文档库 最新最全的文档下载
当前位置:文档库 › 实验三 氨氮的测定

实验三 氨氮的测定

实验三  氨氮的测定
实验三  氨氮的测定

实验三氨氮的测定

氨氮的测定方法,通常有纳氏试剂比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具有操作简便、灵敏等特点,但钙、镁、铁等金属离子、硫化物、醛、酮类,以及水中色度和混浊等干扰测定,需要相应的预处理。苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,可采用蒸馏-酸滴定法。

一、实验目的和要求

1、掌握氨氮测定最常用的三种方法-纳氏试剂比色法;电极法和滴定法。了解氨气敏电极使用。

2、复习第二章含氮化合物测定的有关内容。

二、纳氏试剂比色法

(一)、原理

碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410—425nm范围内测其吸光度,计算其含量。

本法最低检出浓度为0.025mg/L(光度法),测定上限为2mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地面水、地下水、工业废水和生活污水。

(二)、仪器

1、带氮球的定氮蒸馏装置:500mL凯氏烧瓶、氮球、直形冷凝管。

2、分光光度计。

3、pH计。

(三)、试剂

配制试剂用水均应为无氨水。

1、无氨水。可选用下列方法之一进行制备:

(1)蒸馏法:每升蒸馏水中加0.1mL硫酸,在全玻璃蒸馏器中重蒸馏,弃去50mL初馏液,接取其余馏出液于具塞磨口的玻璃瓶中,密塞保存。

(2)离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。

2、1mol/L盐酸溶液。

3、1mol/L氢氧化纳溶液。

4、轻质氧化镁(MgD):将氧化镁在500℃下加热,以除去碳酸盐。

5、0.05%溴百里酚蓝指示液(pH6.0—7.6)。

6、防沫剂:如石蜡碎片。

7、吸收液:①硼酸溶液:称取20g硼酸溶于水,稀释至1L。②0.01mol/L 硫酸溶液。

8、纳氏试剂。可选择下列方法之一制备:

(1)称取20g碘化钾溶于约25mL水中,边搅拌边分次少量加入二氧化汞(HgCl2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加氯化汞溶液。

另称取60g氢氧化钾溶于水,并稀释至250mL,冷却至室温后,将上述溶液徐徐注入氢氧化钾溶液中,用水稀释至400mL,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。

(2)称取16g氢氧化钠,溶于50mL水中,充分冷却至室温。

另称取7g碘化钾和碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中。用水稀释至100mL,贮于聚乙烯瓶中,密塞保存。

9、酒石酸钾钠溶液:称取50g酒石酸钾钠(KNaC4H4O6·4H2O)溶于100mL 水中,加热煮沸以除去氨,放冷,定容至100mL。

10、铵标准贮备溶液:称取3.819g经100℃干燥过的氯化铵(NH

Cl)溶于

4

水中,移入1000mL容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。

11、铵标准使用溶液:移取5.00mL铵标准贮备液于500mL容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。

(四)、测定步骤

1、水样预处理:取250mL水样(如氨氮含量较高,可取适量并加水至250mL,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调节至pH7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏,至馏出液达200mL时,停止蒸馏。定容至250mL。

采用酸滴定法或纳氏比色法时,以50mL硼酸溶液为吸收液;采用水扬酸-次氯酸盐比色法时,改用50mL0.01mol/L硫酸溶液为吸收液。

2、标准曲线的绘制:吸取0、0.50、1.00、3.00、5.00、7.00和10.0mL

铵标准使用液于50mL比色管中,加水至标线,加1.0mL酒石酸钾钠溶液,混匀。加1.5mL纳氏试剂,混匀。放置10min后,在波长420nm处,用光程20mm比色皿,以水为参比,测定吸光度。

由测得的吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度的标准曲线。

3、水样的测定

(1)分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50mL比色管中,稀释至标线,加0.1mL酒石酸钾钠溶液。

(2)分取适量经蒸馏预处理后的馏出液,加入50mL比色管中,加一定量

1mol/L氢氧化钠溶液以中和硼酸,稀释至标线。加1.5mL纳氏试剂,混匀。放置10min后,同标准曲线步骤测量吸光度。

4、空白试验:以无氨水代替水样,作全程序空白测定。

(五)、计算

由水样测得的吸光度减去空白试验的吸光度后,从标准曲线上查得氨氮含量(mg)。

式中:m——由校准曲线查得的氨氮量(mg);

