文档库 最新最全的文档下载
当前位置:文档库 › 离子交换树脂吸附柠檬酸的研究

离子交换树脂吸附柠檬酸的研究

离子交换树脂吸附柠檬酸的研究
离子交换树脂吸附柠檬酸的研究

离子交换树脂吸附柠檬酸的研究

【摘要】柠檬酸用途非常广泛,所以世界各国都积极开展对它的研究,得出多种从柠檬酸发酵液中提取柠檬酸的方法。本文对D201型大孔强碱性阴离子交换树脂从柠檬酸溶液中交换分离柠檬酸的研究。该法是利用特定的有机高分子树脂对柠檬酸盐的高选择性将柠檬酸从发酵液中提取出来。

【关键词】D201型大孔强碱性阴离子交换树脂;柠檬酸;吸附

0 引言

柠檬酸无毒,水溶性好,酸味适度,易被吸收,且价格低廉,广泛应用于食品、医药、化工、纺织等工业中[1],其中用量最大的是食品业。预计,随着生活水平的提高,食品工业的快速发展,国内柠檬酸在食品业的用量近年内增长较快。全球洗涤剂行业对柠檬酸的需求量增长很快,而我国在这一方面动作较为缓慢。国外已有柠檬酸大量应于医药上,我国则刚起步[2]。

1 本实验的实验原理

强碱性阴离子交换树脂:它具有强碱性的活泼基团季胺基。由苯乙烯和二乙烯苯聚合物,与氯甲基醚反应,即得聚苯乙烯型季胺基强碱性阴离子交换树脂,这类树脂如果用NaOH溶液处理,则发生交换过程,转变为OH-型的树脂[3],这种树脂是淡黄色的球状颗粒,对酸、碱、氧化剂和某些有机溶剂都比较稳定;对强酸根和弱酸根阴离子都能交换;在酸性、碱性和中性溶液中都能应用;在分析化学上应用较多。一般都处理成Cl-型树脂出售,因为Cl-型比OH-型更稳定。而阴离子交换树脂的交换容量,一般也是指Cl-型树脂的[4]。

2 实验过程及结果讨论

2.1 静态吸附

将待用树脂称取1.000g各六份分别至于锥形瓶中,贴上标签后待用。用移液管移取25mL49.8g/L柠檬酸液至小烧杯中,通过添加高浓度的NaOH溶液调节其pH至最佳吸附值7时,然后用蒸馏水将其定容至50mL容量瓶中振荡摇匀后分别取25mL加到盛装有树脂的锥形瓶中,盖上瓶塞之后放入振荡器中振荡,振荡时间为平衡吸附时间10分钟。然后过滤振荡液,用移液管分别移取5mL以酚酞为指示剂,0.5044mol/L NaOH溶液为滴定液滴定,记录NaOH液的用量。随着时间的增大树脂对柠檬酸的吸附量不断增高。

2.2 静态解析

将待用树脂称取1.0000g各六份分别至于锥形瓶中,贴上标签后待用.用移液管移取25mL 49.8g/L柠檬酸液至小烧杯中,通过添加高浓度的NaOH溶液调节

离子交换树脂基础知识

离子交换树脂基础知识

离子交换树脂的基础知识 一、离子交换树脂发展简史 离子交换剂是一类能发生离子交换的物质,分为无机离子交换剂和有机离子交换剂。有机离子交换剂又称离子交换树脂。无机离子交换剂(如沸石)早在一百多年前就已发现并应用,人类就已经会利用沙砾净水。而有机离子交换树脂是在1933年由英国人亚当斯(Hdams)和霍姆斯(Holms)首先用人工方法制造酚醛类型的阳、阴离子交换树脂。 在第二次世界大战期间,德国首先进行工业规模的生产。战后英、美、苏、日等国的发展很快。1945年美国人迪阿莱里坞(D’Alelio)发表了关于聚苯乙烯型强酸性阳离子交换树脂及聚丙烯酸型弱酸性阳离子交换树脂的制备方法。后来聚苯乙烯阴离子交换树脂、氧化还原树脂以及螯合树脂等也相继出现,在应用技术及其范围上也日益广大。到了上世纪五十年代后期,各种大孔型的树脂又相继发展起来,在生产及科学研究中,离子交换树脂起着越来越重要的作用。 解放前,我国的离子交换树脂的科研和生产完全空白,解放后,从五十年代初期开始,我国在北京、上海和天津的一些科研单位和高等学校分别开始了离子交换树脂的研究。1953年酚醛磺化树脂产生,1958年凝胶型苯乙烯树脂投入生产,1959年南开大学何炳林用苯乙烯做致孔剂合成孔径大、强度高和交换速度快的大孔型交联聚苯乙烯离子交换树脂。60年代我国生产了大孔型苯乙烯系、丙烯酸系离子交换树脂。到70年代中、后期又合成了多种吸附树脂、碳化树脂,并已先后投入生产。 经过50年的努力,我国的离子交换树脂的生产和工业应用得到了飞速

也属于功能高分子。 阳离子交换树脂是一类骨架上结合有磺酸(-SO3H)和羧酸(-COOH)等酸性功能基的聚合物。将此树脂浸渍于水中时,交换基部分可如同普通酸那样发生电离。以R表示树脂的骨架部分,阳离子交换树脂R-SO3H或R-COOH在水中的电离如下: RSO3H RSO3- + H+ RCOO-+ H+ RSO3H型的树脂易于电离,具有相当于盐酸或硫酸的强酸性,称为强酸性阳离子交换树脂。而RCOOH型的树脂类似有机酸,较难电离。具有弱酸的性质,因此称为弱酸性阳离子交换树脂。 阴离子交换树脂是一类在骨架上结合有季胺基、伯胺基、仲胺基、叔胺基的聚合物。其中以季胺基上的羟基为交换基的树脂具有强碱性,称为强碱性阴离子交换树脂。用R表示树脂中的聚合物骨架时,强碱性阴离子交换树脂在水中会发生如下的电离: R—N+(CH3)3OH-R—N+(CH3)3 + OH-- 具有伯胺、仲胺、叔胺基的阴离子交换树脂碱性较弱,称为弱碱性阴离子交换树脂。强碱性阴离子交换树脂一般以化学稳定的CL盐型出售,应用时要用N a OH溶液进行转型。 三、离子交换树脂的分类 按骨架结构不同,离子交换树脂可分为凝胶性和大孔型树脂两大类。 由苯乙烯和二乙烯苯混合物在引发剂存在下进行自由基悬浮聚合,得到具有交联网状结构的聚合体。这种聚合体一般是呈透明状态的,无孔的

离子交换法处理镍废水

离子交换法处理镍废水

————————————————————————————————作者:————————————————————————————————日期: ?

