文档库 最新最全的文档下载
当前位置:文档库 › 最短路径问题(经典)

最短路径问题(经典)

最短路径问题(经典)
最短路径问题(经典)

最短路径问题

【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:

①确定起点的最短路径问题- 即已知起始结点,求最短路径的问题.

②确定终点的最短路径问题- 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.

③确定起点终点的最短路径问题- 即已知起点和终点,求两结点之间的最短路径.

④全局最短路径问题- 求图中所有的最短路径.

【问题原型】“将军饮马”,“造桥选址”,“费马点”.

【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.

【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.

【十二个基本问题】

图形推理真题解析(经典收藏)

图形推理真题解析十年真题一网打尽(经 典收藏) 第1道C 本题所有图形均为左右对称的 将左边的一半去掉,剩下的右半边依次为数字1234 据此,可知后面为5。 第2题A 解析:去异存同 前图为:第一个图形与第二个图形重合,相同部分余下. 第二套图也如此.

第3题C 横着看三个图为一列 把外切小黑圆看成+,把内切小黑圆看成- 每一列都是图1和图2通过上面的算法和规律推出第3个图 第4题C 第一套图是逆时间转,每转90度加下面+一横 第二套图是从有小圆的90度扇形,开始逆时间旋转,每旋转一次,原有小圆的90度扇形+一个小圆,其他的90度扇形也加一个圆。 同理第3个图是:再图2的基础上再转90度,也是每转一次原有小圆扇形再+一个小圆,其他地方也同样加一个小圆。 根据以上的规律,能符合此规律的只有C项

第6题B 解析:(方法一) 把内分割线,分割出来的两个图形分别算出其比划再组成这个图行总的笔划(重合的线段算为2划)。 根据这个规律:第一套图的笔划是:6,7,8 第二套图的笔划是:9,10,11 (方法二) 看内角的个数呈规律递增;第一套图:6,7,8 第二套图:9,10,11 第7道C 第一套图的3个图的阴影部分可以组成一个全阴影图形 同理,第二套图的3个阴影部分也可以组成一个全阴影图形

第8道B 第一套是图内的3个原色不同,第二套是图内的3个原色相同,而且一一对应相似,两套图的3个图项的外框都是只有一个。 第9道B 根据第一套图和第二套图的各项图形方面不同,一一对应相似性, 第一套图:图1是左右对称,方位是左右。 图2是轴对称,方位是上下,左右;其对应相似性的图形是第二套图的图2。 图3是上下对称,其对称相似性的图形是第二套图的图1 那么现在就只有第一套图的图1没有对应关系,根据其左右对称的相似性只有B项符合,故答案为B 第10道B 若考虑把图2,图3,图4通过翻转、旋转、镜像,而组成图1,那么这样每个选项都可以。所以这里不考虑旋转、镜像、翻转,只考虑垂直移动,只须将第3个图垂直移动到下面,这

最短路径流程图及算法详解

:算法的设计思想 本算法采用分支定界算法实现。构造解空间树为:第一个城市为根结点,与第一个城市相邻的城市为根节点的第一层子节点,依此类推;每个父节点的子节点均是和它相邻的城市;并且从第一个根节点到当前节点的路径上不能出现重复的城市。 本算法将具有最佳路线下界的节点作为最有希望的节点来展开解空间树,用优先队列实现。算法的流程如下:从第一个城市出发,找出和它相邻的所有城市,计算它们的路线下界和费用,若路线下界或费用不满足要求,将该节点代表的子树剪去,否则将它们保存到优先队列中,并选择具有最短路线下界的节点作为最有希望的节点,并保证路径上没有回路。当找到一个可行解时,就和以前的可行解比较,选择一个较小的解作为当前的较优解,当优先队列为空时,当前的较优解就是最优解。算法中首先用Dijkstra算法算出所有点到代表乙城市的点的最短距离。算法采用的下界一个是关于路径长度的下界,它的值为从甲城市到当前城市的路线的长度与用Dijkstra算法算出的当前城市到乙城市的最短路线长度的和;另一个是总耗费要小于1500。 伪代码 算法AlgBB() 读文件m1和m2中的数据到矩阵length和cost中 Dijkstra(length) Dijkstra(cost) while true do for i←1 to 50 do //选择和node节点相邻的城市节点 if shortestlength>optimal or mincost>1500 pruning else if i=50 optimal=min(optimal,tmpopt)//选当前可行解和最优解的 较小值做最优解 else if looped //如果出现回路 pruning //剪枝 else 将城市i插入到优先队列中 end for while true do if 优先队列为空 输出结果 else 取优先队列中的最小节点 if 这个最小节点node的路径下界大于当前的较优解 continue

gis计算最短路径的Dijkstra算法详细讲解

最短路径之Dijkstra算法详细讲解 1最短路径算法 在日常生活中,我们如果需要常常往返A地区和B 地区之间,我们最希望知道的可能是从A地区到B地区间的众多路径中,那一条路径的路途最短。最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。算法具体的形式包括: (1)确定起点的最短路径问题:即已知起始结点,求最短路径的问题。 (2)确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。 (3)确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径。 (4)全局最短路径问题:求图中所有的最短路径。 用于解决最短路径问题的算法被称做“最短路径算法”,有时被简称作“路径算法”。最常用的路径算法

