文档库 最新最全的文档下载
当前位置:文档库 › 高一数学一次函数的性质与图象

高一数学一次函数的性质与图象

一次函数的图象与性质

一次函数图象和性质 【知识梳理】 1.正比例函数的一般形式是y=kx(k≠0),一次函数的一般形式是y=kx+b(k≠0). 2. 一次函数y kx b =+的图象是经过(k b -,0)和(0,b )两点的一条直线. 3. 一次函数y kx b =+的图象与性质 【思想方法】数形结合 【例题精讲】 例1. 已知一次函数物图象经过A(-2,-3),B(1,3)两点. (1)求这个一次函数的解析式; (2)试判断点P(-1,1)是否在这个一次函数的图象上; (3)求此函数与x 轴、y 轴围成的三角形的面积. 例2. 已知一次函数y=(3a+2)x -(4-b),求字母a 、b 为何值时: (1)y 随x 的增大而增大; (2)图象不经过第一象限; (3)图象经过原点; (4)图象平行于直线y=-4x+3; (5)图象与y 轴交点在x 轴下方. 例3. 如图,直线l 1 、l 2相交于点A ,l 1与x 轴的交点坐标为(-1,0),l 2与y 轴的交点坐标为(0,-2),结合图象解答下列问题: (1)求出直线l 2表示的一次函数表达式; (2)当x 为何值时,l 1 、l 2表示的两个一次函数的函数值都大于0? k 、b 的符号 k >0,b >0 k >0,b <0 k <0,b >0 k <0,b <0 图像的大致位 置 经过象限 第 象限 第 象限 第 象限 第 象限 性质 y 随x 的增大 而 y 随x 的增大而而 y 随x 的增大 而 y 随x 的增大 而

x y O 3 2y x a =+ 1y kx b =+ y x O B A 【当堂检测】 1.直线y =2x +8与x 轴和y 轴的交点的坐标分别是_______、_______; 2.一次函数1y kx b =+与2y x a =+的图象如图,则下列 结论:①0k <;②0a >;③当3x <时,12y y <中, 正确的个数是( ) A .0 B .1 C .2 D .3 3.一次函数(1)5y m x =++,y 值随x 增大而减小,则m 的取值范围是( ) A .1m >- B . 1m <- C .1m =- D .1m < 4.一次函数23y x =-的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是( ) 6.已知整数x 满足-5≤x≤5,y 1=x+1,y 2=-2x+4对任意一个x ,m 都取y 1,y 2中的较小值,则m 的最大值是( ) A.1 B.2 C.24 D.-9 7.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为 ( ) A.(0,0) B.( 22,2 2-) C.(-21,-2 1 ) D.(-22,-22) 8.一次函数y =2x -2的图象不经过... 的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y = -x 图象上两点,则下列判断正确的是 ( ) A .y 1>y 2 B .y 1y 2 D .当x 1

复合函数知识总结及例题

复合函数问题 一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ?B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 二、复合函数定义域问题: (1)、已知f x ()的定义域,求[]f g x ()的定义域 思路:设函数f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。 例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。 解析:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以01<

高中数学常见函数图像

高中数学常见函数图像1. 2.对数函数:

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k π π=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ??++???? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

一次函数的图象和性质知识点和典型例题讲解

一次函数的图象和性质 一、知识要点: 1、一次函数:形如y=kx+b (k≠0, k, b为常数)的函数。 注意:(1)k≠0,否则自变量x的最高次项的系数不为1; (2)当b=0时,y=kx,y叫x的正比例函数。 2、图象:一次函数的图象是一条直线, (1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-,0) (2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。 3、性质: (1)图象的位置: (2)增减性 k>0时,y随x增大而增大 k<0时,y随x增大而减小 4.求一次函数解析式的方法 求函数解析式的方法主要有三种 (1)由已知函数推导或推证 (2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。 (3)用待定系数法求函数解析式。