三废治理技术课程 离子交换法处理含镍废水工艺方案

离子交换法处理含镍废水工艺方案 一、概述 镀镍作为一种常用的表面处理技术,被广泛的应用于电子、汽车、机械等多种行业。含Ni2+的废水对人体健康和生态环境有着严重危害。含镍废水的常见处理方法有化学沉淀法、真空蒸发回收、电渗析、反渗透及离子交换树脂吸附等。化学沉淀法成本低,但产生的固废需要二次处理;真空蒸发法能耗大;电渗析、反渗透法需要较大的设备投资和能耗,而且存在膜易受污染的问题[1]。 离子交换技术因出水水质好,可回收有用物质,适用于处理浓度低而废水量大的镀镍废水等优点,曾得到广泛的应用。离子交换法应用于镀镍废水处理的主要功能有:(1)去除重金属镍离子,以应对日趋严格的排放标准;(2)回收废水中有价值的金属镍;(3)提高水的循环利用率,节约日益匮乏的水资源;(4)减少环境污染。 随着人们对镀镍废水资源化的兴趣越来越浓厚,离子交换技术作为电镀废水深度处理的有效方法再度引起重视。 二、原理 离子交换树脂是具有三维空间结构的不溶性高分子化合物,其功能基可与水中的离子起交换反应。镀镍废水中的Ni2+离子采用阳离子交换树脂吸附。所用树脂可以是强酸性阳树脂也可以是弱酸性阳树脂,本文以弱酸性阳树脂为例。采用弱酸性阳树脂交换时,通常将树脂转为Na型,因为H型交换速率极慢。含Ni2+ 废水流经Na型弱酸性阳树脂层时,发生如下交换反应: 2R-COONa+Ni2+→(R-COO) 2 Ni+2Na+ 水中的Ni2+被吸附在树脂上,而树脂上的Na+便进入水中。 当全部树脂层与Ni2+交换达到平衡时,用一定浓度的HCl或H 2SO 4 再生。 (R-COO)2Ni+H 2SO 4 →2R-COOH+NiSO 4 此时树脂为H型,需用NaOH转为Na型。

离子交换树脂的原理及应用总结归纳(重点阅读)

精心整理如何筛分混合的阴阳离子交换树脂? 离子交换树脂的工作原理及优缺点分析 将离子性官能基结合在树脂(有机高分子)上的材料,称之为“离子交换树脂”。树脂表面带有磺酸(sulfonic acid) 者,称为阳离子交换树脂,而带有四级氨离子的,则为阴离子交换树脂。由於离子交换树脂可以有效去除水中阴阳离子,所以经常使用於纯水、超纯水的制造程序中。(见下图) 离子交换树脂上的官能基虽可去除原水(Feed water) (Fouling)。方。 原理 软水,这是软化水设备的工作过程。 当树脂上的大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫作“再生”。

由于实际工作的需要,软化水设备的标准工作流程主要包括:工作(有时叫做产水,下同)、反洗、吸盐(再生)、慢冲洗(置换)、快冲洗五个过程。不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程。任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的(其中,全自动软化水设备会增加盐水重注过程)。 反洗:工作一段时间后的设备,会在树脂上部拦截很多由原水带来的污物,把这些污物除去后,离子交换树脂才能完全曝露出来,再生的效果才能得到保证。反洗过程就是水从树脂的底部洗入,从顶部流出,这样可以把顶部拦截下来的污物冲走。这个过程一般 需要5-15分钟左右。 吸盐(再生) (只要进水有一定的压力即可) 慢冲洗(置换) 应用 1)水处理 水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除。目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等。

离子交换树脂的交换原理是什么

离子交换树脂的交换原理是什么 离子交换树脂的结构 离子交换树脂的内部结构,如下图所示。由三部分组成,分别是: (1)高分子骨架由交联的高分子聚合物组成; (2)离子交换基团它连在高分子骨架上,带有可交换的离子(称为反离子)的离子型官能团或带有极性的非离子型官能团; (3)孔它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝胶孔)和高分子结构之间的孔(毛细孔)。在交联结构的高分子基体(骨架)上,以化学键结合着许多交换基团,这些交换基团也是由两部分组成:固定部分和活动部分。交换基团中的固定部分被束缚在高分子的基体上,不能自由移动,所以称为固定离子;交换基团的活动部分则是与固定离子以离子键结合的符号相反的离子,称为反离子或可交换离子。反离子在溶液中可以离解成自由移动的离子,在一定条件下,它能与符号相同的其他反离子发生交换反应。 离子交换的基本原理 离子交换的选择性定义为离子交换剂对于某些离子显示优先活性的性质。离子交换树脂吸附各种离子的能力不一,有些离子易被交换树脂吸附,但吸着后要把它 置换下来就比较困难;而另一些离子很难被吸着,但被置换下来却比较容易,这种性能称为离子交换的选择性。离子交换树脂对水中不同离子的选择性与树脂的交联度、交换基团、可交换离子的性质、水中离子的浓度和水的温度等因素有

关。离子交换作用即溶液中的可交换离子与交换基团上的可交换离子发生交换。一般来说,离子交换树脂对价数较高的离子的选择性较大。对于同价离子,则对离子半径较小的离子的选择性较大。在同族同价的金属离子中,原子序数较大的离子其水合半径较小,阳离子交换树脂对其的选择性较大。对于强酸性阳离子交换树脂来说,它对一些离子的选择性顺序为:Fe3+>A13+>Ca2+>Mg2+>K+>Na+>H+。离子交换反应是可逆反应,但是这种可逆反应并不是在均相溶液中进行的,而是在固态的树脂和溶液的接触界面间发生的。这种反应的可逆性使离子交换树脂可以反复使用。 (文档由洛阳宏昌工贸整理提供)

