 剪切模量 (5) 3.3 水平等效刚度 (5) 3.4 等效阻尼比 (5) 3.5 设计剪切位移 (5) 3.6 温度适用范围 (5) 4. 支座布置原则 (5) 5. 支座选用原则 (6) 6. 减隔震计算 (7) 7. 支座安装、更换、养护及尺寸 (8) 7.1 支座安装工艺细则 (8) 7.2 支座更换工艺 (14) 7.3 支座的养护与维修 (14) 7.4 支座安装尺寸 (16)

LRB 系列铅芯隔震橡胶支座 1. 桥梁减隔震技术概述 1.1 减隔震技术基本原理 我国是一个强震多发国家,地震发生频率高、强度大、分布范围广、伤亡多、灾害严重,特别是近年发生的四川汶川特大地震、青海玉树大地震等地震灾害,给我们带来了惨痛的教训。与此同时,桥梁作为生命线系统工程中的重要组成部分,一旦损毁、中断便等于切断了地震区的生命线, 同时,遭受破坏的大型桥梁修复往往非常困难,严重影响交通的抢通及恢复,从而影响救灾工作的 开展,继而引发更大的次生灾害。受到这些地震灾害的教训以后,基于桥梁抗震设计的结构控制技 术开始在我国桥梁工程界得到日益重视,国内相关部门积极开展了桥梁减隔震设计及研究工作。 对于地震作用,传统结构设计采用的对策是“抗震”,即主要考虑如何为结构提供抵抗地震作用 的能力。一般来说,通过正确的“抗震”设计可以保证结构的安全,防止结构整体破坏或倒塌,然 而,结构构件的损伤却无法避免。在某些情况下,靠结构自身来抵抗地震作用显得非常困难,需要 付出很大的代价。因此,我们必须寻求更为有效的抗震手段,如基于减隔震装置的结构控制技术等。 结构控制技术的应用,不仅可以提高结构的抗震性能,还可以节省造价,从某种意义上来说,这是解决实际结构抗震问题的唯一有效途径。对于桥梁或建筑结构,目前发展相对成熟、实际应用 较为广泛的是减隔震技术。减隔震技术是一种简便、经济、先进、有效的工程抗震手段。 图 1 加速度反应谱图 2 位移反应谱通过地震时的加速度反应谱(图1)与位移反应谱(图2)可以清楚地反映出不同阻尼下,加速度和位移随着地震周期的变化规律,当延长结构周期,增加结构阻尼可有效降低地震时的加速度和 位移响应。减隔震设计就是利用结构地震响应的这种性质,通过延长结构周期和提高阻尼达到减轻 地震作用的目的。 1.2 减隔震支座发展及现状 为了减小地震引起桥梁结构的破坏,各国学者对桥梁结构的减震、隔震进行了广泛、深入的研究,并取得了大量的研究成果。研究成果表明:对于桥梁结构比较容易实现和有效的减隔震方法主

板式橡胶支座实验方案

一、试验目的 检测板式橡胶支座的抗压、抗剪弹性模量等力学指标,评定板式橡胶支座的力学性能。 二、试验要求 通过本实验,掌握板式橡胶支座抗压、抗剪弹性模量的实验方法,了解极限抗压强度、摩擦系数等其他几项力学指标的实验方法。 三、仪器设备 500T 压力试验机(带横剪装置) 四、试验步骤 (一)抗压弹性模量试验 1、第一步,将试样置于试验机的承载板上,上下承载板与支座接触不得有油渍;对准中心,精度应小于1%的试件短边尺寸或直径。缓缓加载至应力为MPa 1且稳压后,核对承载板四角对称安置的四只位移计,确认无误后,开始预压。 2、第二步,预压。将压应力以 s MPa /4.0-3.0)(速率连续地增至平均压应力MPa 10=σ,持荷2min ,然后以连续均匀的速度将压应力卸至MPa 1,持荷5min 。 3.第三步,每一加载循环自1.OMPa 开始,将压应力 s MPa /4.0-3.0)(速率均匀加载至MPa 4,持荷2min 后,采集支座变形值,然后以同样速率每MPa 2为一级逐级加载板式橡胶支座力学性能试验研究及数值模拟每级持荷2min 后读取支座变形数据直至平