“待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况: ①利用一次函数的定义 构造方程组。 ②利用一次函数y=kx+b中常数项b恰为函数图象与y轴交点的纵坐标,即由b来定点;直线y=kx+b平行于y=kx,即由k来定方向。 ③利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。 ④利用题目已知条件直接构造方程。 二、例题举例: 例1.已知y=,其中=(k≠0的常数),与成正比例,求证y与x也成正比例。 证明:∵与成正比例, 设=a(a≠0的常数), ∵y=, =(k≠0的常数), ∴y=·a=akx, 其中ak≠0的常数, ∴y与x也成正比例。 例2.已知一次函数=(n-2)x+-n-3的图象与y轴交点的纵坐标为-1,判断 =(3-)是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。 解:依题意,得 解得 n=-1, ∴=-3x-1,

(完整版)高一数学复合函数讲解

1、复合函数的概念 如果y是a的函数,a又是x的函数,即y=f(a),a=g(x),那么y关于x的函数y=f[g(x)]叫做函数y=f(x)和a=g(x)的复合函数,其中a是中间变量,自变量为x,函数值y。 例如:函数是由复合而成立。 函数是由复合而成立。 a是中间变量。 2、复合函数单调性 由引例对任意a,都有意义(a>0且a≠1)且。 对任意, 当a>1时,单调递增,当0<a<1时,单调递减。 ∵当a>1时, ∵y=f(u)是上的递减函数∴ ∴ ∴是单调递减函数 类似地,当0<a<1时, 是单调递增函数 一般地,定理:设函数u=g(x)在区间M上有意义,函数y=f(u)在区间N上有意义,且当X∈M时,u∈N。 有以下四种情况: (1)若u=g(x)在M上是增函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是增函数;

(2)若u=g(x)在M上是增函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是减函数; (3)若u=g(x)在M上是减函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是减函数; (4)若u=g(x)在M上是减函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是增函数。 注意:内层函数u=g(x)的值域是外层函数y=f(u)的定义域的子集。 例1、讨论函数的单调性 (1)(2) 又是减函数 ∴函数的增区间是(-∞,2],减区间是[2,+∞)。 ②x∈(-1,3) 令 ∴x∈(-1,1]上,u是递增的,x∈[1,3)上,u是递减的。 ∵是增函数 ∴函数在(-1,1]上单调递增,在(1,3)上单调递减。 注意:要求定义域

(word完整版)高中数学函数图象高考题.doc

B 1 .函数 y = a | x | (a > 1)的图象是 ( y y o x o A B B ( ) y o 1 x -1 o 函数图象 ) y 1 1 x o x C y y x x o 1 y 1 o x D y -1 o x A B C B 3.当 a>1 时,函数 y=log a x 和 y=(1 - a)x 的图象只可能是( ) y A4.已知 y=f(x) 与 y=g(x) 的图象如图所示 yf ( x ) x O 则函数 F(x)=f(x) ·g(x) 的图象可以是 (A) y y y O x O x O x A xa x B C B 5.函数 y (a 1) 的图像大致形状是 ( ) | x | y y y O f ( x) 2x x O 1 O x ( D 6.已知函数 x x x 1 ,则 f x ( 1- x )的图象是 log 1 2 y y y A B C 2 。 。 1 。 - 1 D y y g( x) O x y O x D y O ) x y D 2

O x

A B C D D 7.函数 y x cosx 的部分图象是 ( ) A 8.若函数 f(x) =x 2 +bx+c 的图象的顶点在第四象限,则函数 f /(x)的图象是 ( ) y y y y o x o x o x o x A B C D A 9.一给定函数 y f ( x) 的图象在下列图中,并且对任意 a 1 (0,1) ,由关系式 a n 1 f (a n ) 得到的数列 { a n } 满足 a n 1 a n (n N * ) ,则该函数的图象是 ( ) A B C D C10.函数 y=kx+k 与 y= k 在同一坐标系是的大致图象是( ) x y y y y O x O x O x O x A 11.设函数 f ( x ) =1- 1 x 2 (- 1≤ x ≤0)的图像是( ) A B C D