离子交换树脂的处理

离子交换树脂的处理 前言:001×7阳离了交换树指(以下简称树脂)用于水处理过程中由于受不同因素的影响出现变红、变棕、变褐、粉碎是常见的事情。各种变化对树脂工作交换容量的影响大不相同。有的变化使工作交换容量降低很少,有的变化使工作交换容量降低很多,甚至报废。近十年的锅炉水处理工作实践对数百个新、旧树脂样品的处理和工作交换容量的测定证明了这一点。 1. 正常使用过程中颜色变红、变棕对工作交换容量的影响。 在我所处理、测定过的近百个在使用过程中变红、变褐、粉碎的旧树脂样品中,有95%以上处理后颜色恢复到黄色或浅黄色,工作交换容量比处理前提高1——5%。少数几个样品用酸、碱、酒精处理后仍然呈褐色,处理前后工作交换容量都比较低,基本上没有变化。前者颜色的加深是由于水中微量铁和其它因素(如温度)等影响所致,后者属于原新树脂本身就呈褐色、工作交换容量就低,也可能是严重铁中毒和有机质污染而致。而一般软化罐内壁防腐层破损导致的树脂铁中毒,只是颜色变红、变棕,其工作交换容量变化甚微。这与个别书上所列表表示的树脂铁中毒经盐酸处理后工作交换容量可提高50%以上是有很大差距的。如陶瓷公司卫生瓷厂的旧树脂样品为褐色,粒度为0.6——1.0mm,破粹粒占30%,用酸碱处理前后工作交换容量均为0.86mmol/ml湿态,颜色均为棕色;又如七一八究所的旧树脂样品为红色,处理后为黄色,处理前后的工作交换容量分别为1.02mmol/ml湿态和1.03mmol/ml湿态。所以我认为,在使用井水,自来水为水源时,对树脂变红、变棕,无需用酸碱处理。如果设备周期制水量突然降低或出水水质突然不合格,应该先检查与出软水管路相通的源水阀门是否严密,或者奖树脂进行较好的水冲洗,以除去树脂中的悬浮物和泥沙,这样即可恢复到原周期制水量和出水水质。酸、碱的处理只能除去加深的颜色,工作交换容量增加甚少,但却降低树脂强度,提高破碎率。 2.树脂在使用过程中粒度破碎对其工作交换容量的影响。 树脂粒度破碎对其工作交换容量的影响根据导致破碎的因素不同分两种情况:一是正常使用磨损破碎,一是受冻破碎。磨损破碎不管破碎率多高,对其工作交换容量影响甚小(在操作软化罐误差之内);而受冻破碎对其工作交换容量影响很大,以至报废。

离子交换树脂综合知识

离子交换树脂综合知识 【电厂化学】2007-07-31 09:07:41 阅读1184 评论0 字号:大中小订阅 1 树脂的储存和运输 1、离子交换树脂在长期储存中,或需在停用设备内长期存放,强型树脂(强酸性和强碱性树脂)应转为盐型,弱型树脂(弱酸性和弱碱性树脂)可转为相应的氢型或游离胺型,也可转变为盐型,以保持树脂性能的稳定。然后浸泡在洁净的水中。停用设备若须将水排去,则应密封,以防树脂中水份散失。 2、离子交换树脂内含有一定的平衡水份,在储存和运输中应保持湿润,防止脱水。树脂应储存在室内或加遮盖,环境温度以5°C-40°C为宜。袋装树脂应避免直接日晒,远离锅炉、取暖器等加热装置,避免脱水。 若发现树脂已有脱水现象,切勿将树脂直接放于水中,以免干树脂遇水急剧溶胀而破碎。应根据其脱水程度,用10%左右的食盐水慢慢加入到树脂中,浸泡数小时后用洁净水逐步稀释。 3、当环境温度在0°C或以下时,为防止树脂因内部水份结冰而崩裂,应做好保温措施,或根据气温条件,将树脂存于相应浓度的食盐水中,防止冰冻。若发现树脂已被冻,则应让其缓慢自然解冻,切不可用机械力施于树脂。 食盐溶液浓度与冰点的关系如下表: 4、长期停用而放置在交换器内的树脂,为防止微生物(如藻类、细菌等)对树脂的不可逆污染,树脂在停用前须彻底反洗,以除去运行时积聚的悬浮物质,并注意定期冲洗和换水。或彻底反洗后采用以下措施: 阴树脂:用3倍树脂体积的10%NaCl+2%NaOH混合液分两次通过树脂层,每次静止浸泡数小时,然后将其排去。如有必要,在重新启动前用2倍树脂体积的0.2%过氧化氢(H2O2)溶液淋洗树脂层。 阳树脂:在阳离子交换器及管系内可充入0.5%的甲醛溶液,并在停用期间保持此浓度。也可用食盐水浸泡。在设备重新启动前用0.2%过氧化氢或0.5%甲醛溶液淋洗。 2 树脂的预处理 在离子交换树脂的工业产品中,常含有少量的有机低聚物及一些无机杂质。在使用初期会逐渐溶解释放,影响出水水质或产品质量。因此,新树脂在使用前必须进行预处理,具体方法如下: 1、树脂装入交换器后,用洁净水反洗树脂层,展开率为50-70%,直至出水清晰、无气味、无细碎树脂为止。 2、用约2倍树脂体积的4-5%HCl溶液,以2m/h的流速通过树脂层。全部通入后,浸泡4-8小时,

离子交换树脂的概述

主要用于酒类去除,高级脂肪酸脂类等。 产品详细描述 离子交换树脂在现代制糖工业中起着很重要的作用。世界上许多糖厂制造精糖和高级食用糖浆,多数使用离子交换树脂将糖液脱色提纯,而过去传统用骨炭的精炼糖厂亦有逐渐转向使用离子交换树脂的趋势。 离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。 在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。 离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。 离子交换树脂都是用有机合成方法制成。常用的原料为乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。 离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。 离子交换树脂中含有一种(或几种)化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子(如H+或Na+)或阴离子(如OH-或Cl-),同时吸附溶液中原来存有的其他阳离子或阴离子。即树脂中的离子与溶液中的离子互相交换,从而将溶液中的离子分离出来。 树脂中化学活性基团的种类决定了树脂的主要性质和类别。首先区分为阳离子树脂和阴离子树脂两大类,它们可分别与溶液中的阳离子和阴离子进行离子交换。阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂又分为强碱性和弱碱性两类(或再分出中强酸和中强碱性类)。离子交换树脂根据其基体的种类分为乙烯系树脂和丙烯酸系树脂,及根据树脂的物理结构分为凝胶型和大孔型。 离子交换树脂的品种很多,因化学组成和结构不同而具有不同的功能和特性,适应于不同的用途。应用树脂要根据工艺要求和物料的性质选用适当的类型和品种。 1、离子交换树脂的基本类型 (1) 强酸性阳离子树脂 这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。 树脂在使用一段时间后,要进行再生处理,即用化学品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。

