文档库 最新最全的文档下载
当前位置:文档库 › 《数学实验》实验报告——用Mathematica使行初等变换化简矩阵

《数学实验》实验报告——用Mathematica使行初等变换化简矩阵

《数学实验》实验报告——用Mathematica使行初等变换化简矩阵
《数学实验》实验报告——用Mathematica使行初等变换化简矩阵

《数学实验》实验报告

第三章 矩阵的初等变换与线性方程组习题.

第三章矩阵的初等变换与线性方程组 3.4 独立作业 3.4.1 基础练习 1.已知,求. 2.已知,求. 3.若矩阵满足,则(). (A (B (C (D 4.设矩阵满足关系,其中,求. 5.设矩阵,求. 6.是矩阵,齐次线性方程组有非零解的充要条件是 . 7.若非齐次线性方程组中方程个数少于未知数个数,那么( . (A 必有无穷多解; (B 必有非零解;

(C 仅有零解; (D 一定无解. 8.求解线性方程组 (1),(2) (3) 9.若方程组 有无穷多解,则 . 10.若都是线性方程组的解,则( . (A (B (C (D 3.4.2 提高练习 1.设为5阶方阵,且,则= . 2.设矩阵,以下结论正确的是( . (A时, (B 时, (C时, (D 时,

3.设是矩阵,且,而,则 . 4.设,为3阶非零矩阵,且,则 . 5.设, 问为何值,可使 (1)(2)(3). 6.设矩阵,且,则 . 7.设,试将表示为初等矩阵的乘积. 8.设阶方阵的个行元素之和均为零,且,则线性方程组的 通解为 . 9.设,,

,其中可逆,则 . 10.设阶矩阵与等价,则必有(). (A)当时,(B)当时, (C)当时,(D)当时, 11.设,若,则必有(). (A)或(B)或 (C)或(D)或 12.齐次线性方程组的系数矩阵记为,若存在三阶矩阵,使得,则(). (A)且(B)且 (C)且(D)且 13.设是三阶方阵,将的第一列与第二列交换得到,再把 的第二列加到第三列得到,则满足的可逆矩阵为().

(A)(B)(C)(D) 14.已知,为三阶非零矩阵,且,则(). (A)时,(B)时, (C)时,(D)时, 15.若线性方程组有解,则常数应满足条件 . 16.设方程组有无穷多个解,则 . 17.设阶矩阵与维列向量,若,则线性方程组(). (A)必有无穷多解(B)必有唯一解 (C)仅有零解(D)必有非零解. 18.设为矩阵,为矩阵,则线性方程组(). (A)当时仅有零解(B)当时必有非零解 (C)当时仅有零解(D)当时必有非零解

数学实验报告

《数学实验》实验报告 实验四 MATLAB 的作图功能 1、画出y=x+cosx 在[02]π,上的图形。 >> x=linspace(0,0.1,30); >> y=x+cos(x); >> plot(x,y) 1234567 2、在同一坐标系中作出两曲线y=tanx 、y=x-cosx 、2 y x =、2 1y x =-在[0]π,上的图形;要求曲线分别用虚实线表示,并注明曲线名称及适当的标注。 x=0:0.1:pi; y1=tan(x); y2=x-cos(x); y3=x.*x; y4=1-x.*x; plot(x,y1,'k-',x,y2,'k:',x,y3,'k-.',x,y4,'k--'); title('四条平面曲线'); gtext('y=tantx'); gtext('y=x-cosx'); gtext('y=x^2'); gtext('y=1-x^2 ');

0.5 1 1.5 2 2.5 3 3.5 -35-30-25-20-15-10-505 10 15四条平面曲线 3、22 2351 ,cos ,21,1 x x x y e z x u x v x +-===-=+将在同一窗口画出图形。 >> x=linspace(0,2*pi,30); >> y=exp(x); z=cos(x); u=2*x.^2-1; v=(3*x.*x+5*x-1)./(x.*x+1); >> subplot(2,2,1),plot(x,y),title('y=e^x') >> subplot(2,2,2),plot(x,z), title('y=cosx') >> subplot(2,2,3),plot(x,u), title('y=2x^2-1') >> subplot(2,2,4),plot(x,v), title('y=(3*x^2+5*x-1)/(x^2+1)')

mathematica数学实验报告

高等数学实验报告 实验一 一、实验题目 1:作出各种标准二次曲面的图形 ParametricPlot3D Sin u Sin v,Sin u Cos v,Cos u ,u,0,Pi ,v,0,2Pi,P Graphics3D ParametricPlot3D u Sin v,u Cos v,u^2,u,0,2,v,0,2Pi,PlotPoints30