高一数学三角函数的图象和性质经典例题

解:在单位圆中,作出锐角α在正弦线MP,如图2-9所示 在△MPO中,MP+OM>OP=1即MP+OM>1 ∴sinα+cosα>1 于P1,P2两点,过P1,P2分别作P1M1⊥x轴,P2M2⊥x轴,垂足分

k∈Z} 【说明】学会利用单位圆求解三角函数的一些问题,借助单位圆求解不等式的一般方法是:①用边界值定出角的终边位置;②根据不等式定出角的范围;③在[0,2π]中找出角的代表;④求交集,找单位圆中重叠的部分;⑤写出角的范围的表达式,注意加周期. 【例3】求下列函数的定义域: 解:(1)为使函数有意义,需满足2sin2x+cosx-1≥0

由单位圆,如图2-12所示 k∈Z} 【说明】求函数的定义域通常是解不等式组,利用“数形结合”,借助于数轴画线求交集的方法进行.在求解三角函数,特别是综合性较强的三角函数的定义域,我们同样可以利用“数形结合”,在单位圆中画三角函数线,求表示各三角不等式解集的扇形区域的交集来完成. (4)为使函数有意义,需满足: 取k=0和-1时,得交集为-4<x≤-π或0≤x≤π ∴函数的定义域为(-4,-π]∪[0,π]

【说明】求三角函数的定义域要注意三角函数本身的特征和性质,如在转化为不等式或不等式组后要注意三角函数的符号及单调性,在进行三角函数的变形时,要注意三角函数的每一步变形都保持恒等,即不能改变原函数的自变量的取值范围. 【例4】求下列函数的值域: ∴此函数的值域为{y|0≤y<1} ∵1+sinx+cosx≠0 ∴t≠-1

【说明】求三角函数的值域,除正确运用必要的变换外,还要注意函数的概念的指导作用,注意利用正、余弦函数的有界性. 【例5】判断下列函数的奇偶性: 【分析】先确定函数的定义域,然后根据奇函数成偶函数的定义判断函数的奇偶性. ∵f(1-x)=-sin(-2x)=sin2x=-f(x) (2)函数的定义域为R,且 f(-x)=sin[cos(-x))=sin(cosx)=f(x) ∴函数f(x)=sin(cosx)是偶函数. (3)因1+sinx≠0,∴sinx≠-1,函数的定义域为{x|x∈R且x≠2k

一次函数的图像与性质

一次函数的性质和图像

目录一、函数的定义 (一)、一次函数的定义函数。

(二)、正比例函数的定义 二、函数的性质 (一)、一次函数的性质 (二)、正比例函数的性质 三、函数的图像 (一)、一次函数和正比例函数图像在坐标上的位置 (二)、一次函数的图像 1、一次函数图像的形状 2、一次函数图像的画法 (三)、正比例函数的图像 1、正比例函数图像的形状 2、正比例函数图像的画法 3、举例说明正比例函数图像的画法 四、k、b两个字母对图像位置的影响 K、b两个字母的具体分工是: (一次项系数)k决定图象的倾斜度。 (常数项)b决定图象与y轴交点位置。 五、解析式的确定 (一)一个点坐标决定正比,两个点坐标决定一次 (二)用待定系数法确定解析式

六、两条函数直线的四种位置关系 两直线平行,k1= k2,b1≠b2 两直线重合,k1= k2,b1=b2 两直线相交,k1≠k2 两直线垂直,k1×k2=-1 (一)两条函数直线的平行 (二)两条函数直线的相交 (三)两条函数直线的垂直 一次函数、反比例函数中自变量x前面的字母k称为比例系数 这一节我们要学习正比例函数和一次函数。一次函数的解析式是y=kx+b,如果当这个式子中的b=0时,式子就变成了正比例函数y=kx。因此,正比例函数是一次函数当b=0时的特殊情况。正是因为正比例函数实际上就是一次函数,所以把正比例函数和一次函数结合在一起来学习。 在正比例函数y=kx和反比例函数y=k/x中,由于函数y与自变量x之间有比例关系,就要在自变量x前面用字母系数k表示它们之间的比例关系,因而字母k就取名为比例系数。确定了比例系数k就可以直接确定正比例函数或反比例函数的解析式。