均压应力。为止,然后以连续均匀的速度卸载至压应力为MPa 1。10min 后进行下一加载循环。加载过程应连续进行三次; 4、以承载板四角所测得的变化值的平均值,作为各级荷载下试样的累计压缩变形ε?,按试样橡胶层的总厚度e t 求出在各级试验荷载作用下,试样的累计压缩应变e e i t /?=ε。 5、板式橡胶支座的抗压弹性模量E 按下式计算 式中: 410410--E εεσσ= E ——试样实测抗压弹性模量,单位MPa ; 44,εσ——第MPa 4级实验荷载下的压应力和累计压缩应变值; 1010,εσ——第MPa 10级实验荷载下的压应力和累计压缩应变值; (二)抗剪切弹性模量试验 a)在试验机的承载板上,应使支座轴心和试验机轴心重合,将试样及中间钢拉板按双剪组合配置好,使试样和中间钢拉板的对称轴和试验机承载板中心轴处在同一垂直面上,精度应小于1%的试件短边尺寸。为防止打滑现象,应在上下承载板和中间钢拉板粘结高摩擦板,以确保试验的准确性; b)将压应力以 s MPa /4.0-3.0)(的速率连续地增至平均压应力。并在整个抗剪试验过程中保持不变;

midas-减隔震支座的刚度模拟

01、减隔震支座的刚度模拟 具体问题: 根据《公路桥梁抗震细则》(JTGB02-01-2008)中第10.2条中关于减隔震装置的说明,常用的减隔震支座装 置分为整体型和分离型两类。目前常用的整体型减隔震装置有:铅芯橡胶支座、高阻尼橡胶支座、摩擦摆式减隔 震支座;目前常用的分离型减隔震装置有:橡胶支座+金属阻尼器、橡胶支座+摩擦阻尼器、橡胶支座+黏性材料 阻尼器。 目前设计人员普遍存在两个误区,其一:抗震分析时一味的考虑用桥墩的塑性能力耗散地震效应,忽略增设 减隔震支座的设计思路;其二:由于设计人员对减隔震支座的模拟方式不清楚,造成潜意识里回避减隔震支座的 采用。本文考虑上述两点对《公路桥梁抗震细则》(JTGB02-01-2008)第10.2条中涉及的减隔震支座模拟进行说 明。限于篇幅,本文仅对整体型减隔震装置进行叙述。 解决斱法: 1、 铅芯橡胶支座 ① ② 涉及规范及支座示意图(《公路桥梁铅芯隔震橡胶支座》(JT/T 822-2011)) 图1.1 铅芯橡胶支座示意图 铅芯橡胶支座的实际滞回曲线和等价线性化模型

图1.2实际滞回曲线图 从实际滞回曲线可以得到3点重要的结论: 图1.3等价线性化模型 1) 2) 3) ③铅芯橡胶支座的位移剪力曲线所围面积明显大于较普通的橡胶支座,而且滞回曲线所谓面积反映了支座耗能能力,故间隔震支座(对于本图为铅芯橡胶支座)的本质是通过自身的材料或构造特性提供更有效的耗能机制,耗散地震产生的能量,从而起到减轻地震对结构的破坏程度。 实际滞回曲线一般为梭形,图形成反对称形态。目前通用的方法是将其等效为图1.2所示的线性化模型。通过K1、K2、KE、Qy四个参数来模拟铅芯橡胶支座的滞回曲线。 等价线性化模型中涉及的四个参数含义如下: K1——弹性刚度:表示初始加载时,结构处于弹性状态是的刚度(力与变形之间的关系)。 K2——屈服刚度:表示屈服之后的刚度。 KE——等效刚度:等效的含义是指如果不考虑加载由弹性到塑性的变化过程,仅考虑屈服后累计位移与力的关系折算出的刚度。 Qy——上述三个参数仅提供刚度的采用值(可以理解为曲线斜率的概念),但具体受力到多大开始采用屈服刚度,由Qy提供明确的界定点(即屈服点)。 程序中如何实现上述等价线性化模型 程序(805版本)中选择边界》一般连接》一般连接特性》添加,选择特性值类型选择铅芯橡胶支座隔震装置,如图1.4所示:

铅芯橡胶支座的构造及性能

铅芯橡胶支座的构造及性能 铅芯橡胶支座的构造 铅芯橡胶支座构造如图所示,铅芯橡胶支座是在RB支座的中心压入铅芯构成的。铅芯压入后与橡胶支座融为一体追随剪切变形,这种支座是由橡胶支座安定的复原装置和铅的能量吸收装置所构成的阻尼机构一体型的隔震装置。 铅是一种具有良好塑性变形能力和能量吸收能力的金属。铅芯橡胶支座也是最早用于隔震结构的支座之一。铅芯橡胶支座凭借其优良的力学性能,较为简单的构造和高性价比,已经在工程中广泛应用。 铅芯橡胶支座的基本性能 1、铅阻尼器的能量吸收能力 橡胶本身是一种易拉压变形的材料,单独做成支座加力后变形巨大(如图)。工程用橡胶支座是由薄钢板与薄橡胶层叠组成,钢板对橡胶竖向变形有优秀的约束作用,竖向压缩刚度非常高,但与天然橡胶支座一样,LRB支座拉伸刚度较低,约为压缩刚度的1/7~1/10。

2、铅芯橡胶支座LBR的水平变形能力 钢板约束橡胶的竖向变形但对其水平变形没有影响。同时铅芯能够很好地追随支座变形,吸收地震能量。LRB支座水平性能稳定,LRB支座由于铅芯的存在,能够限制支座的水平变形,如下图所示,装有LRB支座的隔震结构的水平变形要比装有RB支座的小(不考虑外加阻尼作用下)。 3、铅芯橡胶支座LRB的工作特点

铅芯橡胶支座通过铅芯的大小来调整阻尼的大小。铅芯直径增大后,屈服力变大,阻尼量增加,但中心孔过大也会给支座的性能带来不良影响。 4、铅芯橡胶支座LRB的耐久性 日本等国家的工程调查表明,LRB支座与RB支座基本一致,隔震橡胶即使在使用100年后,其内部橡胶依然完好。有调查显示,LRB支座使用10年后,其特性基本保持不变,并预测出60年后其性能仅会下降3%。 5、铅芯橡胶支座LRB的基本力学性能 铅芯橡胶支座的滞回性能可用下图的双线型模型表示。其中细实线为橡胶支座的滞回特性。LRB支座的水平特性是与图示的橡胶部分与铅芯部分水平性能叠加而成,如图粗实线所示。铅芯橡胶支座在剪切变形为250%能表现出稳定的双线型滞回特性

公路桥梁板式橡胶支座力学性能试验方法

公路桥梁板式橡胶支座力学性能试验方法 A.1 范围 本附录规定了板式橡胶支座抗压弹性模量、抗剪弹性模 量、抗剪粘结性能、抗剪老化、摩擦系数、转角、极限抗压 强度的试验方法和判定规则。它适用于检测公路桥梁用板式 橡胶支座的力学性能。 A.2试验条件和试样 A.2.1试验条件 试验室的标准温度为230C±50C,且不能有腐蚀性气体及 影响检测的震动源。 A.2.2 试样 试样应满足以下要求: a)试样尺寸应取用实样。只有受试验机吨位限制时,可 由抽检单位或用户与检测单位协商用特制试样代替实样。认 证机构颁发许可证时抽取试样应满足表A.1要求; 表 A.1 单位.㎜

胶片层型号l a l b d T1 数Ⅰ200 300 250 8 3 Ⅱ400 450 400 11 5 Ⅲ600 700 600 15 7 注:无上述规格时,应抽取接近上述规格尺寸的支座作为试样 b)试样的技术性能应符合本标准的有关规定; c)试样的长边、短边、直径、中间层橡胶片厚度、总厚度等,均以该种试样所属规格系列中的公称值为准; d)摩擦系数试验使用的试样: 不锈钢板试样,应满足4.3.4a)的要求,试样为矩形,且每一边应超出支座试样相应边长lOOmm,厚度不应小于 2mm,并应焊接在一块基层钢板上。四氟滑板支座,其平面尺寸和厚度不作统一规定。 A.2.3 试样数量 每次检验抽取试样的规格和数量应符合表12的规定,