有:Dijkstra算法、A*算法、Bellman-Ford算法、Floyd-Warshall算法、Johnson算法。 本文主要研究Dijkstra算法的单源算法。 2Dijkstra算法 2.1 Dijkstra算法 Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。 Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。 2.2 Dijkstra算法思想 Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U 表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S 中的顶点为中间顶点的当前最短路径长度。 2.3 Dijkstra算法具体步骤 (1)初始时,S只包含源点,即S=,v的距离为0。U包含除v外的其他顶点,U中顶点u距离为边上的权(若v与u有边)或)(若u不是v的出边邻接点)。 (2)从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。 (3)以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u(u U)的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u 的距离值,修改后的距离值的顶点k的距离加上边上的权。 (4)重复步骤(2)和(3)直到所有顶点都包含在S中。 2.4 Dijkstra算法举例说明 如下图,设A为源点,求A到其他各顶点(B、C、D、E、F)的最短路径。线上所标注为相邻线段之间的距离,即权值。(注:此图为随意所画,其相邻顶点间的距离与图中的目视长度不能一一对等)

中考复习之图形的旋转经典题(含答案)-汇总

图形的旋转经典题 一.选择题(共10小题) 1.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD=10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B的() A.内部 B.外部 C.边上 D.以上都有可能 2.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为() A. B.2 C.3 D.2 3.如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为() A.4 B.5 C.6 D.7 4.规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形 B.正方形C.正六边形 D.正十边形 5.下面生活中的实例,不是旋转的是() A.传送带传送货物B.螺旋桨的运动 C.风车风轮的运动D.自行车车轮的运动 6.如图,在直角坐标系中放置一个边长为的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为() 6题 7题 9题 A.π+πB.2π+2 C.3π+3π D.6π+6 7.(2016?松北区模拟)如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是() A.50°B.60°C.40°D.30° 8.一个菱形绕它的两条对角线的交点旋转,使它和原来的菱形重合,那么旋转的角度至少是() A.360° B.270° C.180° D.90°

二次函数典型例题——旋转

二次函数典型例题——找规律 1、如图,一段抛物线:y =-x(x -3)(0≤x≤3),记为C 1,它与x 轴交于点O ,A 1; 将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A2旋转180°得C 3,交x 轴于点A 3; …… 如此进行下去,直至得C 13.若P (37,m )在第13段抛物线C 13上,则m =_________. 2、二次函数223 y x =的图象如图所示,点A 0位于坐标原点,点1232015,,,,A A A A ???在y 轴的正半轴上,点1232015,,,,B B B B ???在二次函数223 y x =位于第一象限的图象上,若△A 0B 1C 1,△A 1B 2C 2,△A 2B 3C 3,…△A 2014B 2015C 2015都为正三角形,则△011A B A 的边长= , △201420152015A B A 的边长= . 1,2015

3、如图,点A 1、A 2、A 3、……、A n 在抛物线2y x =图象上,点B 1、B 2、B 3、……、B n 在y 轴上,若△A 1B 0B 1、△A 2B 1B 2、……、△A n B n -1B n 都为等腰直角三角形(点B 0是坐 标原点),则△A 2014B 2013B 2014的腰长= . (石景山区)已知关于x 的方程01)1(22=-+-+m x m mx 有两个实数根,且m 为非负 整数. (1)求m 的值; (2)将抛物线1C :1)1(22-+-+=m x m mx y 向右平移a 个单位,再向上平移b 个单位得到抛物线2C ,若抛物线2C 过点),(b A 2和点),(12 4+b B ,求抛物线2C 的 表达式; (3)将抛物线2C 绕点(n n ,1+)旋转?180得到抛物线3C ,若抛物线3C 与直线 12 1+=x y 有两个交点且交点在其对称轴两侧,求n 的取值范围. (石景山区)解:(1)∵方程01)1(22=-+-+m x m mx 有两个实数根, ∴0≠m 且0≥?, ……………………1分 则有0)1(4-)1(42≥--m m m 且0≠m ∴1≤m 且0≠m 又∵m 为非负整数, ∴1=m . ………………………………2分 (2)抛物线1C :2x y =平移后,得到抛物线2C :b a x y +-=2 )(,……3分 ∵抛物线2C 过),2(b A 点,b a b +-=2)2(,可得2=a , 同理:b a b +-=+2)4(12,可得3=b , …………………………4分 ∴2C :()322+-=x y )(或742+-=x x y . …………5分 (3)将抛物线2C :3)2(2+-=x y 绕点(n n ,1+)旋转180°后得到的抛物线3C 顶 点为(322-n n ,), ………………6分 当n x 2=时,1122 1+=+?= n n y , 由题意,132+>-n n ,