高中数学常见函数图像

高中数学常见函数图像 1.指数函数: 定义 函数 (0x y a a =>且1)a ≠叫做指数函数 图象 1a > 01a << 定义域 R 值域 (0,)+∞ 过定点 图象过定点(0,1),即当0x =时,1y =. 奇偶性 非奇非偶 单调性 在R 上是增函数 在R 上是减函数 2.对数函数: 定义 函数 log (0a y x a =>且1)a ≠叫做对数函数 图象 1a > 01a << 定义域 (0,)+∞ 值域 R 过定点 图象过定点(1,0),即当1x =时,0y =. 奇偶性 非奇非偶 单调性 在(0,)+∞上是增函数 在(0,)+∞上是减函数 x a y =x y (0,1) O 1 y =x a y =x y (0,1) O 1 y =x y O (1,0) 1 x =log a y x =x y O (1,0) 1 x =log a y x =

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

4. 函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k ππ=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ? ?++??? ? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

高一数学函数图象练习题(精编)

1、已知01,1a b <<<-,则函数 x y a b =+的图像必定不经过………………………( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 2、函数 (0,1)x y a a a a =->≠的图象可能是( ) 3、设1a >,函数x y a =的图像形状大致是( ) 4、将指数函数()x f 的图象向右平移一个单位,得到如图的()x g 的图象, 则()=x f ( ) A B C D

A. x ??? ??21 B. x ??? ??31 C. x 2 D. x 3 5、下列区间中,函数f(x)=|ln(2-x)|在其上为增函数的是( ) A .(-∞,1] B .[-1,4/3] C .[0,3/2) D .[1,2] 6、已知函数()log a f x x =(0a >且1a ≠).(Ⅰ)若函数()f x 在[23], 上的最大值与最 小值的和为2,(1)求a 的值;(2)将函数()f x 图象上所有的点向左平移2个单位长度,再向下平移1个单位长度,所得函数图象不经过第二象限,求a 的取值范围. 7、把函数()(0,1)x f x a a a =>≠的图象1C 向左平移一个单位,再把所得图象上每一个点的纵坐标扩大为原来的2倍,而横坐标不变,得到图象2C ,此时图象1C 恰与2C 重合, 则 a 为()

A .4 B .2 C .1 2 D .14 8、已知函数31()()log 5x f x x =-,若0x 是函数()y f x =的零点,且100x x <<, 则1()f x ( A ) A .恒为正值 B .等于0 C .恒为负值 D .不大于0 9、关于x 的方程0|34|2=-+-a x x 有三个不相等的实数根,则实数a 的 值是_________________。 10、已知关于x 的方程 012=-+-a x x 有四个不等根,则实数a 的取 值范围是________ 11、若存在负实数使得方程 11 2-=-x a x 成立,则实数a 的取值范围是 ( ) A .),2(+∞ B. ),0(+∞ C. )2,0( D. )1,0(