V——水样体积(mL)。

(六)、注意事项

1、纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。静置后生成的沉淀应除去。

2、滤纸中常含痕量铵盐,使用时注意用无氨水洗涤。所用玻璃器皿应避免实验室空气中氨的沾污。

三、滴定法

(一)、原理

滴定法仅适用于已进行蒸馏预处理的水样。调节水样至pH在6.0—7.4范围,加入氧化镁使呈微碱性。加热蒸馏,释出的氨被吸收入硼酸溶液中,以甲基红-亚甲蓝为指示剂,用酸标准溶液滴定馏出液中的铵。

当水样中含有在此条件下,可被蒸馏出并在滴定时能与酸反应的物质,如挥发性胺类等,则将使测定结果偏高。

(二)、试剂

1、混合指示液:称取200mg甲基红溶于100mL95%乙醇,另称取100mg亚甲蓝溶于50mL95%乙醇,以两份甲基红溶液与一份亚甲蓝溶液混合后备用。混合液一个月配制一次。

2、硫酸标准溶液(C1/2H

=0.02mol/L):分取5.6ml(1+9)硫酸溶液于

2SO4

1000mL容量瓶中,稀释至标线,混匀。按下列操作进行标定。

称取180℃干燥2h的基准试剂级无水碳酸钠(Na2CO3)约0.5g(称准

至.0001g),溶于新煮沸放冷的水中,移入500mL容量瓶中,加25mL水,加1滴0.05%甲基橙指示液,用硫酸溶液滴定至淡橙红色止。记录用量,用下式计算硫酸溶液的浓度。

式中:W——碳酸钠的重量(g);

V——消耗硫酸溶液的体积(mL)。

3、0.05%甲基橙指示液。

(三)、测定步骤

1、水样预处理:同纳氏比色法。

2、水样的测定:向硼酸溶液吸收的、经预处理后的水样中,加2滴混合指示液,用0.020mol/L硫酸溶液滴定至绿色转变成淡紫色止,记录硫酸溶液的用量。

3、空白试验:以无氨水代替水样,同水样全程序步骤进行测定。

(四)、计算

式中:A——滴定水样时消耗硫酸溶液体积(mL);

B——空白试验消耗硫酸溶液体积(mL);

M——硫酸溶液浓度(mol/L);

V——水样体积(mL);

14——氨氮(N)摩尔质量。

四、电极法

(一)、原理

氨气敏电极为-复合电极,以pH玻璃电极为指示电极,银-氯化银电极为参比电极。此电极对置于盛有0.1mol/L氯化铵内充液的塑料套管中,管端部紧贴指示电极敏感膜处装有疏水半渗透薄膜,使内电解液与外部试液隔开,半透膜与pH玻璃电极间有一层很薄的液膜。当水样中加入强碱溶液将pH提高到11以上,使铵盐转化为氨,生成的氨由于扩散作用而通过半透膜(水和其他离子则不能通过),使氯化铵电解质液膜层内NH4+NH3+H+的反应向左移动,引起氢离子浓度改变,由pH玻璃电极测得其变化。在恒定的离子强度下,测得的电动势与水样中氨氮浓度的对数呈一定的线性关系。由此,可从测得的电位值确定样品中氨氮的含量。

挥发性胺产生正干扰;汞和银因同氨络合力强而有干扰;高浓度溶解离子影响测定。

该方法可用于测定饮用水、地面水、生活污水及工业废水中氨氮的含量。色度和浊度对测定没有影响,水样不必进行预蒸馏。标准溶液和水样的温度应相同,含有溶解物质的总浓度也要大致相同。

该方法的最低检出浓度为0.03mg/L氨氮;测定上限为1400mg/L氨氮。

(二)、仪器

1、离子活度计或带扩展毫伏的pH计。

2、氨气敏电极。

3、电磁搅拌器。

(三)、试剂

所有试剂均用无氨水配制。

1、铵标准贮备液:同纳氏试剂比色法试剂10。

2、100、10、1.0、0.1mg/L的铵标准使用液:用铵标准贮备液稀释配制。

3、电极内充液:0.1mol氯化铵溶液。

4、5mol/L氢氧化钠(内含EDTA二钠盐0.5mol/L)混合溶液。

(四)、测定步骤

1、仪器和电极的准备:按使用说明书进行,调试仪器。

2、标准曲线的绘制:吸取10.00mL浓度为0.1、1.0、10、100、1000mg/L 的铵标准溶液于25mL小烧杯中,浸入电极后加入1.0mL氢氧化钠溶液,在搅拌下,读取稳定的电位值(1min内变化不超过1mV时,即可读数)。在半对数坐标线上绘制E-lgc的标准曲线。