初中数学九年级上册《图形的旋转》基础典型练习题(整理含答案)

《图形的旋转》基础典型练习题 一、选择题(每题3分,共18分) 1.下列物体的运动不是旋转的是() A.坐在摩天轮里的小朋友B.正在走动的时针 C.骑自行车的人D.正在转动的风车叶片 2.在10分钟的时间内,分针转过的角度是() A.15°B.30°C.15°D.30° 3.在10分钟的时间内,时钟的时针旋转过的角度是() A.5°B.10°C.15°D.30° 4.等边三角形绕着它的中心旋转一周,可与原图形重合的次数是() A.1 B.2 C.3 D.4 5.在图形的旋转中,下列说法错误的是() A.图形上的每一点到旋转中心的距离都相等 B.图形上的每一点转动的角度都相同 C.图形上可能存在不动的点 D.旋转前和旋转后的图形全等 6.有一种平面图形,它绕着中心旋转,不论旋转多少度,?所得到的图形都与原图形完全重合,你觉得它可能是() A.三角形B.等边三角形C.正方形D.圆 二、填空题(7题4分,11题5分,其余每题3分,共18分) 7.经过旋转后的图形与原图形的关系是________,它们的对应线段_______,?对应角________,对应点到旋转中心的距离________. 8.一架风车有分布均匀的四个叶片,旋转一周可与原来的位置重合______次. 9.如图所示,图①沿逆时针方向旋转90°可得到图_________. 10.如上图所示,图①按顺时针方向至少旋转_______度可得图③.

11.如图所示,在△ABC中,∠C=90°,AB=5cm,BC=3cm,?把这个三角形在平面内绕点C逆时针旋转60°至△A′B′C′,那么AA′的长度是______cm.(?不取近似值)三、作图题(每题6分,共18分) 12.如图所示,△ABC绕点A旋转后,点B与点D?重合,?作出旋转后的三角形ADE. 13.把边长为2cm的正方形ABCD,绕着点D逆时针旋转45°后,变为正方形A′B?′C′D′,作出上述图形. 14.如图所示是计算机操作人员用Flash设计出的美丽图案,?试把它按逆时针方向旋转180°,作出旋转后的图案. 四、解答题(6分) 15.如图所示,①图怎样变化可成②图呢?请你分析变化过程.

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例 一.摘要 (3) 二.网络最短路径问题的基础知识 (5) 2.1有向图 (7) 2.2连通性................... 错误!未定义书签。 2.3割集....................... 错误!未定义书签。 2.4最短路问题 (8) 三.最短路径的算法研究.. 错误!未定义书签。 3.1最短路问题的提出 (9) 3.2 Bellman最短路方程错误!未定义书签。 3.3 Bellman-Ford算法的基本思想错误!未定义书签 3.4 Bellman-Ford算法的步骤错误!未定义书签。 3.5实例....................... 错误!未定义书签。 3.6 Bellman-FORD算法的建模应用举例错误!未定义 3.7 Dijkstra算法的基本思想 (9) 3.8 Dijkstra算法的理论依据 (9) 3.9 Dijkstra算法的计算步骤 (9) 3.10 Dijstre算法的建模应用举例 (10) 3.11 两种算法的分析错误!未定义书签。

1.Diklstra算法和Bellman-Ford算法 思想有很大的区别错误!未定义书签。 Bellman-Ford算法在求解过程中,每 次循环都要修改所有顶点的权值,也就 是说源点到各顶点最短路径长度一直 要到Bellman-Ford算法结束才确定下 来。...................... 错误!未定义书签。 2.Diklstra算法和Bellman-Ford算法 的限制.................. 错误!未定义书签。 3.Bellman-Ford算法的另外一种理解错误!未定 4.Bellman-Ford算法的改进错误!未定义书签。 摘要 近年来计算机发展迅猛,图论的研究也得到了很大程度的发展,而最短路径 问题一直是图论中的一个典型问题,它已应用在地理信息科学,计算机科学等 诸多领域。而在交通路网中两个城市之间的最短行车路线就是最短路径问题的 一个典型例子。 由于最短路径问题在各方面广泛应用,以及研究人员对最短路径的深入研究, 使得在最短路径问题中也产生了很多经典的算法。在本课题中我将提出一些最 短路径问题的算法以及各算法之间的比较,最后将这些算法再应用于实际问题

旋转经典题型

章末复习 旋转 01 分点突破 知识点1中心对称与中心对称图形 1.(济宁中考)下列图形是中心对称图形的是 ( ) ? @ @ ? 知识点2平面直角坐标系与旋转 3. (阜新中考)如图,正方形OABC 在平面直角坐标系中,点A 的坐标为(2 , 0),将正方形 OABC 绕点0顺时针旋转45 °,得到正方形 OA B ' C',则 点C'的坐标为( ) A. ( 2, 2) B. (— 2, 2) C. ( 2,——,2) D. (2 . 2, 2丫2) 「 ------- H _ ----- ------ * 儿 A m 4. ________________________________ (宁夏中考)如图,在平面直角坐标系 xOy 中,△ A B '。’由厶ABC 绕 点P 旋转得到,则点P 的坐标为 . 5. _________________________ (北京中考)如图,在平面直角坐标系 xOy 中,A AOB 可以看作是△ OCD 经过若干次图形的变化 (平移、轴对称、旋转)得到的,写出一种由△ OCD 得到△ AOB 的过程: A BCD 2.(齐齐哈尔中考)下列汉字或字母既是中心对称图形又是轴对称图形的 是( ) A rh C H D Z