Graphics3D ParametricPlot3D u,v,u^2v^2,u,2,2,v,2,2,PlotPoints30 Graphics3D ParametricPlot3D Sec u Sin v,Sec u Cos v,Tan u,u,Pi4,Pi4,v,0,2

Graphics3D t1ParametricPlot3D u^21Sin v,u^21Cos v,u,u,1,5,v,0,2Pi t2ParametricPlot3D u^21Sin v,u^21Cos v,u,u,5,1,v,0,2 show t1,t2 Graphics3D

Graphics3D show Graphics3D,Graphics3D ParametricPlot3D u Cos v,u Sin v,u,u,6,6,v,0,2Pi,PlotPoints60 Graphics3D 2:作出曲面所围的图形 t1ParametricPlot3D Sin u Sin v,Sin u Cos v,Cos u, u,Pi2,pi2,v,0,2Pi,PlotPoints60 t2ParametricPlot3D0.5Cos u12,0.5Sin u, u,0,2Pi,v,0,2Pi,PlotPoints60 t3Plot3D0,PlotPoints60 show t1,t2,t3

小学数学实验报告

竭诚为您提供优质文档/双击可除 小学数学实验报告 篇一:小学数学课题实验总结报告 《实施合作学习,发挥优势互补的研究》 课题实验总结 在上级主管部门和学校领导关心支持下我们开展了《实施合作学习,发挥优势互补》的课题研究。在课题组全体老师两年的不懈努力下,已基本完成本课题研究任务,并取得预期成果。 开展课题实验以来,我们坚持在实践中探索,在探索中实践,取得了初步的成效,主要体现在实验促进了三个方面的转变,一个方面的提高。 一、促进教师教学观念的转变。 参加课题实验后,实验组的老师们通过边实验边学习,不断总结与反思,提升了自己的科研水平,并树立了以“教学是为了促进学生发展”为最终目标的新型教育教学观念。课堂上,老师与学生建立了和谐融洽的师生关系,在精心创设的良好的教学氛围中鼓励学生独立思考、大胆质疑、敢于

探索、勇于创新。让学生在自主、合作、探究的学习过程中,激发学习热情,养成学习习惯,提高学习能力,从而促进了学生的发展。 二、促进学生学习方式的转变。 学生正在由被动学习逐步向主动学习转变,由老师教转变为我能学,由师生间的单向性活动转变为双向性互动、多边性互动,增大了课堂信息量,学生积极主动学习,小组合作、乐于探究,他们发扬团队精神,团队之间互相竞争、优势互补,并培养学生动手、动脑、动口的能力,培养创新意识。课前,学生能积极主动地预习信息窗内容,提出问题并尝试解决。课堂上,学生能够热烈地交流预习所得,积极主动地参与课堂讨论,参与面广,讨论热烈而且有序。课后,能自觉温习知识,深化学习,拓展延伸,并加以运用。绝大部分学生善于表达,敢于提出自己的不同见解,有较强的探究精神,能够提出问题积极思考,并能够多角度思维寻找解决问题的策略,并且培养了学生良好的合作学习的习惯。 学习方式的转变促进了学生全面发展,他们乐学,善学,学有所成。随着学生自主合作探究能力的不断提高,自主性合作性探究性已多个学习层面辐射,辐射到其它学科、班级管理、文体活动等方面。实验班班风好,学风浓,学生对所有科目的学习兴趣盎然、积极主动,全面发展。 三、促进课堂教学格局的转变。