一次函数的图象与性质

一次函数的图象与性质(基础篇) 知识要点 1.一次函数的定义: ①已知y=(m+1)x2-|m|+n+4,当m= ,y是x的一次函数;当m= ,n= 时,y是x 的正比例函数. ②已知函数y=(k+2)x+k2-2,当k时,它为一次函数;当k= 时,它为正比例函数. 2.一次函数y=kx+b(k≠0)的图象特征: 一次函数的图象是一条直线,因为两点确定一条直线,所以画一次函数图象时,描点时常选图象与x轴的交点和y轴的交点. ①当k>0,b>0时,直线过第象限. ②当k>0,b<0时,直线过第象限. ③当k<0,b>0时,直线过第象限. ④当k<0,b<0时,直线过第象限. ⑤若正比例函数y=-(k+1)x+k2-4的图象只经过第一、三象限,则k = . ⑥一次函数y=-3x必过第象限. ⑦一次函数y=πx+3必过第象限. ⑧正比例函数y=(3k2+1)x必过第象限. 3.直线y=kx+b与y=kx(k≠0)的关系: 直线y=kx+b与y=kx(k≠0)的关系是平行关系. ①当b>0时,直线y= kx+b可以由直线y=kx向上平移个单位而得到. ②当b<0时,直线y= kx+b可以由直线y=kx向下平移个单位而得到. ③将直线y=3x沿y轴向平移个单位长度可得直线y=3x+6; ④将直线y=-5x+6沿y轴向平移个单位长度可得直线y=-x. 4.直线与坐标轴交点的求法: 求函数图象与x轴的交点坐标,令y=0,解方程kx+b=0得x的值,就是相应的横坐标x的值; 求函数图象与y轴的交点坐标,令x=0得y=b,就是相应的横坐标y的值; ①已知函数y=2x-6,与x轴的交点坐标为;与y轴的交点坐标为. ②函数y=2x+1的图象是不经过第象限的直线,它与x轴的交点坐标是,与y轴的交点坐标是. 5.一次函数y=kx+b(k≠0)的增减性: 当k>0时,y随x的增大而增大,函数图象从左到右呈上升趋势. 当k<0时,y随x的增大而减小,函数图象从左到右呈下降趋势. ①已知一次函数y=(1-2k)x+2k-1,当k时,y随x的增大而增大,此时图象经过第象限. ②已知一次函数y=(6+3m)x+(n-4). 当m时,y随x的增大而减小;当m,n时,函数图象与y轴的交点在x 轴下方;当m,n时,函数图象经过原点.

复合函数相关性质和经典例题

定义 由函数)(u f y =和)(x g u =所构成的函数)]([x g f y =称为复合函数,其中)(u f y =通常称为外层函数,)(x g u =称为内层函数。 求上述复合函数)]([x g f y =的单调区间,我们一般可以按照下面这几个步骤来进行: (1) 写出构成原复合函数的外层函数)(u f y =和内层函数)(x g u =; (2) 求外层函数)(u f y =的单调区间(包括增区间和减区间)B A 、等; (3) 令内层函数A x g u ∈=)(,求出x 的取值范围M ; (4) 若集合M 是内层函数)(x g u =的一个单调区间,则M 便是原复合函数 )]([x g f y =的一个单调区间; 若M 不是内层函数)(x g u =的一个单调区间,则需把M 划分成内层函数)(x g u =的若干个单调子区间,这些单调子区间便分别是原复合函数)]([x g f y =的单调区间; (5) 根据复合函数“同增异减”的复合原则,分别指出原复合函数)]([x g f y =在集合M 或这些单调子区间的增减性; (6) 令内层函数B x g u ∈=)(,同理,重复上述(3)、(4)、(5)步骤。若外层函数)(u f y =还有更多的单调区间C 、D ,则同步骤(6)类似,不断地重复上述步骤。 (7) 设单调函数)(x f y =为外层函数,)(x g y =为内层函数 (8) (1) 若)(x f y =增,)(x g y =增,则))((x g f y =增. (9) (2) 若)(x f y =增,)(x g y =减,则))((x g f y =减. (10) (3) 若)(x f y =减,)(x g y =减,则))((x g f y =增. (11) (4) 若)(x f y =减,)(x g y =增,则))((x g f y =减. (12) 结论:同曾异减 (13) 例1. 求函数222)(-+=x x x f 的单调区间. (14) 解题过程: (15) 外层函数:t y 2= (16) 内层函数:22-+=x x t (17) 内层函数的单调增区间:],2 1[+∞-∈x (18) 内层函数的单调减区间:2 1,[--∞∈x (19) 由于外层函数为增函数 (20) 所以,复合函数的增区间为:],2 1[+∞-∈x (21) 复合函数的减区间为: 2 1,[--∞∈x (22) 求函数)23(log 221x x y --=的单调区间. (23) 解 原函数是由外层函数u y 2 1log =和内层函数223x x u --=复合而成的; (24) 易知),0(+∞是外层函数u y 2 1log =的单调减区间; (25) 令0232>--=x x u ,解得x 的取值范围为)1,3(-; (26) 解题过程:

高一数学-三角函数的图像和性质练习题(简单)

高一数学-三角函数的图像和性质练习题(简 单) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

三角函数的图像和性质练习题 1.若cosx=0,则角x 等于( ) A .k π(k ∈Z ) B .2π+k π(k ∈Z ) C .2π+2k π(k ∈Z ) D .-2 π+2k π(k ∈Z ) 2.使cosx= m m -+11有意义的m 的值为( ) A .m ≥0 B .m ≤0 C .-1<m <1 D .m <-1或m >1 3.函数y=3cos (52 x - 6π)的最小正周期是( ) A .5π2 B .2π5 C .2π D .5π 4.函数y=2sin 2x+2cosx -3的最大值是( ) A .-1 B .21 C .-21 D .-5 5.下列函数中,同时满足①在(0, 2π)上是增函数,②为奇函数,③以π为最小正周期的函数是( ) A .y=tanx B .y=cosx C .y=tan 2x D .y=|sinx| 6.函数y=sin(2x+π6 )的图象可看成是把函数y=sin2x 的图象做以下平移得到( ) A.向右平移π6 B. 向左平移 π12 C. 向右平移 π12 D. 向左平移π6 7.函数y=sin(π4 -2x)的单调增区间是( ) A. [kπ- 3π8 , kπ+3π8 ] (k∈Z) B. [kπ+π8 , kπ+5π8 ] (k∈Z) C. [kπ-π8 , kπ+3π8 ] (k∈Z) D. [kπ+3π8 , kπ+7π8 ] (k∈Z) 8.函数 y=15 sin2x 图象的一条对称轴是( ) A.x= - π2 B. x= - π4 C. x = π8 D. x= - 5π4 9.函数 y=15 sin(3x-π3 ) 的定义域是__________,值域是________,最小正周期是________,振幅是________,频率是________,初相是_________. 10.函数y=sin2x 的图象向左平移 π6 ,所得的曲线对应的函数解析式是____ _____. 11.关于函数f(x)=4sin(2x+π3 ),(x∈R),有下列命题:

一次函数的图像及其性质

《一次函数的图象和性质》教学设计 一、教学内容分析 (一)内容 人教版《义务教育课程标准实验教科书·数学》八年级上册“19.2.2一次函数”第二课时。 (二)内容解析 函数是数学领域中最重要的内容之一,也是刻画和研究现实世界变化规律的重要模型.它反映了数量之间的对应规律,是研究数量关系的重要工具.函数思想是最重要的思想,正如F.克莱因的一句名言:“一般受教育者在数学课上应该学会的重要事情是用变量和函数来思考.” 一次函数是中学阶段接触到的最简单、最基本的函数,它在实际生活中有着广泛的应用.一次函数的学习是建立在学习了平面直角坐标系、变量与函数和正比例函数及其图象与性质的基础上的.一次函数的第一课时主要内容是一次函数的有关概念,本节课是一次函数的第二课时,主要研究一次函数图象的形状、画法,并结合图象分析一次函数的性质.它既是正比例函数的图象和性质的拓展,又是继续学习“用函数观点看方程(组)与不等式”的基础. 1.关于一次函数的图象 学生在学习一次函数的图象之前已经学习了函数的图象和正比例函数的图象,掌握了画函数图象的基本方法——描点法,因此,对于运用列表、描点、连线画出一次函数的近似图象并不生疏,但是对于一次函数的图象为一条直线的理解则是本节课的内容,所以,教学时需要在学生动手画图象的基础上,通过对一次函数与正比例函数解析式的分析比较,使学生从数的角度加深对形的理解.在了解了一次函数的图象是一条直线,以及它和正比例函数图象之间的关系后,一次函数图象的画法可以有两种,一种是平移,另一种是两点法,突出两点法画图时如何选取合适的点. 2.关于一次函数的性质 对于一次函数的性质主要是研究一次函数中的的正负对函数增减性(图象的变化趋势)的影响,对于这个性质的探究,让学生经历“先特殊化、简单化,再一般化、复杂化”的过程,通过对图象的研究和分析函数自身的性质,深刻领会函数解析式与函数图象之间的联系,渗透的是数形结合的思想.同时结合一次函数的图象与正比例函数图象之间的关系类比得出一次函数的性质. 从数学自身发展过程来看,正是由于变量与函数概念的引入,标志着初等数学向高等数学的迈进,是一种数学思想与观念的融入.无论从一次函数到反比例函数,再到以后的二次函数,甚至高中的其他各类函数,都是函数的某种具体形式,都为进一步深刻领会函数提供了一个平台.因此,后续学习中对反比例函数、二次函数的研究方法与一次函数的研究方法类似.也就是说,一次函数的学习为今后其他函数的学习提供了一种研究的模式.