知识点3旋转中的计算问题 6.(天津中考)如图,将厶ABC绕点B顺时针旋转60°得厶DBE点C的对应点E恰好落在AB的延长线上,连接AD.下列结论一定正确的是() A.Z ABD-Z E B.Z CBE=Z C C. AD// BC 7.(吉林中考)如图,在Rt△ ABC中,/ ACB= 90°, AC= 5 cm, BC= 12 cm 将厶ABC绕点B顺时针旋转60°,得到△ BDE连接DC交AB于点卩,则厶人。卩和厶BDF的周长之和为 & (徐州中考)如图,已知AC绕点A按逆时针方向旋转(1)线段DC= 4; (2)求线段DB的长度. AC= 4, 60°,得到线段AD连接 BC= 3 3,将线段 DC DB. 02 9. B' 的是(中考题型演练 (聊城中考)如图,将△ ABC绕点C顺时针旋转,使点 处,此时,点A的对应点A'恰好落在BC的延长线上,下列结论错误) B落在AB边上点

平移典型例题及练习含答案

平移 一、知识点复习 知识点1:平移的定义: 在平面内,一个图形沿某个方向移动一定的距离,这种图形的变换叫做平移。 知识点2:平移的要素 1.平移的方向:原图上的点指向它的对应点的射线方向; 2.平移的距离:连接原图与平移后图形上的一对对应点的线段的长度。 知识点3:平移的性质 1.性质 (1)平移只改变图形的位置,不改变图形的形状和大小。 (2)平移后的图形与原图形上对应点连成的线段, ①数量关系是相等 . ②位置关系是平行或在同一条直线上。 2.判断一组图形能不能通过平移得到的方法 (1)看对应点连线是否平行或在同一条直线上;

(2)看它的形状、大小是否发生变化,位置的变化是否由平移产生。 ★★★特别注意: 平移是由平移的方向和距离决定的,平移必须指明平移的方向和距离; 平移是在平面内,整个图形沿着某一直线平行移动的过程,原图上的每个点都沿同一方向移动相同的距离;平移的距离不能为0; 平移的方向是任意的,但就一次平移而言,只能有一个方向,一次平移完成后可以改变方向进行下一次平移。 二、典型例题 题型1:生活中平移现象 【例题1】(2017春?乌海期末)下列运动属于平移的是() A.荡秋千 B.推开教室的门 C.风筝在空中随风飘动 D.急刹车时,汽车在地面上的滑动【例题2】:(2016春?淮安期中)下列现象:①电梯的升降运动,②飞机在地面上沿直线滑行,③风车的转动,④冷水加热过程中气泡的上升.其中属于平移的是() A.①② B.①③ C.②③ D.③④ 题型2:平移的性质 【例题4】:(2016春?沧州期末)在下列说法中:①△ABC在平移过程中,对应线段一定相等;②△ABC 在平移过程中,对应线段一定平行;③△ABC在平移过程中,周长保持不变;④△ABC在平移过程中,对应边中点所连线段的长等于平移的距离;⑤△ABC在平移过程中,面积不变,其中正确的有() A.①②③④ B.①②③④⑤ C.①②③⑤ D.①③④⑤ 题型3:与平移有关的计算

弗洛伊德算法求解最短路径

课程设计任务书

目录 第1章概要设计 (1) 1.1题目的内容与要求 (1) 1.2总体结构 (1) 第2章详细设计 (2) 2.1主模块 (2) 2.2构建城市无向图 (3) 2.3添加城市 (4) 2.4修改城市距离 (5) 2.5求最短路径 (6) 第3章调试分析 (7) 3.1调试初期 (7) 3.2调试中期 (7) 3.3调试末期 (7) 第4章测试及运行结果 (7) 附页(程序清单) (10)

第1章概要设计 1.1题目的内容与要求 内容:给出一张无向图,图上的每个顶点表示一个城市,顶点间的边表示城市间存在路径,边上的权值表示城市间的距离。试编写程序求解从某一个城市出发到达任意其他任意城市的最短路径问题。 要求: 1)能够提供简单友好的用户操作界面,可以输入城市的基本信息,包括城市名 称,城市编号等; 2)利用矩阵保存城市间的距离; 3)利用Floyd算法求最短路径; 4)独立完成系统的设计,编码和调试; 5)系统利用C语言完成; 6)按照课程设计规范书写课程设计报告。 1.2总体结构 本程序主要分为四个模块(功能模块见图1.1):主模块对整个程序起一主导作用,开始构建一城市无向图,对其进行添加城市顶点,以及对原来的距离数据进行修改,整体构建结束可以实现求一城市到其他城市的最短路径问题。 图1.1 功能模块图