mathematica 数学实验报告材料 实验一

数学实验报告 实 验 一 数学与统计学院 信息与计算科学(1)班 郝玉霞 201171020107

数学实验一 一、实验名:微积分基础 二、实验目的:学习使用Mathematica的一些基本功能来验证或观察得出微积分学的几个基本理论。 三、实验环境:学校机房,工具:计算机,软件:Mathematica。 四、实验的基本理论和方法:利用Mathematica作图来验证高中数学知识与大学数学容。 五、实验的容和步骤及结果 容一、验证定积分 dt t s x ?= 1 1 与自然对数 x b ln= 是相等的。 步骤1、作积分 dt t s x ?= 1 1 的图象; 语句:S[x_]:=NIntegrate[1/t,{t,1,x}] Plot[S[x],{x,0.1,10}] 实验结果如下: 图1 dt t s x ?= 1 1 的图象 步骤2、作自然对数 x b ln= 的图象 语句:Plot[Log[x],{x,0.1,10}] 实验结果如下: 2 1

图2 x b ln= 的图象 步骤3、在同一坐标系下作以上两函数的图象 语句:Plot[{Log[x],S[x]},{x,0.1,10}] 实验结果如下: 2 1 图3 dt t s x ?= 1 1 和 x b ln= 的图象 容二、观察级数与无穷乘积的一些基本规律。 (1)在同一坐标系里作出函数和它的Taylor展开式的前几项构成的多项式函数,,的图象,观察这些多项式函数的图象向的图像逼近的情况。 语句1: s[x_,n_]:=Sum[(-1)^(k-1)x^(2k-1)/((2k-1)!),{k,1,n}] Plot[{Sin[x],s[x,2]},{x,-2Pi,2Pi},PlotStyle->{RGB[0,0,1]}] 实验结果如下: 642 4 2 图4和它的二阶Taylor展开式的图象

初等变换与初等矩阵

2.3 初等变换与初等矩阵 授课题目 2.3 初等变换与初等矩阵 授课时数:4课时 教学目标:掌握初等变换的定义,初等矩阵与初等变换的关系,矩阵的等价标准形,阶梯形矩阵,和行简化阶梯形矩阵 教学重点:用初等变换求矩阵的等价标准形、阶梯形矩阵,和行简化阶梯形矩阵 教学难点:求矩阵的等价标准形、阶梯形矩阵,、行简化阶梯形矩阵 教学过程: 用初等变换化简矩阵A B B A 的性质来探讨通过为,的性质,这是研究矩阵的重要手段。为了把变换过程用运算的式子表示出来,我们要引入初等矩阵,研究初等矩阵与初等变换的关系。 一.初等变换与初等矩阵 1. 初等变换 (1)定义 定义1 矩阵的初等行(列)变换是指下列三种变换: 1)换法变换:交换矩阵某两行(列)的位置; 2)倍法变换:用一个非零数乘矩阵的某一行(列); 3)消法变换:把矩阵的某一行(列)的k 倍加到另一行(列)上去,k 为任意数。 矩阵的初等行变换和初等列变换统称为初等变换。 (2)记法 分别用)]([)],([],,[k j i k i j i +表示三种行(列)变换,写在箭头上面表示行变换,写在箭头下面表示列变换。或者行变换用i j i i j R R ,kR ,R kR ?+, 列变换用i j i i j C C ,kC ,C kC ?+ 例1 [][] ???? ? ??--??→?????? ??---???→?????? ??--=+-+131123302001121123302101121121322101)1(13)2(12A . 2. 初等矩阵 (1)初等矩阵的定义

定义2 由单位矩阵I 经过一次初等变换得到的矩阵称为初等矩阵 每个初等变换都有一个与之相应的初等矩阵 ij j i n P j i I =???? ? ?? ? ????? ??? ? ? ????→?行行 1101111011] ,[ [] )(1111)(,k D i k I i j i n =? ???????? ?? ????→?行 [] )(1111)(k T j i k I ij k itj n =? ???? ????? ? ????→?行行 列i 列j