高中数学复合函数练习题

第一篇、复合函数问题 一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ?B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 二、复合函数定义域问题: (一)例题剖析: (1)、已知 f x ()的定义域,求[]f g x ()的定义域 思路:设函数 f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范 围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。 例1. 设函数 f u ()的定义域为(0,1) ,则函数f x (ln )的定义域为_____________。 解析:函数 f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以01<f x ()的定义域为

高中函数图像大全

指数函数 概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。 注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。 ⒉指数函数的定义仅是形式定义。 指数函数的图像与性质: 规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶 性。 2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴; 当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。 在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。即:当a >1时,图像在R 上是增函数;当0<a <1时,图像在R 上是减函数。 4. 指数函数既不是奇函数也不是偶函数。 比较幂式大小的方法: 1. 当底数相同时,则利用指数函数的单调性进行比较; 2. 当底数中含有字母时要注意分类讨论; 3. 当底数不同,指数也不同时,则需要引入中间量进行比较; 4. 对多个数进行比较,可用0或1作为中间量进行比较 底数的平移: 在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。 在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。 对数函数 1.对数函数的概念 由于指数函数y=a x 在定义域(-∞,+∞)上是单调函数,所以它存在反函数, 我们把指数函数y=a x (a >0,a ≠1)的反函数称为对数函数,并记为y=log a x(a >0,a ≠1). 因为指数函数y=a x 的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x 的定义域为(0,+∞),值域为(-∞,+∞). 2.对数函数的图像与性质对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x . 据此即可以画出对数函数的图像,并推知它的性质. 为了研究对数函数y=log a x(a >0,a ≠1)的性质,我们在同一直角坐标系中作出函数 y=log 2x ,y=log 10x ,y=log 10x,y=log 2 1x,y=log 10 1x 的草图

高一数学复合函数讲解(最新整理)

1、复合函数的概念 如果y是a的函数,a又是x的函数,即y=f(a),a=g(x),那么y关于x的函数y=f[g (x)]叫做函数y=f(x)和a=g(x)的复合函数,其中a是中间变量,自变量为x,函数值y。 例如:函数是由复合而成立。 函数是由复合而成立。 a是中间变量。 2、复合函数单调性 由引例对任意a,都有意义(a>0且a≠1)且。 对任意, 当a>1时,单调递增,当0<a<1时,单调递减。 ∵当a>1时, ∵y=f(u)是上的递减函数∴ ∴ ∴是单调递减函数 类似地, 当0<a<1时, 是单调递增函数 一般地,定理:设函数u=g(x)在区间M上有意义,函数y=f(u)在区间N上有意义,且当X∈M时,u∈N。 有以下四种情况: (1)若u=g(x)在M上是增函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是增函数;