第2章详细设计 2.1主模块 用户根据屏幕上显示的操作提示输入要进行操作的模块,通过调用相对应的模块程序,达到用户所想进行操作。程序的总框架大致分为四个模块:1.建立城市无向图2.添加城市模块3.修改城市距离4.求最短路径。具体实现过程见2.2:建立城市无向图2.3:添加城市2.4:修改城市距离2.5:求最短路径。流程图中通过输入n,由n的值来选择调用相对应子函数,实现所选择的功能,调用完后可以返回调用主函数进行下一次选择,从而实现反复调用子函数而实现四个模块的功能等。 图2.1 主模块流程图

八年级数学图像的平移和旋转知识点经典例题和习题

图形的平移与旋转 【考纲传真】 图形的平移与旋转是近几年中考命题的重点和热点.考察考点主要通过具体实例认识平移、旋转,并探索平移、旋转的基本性质. 【复习考纲】 1.探索图形平移、旋转的性质,发展空间观念;结合具体实例,理解平移、旋转的基本内涵. 2.掌握平移、旋转的画图步骤和方法,掌握图形在坐标轴上的平移和旋转. 【考点梳理】 一、平移定义和规律 1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移. 注意: (1)平移不改变图形的形状和大小(也不会改变图形的方向,但改变图形的位置); (2)图形平移三要素:原位置、平移方向、平移距离. 2.平移的规律(性质):经过平移,对应点所连的线段平行且相等,对应线段平行且相等、对应角相等. 注意:平移后,原图形与平移后的图形全等. 3.简单的平移作图 平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动. 平移作图要注意:①方向;②距离. 二、旋转的定义和规律 1.旋转的定义:在平面内,将一个图形饶一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.这个定点称为旋转中心,转动的角称为旋转角.关键:(1)旋转不改变图形的形状和大小(但会改变图形的方向,也改变图

形的位置); (2)图形旋转四要素:原位置、旋转中心、旋转方向、旋转角. 2.旋转的规律(性质): 经过旋转,图形上的每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.(旋转前后两个图形的对应线段相等、对应角相等.) 注意:旋转后,原图形与旋转后的图形全等. 3.简单的旋转作图: 旋转作图,就是把整个图案的每一个特征点绕旋转中心按一定的旋转方向和一定的旋转角度旋转移动. 旋转作图要注意:①旋转方向;②旋转角度. 【典题探究】 【例1】、在下列实例中,不属于平移过程的有( ) ①时针运行的过程;②火箭升空的过程;③地球自转的过程;④飞机从起跑到离开地面的过程。 A 、1个 B 、2个 C 、3个 D 、4个 【例2】、如图所示的每个图形中的两个三角形是经过平移得到的是( ) 【例3】、下列图形经过平移后恰好可以与原图形组合成一个长方形的是( ) A 、三角形 B 、正方形 C 、梯形 D 、都有可能 【例4】、在图形平移的过程中,下列说法中错误的是( ) A 、图形上任意点移动的方向相同 B 、图形上任意点移动的距离相同 C 、图形上可能存在不动的点 D 、图形上任意两点连线的长度不变 【例5】、有关图形旋转的说法中错误的是( ) A 、图形上每一点到旋转中心的距离相等 B 、图形上每一点移动的角度相同 A B C D

实验四图的最短路径弗洛伊德算法实现

数据结构与算法课程实验报告实验四:图的相关算法应用 姓名:王连平 班级:09信科2班 学号:I09630221

实验四图的相关算法应用 一、实验内容 求有向网络中任意两点之间的最短路。 二、实验目的 掌握图和网络的定义,掌握图的邻接矩阵、邻接表和十字链表等存储表示。掌握图的深度和广度遍历算法,掌握求网络的最短路的标号法和floyd算法。 三、问题描述 对于下面一张若干个城市以及城市间距离的地图,从地图中所有可能的路径中求出任意两个城市间的最短距离及路径,给出任意两个城市间的最短距离值及途径的各个城市。 四、问题的实现 4.1数据结构的抽象数据类型定义和说明 1) typedef struct ArcCell{//储存弧信息 int Distance; ArcCell *info;//此项用来保存弧信息,,在本实验中没有相关信息要保存 }ArcCell,AdjMatrix[ MAX_VERTEX_NUM][ MAX_VERTEX_NUM]; typedef struct{//储存顶点信息 string vexs[ MAX_VERTEX_NUM];//顶点向量