第三章 矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组 讲授内容§3.1 矩阵的初等变换;§3.2 初等矩阵 教学目的和要求:(1)理解矩阵的初等变换,理解初等矩阵的性质和矩阵等价的概念. (2)掌握用初等变换求逆矩阵的方法. (3)理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件. 教学重点:矩阵的初等变换和用矩阵的初等变换求逆矩阵的方法 教学难点:矩阵的初等变换、初等矩阵的性质. 教学方法与手段:从解线性方程组的消元法的三种重要运算入手,引出矩阵的初等变换的定义;初等矩阵与矩阵的初等变换密切相关,三种初等变换对应着三种初等矩阵;从分析初等矩阵的性质出发,推理出用矩阵的初等变换求逆矩阵的方法.传统教学,教练结合 课时安排:2课时 教学过程 §1 矩阵的初等变换 本节介绍矩阵的初等变换,它是求矩阵的逆和矩阵的秩的有利工具。 一、矩阵的初等变换 在利用行列式的性质计算行列式时,我们对其行(列)作过三种变换——“初等变换”. 定义1 对矩阵的行(列)施以下述三种变换,称为矩阵的行(列)初等变换. 初等变换 行变换 列变换 ① 对调 j i r r ? j i c c ? ② 数乘)0(≠k i r k i c k ③ 倍加 j i r k r + j i c k c + 矩阵的行初等变换与列初等变换统称为矩阵的初等变换. n m A ?经过初等变换得到n m B ?, 记作n m n m B A ??→. 定义2 等价矩阵:若n m n m B A ??→有限次 , 称n m A ?与n m B ?等价, 记作n m n m B A ???. 矩阵之间的等价关系有下列性质: (1) 自反性:A A ? (2) 对称性:n m n m B A ???n m n m A B ???? (3) 传递性:n m n m B A ???, n m n m C B ???n m n m C A ???? 定义3 在矩阵中可画出一条阶梯线,线的下方全为0,每个台阶只有一行,台阶数即 是非零行的行数,阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也就是非零行的第一个非零元.若非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0,则称矩阵为行最简形矩阵.

MATHEMATICA实验报告

【MATHEMATICA实验报告】 【实验目的】 1.掌握Mathematica软件的启动和退出,以及Mathematica帮助系统。 2.熟悉Mathemaic的计算其功能以及常用的数字函数。 3.掌握变量的定义,变量的操作。 4.掌握函数的定义以及运算。 【实验内容】 1.求下列积分 (1) (4sin()3cos())/(sin()2cos()) x x x x dx ++ ? 输入: y=(4 Sin[x]+3 Cos[x])/(Sin[x]+2Cos[x]); Integrate[y,x] 输出: 2 x-Log[2 Cos[x]+Sin[x]] (2) /2 (cos())^5sin(2) x x dx π ? 输入: y=Cos[x]^5 Sin[2 x] Integrate[y,{x,0,Pi/2}] 输出: Cos x5Sin2x 2 7 (3)1 /(^21)^(3/2) dx x x -+ ? 输入: y=1/(x^2-x+1)^(3/2); Integrate[y,{x,0,1}] 输出: 4 3 2.求积分 1 (1/2)*^(^2/2) e x dx π -∞ - ? 输入:y=E^(-x^2/2)/Sqrt[2*Pi]; NIntegrate[y,{x,Infinity,1}] 输出: -0.158655

3.求y=e^(x^2)在x=0的9阶泰勒公式。 输入: Series[Exp[x^2],{x,0,9}] 输出: 1x 2x 4 2x 66x 824O x 10 4.作出以下参数方程所描述的图形。 (1) 4cos {3sin x t y t ==,(0≤t ≤2π) 输入: ParametricPlot[{4 Cos[t],3 Sin[t]},{t,0,2Pi}] 输出: -4-2 24-3-2 -1 1 2 3 (2)3(cos )^3 {3(sin )^3x t y t -= 输入: ParametricPlot[{3 Cos[t]^3,3 Sin[t]^3},{t,0,2 Pi}] 输出: -3-2-1 123-3-2 -1 12 3

线性代数习题[第三章] 矩阵的初等变换与线性方程组

习题 3-1 矩阵的初等变换及初等矩阵 1.用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形. 2.用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵. 3.设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =. 4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B. (1) 证明B可逆(2)求1 AB-.

习题 3-2 矩阵的秩 1.求矩阵的秩: (1)310211211344A ????=--????-?? (2)11121212221 2n n n n n n a b a b a b a b a b a b B a b a b a b ??????=??????01,2,,i i a b i n ≠????=?? 2.设12312323k A k k -????=--????-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3)()3R A =.