离子交换树脂结构及交换原理

一. 离子交换树脂的结构 离子交换树脂的内部结构,如下图所示。由三部分组成,分别是: (1)高分子骨架由交联的高分子聚合物组成: (2)离子交换基团它连在高分子骨架上,带有可交换的离子(称为反离子)的 离子型官能团或带有极性的非离子型官能团; (3)孔它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝胶 孔)和高分子结构之间的孔(毛细孔)。 在交联结构的高分子基体(骨架)上,以化学键结合着许多交换基团,这些交换基团也是由两部分组成:固定部分和活动部分。交换基团中的固定部分被束缚在高分子的基体上,不能自由移动,所以称为固定离子;交换基团的活动部分则是与固定离子以离子键结合的符号相反的离子,称为反离子或可交换离子。反离子在溶液中可以离解成自由移动的离子,在一定条件下,它能与符号相同的其他反离子发生交换反应。 三离子交换的基本原理 离子交换的选择性定义为离子交换剂对于某些离子显示优先活性的性质。离子交换树脂吸附各种离子的能力不一,有些离子易被交换树脂吸附,但吸着后要把它

置换下来就比较困难;而另一些离子很难被吸着,但被置换下来却比较容易,这种性能称为离子交换的选择性。离子交换树脂对水中不同离子的选择性与树脂的交联度、交换基团、可交换离子的性质、水中离子的浓度和水的温度等因素有关。离子交换作用即溶液中的可交换离子与交换基团上的可交换离子发生交换。一般来说,离子交换树脂对价数较高的离子的选择性较大。对于同价离子,则对离子半径较小的离子的选择性较大。在同族同价的金属离子中,原子序数较大的离子其水合半径较小,阳离子交换树脂对其的选择性较大。对于强酸性阳离子交换树脂来说,它对一些离子的选择性顺序为:Fe3+>A13+>Ca2+>Mg2+>K+>Na+>H+。离子交换反应是可逆反应,但是这种可逆反应并不是在均相溶液中进行的,而是在固态的树脂和溶液的接触界面间发生的。这种反应的可逆性使离子交换树脂可以反复使用。 以001×7强酸阳离子交换树脂为例说明: 001×7强酸阳离子交换树脂是一种凝胶型离子交换树脂,其内部的网状结构中有无数四通八达的孔道,孔道里面充满了水分子,在孔道的一定部位上分布着可提供交换离子的交换基团。当原水当中的Ca2+,Mg2+等阳离子-扩散到树脂的孔道中时,由于该树脂对Ca2+,Mg2+等阳离子选择性强于对H+的选择性,,所以H+就与进入树脂孔道中的Ca2+,Mg2+等阳离子发生快速的交换反应,Ca2+,Mg2+等阳离子被固定到树脂交换基团上面,被交换下来的H+向树脂的孔道中-扩散,最终扩散到水中。 (1)边界水膜内的扩散水中的Ca2+,Mg2+等阳离子向树脂颗粒表面迁移,并扩散 通过树脂表面的边界水膜层,到达树脂表面; (2)交联网孔内的扩散(或称孔道扩散) Ca2+,Mg2+等阳离子进入树脂颗粒内部的交联网孔,并进行扩散,到达交换点; (3)离子交换 Ca2+,Mg2+等阳离子与树脂基团上的可交换的H+进行交换反应; (4)交联网孔内的扩散被交换下来的H+在树脂内部交联网孔中向树脂表面扩散。 (5)边界水膜内的扩散最终扩散到水中。 四离子交换树脂的再生 鉴于离子交换树脂反应的可逆性,反应后的树脂通过处理,重新转化为原来的离

阳离子交换树脂

强酸性阳离子交换树脂及沉淀剂用于纯化富集川贝母总生物碱1强酸性强离子交换树脂 2.1强酸性阳离子树脂的预处理 树脂以去离子水浸泡过夜,并洗至去离子水近无色; 先加入5BV 7%HCl溶液浸泡1h,注意随时搅拌,用去离子水洗至洗出水近中性;后加入8BV 8%NaOH溶液浸泡1h,随时搅拌,用去离子水洗至洗出水近中性;最后加入5BV 7%HCl溶液浸泡2h,使阳离子树脂转化成H型,并用去离子水洗至洗出水近中性,即可装柱。 1.2药材的预处理 取20g伊贝母,打粉过80目筛,用25ml氨水浸润2h后,用80%乙醇常压回流提取4h,减压蒸干。将得到的伊贝母浸膏用50ml去离子水溶解,滴加HCl至pH3.0,用50ml石油醚脱脂3次,加入氨水至pH10.0,最后用50ml氯仿萃取,直至氯仿萃取液检测不到生物碱为止,合并氯仿萃取液,依据2010版《药典》川贝母项下生物碱含量测定方法测定20g伊贝母中生物碱含量。最后将氯仿萃取液减压蒸干。 1.3强酸性阳离子树脂的选择 贝母中生物碱主要为叔胺类生物碱,碱性较弱,故选用强酸性阳离子交换树脂用于纯化富集生物碱。由于贝母中生物碱分子量集中在400-450,且空间结构较大,那么阳离子交换树脂的交联度对纯化富集效果具有显著影响:交联度大,交换容量大,但交联网孔小,不利于大离子的进入;交联度小,交换容量小,但交联网孔大,在树脂中离子易于扩散和交换。因而选用下列强酸性阳离子交换树脂(表1) 表1 不同离子交换树脂的主要特征 型号交联度 (%)粒度含水量 (%) 离子形式交换容量pH使用范 围 DOWEX 50WX2 2 50-100目78 H 0.6meq/ml 0-14 DOWEX 50WX4 4 50-100目78 H 1.1meq/ml 0-14 D152 0.315-1.25 mm 60-80 Na 8.0mmol/g 4-14 732型(0017 0.3-1.2mm 46-52 H 4.5mmol/g 0-14