AdjMatrix arcs;//邻接矩阵 int vexnum , arcnum;//图的当前顶点数和弧数 }MGraph; 顶点信息和弧信息都是用来建立一个有向网G 2) d[v][w];//G中各对顶点的带权长度 若P[v][w][u]为TRUE,则u是从v到w当前求得最短路径上的顶点 4.2主要的实现思路 首先通过一个函数(CreateDN)建立图的邻接矩阵储存方式,一次输入某条弧的起点,终点,和权值。通过调用Locate函数来找到该弧在邻接矩阵中的相应位置。 其次运用弗洛伊德算法来求各定点的最短路劲,具体思路为:如果从v到w有弧,则存在一条长度为arcs[v][w]的路径,该路径不一定是最短路径。考虑路径(v,u,w)是否存在,若存在,比较(v,w)和(v,u,w)的长度,取较短者为从v到w的中间点序号不大于0的最短路径。以此类推,每次增加一个点,从而求出任意两点间的最短路径。这样,经过n次比较后,所求得的必为从v到w的最短路径。按此方法,可以同时求得任意两点间的最短路径。 五、主要源程序代码(包含程序备注) #include #include using namespace std; #define INfinity 10000//最大值 # define MAX_VERTEX_NUM 10//最大顶点数 typedef struct ArcCell{//储存弧信息 int Distance; ArcCell *info; }ArcCell,AdjMatrix[ MAX_VERTEX_NUM][ MAX_VERTEX_NUM]; typedef struct{//储存顶点信息 string vexs[ MAX_VERTEX_NUM];//顶点向量 AdjMatrix arcs;//邻接矩阵 int vexnum , arcnum;//图的当前顶点数和弧数 }MGraph; int Locate(MGraph &G,string v) { int a=0; for (int i=0;i

旋转经典题型

01 分点突破 知识点1中心对称与中心对称图形 1. 图形的是 C 1) 2.(齐齐哈尔屮考)下列汉字或字母既是屮 心对称图形又是轴对称图形的是 知识点2平面直角坐标系与旋转 (阜新屮考)ri 章末复习 旋转 A. Bl cH D Z (济宁中考)下列图形是中心对称 如图,正方形OABC 在平面直角坐标系屮,点 A 的坐标为 (2, 0),将正方形OABC 绕点0顺时针旋转45 0得到正方形 标为( ) OA B' C 则点C'的坐 A. ( .2, .2) C. ( . 2, — . 2) B. (— 2, . 2) D. (2 .2, 2 .2) 3. 4. (宁夏中考)如图,在平面直角坐标系xOy

中,△ A'B'由込ABC绕点P旋转得到,则点P的坐标为 . 5. __________________________ (北京中考)如图,在平面直角坐标系xOy中, 4AOB可以看作是AOCD经过若干次图形的变化(平移、轴对称、旋转)得到的, 写出一种由△ OCD得到△ AOB的过程:

知识点 3 6.(天津 屮考)如图, 将厶 ABC 绕 点B 顺时针 旋转60 ° E 恰好落在AB 的延长线上,连 接AD.下列结论一定正确的是() AC = 5 cm, BC = 12 cm. 将厶ABC 绕点B 顺时针旋转60°得到△ BDE ,连接DC 交AB 于点F,则厶ACF 和厶BDF 的周长之和为 cm. 8?(徐州中考)如图,已知AC 丄BC,垂足为C, AC 二4, BC 二3. 3,将线 段AC 绕 点A 按逆时针方向旋转60°得到线段AD,连接DC, DB. (1)线段 DC 二 4; (2)求线段DB 的长度. 02 中考题型演练 9. (聊城中考)如图,将AABC 绕点C 顺时针旋转,使点B 落在AB 边上点 B'处,此时,点A 的对应点A'恰好落在BC 的延长线上,下列结论错误的是() 得"DBE,点 C 的对应点 旋转屮的让算问题 4 A. Z ABD 二Z E B. Z CBE 二Z C C. AD II BC D. AD =BC E B

单源最短路径的Dijkstra算法

单源最短路径的Dijkstra算法: 问题描述: 给定一个带权有向图G=(V,E),其中每条边的权是非负实数。另外,还给定V中的一个顶点,称为源。现在要计算从源到所有其他各顶点的最短路长度。这里路的长度是指路上各边权之和。这个问题通常称为单源最短路径问题。算法描述: Dijkstra算法是解单源最短路径的一个贪心算法。基本思想是:设置顶点集合S并不断地做贪心选择来扩充这个集合。一个顶点属于S当且仅当从源到该顶点的最短路径长度已知。初始时,S中仅含有源。设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist做必要的修改。一旦S包含了所有V中顶点,dist就记录了从源到所有其他顶点之间的最短路径长度。 源代码: #include #define MAX 1000 #define LEN 100 int k=0, b[LEN]; using namespace std;

//-------------------------------------数据声明------------------------------------------------//c[i][j]表示边(i,j)的权 //dist[i]表示当前从源到顶点i的最短特殊路径长度 //prev[i]记录从源到顶点i的最短路径上的i的前一个顶点 //--------------------------------------------------------------------------------------------- void Dijkstra(int n, int v, int dist[], int prev[], int c[][LEN]) { bool s[LEN]; // 判断是否已存入该点到S集合中 for (int i = 1; i <= n; i++) { dist[i] = c[v][i]; s[i] = false; //初始都未用过该点 if (dist[i] == MAX) prev[i] = 0; //表示v到i前一顶点不存在 else prev[i] = v; } dist[v] = 0; s[v] = true; for (int i = 1; i < n; i++)