各种试验试样通用。 A.2.4试样抽取 试验用的试样应在仓库内随机抽取,其储存条件应满足7.3的要求。凡与油及其他化学药品接触过的支座不得用作试样使用。 A.2.5试样停放 试验前应将试样直接暴露在标准温度230C±50C下,停放24h,以使试样内外温度一致。 A.3检测仪器及对检测单位和人员的要求 A.3.1试验机宜具备下列功能:微机控制,能自动、平稳连续加载、卸载,且无冲击和颤动现象,自动持荷(试验机满负荷保持时间不少于4h,且试验荷载的示值变动不应大于0.5%),自动采集数据,自动绘制应力一应变图,自动储存试验原始记录及曲线图和自动打印结果的功能。试验用承载板应具有足够的刚度,其厚度应大于其平面最大尺寸的1/2,且不能用分层垫板代替。平面尺寸必须大于被测试试样的平面尺寸,在最大荷载下不应发生挠曲。

建筑隔震橡胶支座简介

隔震建筑(的原理是利用隔震器和阻尼器,延长建筑物的振动周期及增加阻尼比,消耗地震对建筑物的冲击,也就是用隔震器将地震时建筑物的摆动转换成建筑物相对于地面的位移,地面传递给建筑物的能量由隔震器和阻尼器吸收,这样就大大降低了建筑物的扭曲和弯曲,也会明显降低摇摆程度(减小地震加速度),降低建筑物的损坏。在隔震建筑设计时,主要考虑地震周期、烈度、最大位移量和建筑物重量等参数,隔震器和阻尼器的合理使用,可以降低1—2度地震烈度。 隔震橡胶支座是由薄钢板和薄橡胶板交替叠合,经高温、高压硫化而成。隔震橡胶支座既能保证竖向刚度和承载力,又可大幅度减小水平刚度,使建筑物具有隔震性能。隔震橡胶支座可按中孔是否有插芯划分为无芯型和有芯型两种。无芯型是由钢板和叠层橡胶组成;有芯型(铅芯橡胶支座)是在多层橡胶支座中设置圆柱铅芯。 多层橡胶支座具有承担建筑物载荷和水平位移的功能,高阻尼橡胶支座依靠橡胶大分子链段的内摩擦及链段的协同作用,吸收大量的振动能量。铅芯橡胶支座在多层橡胶支座剪切变形时,靠塑性变形吸收能量,铅芯依靠自身在常温下进行再结晶恢复其力学性能。高阻尼隔振橡胶支座与铅芯橡胶支座功能上实现了,隔震器和阻尼器融为一体,可大大节约建筑空间、降低成本。天然胶隔振橡胶支座阻尼性不大于5%,水平向依靠叠层橡胶的大变形实现隔振性能,水平向的大变形为弹性变形,简化了支座的设计。刚性滑移支座具有大位移功能,水平向依靠摩擦耗能,一般摩擦系数不大于3%。刚性滑移支座可与其它类型支座搭配使用,减小水平向的等效刚度,增加整体承载,在重量较轻的建筑上使用优势明显。 建筑隔震橡胶支座具有以下优点: ①竖向承载性能——能稳定地支撑建筑物; ②变形性能——适度的柔性,使其低水平刚度能适应建筑物与地基之间的相对变形; ③合理的阻尼特性——能够有效地控制隔震结构的地震反应,特别是减小上部结构的水平位移; ④复位功能——利用橡胶材料的高弹性,使支座在受风震及地震时能极快恢复原位; ⑤耐久性——具有与建筑物同步的使用寿命。