(2)若u=g(x)在M上是增函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是减函数; (3)若u=g(x)在M上是减函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是减函数; (4)若u=g(x)在M上是减函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是增函数。 注意:内层函数u=g(x)的值域是外层函数y=f(u)的定义域的子集。 例1、讨论函数的单调性 (1)(2) 又是减函数 ∴函数的增区间是(-∞,2],减区间是[2,+∞)。 ②x∈(-1,3) 令 ∴x∈(-1,1]上,u是递增的,x∈[1,3)上,u是递减的。 ∵是增函数 ∴函数在(-1,1]上单调递增,在(1,3)上单调递减。 注意:要求定义域

高一数学函数的图象

§2.7函数的图象 1.描点法作图 方法步骤:(1)确定函数的定义域.(2)化简函数的解析式.(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势).(4)描点连线,画出函数的图象.2.图象变换(1)平移变换 (2)对称变换 ①y =f (x )―――――→关于x 轴对称 y =-f (x ).②y =f (x )―――――→关于y 轴对称y =f (-x ).③y =f (x )―――――→关于原点对称y =-f (-x ). ④y =a x (a >0且a ≠1)―――――→关于y =x 对称 y =log a x (a >0且a ≠1).(3)伸缩变换 ①y =f (x )――――――――――――――――――――→ a >1,横坐标缩短为原来的 倍,纵坐标不变 01,纵坐标伸长为原来的a 倍,横坐标不变 0

概念方法微思考 1.函数f(x)的图象关于直线x=a对称,你能得到f(x)解析式满足什么条件? 提示f(a+x)=f(a-x)或f(x)=f(2a-x). 2.若函数y=f(x)和y=g(x)的图象关于点(a,b)对称,则f(x),g(x)的关系是g(x)=2b-f(2a -x). 题组一思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y=f(1-x)的图象,可由y=f(-x)的图象向左平移1个单位得到.(×) (2)当x∈(0,+∞)时,函数y=|f(x)|与y=f(|x|)的图象相同.(×) (3)函数y=f(x)的图象关于y轴对称即函数y=f(x)与y=f(-x)的图象关于y轴对称.(×) (4)若函数y=f(x)满足f(1+x)=f(1-x),则函数y=f(x)的图象关于直线x=1对称.(√)题组二教材改编 2.函数f(x)=x+1 x的图象关于() A.y轴对称B.x轴对称 C.原点对称D.直线y=x对称 答案C 解析函数f(x)的定义域为(-∞,0)∪(0,+∞)且f(-x)=-f(x),即函数f(x)为奇函数,其图象关于原点对称,故选C. 3.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是________.(填序号) 答案③

高一数学必修一函数图像知识点总结

高一数学必修一函数图像知识点总结 > 高一数学必修一函数图像知识点 知识点总结 本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。所以理解了前面的几个知识点,函数的图象就迎刃而解了。 一、函数的单调性 1、函数单调性的定义 2、函数单调性的判断和证明:(1)定义法(2)复合函数分析法(3)导数证明法(4)图象法 二、函数的奇偶性和周期性 1、函数的奇偶性和周期性的定义 2、函数的奇偶性的判定和证明方法 3、函数的周期性的判定方法 三、函数的图象 1、函数图象的作法(1)描点法(2)图象变换法 2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。

常见考法 本节是段考和高考必不可少的考查内容,是段考和高考考查 的重点和难点。选择题、填空题和解答题都有,并且题目难 度较大。在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。多考查函数的单调性、最值和图象等。 误区提醒 1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。 2、单调区间必须用区间来表示,不能用集合或不等式,单 调区间一般写成开区间,不必考虑端点问题。 3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。 4、判断函数的奇偶性,首先必须考虑函数的定义域,如果 函数的定义域不关于原点对称,则函数一定是非奇非偶函数。 5、作函数的图象,一般是首先化简解析式,然后确定用描 点法或图象变换法作函数的图象。

相关文档
相关文档 最新文档