图形旋转的经典证明题

P A C B O C B A 例1:如图,在正方形ABCD 中,点E ,F 分别为DC ,BC 边上的动点,且∠EAF=45°, 求证:EF=DE+BF 1、在等边△ABC 中,O 为△ABC 内一点,连接AO 、BO 、CO 且AO=1,BO=2,CO= 3 ,求∠AOB ,∠BOC 的度数分别是多少? 2、如图,P 是等腰三角形ABC 内一点,且∠C=90°,PB=3,PA=7,PC=1。求∠APB 的度数? E

例2、基本问题两个有公共顶点的等腰△AOB和△COD,如图1所示,如果∠AOB=∠COD=90°,OA=OB,OC=OD.那么AC与BD 是否相等?为什么? 拓展1图1中线段AC与BD除相等外,它们所在的直线还有什么特殊的位置关系?你能说明理由吗? 拓展2若将图1中的△COD绕点O按顺时针(或逆时针)方向旋转任意角度,如图2、图3,上面的结论还成立吗?

拓展3将上题中“∠AOB=∠COD=90°”改为“∠AOB=∠COD =60°”,如图4,其他条件不变,那么上述结论是否仍然成立?如不成立,会有什么变化? 拓展4将上题中“∠AOB=∠COD=60°”改为“∠AOB=∠COD =α”,如图5,其他条件不变,那么上述结论又会有怎样的变化呢?

练习1、如图9,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、DE的长度关系及所在直线的位置关系: (1)①猜想如图9中线段BG、线段DE的长度关系及所在直线的位置关系; ②将图9中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到图10、图11的情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图10证明你的判断. . .

旋转经典题型

巧旋转妙解题 一个图形围绕某一点由一个位置转到另一个位置的运动叫旋转,这个点叫做旋转中心。确定图形旋转的三个要素是:旋转中心、旋转方向、旋转角度。图形旋转的主要特征是:图形中每一点都绕着旋转中心旋转了同样大小的角度,对应点到旋转中心的距离相等,对应线段相等,对应角相等,图形的形状与大小没有发生变化。 我们在解题中运用图形旋转的主要目的是:把给定的图形(或其中的一部分)绕某一点旋转后,图形会发生新的组合,重组后的图形能把题目中的条件相对集中,从而使问题得到解决。下面举例说明运用图形旋转法解题的常用技巧。 一、三角形中的旋转技巧 1. 当条件中出现三角形某边的中点时,可将某图形绕此中点旋转180°。 例1. 如图1,在△ABC中,D是AB的中点,E、F分别是BC、AC上的点。 求证: 图1 分析:由于△ADF与△BDE不在一起,因此,我们只需将△ADF绕中点D旋转180°得到△BDG,使其与△BDE组成一个四边形BEDG,从而使问题得到解决。 证明:把△ADF绕中点D旋转180°得到△BDG,其中B与A、G与F分别是对应点,则△BDG≌△ADF。于是 ∵D是AB的中点 ∴D也是GF的中点,故 ∵

2. 当条件中的三角形是等腰三角形时,可将含有该等腰三角形一腰的图形,绕着等腰三角形的顶角顶点进行旋转,使得两腰重合。 例2. 如图2,在△ABC中,AB=AC,D是三角形内一点,DC>DB。 求证:∠ADB>∠ADC 图2 分析:由于已知两边的大小关系,与要证的两角的大小关系没太大联系,因此我们需要将图形进行适当旋转,使图形发生重组,然后再探究它们的内在联系。 证明:把△ABD绕点A逆时针旋转∠BAC,得△ACE,连DE 则AE=AD,EC=BD ∠AED=∠ADE,∠AEC=∠ADB 在△DEC中,∵EC=BD ∴DC>EC ∴∠DEC>∠EDC ∴∠AEC>∠ADC,故∠ADB>∠ADC 3. 当条件中的三角形是等边三角形时,可将含有该等边三角形一边的图形,绕着等边三角形的顶点进行旋转,使其与另一边重合。 例3. 如图3,等边△ABC中,O为其内一点,且OA=3,OB=5,OC=4,求∠AOC 的度数。

最短路径算法在物流运输中的应用

最短路径算法在物流运输 中的应用 Last revision date: 13 December 2020.