支座的分类及适用范围

支座的分类及适用范围 定义:支座是指用以支承容器或设备的重量,并使其固定于一定位置的支承部件,还要承受操作时的振动与地震载荷。橡胶支座是橡胶和薄钢板紧密结合而成,用于支撑桥梁重量。 一、板式橡胶支座 板式橡胶支座由多层天然橡胶与薄钢板镶嵌、粘合、硫化而成一种桥梁支座产品。该种类型的橡胶支座有足够的竖向刚度以承受垂直荷载,且能将上部构造的压力可靠地传递给墩台;有良好的弹性以适应梁端地转动;有较大地剪切变形以 满足上部构造的水平位移;板式支座按形状划分:矩形 板式、圆形、球冠圆板式、圆板坡形、等几种产品。 1、矩形(圆形)式板 (1)性能:本产品由多层橡胶片与薄钢板镶嵌、粘 合在一定压力、一定温度和一定时间内硫化压制而成。 有足够的竖向刚度以承压垂直荷载,能将梁板上部构造 的反力可靠地传递给墩台,有良好的弹性,以适应梁端的转动;又有较大的剪切变形以满足上部梁体构造的水平位移。 (2)特点:本产品在桥梁建筑、水电工程、房屋抗震设施上已广泛应用,与原用的钢支座相比,有构造简单,安装方便;节约钢材,价格低廉;养护简便,易于更换等优点,且本品建筑高度低,对桥梁设计与降低造价有益;有良好的隔震作用,可减少活载与地震力对建筑物的冲击作用。 2、聚四氟乙烯滑板式 简称四氟滑板式桥梁支座,本产品是于普通板式橡胶支座上粘接一层厚1.5-3mm的聚四氟乙烯板而成。除具有普通板式橡胶支座的竖向刚度与弹性变形,能承受垂直荷载及适应梁端转动外,因四氟乙烯与梁底不锈钢板间的低摩擦系数(μ≤0.06)可使桥梁上部构造的水平位移不受限制,跨度>3o米的大跨度桥梁、简支梁连续板桥和多跨连续梁桥可作活动支座使用;连续梁顶推、t型梁横移和大型设备滑移可作滑块使用。 3、球冠圆板式支座 特点:本产品是经由圆形板式支座改进而来的,其中间层橡胶和钢板布置与圆形板式橡

支座类型及特点介绍

MGPZ型盆式橡胶支座 1.性能与特点 MGPZ型盆式橡胶支座是采用德国毛勒专有技术设计而成,具有结构简单紧凑体积小、重量轻、造价低、建筑高度低、寿命长等优点。主要由上支座板、不锈钢板、底盆、聚四氟乙烯板、中间钢板、内部密封圈、橡胶块、外部密封圈等组成。支座的位移由固定于上支座板的不锈钢板和聚四氟乙烯板之间的滑动来实现,相互滑动的摩擦系数随正压力的增加而减小,在硅脂润滑下摩擦阻力亦大大减小,这为支座滑移自如和低摩擦系数创造了先决条件。置于底盆内的橡胶板处于三向受力状态,抗压弹性模量大大提高且具流体性质,使支座承载力较大,转动灵活。钢盆等金属件则可大大增强橡胶和聚四氟乙烯材料的强度。 因此,与一般支座相比,MGPZ型盆式橡胶支座有其独特的优点,且加工制造方便、养护简单;与一般板式橡胶支座相比,具有承载力大、允许支座位移量大,转动灵活等优点。支座材料通过质量证明,位移灵活,密封圈防潮,支座性能可靠。 因此,与一般支座相比,MGPZ型盆式橡胶支座有其独特的优点,且加工制造方便、养护简单;与一般板式橡胶支座相比,具有承载力大、允许支座位移量大,转动灵活等优点。支座材料通过质量证明,位移灵活,密封圈防潮,支座性能可靠。 产品由正式试验机构检测,材料可靠,全程进行工厂质量控制和监督,严格满足工程检验权威要求。 MGPZ型盆式橡胶盆式支座通过了: 产品规范核可 品质监督 世界范围内应用验证 2. 主要技术指标 1)盆式支座的尺寸取决于橡胶块承受的许用压应力。混凝土许用压应力取20N/mm2,垂直承载力的最大值和最小值的比值取通常值; 2)单向活动支座和固定支座的横桥向水平力为支座最大垂直承载的10%或由用户提出; 3)支座旋转角允许正切值tgj= ±0.01、±0.015; 4)支座设计位移量 顺桥向:ex=±50、±100和±150mm;横桥向(双向活动支座)ey=±20mm和±40mm。位移量根据工程需要可进行特定设计。 混凝土许用压力和特殊的承载条件,我们可以根据要求,为您计算出符合您需要的支座的尺寸和重量,同时也可以根据不同地区和国家的要求按照DIN 4141、BS5400、AASHTO、JT391等标准设计 3、支座分类及代号表示方法 支座分为单向活动支座(DX),双向活动支座(SX)和固定支座(GD)三类. 示例:MGPZ1.5DX表示设计竖向承载力为1.5MN即1500KN,单向活动盆式橡胶支座。 具体规格及尺寸重量详见我公司样本。 GPZ(Ⅱ)型盆式橡胶支座 1.性能与特点 GPZ(Ⅱ)型盆式橡胶支座是根据JT391-1999公路桥梁盆式橡胶支座标准设计而成,替代原JT3141-90中的GPZ型盆式橡胶支座。