3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 . .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()()1 d R A R B R A ≥≥- 4. 矩阵???? ??????-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4. 5. 设n (n ≥3)阶方阵????? ???????=111 a a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 1 1-n . 6.设A 为n 阶方阵,且2 A A =,试证: ()()R A R A E n +-=

数学应用软件实验报告(mathematica实验程序)1

徐州工程学院数理学院数学应用软件实验报告 课程(实验序号)数学应用软件实验 1 实验地点、日期数学建模机房2011 年 2 月23 日主要仪器设备计算机 使用的软件名称Mathematica 实验类型演示性实验 验证性实验 综合性实验√设计性实验 研究性实验 班级:姓名:孙娅学号:20090402223 一、实验题目名称:函数】变量和表达式 二、实验目的: 理解变量和算式、内核与前端处理器构成的人机对话系统,了解计算的精度问题个Mathematica使用中的几个问题。熟练掌握数的表示和计算、常用数学函数,会绘制简单函数的图形。通过上机初步了解数学应用软件,Mathematica的各种界面。 三、实验内容: 练习题1 1.计算下列各式的数值: (1) Log[2,10] Log[10]/Log[2] (2) Sqrt[Pi^2+1] 1 2 (3) Log[10,3264] Log[3264]/Log[10] (4) E^E ??/2 (5) Cos[135^0] Cos[1] (6) Sin[Pi^2/2] Sin[π2/2] (7) ArcSin[1/2] π/6 (8) 200! 7886578673647905035523632139321850622951359776871732632947425332443594499634033429203042 8401198462390417721213891963883025764279024263710506192662495282993111346285727076331723 7396988943922445621451664240254033291864131227428294853277524242407573903240321257405579

矩阵初等变换及应用

矩阵初等变换及应用 王法辉 摘要:矩阵初等变换是高等代数的重要组成部分。本文对初等变换进行了研究探讨,详细介绍了与矩阵初等变换有关的基础知识。在阐述矩阵初等变换方法及应用原理的基础上,首先重点讨论该方法在解决高等代数相关计算问题上的应用,如求多项式的最大公因式、求逆矩阵解矩阵方程、求解线性方程组、判定向量的线性相关性、化二次型为标准型、求空间的基等。尤其是利用矩阵初等变换法求空间的基(解空间、特征子空间、核、值域等)的问题的计算,以具体实例生动的展示出问题的内在关系,最后给出了该方法在解决实际问题中的应用。本文理论分析与实际相结合,凸现了矩阵初等变换法直接、便利、有效的威力与作用。 关键词:矩阵初等变换;最大公因式;线性相关性;二次型;空间的基 1 导言 在线性方程组的讨论中我们看到,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩阵的过程。在数学的学习和应用中,矩阵理论是高等代数的重要组成部分,矩阵初等变换方法更是贯穿高等代数理论的始终。应用初等变换证明命题过程容易被接受,同时也是解决高等代数相关计算问题最直接、便利、有效的方法。此外,还有大量的各种各样的,表面上看完全没有联系的问题的解决,都可以通过相同的方法实现:矩阵的初等变换。 因此,对矩阵初等变换方法及应用进行探讨,无疑是十分必要和重要的。 目前,有许多文献涉及到对矩阵初等变换方法该的讨论,但比较零散。在研读文献的基础上,对矩阵初等变换的内涵进一步挖掘,使矩阵初等变换方法的威力作用得以充分展示是重要也是必要的。 2 矩阵及其初等变换

2.1 矩阵 由n m ?个数)j ,,,2,1(==m i a ij (i =1,2, ,j =1,2,n , )排成m 行n 列 的数表 ? ? ??? ???????=mn m m n n a a a a a a a a a A 2 1 22221 11211 称为m 行n 列的矩阵,简称n m ?矩阵。 2.2 矩阵的初等变换及初等矩阵 矩阵有行列之分,因此有如下定义 定义1 矩阵的初等行(列)变换是指如下三种变换 (1)交换矩阵某两行(列)的位置,记为j i r r ? )(j i c c ?; (2)把某一行(列)的k 倍加到另一行(列)上,记为j i kr r + )(j i kc c +; (3)用一个非零常数k 乘以某一行(列),记为i kr )(i kc ,k ≠0; 矩阵的初等行变换及初等列变换统称为矩阵的初等变换。 定义2 由单位矩阵E 经过一次初等变换得到的方阵称为初等矩阵。有以下3种形式 (1)互换矩阵E 的i 行和j 行的位置,得 ? ???? ? ??? ?? ? ????? ???????????????? ?=1101111011),( j i P ; (2)用数域P 种非零数c 乘E 的i 行,得