本科生毕业设计(论文)题目:线性表的设计和实现 学生姓名:张三 学号: 1153 院系:基础科学学院信息技术系 专业年级: 2012级信息与计算科学专业 指导教师:李四 年月日

摘要 随着现代物流业的发展,如何优化和配置物流的运输路径成为了一个热点的问题。其中,最具代表性的问题就是如何在一个道路网络中选择两点之间的合适路径,使其距离最短。为了解决这个问题,本文介绍了两种最常用的最短路径求解方法——DIJKSTRA算法与FLOYD算法,分析了它们的适用范围以及时间复杂度。最后,对一个具体的航空公司物流配送问题进行了求解,得到了理论最优路径。 关键词:最短路径问题;DIJKSTRA算法;物流运输

ABSTRACT With the development of modern logistics industry, how to optimize and configure the transport path of logistics has become a hot issue. Among them, the most representative problem is how to select the appropriate path between two points in a road network to minimize the distance. In order to solve this problem, this paper introduces two most common shortest path solutions —— Dijkstra algorithm and Floyd algorithm, and analyzes their application range and time complexity. Finally, a specific airline logistics distribution problem is solved, and the theoretical optimal path is obtained. Keywords:Minimum path problem;Dijkstra algorithm;Logistics transportation

数据结构课程设计-Floyd算法求解最短路径

数据结构课程设计报告撰写要求 (一)纸张与页面要求 1.采用国际标准A4型打印纸或复印纸,纵向打印。 2.封页和页面按照下面模板书写(正文为:小四宋体1.5倍行距)。 3.图表及图表标题按照模板中的表示书写。 (二)课设报告书的内容应包括以下各个部分:(按照以下顺序装订) 1.封页(见课设模版) 2、学术诚信声明,所有学生必须本人签字,否则教师拒绝给予成绩。 2.任务书(学生教师均要签字,信息填写完整) 3.目录 4.正文一般应包括以下内容: (1)题目介绍和功能要求(或描述) 课程设计任务的详细描述(注意不能直接抄任务书),将内容做更详细的具体的分析与描述; (2) 系统功能模块结构图 绘制系统功能结构框图及主要模块的功能说明; (3) 使用的数据结构的描述: 数据结构设计及用法说明; (4) 涉及到的函数的描述 ; (5) 主要算法描述( 程序流程图) (6) 给出程序测试/运行的结果 设计多组数据加以描述(包括输入数据和输出结果) (7) 课程设计的总结及体会 (8) 参考文献 格式要求:[1]作者,等. 书名.出版地:出版社,出版年 5.附录:程序清单 (应带有必要的注释)

沈阳航空航天大学 课程设计报告 课程设计名称:数据结构课程设计 课程设计题目:利用弗洛伊德(Floyd)算法求解 最短路径 院(系):计算机学院 专业:计算机科学与技术(物联网方向) 班级:34010105 学号: 姓名: 指导教师: 说明:结论(优秀、良好、中等、及格、不及格)作为相关教环节考核必要依据;格式不符合要求;数据不实,不予通过。报告和电子数据必须作为实验现象重复的关键依据。

数据结构课程设计_城市最短路径求解

数据结构课程设计 —省会城市最短路径求解一、类关系图 说明:Graph类继承Form类,同时嵌入了CityInf结构体和List类。 Graph类的几个重要函数、类、结构体 private void Init()//初始化函数 private void ShowMap_Paint(object sender, PaintEventArgs e) //绘制地图 private bool GetMinDistanceFun(int entry) //采用迪杰斯特拉算法获得最短路径private void BFS(int StartPoint, int[] visited, string name) //广度优先遍历函数private void DFS(int StartPoint, int[] visited, string name)//深度优先遍历函数private void Prim()//求解最小生成树 Prim算法 private class List //广度优先遍历用到的队列类 public struct CityInf//存放城市信息:城市名称、城市坐标、状态值

二、流程图

三、主要算法的实现 1.用迪杰斯特拉算法实现省会城市间最短路径的求解 private bool GetMinDistanceFun(int entry) { int inputnodenum = CityData.citysum; int[] Mark = new int[inputnodenum]; //标志位数组标记数据在哪个集合 int mindis = 0, nextnode = 0;//最短路径,下一个城市结点 int i, j; //第一轮距离数组记录从起始点到其他所有点的边权值 for (i = 0; i < inputnodenum; i++) { Distance[i] = GetCityWeight(entry, i); //所有标志位清零 Mark[i] = 0; //如果起始结点可以抵达某个结点 if (i != entry && Distance[i] < MaxWeight) { RoutePath[i] = entry; //则把该结点首先放入路径数组 } else { RoutePath[i] = -1;//表示该路径不通 } } //初始状态下集合存放找到最短路径顶点集合的中只包含源点entry 所以把它在Mark 中标记出来 Mark[entry] = 1; //在还没有找到最短路径的结点集合中选取最短距离结点nextnode for (i = 1; i < inputnodenum; i++) { //设定每轮的初始最小距离为无穷大 mindis = MaxWeight; for (j = 0; j < inputnodenum; j++) { //保证每次循环mindis是到entry的最小值 if (Mark[j] == 0 && Distance[j] < mindis)//如果没有进入最短路径且距离小于最小距离 { nextnode = j; mindis = Distance[j];//记录本次循环的最短路径 } }

相关文档
相关文档 最新文档