离子交换树脂吸附性及去硬度技术大全

离子交换树脂吸附性及去硬度 技术大全 (1) 对阴离子的吸附 强碱性阴离子树脂对无机酸根的吸附的一般顺序为: SO42-> NO3- > Cl- > HCO3- > OH- 弱碱性阴离子树脂对阴离子的吸附的一般顺序如下: OH-> 柠檬酸根3- > SO42- > 酒石酸根2- >草酸根2- > PO43- >NO2- > Cl- >醋酸根- > HCO3- (2) 对阳离子的吸附 高价离子通常被优先吸附,而低价离子的吸附较弱。在同价的同类离子中,直径较大的离子的被吸附较强。一些阳离子被吸附的顺序如下: Fe3+ > Al3+ > Pb2+ > Ca2+ > Mg2+ > K+ > Na+ > H+ (3) 对有色物的吸附 糖液脱色常使用强碱性阴离子树脂,它对拟黑色素(还原糖与氨基酸反应产物)和还原糖的碱性分解产物的吸附较强,而对焦糖色素

的吸附较弱。这被认为是由于前两者通常带负电,而焦糖的电荷很弱。通常,交联度高的树脂对离子的选择性较强,大孔结构树脂的选择性小于凝胶型树脂。这种选择性在稀溶液中较大,在浓溶液中较小。 软化器是用来降低或基本消除原水硬度的装置,其出水残留硬度可降至0.03mmol/L(以1/2Ca2+计)以下。在软化过程中,当水流过树脂层后的出水硬度超过某一规定值,水质已不符合水质的标准要求时,则交换器中的离子交换树脂将视为“失效”,不再起软化作用,这时,为恢复离子交换树脂的交换能力,通常采用工业食盐水溶液(5%-10%)对离子交换树脂进行再生,又称还原,也就是用食盐中的钠离子将树脂中吸附的钙镁离子置换出来。其离子反应式: Na++2RCa2+ =R2Na+2Ca+ Na++2RMg2+=R2Na+2Mg2+ 采用钠型阳离子交换树脂C100E(RNa)来进行软化处理,用阳离 子交换树脂中可交换的阳离子(如Na+、H+),把水中所含的钙、镁离子交换出来,这一过程称为水的软化过程,该过程的离子反应式如下:Ca2++2RNa=R2Ca+2Na+ Mg2++2RNa=R2Mg+2Na+ 水中的Ca2+ 、Mg2+被RNa型树脂中的Na+置换出来以后,就存留在树脂中,使离子交换树脂由RNa型变成R2Ca 或R2Mg型树脂。

离子交换树脂项目投资建设规划方案(模板)

离子交换树脂项目 投资建设规划方案 规划设计 / 投资分析

离子交换树脂项目投资建设规划方案说明 该离子交换树脂项目计划总投资3498.66万元,其中:固定资产投资2797.41万元,占项目总投资的79.96%;流动资金701.25万元,占项目总 投资的20.04%。 达产年营业收入5860.00万元,总成本费用4499.84万元,税金及附 加59.92万元,利润总额1360.16万元,利税总额1607.69万元,税后净 利润1020.12万元,达产年纳税总额587.57万元;达产年投资利润率 38.88%,投资利税率45.95%,投资回报率29.16%,全部投资回收期4.93年,提供就业职位101个。 本报告是基于可信的公开资料或报告编制人员实地调查获取的素材撰写,根据《产业结构调整指导目录(2011年本)》(2013年修正)的要求,依照“科学、客观”的原则,以国内外项目产品的市场需求为前提,大量 收集相关行业准入条件和前沿技术等重要信息,全面预测其发展趋势;按 照《建设项目经济评价方法与参数(第三版)》的具体要求,主要从技术、经济、工程方案、环境保护、安全卫生和节能及清洁生产等方面进行充分 的论证和可行性分析,对项目建成后可能取得的经济效益、社会效益进行 科学预测,从而提出投资项目是否值得投资和如何进行建设的咨询意见,

因此,该报告是一份较为完整的为项目决策及审批提供科学依据的综合性分析报告。 ...... 主要内容:项目基本情况、项目背景、必要性、市场分析、调研、产品及建设方案、选址可行性研究、土建方案说明、工艺方案说明、环境保护说明、企业安全保护、风险防范措施、项目节能可行性分析、项目实施进度计划、项目投资规划、项目盈利能力分析、项目综合结论等。

离子交换树脂吸附柠檬酸的研究

离子交换树脂吸附柠檬酸的研究 【摘要】柠檬酸用途非常广泛,所以世界各国都积极开展对它的研究,得出多种从柠檬酸发酵液中提取柠檬酸的方法。本文对D201型大孔强碱性阴离子交换树脂从柠檬酸溶液中交换分离柠檬酸的研究。该法是利用特定的有机高分子树脂对柠檬酸盐的高选择性将柠檬酸从发酵液中提取出来。 【关键词】D201型大孔强碱性阴离子交换树脂;柠檬酸;吸附 0 引言 柠檬酸无毒,水溶性好,酸味适度,易被吸收,且价格低廉,广泛应用于食品、医药、化工、纺织等工业中[1],其中用量最大的是食品业。预计,随着生活水平的提高,食品工业的快速发展,国内柠檬酸在食品业的用量近年内增长较快。全球洗涤剂行业对柠檬酸的需求量增长很快,而我国在这一方面动作较为缓慢。国外已有柠檬酸大量应于医药上,我国则刚起步[2]。 1 本实验的实验原理 强碱性阴离子交换树脂:它具有强碱性的活泼基团季胺基。由苯乙烯和二乙烯苯聚合物,与氯甲基醚反应,即得聚苯乙烯型季胺基强碱性阴离子交换树脂,这类树脂如果用NaOH溶液处理,则发生交换过程,转变为OH-型的树脂[3],这种树脂是淡黄色的球状颗粒,对酸、碱、氧化剂和某些有机溶剂都比较稳定;对强酸根和弱酸根阴离子都能交换;在酸性、碱性和中性溶液中都能应用;在分析化学上应用较多。一般都处理成Cl-型树脂出售,因为Cl-型比OH-型更稳定。而阴离子交换树脂的交换容量,一般也是指Cl-型树脂的[4]。 2 实验过程及结果讨论 2.1 静态吸附 将待用树脂称取1.000g各六份分别至于锥形瓶中,贴上标签后待用。用移液管移取25mL49.8g/L柠檬酸液至小烧杯中,通过添加高浓度的NaOH溶液调节其pH至最佳吸附值7时,然后用蒸馏水将其定容至50mL容量瓶中振荡摇匀后分别取25mL加到盛装有树脂的锥形瓶中,盖上瓶塞之后放入振荡器中振荡,振荡时间为平衡吸附时间10分钟。然后过滤振荡液,用移液管分别移取5mL以酚酞为指示剂,0.5044mol/L NaOH溶液为滴定液滴定,记录NaOH液的用量。随着时间的增大树脂对柠檬酸的吸附量不断增高。 2.2 静态解析 将待用树脂称取1.0000g各六份分别至于锥形瓶中,贴上标签后待用.用移液管移取25mL 49.8g/L柠檬酸液至小烧杯中,通过添加高浓度的NaOH溶液调节