第三章知识点总结 矩阵的初等变换与线性方程组

第三章矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质 设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?= 存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?= 存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则 (1)对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵; ~;r A B m P PA B ?=即存在阶可逆矩阵,使

数学实验报告反思与总结

数学实验报告反思与总结 教学情境,是学生参与学习的具体的现实环境。知识具体情境性,是在情境中通过活动而产生的。生动有趣的教学情境,是激励学生主动参与学习的重要保证;是教学过程中的一个重要环节。一个好的教学情境可以沟通教师与学生的心灵,充分调动学生的既有经验,使之在兴趣的驱动下,主动参与到学习活动中去。那么在数学课堂教学中,创设一个优质的情境是上好一堂课的重要前提。 一、创设实际生活情境,激发学生学习兴趣 数学来源于生活,生活中又充满数学。著名数学家华罗庚说过:"人们对数学早就产生了枯燥乏味、神秘、难懂的印象,原因之一便是脱离了实际。"因此,教师要善于从学生熟悉的实际生活中创设教学情境,让数学走进生活,让学生在生活中看到数学,接触数学,激发学生学习数学的兴趣。如:在教学《分类》时,我首先让学生拿出课前已准备的自己最喜爱的东西[玩具(汽车、火车、坦克、手枪……),图片(奥特曼、机器人、孙悟空、哪吒……),水果(苹果、梨子、香蕉、桔子……)],提问:"同学们都带来了这么多好玩、好看、好吃的东西,应该怎样分类摆放呢?"学生兴趣盎然,各抒己见。生1:把这些东西都放在一起。生2:摆整齐。生3:把好玩的放在一起,好看的放在一起,好吃

的放在一起。生4:把同样的东西放在一起。教师抓住这个有利时机导入课题,探求新知。然后通过小组合作把学生带来的东西进行分类,并说明分类理由,总结分类的方法。各小组操作完后,小组代表汇报结果,生1:我们组整理玩具有:汽车、火车、手枪……生2:我们组整理图片有:奥特曼、机器人、哪吒……生3:我们组整理水果有:苹果、梨子、香蕉……(学生回答分类理由和方法时,教师适时引导,及时地给予肯定和评价。)师:各小组再按不同标准把东西分类细化。各小组操作完后,小组代表汇报结果,生1:我们把汽车放一起,把火车放一起……生2:我们把奥特曼放一起,把机器人放一起……生3:我们把梨子放一起,把苹果放一起…… 这样将知识与实际生活密切联系起来,巧妙地创设教学情境,激发了学生的学习兴趣和求知欲望,放飞了学生的思维,学生把自己好玩、好看、好吃的东西通过动手实践、自主探索、合作交流、体验,参与知识的形成过程和发展过程,理解掌握了分类的思想方法,获取了学习数学的经验,成为数学学习活动中的探索者、发现者、创造者,同时也提高了学生的观察能力,判断能力和语言表达能力。 二、创设质疑情境,引发自主探究 创设质疑情境,就是在教师讲授内容和学生求知心理之间搭建一座"桥梁",将学生引入一种与问题有关的情境中,

最佳分数值逼近(mathematica数学实验报告)

姓名 ### 学院 ###### 班级 ######### 学号 ######### 实验题目 最佳分数值逼近 评分 实验目的: 1、用“连分数展开”的方法计算圆周率π的近似值; 2、通过实验来体会“连分数展开”的方法与其他方法的区别,比较各种方法的优劣; 3、尝试用“连分数展开”的方法对其他的数进行展开。 实验环境: 学校机房,Mathematica4.0软件 实验基本理论和方法: 1、Mathematica 中常用的展开数与多项式的函数的使用; 2、计算圆周率π“连分数展开”方法,并且利用特定的函数来展开其他数。 实验内容和步骤: (一)多项式的展开与化简 多项式是表达式的一种特殊的形式,所以多项式的运算与表达式的运算基本一样,表达式中的各种输出形式也可用于多项式的输出。Mathematica 提供一组按不同形式表示代数式的函数。如: 1、 对12 x 1-进行分解,使用的函数为Factor : 2、 展开多项式 7 x+2()与5 x+y+7(),使用的函数为Expand:

3、 化简(1)^4(2)^(3)x x x +++与(1)^3(2)^4(3)^(1)x x x x +++-,使用的函数为 Pimplify: 4、 连个多项式相除,总能写成一个多项式和一个有理式相加, Mathematic 中提供两个 函数PolynomialQuotient 和PolynomialRemainder 分别返回商式和余式:

(二)π的连分数展开 π的求解方法之前我们已经有许多种,但都比较繁琐而且误差较大,如何找到误差较小的π的近似值求解方法,我们在所得整数3的基础上进行分析,有了整数3,则 π=3+1x ,其中10.141592653579...x =是3的误差,101x <<。只要能找到1x 的最佳分数逼近值,再加3就得到π的最佳分数近似值。从而我们使用一种方法“连分数展开“,其原理是: 为了寻找与1x 接近的分数,先找与11 1 7.062513305931...A x = =接近的整数,显然 是7.于是111223377 A π=+ ≈+=,这是祖冲之的效率。 在此基础上,我们可以再用上述方法,要找到比 22 7 误差更小的分数近似值,只需要找到比整数7更接近1A 的分数来作为1A 的近似值。由于127A x =+,其中 200.062513305931...1x <=<。先找22 1 15.996594406685...A x = =的最佳整数近似值,显然是16.于是1211113771616A A =+ ≈+=,从而1 2 111355 3331 1113 7716 A A π=+=+≈+ = + +,这就得到祖冲之的密度。 如果还要进一步提高精确度,就应当在考虑2A 的整数近似值16的误差 32160.003405593314...x A =-=,取33 1 293.6345910144...A x = =的整数近似值294,则可

第三章知识点总结矩阵的初等变换与线性方程组

第三章知识点总结矩阵的初等变换与线性方程组 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第三章 矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质 设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?=存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?=存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则

数学实验综合实验报告

一、实验目的: 1、初步认识迭代,体会迭代思想的重要性。 2、通过在mathematica 环境下编写程序,利用迭代的方法求解方程的根、线性方程组的解、非线性方程组的解。 3、了解分形的的基本特性及利用mathematica 编程生成分形图形的基本方法, 在欣赏由mathematica 生成的美丽的分形图案的同时对分形几何这门学科有一个直观的了解。从哲理的高度理解这门学科诞生的必然性,激发读者探寻科学真理的兴趣。 4、从一个简单的二次函数的迭代出发,利用mathematica 认识混沌现象及其所 蕴涵的规律。 5、.进一步熟悉Mathematic 软件的使用,复习总结Mathematic 在数学作图中的应用,为便于研究数学图像问题提供方便,使我们从一个新的视角去理解数学问题以及问题的实际意义。 6、在学习和运用迭代法求解过程中,体会各种迭代方法在解决问题的收敛速度上的异同点。 二、实验的环境: 学校机房,mathematica4环境 三、实验的基本理论和方法: 1、迭代(一)—方程求解 函数的迭代法思想: 给定实数域上光滑的实值函数)(x f 以及初值0x 定义数列 1()n n x f x +=, ,3,2,1,0=n , (1) n x , ,3,2,1,0=n ,称为)(x f 的一个迭代序列。 (1)方程求根 给定迭代函数)(x f 以及初值0x 利用(1)迭代得到数列n x , ,3,2,1,0=n .如果数列收敛到某个*x ,则有 )(**x f x =. (2)

即*x 是方程)(x f x =的解。由此启发我们用如下的方法求方程0)(=x g 的近似解。 将方程0)(=x g 改写为等价的方程 )(x f x =, (3) 然后选取一初值利用(1)做迭代。迭代数列n x 收敛的极限就是方程0)(=x g 的解。 为了使得迭代序列收敛并尽快收敛到方程0)(=x g 的某一解的条件是迭代函数)(x f 在解的附近的导数将的绝对值尽量小,因此迭代方程修订成 x x f x h x )1()()(λλ-+== (4) 选取λ使得|)(|x h '在解的附近尽量小. 为此, 我们可以令 ,01)()(=-+'='λλx f x h 得 ) (11 x f '-= λ. 于是 1 )()()(-'-- =x f x x f x x h . 特别地,如果取x x g x f +=)()(, 则可得到迭代公式 .,1,0,) () (1 ='- =+n x g x g x x n n n n (5) (2)线性方程组的数值解的迭代求解理论与矩阵理论 给定一个n 元线性方程组 ??? ??=++=++, ,1 111111n n nn n n n b x a x a b x a x a (6) 或写成矩阵的形式