板式橡胶支座适用规范

板式橡胶支座适用规范:公路桥梁板式橡胶支座技术标准(JT /T4-2004) 进场时要求: 1.标志: 每块橡胶支座要留有xx标志; 2.包装: 支座应根据分类、规格分别包装。包装应牢固可靠,包装外面应注明产品名称、规格、制造日期。包装内应附有产品合格证。 3.按每批号常规检验项目三项: ①.极限抗压强度②.抗压弹性模量③.抗剪弹性模量橡胶支座每批取样品六块,其中三块做破坏性试验,三块可退回,四氟板可免检抗剪弹性模量试验。 特别注意: 1、根据实际经验,如果支座为甲供的话(一般业主会这么做),同一规格尽量让材料商一次送够,不要每批次送几十个。要不然检测费用高昂。 2、常规检测中以抗压弹性模量超出设计值(不合格)居多,当外委报告取回后,需认真查看核对。另2009年广东省某次检查中发现过该类问题: 报告中抗压弹性模量超出范围值,但报告结论为合格。有值得商榷的地方,一定要及早发现并更正。 锚具取样送检资料 原文地址: xxxx钢绞线、锚具、夹片如何取样送检? 自由世界工程类别: 桥梁工程检测类别:

原材料-锚具、夹片、连接器取样规范名称: GB/T 14370-2000《预应力筋用锚具、夹片和连接器》试验规范名称: GB/T 14370-2000《预应力筋用锚具、夹片和连接器》验收规范名称: GB/T 14370-2000《预应力筋用锚具、夹片和连接器》试验项目: 外观硬度锚具锚品摩阻损失锚具静载锚固性能取样频率:1批/(同一类产品、同一批原材料、同一种工艺一次投料生产的数量、<=1000套)取样方式: 随机抽取取样数量: 外观抽10%并不少于10套硬度抽取5%并不少于5套(含锚具、配套的连接器与夹片【夹片每套为5片】)锚具锚品摩阻损失、锚具静载锚固性能各取3套【具体数量为6个锚具、对应3个锚具孔数的连接器、对应6个锚具孔数的夹片,对应3个锚具孔数的钢绞线(每根长5m,规范要求受拉区不少于 3m)】结果判定: 1、外观表面无裂缝,尺寸符合设计要求,则合格。如有1套不符合,取双倍,如仍有一套不符合,则每套检查; 2、硬度每个零件测3点,全合格,则合格。如有1个零件不合格,取双倍,如仍有一个不符合,则每个检查; 3、静载锚固与疲劳荷载检验及周期荷载检验全合格则合格。如有1不合格,取双倍,如仍有1不合格,则该批产品为不合格品。工程类别: 桥梁工程检测类别: 原材料-钢绞线取样规范名称: 力学性 能GB/T 228-2002《金属材料室温拉伸试验方法》屈服强度与松驰GB/T 5224-2003《预应力混凝土用钢绞线》试验规范名称: 力学性

公路桥梁板式橡胶支座性能及适用范围(详细)

公路桥梁板式橡胶支座性能及适用范围 (一)板式橡胶支座的结构及性能 桥梁板式橡胶支座由多层橡胶片与薄钢板硫化、粘合而成,它有足够的竖向刚度,能将上部构造的反力可靠的传递给墩台;有良好的弹性,以适应梁端的转动;又有较大的剪切变形能力,以满足上部构造的水平位移. 板式橡胶支座表面粘覆一层厚2米米~3米米的聚四氟乙烯板,就制作成聚四氟乙烯滑板式橡胶支座.它除了具有竖向刚度与弹性变形,能承受垂直荷载及适应梁端转动外,因聚四氟乙烯板的低摩擦系数,可使梁端在四氟板表面自由滑动,水平位移不受限制;特别适宜中、小荷载,大位移量的移梁使用. 板式橡胶支座不仅技术性能优良,还具有构造简单、价格低廉、无需养护、易于更换、缓冲隔震、建筑高度低等特点.因而在桥梁界颇受欢迎,被广泛应用. (二)板式橡胶支座的分类及表示方法 1、板式橡胶支座按结构形式分类如下:

2、板式橡胶支座按胶种适用温度分类如下: a.氯丁橡胶型:适应工作温度 -25℃~60℃; b.天然橡胶型:适应工作温度 -40℃~60℃; c.三元乙丙橡胶型:适应工作温度 -40℃~60℃. (三)板式橡胶支座的适用范围 1、板式橡胶支座适用于设计竖向承载力3000KN以下的桥梁. 2、普通板式橡胶支座适用于跨度小于30米、位移量较小的桥梁.不同的平面形状适用于不同的桥跨结构:正交桥梁用矩形支座;曲线桥、斜交桥及圆柱墩桥用圆形支座. 3、四氟板式橡胶支座适用于大跨度、多跨连续、简支梁连续板等结构的大位移量桥梁.它还可用作连续梁顶推及T型梁横移中的滑块.矩形、圆形四氟板式橡胶支座的应用分别与矩形、圆形普通板式橡胶支座相同.

铅芯橡胶支座力学性能及应用研究

铅芯橡胶支座力学性能及应用研究 本文介绍了铅芯橡胶支座的性能,利用大型通用结构分析程序Ansys,对一实际工程建模分析了铅芯橡胶支座的减震效果,结果证明铅芯橡胶支座具有较好的减震、隔震性能。 标签:铅芯橡胶支座减隔震连续梁应用研究 1 铅芯橡胶支座及力学特性 铅芯橡胶支座是新西兰人W.H.Robinson在1975年4月发明的,一经问世就受到各国关注,并得到了广泛应用。它将竖向支承、水平向柔性(由橡胶提供)和滞变阻尼(由铅的塑性变形提供)三种功能结合在一个装置里,比较经济地解决了桥跨结构的隔震问题。一般叠层橡胶支座是由薄橡胶板和薄钢板交错叠合并相互硫化粘结而成的产品。由于钢板对橡胶板横向变形产生约束,使其具有非常大的竖向刚度。同时钢板又不影响橡胶板的剪切变形,保持了橡胶固有的柔韧性,使其具有比竖向刚度小得多的水平刚度,及延长桥梁结构的水平自振周期。从而使支座具有竖向支承与水平隔震机构的双重功能。 铅芯橡胶支座的吸能效果主要是利用铅芯弹塑性变形来达到。由于铅棒的屈服强度较低(7MPa),并在弹塑性变形条件下具有较好的疲劳性能,它被认为是一种较理想的阻尼器。大量实验研究表明:铅芯橡胶支座的恢复力模型可以用双线性来表示。铅芯橡胶支座的屈服力与铅棒的面积有关,增大铅棒的面积可以提高屈服力,从而提高耗能效果。铅芯橡胶隔震支座的滞回耗能特性主要有其控制参数屈服力、初始剪切刚度及屈服后刚度所确定。 本文主要致力于对铅芯支座的计算及实际应用,推动减隔震支座在桥梁中应用与发展。 2 抗震分析方法 2.1 模型建立清瀾大桥由于引桥结构是对称结构,考虑到各联之间的相互影响,以及对比不同墩高之间的隔震效果,现选择西侧引桥7号桥墩至15号桥墩之间的部分作为抗震分析对象,此部分的桥型图如图1所示。 采用有限元程序Ansys对该大桥进行抗震计算,采用空间梁单元beam188模拟预应力混凝土连续梁桥的主梁和桥墩;二期恒载采用集中质量单元mass21模拟;主梁与边墩之间的联结用combine39单元来模拟。桥梁结构有限元计算模型简图如图2所示,对于非隔震结构,墩与梁之间考虑板式橡胶支座,采用铰接,而桥台处考虑四氟板支座,采用摩擦单元,顺桥向则是用非线性摩擦滑移单元Combine39来模拟滑移支座。单元的起滑力为 f=μ·FN (1)

相关文档