离子交换树脂结构及交换原理

一.氢型与钠型阳离子交换树脂是什么? 氢型阳离子交换树脂(有时简称氢型树脂)是一种人造有机聚合物产品。最常用的原料是:苯乙烯或丙烯酸(酯),先经过聚合反应生成具有三度空间立体网状结构的聚合物骨架(树脂母体),再于骨架上导入不同的「化学活性基」而成。由于它的活性基,如磺酸基(-SO3H)、羧基(-COOH)等,都含有活性氢离子,可在水中解离出来,用于与其它阳离子进行交换,所以特别在阳离子树脂名称之前再冠上“氢型”两字,以与同一系统的“钠型”种类有所区别。不过“钠型”可以利用强酸处理成为“氢型”,“氢型”也可以用氢氧化钠或食盐水溶液处理成为“钠型”,即二者可以互相转换。氢型阳离子交换树脂不溶于水和一般溶剂。和其它离子交换树脂一般,常被制成颗粒状,外观看起来有些像鱼卵,粒径大约在0.3-1.2 mm之间,但大部分在0.4-0.6 mm范围内。化学性质相当稳定,摸起来硬而有弹性,机械强度也足够承受相当压力,颜色由白色至近乎黑色都有,颜色浅时呈透明状,深时呈半透明状,都有光鲜亮丽的树脂光泽。氢型阳离子交换树脂最常应用的地方,就是硬水的软化,即让硬水流过树脂层,把硬水中的硬度离子,如钙、镁等离子吸收在树脂中,就变成不带硬度离子的软水了,这也是阳离子交换树脂最初被制造的主要目的,但它在工业上应用没有「钠型」来的多,因为在软化过程中,它会直接释出氢离子,使水质呈酸性,可能会因此腐蚀相关金属设备。依需要的不同,它也可以应用到水质预处理工艺中,用作软化水质及降低pH值之用。 二离子交换树脂的结构 离子交换树脂的内部结构,如2.1所示。由三部分组成,分别是: (1)高分子骨架由交联的高分子聚合物组成: (2)离子交换基团它连在高分子骨架上,带有可交换的离子(称为反离子)的 离子型官能团或带有极性的非离子型官能团; (3)孔它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝胶 孔)和高分子结构之间的孔(毛细孔)。 在交联结构的高分子基体(骨架)上,以化学键结合着许多交换基团,这些交换基团也是由两部分组成:固定部分和活动部分。交换基团中的固定部分被束缚在高

离子交换树脂

离子交换树脂 为了除去水中离子态杂质,现在采用得最普遍的方法是离子交换。这种方法可以将水中离子态杂质清除得以较彻底,因而能制得很纯的水。所以,在热力发电厂锅炉用水的制备工艺中,它是一个必要的步骤。 离子交换处理,必须用一种称做离子交换剂的物质(简称交换剂)来进行。这种物质遇水时,可以将其本身所具有的某种离子和水中同符号的离子相互交换,离子交换剂的种类很多,有天然和人造、有机和无机、阳离子型和阴离子型等之分,大概情况如表所示。此外,按结构特征来分,还有大孔型和凝胶型等。 离子交换剂的分类 天然海绿砂 无机质 人造合成沸石 离子交换剂 碳质磺化煤强酸性磺酸基(-SO3H) 阳离子型 有机质弱酸性羧酸基(-COOH) 强碱性Ⅰ型{-N(-CH3)3}OH 离子交换树脂阴离子型Ⅱ型{-N(CH3)2}OH 弱碱性(-(NH3)OH、(=NH2) OH 或 (≡NH)OH 其他-氧化还原型、有机物清除除型等 第一节离子交换剂的结构 离子交换树脂属于高分子化合物,结构比较复杂.离子交换剂的结构可以被区分为两个部分:一部分具有高分子的结构形式,称为离子交换剂的骨架;另一部分是带有可交换离子的基团(称为活性集团),它们化合在高分子骨架上.所谓“骨架”,是因为它具有庞大的空间结构,支持着整个化合物,正象动物的骨架支持着肌体一样,从化学的观点来说,它是一种不溶于水的高分子化合物,现将常用离子交换剂的结构简单介绍如下。 一、磺化煤 磺化煤是一种半化合成的离子交换剂,它利用煤质本身的空间结构作为高分子骨架,用浓硫酸处理的方法(称磺化)引入活性基团而制成。 磺化煤的活性基团,除了有由于磺化而引入的-SO3H外,还有一些煤质本身原有的基团(如-COOH和-OH)以及因硫酸氧化作用生成的羧酸(-COOH),所以它实质上是一种混合型离子交换剂。 磺化煤的价格比较便宜,是过去水处理系统中广泛应用的交换剂,但由于它有以下的缺点,所以现在大都为合成离子交换树脂所替代:

阴离子交换树脂

阴离子交换树脂 离子交换法2007年02月05日星期一23:04一、前言 离子交换法(ion exchange process)是液相中的离子和固相中离子间所进行的的一 种可逆性化学反应,当液相中的某些离子较为离子交换固体所喜好时,便会被离子交换固体吸附,为维持水溶液的电中性,所以离子交换固体必须释出等价离子回溶液中。 离子交换树脂一般呈现多孔状或颗粒状,其大小约为0.1~1mm,其离子交换能力依其交换能力特征可分: 1. 强碱型阴离子交换树脂:主要是含有较强的反应基如具有四面体铵盐官能基之-N+(CH3)3,在氢氧形式下,-N+(CH3)3OH-中的氢氧离子可以迅速释出,以进行交换,强碱型阴离子交换树脂可以和所有的阴离子进行交换去除。 如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。 树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。 2. 弱碱型阴离子交换树脂:这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生) 如氨基,仅能去除强酸中的阴离子如SO42-,Cl-或NO3-,对于HCO3-,CO32-或SiO42-则无法去除。 3 . 对阴离子的吸附 强碱性阴离子树脂对无机酸根的吸附的一般顺序为: SO42-> NO3-> Cl-> HCO3-> OH- 弱碱性阴离子树脂对阴离子的吸附的一般顺序如下: OH-> 柠檬酸根3-> SO42-> 酒石酸根2->草酸根2-> PO43->NO2-> Cl->醋酸根-> HCO3- 注意事项 1、离子交换树脂含有一定水份,不宜露天存放,储运过程中应保持湿润,以免风干脱水,使树脂破碎,如贮存过程中树脂脱水了,应先用浓食盐水(10%)浸泡,再逐渐稀释,不得直接放入水中,以免树脂急剧膨胀而破碎。 2、冬季储运使用中,应保持在5-40℃的温度环境中,避免过冷或过热,影响质量,若冬季没有保温设备时,可将树脂贮存在食盐水中,食盐水浓度可根据气温而定。 3、离子交换树脂的工业产品中,常含有少量低聚合物和未参加反应的单体,还含有铁、铅、铜等无机杂质,当树脂与水、酸、碱或其它溶液接触时,上述物质就会转入溶液中,影响出水质量,因此,新树脂在使用前必须进行预处理,一般先用水使树脂充分膨胀,

离子交换树脂的变质

离子交换树脂的变质、污染与复苏 一、离子交换树脂的变质 离子交换树脂在水处理系统运行的过程中,由于氧化或降解,树脂结构遭受破坏,这是一种不可逆的树脂的劣化,成为树脂的变质。 (一)阳离子交换树脂的氧化 1.阳树脂氧化的原因和现象 阳树脂氧化的主要原因是由于水中有氧化剂,如游离氯、硝酸根等,水中重金属离子能起催化作用,当温度高时,树脂受氧化剂浸蚀更为严重,其结果是使树脂交换基团降解和交换骨架断裂,树脂颜色变淡和其体积增大。 2.防止树脂被氧化的方法 (1)活性炭过滤用活性炭过滤水进行脱氧是防止树脂被氧化的常用方法,其原理是基于吸附作用,并在被吸附的活性炭表面上进行下面的化学反应。其反应为: C---+HOCl→CO-+HCl 活性炭脱氯是一种简单、经济、行之有效的方法,故得到普通应用。 (2)化学还原法化学还原法是在含有余氯的水中,投加一定量还原剂(如SO2或Na2SO3)进行脱氯。 (3)选用高交联度的大孔阳树脂。 (4)避免使用质量差的盐酸其中含有氧化剂对阳树脂造成危害。 (二)强碱性阴树脂的降解 在离子交换水处理系统中,强碱性阴树脂通常是置于阳树脂后使用,一般是遭受水中溶解氧的氧化,以及再生过程中碱中所含的氧化剂(如ClO3-和FeO42-)的氧化,其结果是强碱性季铵基团逐渐降解,但不会发生骨架的断链。在化学除盐工艺中,强碱性阴树脂的降解主要表现为对中性盐的分解容量,特别是对硅的交换容量下降。 季铵基团受氧化后,按叔、仲、伯胺顺序降解的过程如下: CH3 CH3

R—N CH3 [O] R—N [O] R═N—CH3 [O]R≡N 非碱性物质 CH3 CH3 2.防止强碱性阴树脂降解的方法 (1) 真空除气法通过使用真空除气器,减少阴床进水中的氧含量。 (2)降低再生液中含铁量降低再生液中含铁良,必须认真做好碱液系统中的铁的腐蚀控制。 (3)选用隔膜法生产的烧碱,降低碱液中NaClO3的含量(可降至6~7㎎/L)。 二、离子交换树脂的污染与复苏 在离子交换处理系统中,由于水中杂质浸入,至使树脂性能下降,因尚未涉及树脂结构的破坏,故这种劣化现象称树脂的污染。树脂的污染是一个可逆的过程,也就是当树脂被污染后,通过适当的处理,可以恢复其交换性能,这种处理称为树脂的复苏。 (一)铁对树脂的污染 1.污染的现象 阳阴树脂都可能发生铁的污染,被铁污染的树脂的颜色明显变深,甚至呈黑色;铁污染 会使树脂床层的压降增加和可能导致偏流;严重降低交换容量和再生效率;会使树脂含水量增加;还会使阴树脂加速降解。 2.污染的原因 在阳树脂的使用中,原水带入的铁离子大部分以Fe2+存在,它们被树脂吸附后,部分被氧化为Fe3+,再生时这些铁离子不能完全被H+交换出来。这是由于形成的高价铁化合物,牢固地沉积在树脂内部和表面,堵塞了树脂微孔,从而影响了孔道扩散,造成铁的污染。在水的预处理中,使用铁盐作混凝剂时,部分矾花被带入阳床,由于树脂层的过滤作用,矾花被积聚在树脂表面,再生时,酸液溶解了矾花,使之成为Fe3+也会形成铁污染。一般用于软化水处理的纳离子交换的阳树脂,更容易受到铁的污染。 铁对阴树脂污染的原因主要是再生用的烧碱溶液中含有Fe2O3和NaClO3,它们生成高铁酸盐(如FeO43+)。高铁酸盐随碱液进入阴床后,因pH值降低,发生分解反应: 2FeO 42++10H+ 2Fe3++3/2O 2 +5H 2 O