第三章知识点总结矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质

设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?=存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?=存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则 (1)对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵; ~;r A B m P PA B ?=即存在阶可逆矩阵,使 (2)对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵; 即~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)~P ;A B m P n Q AQ B ?=存在阶可逆矩阵,及阶可逆矩阵,使 (4)方阵A 可逆的充分必要条件是存在有限个初等方阵1212,, ,,l l P P P A PP P =使。 (5)~r A A E 可逆的充分必要条件是。(课本P ? ) 初等变换的应用 (1)求逆矩阵:()1(|)|A E E A -????→初等行变换或1A E E A -????????→ ? ????? 初等列变换。 (2)求A -1B :A (,) ~ (,),r A B E P 即() 1(|)|A B E A B -??→行,则P =A -1B 。或1E A B BA -????????→ ? ????? 初等列变换. 第二节 矩阵的秩

哈工大数学实验实验报告

实验一 2(1)(a) 程序语句: a=[-3 5 0 8;1 -8 2 -1;0 -5 9 3;-7 0 -4 5]; b=[0;2;-1;6]; inv(a)*b (b) 程序语句: a=[-3 5 0 8;1 -8 2 -1;0 -5 9 3;-7 0 -4 5]; b=[0;2;-1;6]; a\b (2)

4个矩阵的生成语句: e=eye(3,3); r=rand(3,2); o=zeros(2,3); s=diag([1,2]);%此为一个任取的2X2 矩阵 矩阵a 的生成语句: a=[e r;o s] 验证语句: a^2 b=[e r+r*s; o s^2]

(3)(a) 生成多项式的语句:poly ([2,-3,1+2i,1-2i,0,-6]) (b) 计算x=0.8,-x=-1.2 之值的指令与结果: 指令:polyval([1,5,-9,-1,72,-180,0],0.8) 指令:polyval([1,5,-9,-1,72,-180,0],-1.2)

(4) 求a的指令与结果:指令:a=compan([1,0,-6,3,-8]) 求a的特征值的指令与结果:指令:eig(a) roots(p)的指令与结果为: 指令:roots([1,0,-6,3,-8])

结论:利用友元阵函数a=company(p) 和eig(a) 可以与roots(p)有相同的作用,结果相同。 (5) 作图指令: x=0:0.01:1.5; y=[x.^2;x.^3;x.^4;x.^5]; plot (x,y) 作图指令: x=0:0.01:10; y1=x.^2; y2=x.^3; y3=x.^4; y4=x.^5; subplot(2,2,1),plot (x,y1),title('x^2') subplot(2,2,2),plot (x,y2),title('x^3') subplot(2,2,3),plot (x,y3),title('x^4') subplot(2,2,4),plot (x,y4),title('x^5')

线性代数习题[第三章]-矩阵的初等变换与线性方程组

习题3-1 矩阵的初等变换及初等矩阵 1.用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形. 2.用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵. 3.设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =. 4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B. (1) 证明B可逆 (2)求1 AB-.

习题 3-2 矩阵的秩 1.求矩阵的秩: (1)310211211344A ?? ??=--?? ??-?? (2)111212122212n n n n n n a b a b a b a b a b a b B a b a b a b ?? ?? ??=???? ?? L L L L L L L 01,2,,i i a b i n ≠? ? ??=?? L 2.设12312323k A k k -?? ??=--?? ??-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3) ()3R A =.

3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 . .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()() 1.d R A R B R A ≥≥- 4. 矩阵???? ??????-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4. 5. 设n (n ≥3)阶方阵????? ???????=111ΛΛΛΛΛΛΛΛa a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 1 1-n . 6.设A 为n 阶方阵,且2A A =,试证: ()()R A R A E n +-=

相关文档
相关文档 最新文档