离子交换树脂使用方法

离子交换树脂的使用方法 1.装柱(采用湿法装柱) A 实验室 量取:将一定量的树脂与去离子水在烧杯中进行混合,然后将混合的树脂水溶液倒入量筒中,使树脂充分沉降,通过补加和移取,使树脂床层与相应刻度持平,即完成树脂的量取。 装填:关闭离子交换柱下端的出口阀门,用水将量筒中的树脂全部导入离子交换柱中,然后打开交换柱出口阀门,使树脂在柱内沉降压实,然后关闭交换柱出口阀门,待用。(注意:须保留液面高于树脂床层1-2cm,避免干柱。) B 工业化 新树脂装柱前,应该使用清水和碱液对树脂交换柱相关管道进行清洗,清理出焊渣等固体废料和附着在柱壁和管壁上的尘土与其他杂质。然后,向柱内注入1/3 体积的水,取少量树脂,将树脂从交换柱顶部人孔处装入柱内。关闭人孔,向柱内注水,同时打开交换柱下部排水阀门,用≥80 目筛网在排水口拦截,观察是否有树脂泄露,如果有个别小颗粒,属于正常现象;如果有大颗粒树脂出现,且量比较多,说明交换柱下滤板有问题,应把树脂和水放出,检查下滤板焊缝和水帽,查找原因,进行检修。检修完毕后,再按照上面的方法检测,直至确定符合要求,然后再将剩余的树脂加入交换柱内。 树脂装柱完成后,先用去离子水对树脂进行反向清洗,清洗流速控制在2-4BV/h,清洗约1h,停止水洗,让树脂自然沉降完全;然后用去离子水对树脂柱床进行正向清洗,清洗流速控制在4-6BV/h,清洗约1h后停止。

2.Seplite树脂预处理 首先用4%的盐酸溶液进行过柱处理,处理流速控制在1-2BV/h,处理量3-4BV;处理完毕后,用去离子水过柱清洗掉柱床及树脂孔道内残留的酸,至出口液 pH≥4,停止水洗,树脂床层上至少保留20-30cm的液面层,防止干柱。 然后用4%的氢氧化钠溶液进行过柱处理,处理流速控制在1-2BV/h,处理量 3-4BV;处理完毕后,用去离子水过柱清洗掉柱床及树脂孔道内残留的碱,至出口液pH≤10,停止水洗,树脂床层上至少保留20-30cm的液面层,防止干柱。 再用4%的盐酸溶液进行过柱处理,处理流速控制在1-2BV/h,处理量3-4BV;处理完毕后,用去离子水过柱清洗掉柱床及树脂孔道内残留的酸,至出口液pH≥4,停止水洗,树脂床层上至少保留20-30cm的液面层,防止干柱。 最后再用95%以上的乙醇或甲醇溶液以1BV/h的流速进行树脂过柱处理,至进出口醇浓度一致,停止进醇,浸泡2-4h,然后继续过柱处理,至流出液澄清无浑浊时停止,再用去离子水以1~2BV/h的流速过柱清洗树脂,至出口液中无明显的醇味,待用。 3.树脂吸附 料液上柱吸附前须经必要的过滤预处理,以去除料液中的固形物杂质,防止堵塞树脂孔道,影响树脂吸附效果。吸附过程一般采取正向过柱的方式,吸附流速一般建议控制在1-2BV/h,通过检测出口液中目的物(或杂质)的含量,以确定树脂的吸附状态。 1. 吸附后水洗 树脂吸附完成后,用去离子水正向过柱清洗树脂柱床,清洗流速一般控制在 1-2BV/h,清洗1-2h,以清除柱床内残留的料液以及部分水溶性杂质。 2. 树脂解析 水洗完成后,可采用4-6%的盐酸溶液或硫酸溶液对树脂进行过柱解析再生,过柱流速一般控制在1-2BV/h,处理量控制在3BV以内。也可采用8-10%的氯化钠溶液进行解析再生,处理流速一般控制在1-2BV/h,处理量控制在3BV以内。 3. 解析后水洗 树脂解析再生完成后,用去离子水正向过柱清洗树脂柱床,清洗流速一般控制在1-2BV/h,清洗1-2h,以清除柱床内残留的解析剂(酸、盐溶液)。 4. 树脂深度再生处理 树脂运行一段时间后,如出现交换容量下降,可用下面的方法对树脂进行深度再生处理。

离子交换树脂对染料的吸附

离子交换树脂对染料的吸附 学学校校::安安徽徽工工程程大大学学 学学院院::生生物物与与化化学学工工程程学学院院 班班级级::化化学学工工程程与与工工艺艺110011 参参赛赛人人员员::孙孙书书政政、、刘刘仪仪 林林鹏鹏雄雄、、胡胡伟伟、、沈沈杜杜君君

一、前言------------------------------------------------3 二、团队简介------------------------------------------4-5 三、拟采取的研究方法和进度安排-------------------------6 四、基础阶段 1、离子交换树脂的结构及基本交换原理--------------7-13 2、染料的基本知识-------------------------------14-19 五、试验阶段----------------------------------------20-26 1、仪器与试剂 2、树脂合成 3、静态吸附实验 4、树脂对阳离子艳红的吸附动力学性能 5、染料含量的测定 6、染料浓度对树脂吸附量的影响 7、温度对树脂吸附效果的影响 8、酸度对树脂吸附效果的影响 9、原始浓度对树脂吸附效果的影响 六、结论---------------------------------------------27 七、总结------------------------------------------28-29

本次试验的研究主要目的就是关于染料吸附,由于染料废水具有成分复杂"毒性强"色度深"有机物和无机盐的浓度高" 难以生化降解等特点!一直是废水处理的难点!所以染料废水的治理是化工环保行业关注的焦点。目前比较成熟的处理方法中以生化法最为常见! 也有一些方法采取物化处理"化学处理或多种处理方法的组合工艺,这里就不多做介绍了。我们这次主要研究的就是吸附法,吸附法以其能够选择性地富集某些化合物的特性在废水处理领域有着特殊的地位,我们常用的吸附剂有活性炭、树脂和其他一些吸附材料。其实这次科研的课题是“离子交换树脂对染料的吸附”,这个课题是老师当时想出来给我们的,他对我们说树脂对染料的吸附这个课题不知道有没有人做,就算有人做也只有少数人做。其实他的原理还是比较简单的,这里做个简单的介绍,木质素磺酸盐主要源于亚硫酸盐制浆的蒸煮废液, 部分保留原本木质素的大分子骨架和基本的功能基团。结构中的磺酸基具有很强的离子交换能力, 酚羟基、醇羟基、羧基、磺酸基等则为弱酸性离子交换基团, 羰基等均有一定的螯合能力, 因而木质素磺酸盐具有一定的离子交换与吸附能力,通过交联反应可得到既有高分子结构, 又有可电离的磺酸基、羟基和羧基等多种交换基团的离子交换树脂。而且该树脂合成工艺简单, 成本较低, 对阳离子染料的吸附性能优良, 因而具有很好的应用前景。我们团队在老师的指导开始我们课题的专项研究,希望能对大家带来影响。

相关文档
相关文档 最新文档