3、水样的测定:取10.00mL水样,以下步骤与标准曲线绘制相同。由测得的电位值,在标准曲线上直接查得水样中的氨氮含量(mg/L)。

(五)注意事项

1、绘制标准曲线时,可以根据水样中氨氮含量,自行取舍三或四个标准点。

2、实验过程中,应避免由于搅拌器发热而引起被测溶液温度上升,影响电位值的测定。

3、当水样酸性较大时,应先用碱液调至中性后,再加离子强度调节液进行测定。

4、水样不要加氯化汞保存。

5、搅拌速度应适当,不可使其形成涡流,避免在电极处产生气泡。

6、水样中盐类含量过高时,将影响测定结果。必要时,应在标准溶液中加入相同量的盐类以消除误差。

污水水质检测实验报告

污水水质检测实验报告 班级: 姓名: 学号: 一、实验目的: (1)、学习和掌握测定水中溶解氧、pH、浊度、氟化物、铁、氨氮、六价铬、硫化物、钙、亚硝酸盐氮、有效氯(总氯)COD和

总磷的方法。 (2)校园内湖塘是校园生活污水和雨水的接纳水体。本实验旨在了解各湖塘接纳污水水质情况,掌握铬法测定污水COD的方法及原理,同时了解其他水质指标,如SS、NH3-N、PO43-。 二、实验原理: (1)重铬酸钾法测定污水COD 实验原理:化学需氧量是用化学氧化剂氧化水中有机物污染物时所消耗的氧化剂量,用氧量(mg/L)表示。化学需氧量愈高,也表示水中有机污染物愈多。常用的氧化剂主要是重铬酸钾和高锰酸钾。以高锰酸钾作氧化剂时,测得的值称CODMn。以重铬酸钾作氧化剂时,测得的值称CODCr,或简称COD。重铬酸钾法测COD的原理是在水样中加如一定量的重铬酸钾和催化剂硫酸银,在强酸性介质中加热回流一段时间,部分重铬酸钾被水样中可氧化物质还原,用硫酸亚铁铵滴定剩余的重铬酸钾,根据消耗重铬酸钾的量计算COD的值。 (2)、氨氮的测定 氨+碘化汞钾→黄色络合物 ↑ 氨与碘化汞钾在碱性溶液中(KOH)生成黄色络合物,其色度与氨氮含量成正比,在0~2.0 mg/L的氨氮范围内近于直线性。 (3)、亚硝酸盐的测定——重氮化比色法 亚硝酸盐+氨基苯磺酸(重氮作用)+ -萘胺→紫

红色染料 亚硝酸盐和对氨基苯磺酸起重氮化作用,再与 -萘胺起偶合反应,生成紫红色染料,与标准液进行比色。 三、实验装置: (1)、器材 GDYS-101M多参数水质分析仪

(2)、药品 去离子水或蒸馏水、各种相关试剂 (3)、样品 信息楼前池塘水 四、注意事项: (1)树叶、木棒、水草等杂质应从水样中除去。(2)废水粘度高时,可加2-4倍蒸馏水稀释,摇均匀待沉淀物下降后再过滤。五、实验步骤: 样品(ml)试剂(一)试剂(二)显色时间 (min) 氨氮10 0.2 1支10 10 0.2 1支— 蒸馏水(对 照) 亚硝酸盐10 0.2 1支20 蒸馏水(对 10 0.2 1支— 照)

实验:水中铬的测定

水中铬的测定 ——二苯碳酰二肼分光光度法 1目的 1.1掌握六价铬和总铬的测定方法; 1.2熟练应用分光光度计。 1.3掌握关于水和废水中金属化合物的测定原理和方法。 2意义 铬存在于电镀、冶炼、制革、纺织、制药等工业废水污染的水体中。富铬地区地表水径流中也含铬,自然中的铬常以元素或三价状态存在,水中的铬有三价、六价两种价态。 三价铬和六价铬对人体健康都有害。一般认为,六价铬的毒性强,更易为人体吸收而且可在体内蓄积,饮用含六价铬的水可引起内部组织的损坏;铬累积于鱼体内,也可使水生生物致死,抑制水体的自净作用;用含铬的水灌溉农作物,铬可富积于果实中。 3原理 废水中铬的测定常用分光光度法,是在酸性溶液中,六价铬离子与二苯碳酰二肼反应,生成紫红色化合物,其最大吸收波长为540nm,吸光度与浓度的关系符合比尔定律。 4仪器 4.1分光光度计,比色皿(1cm、3cm)。 4.2 50mL具塞比色管,移液管,容量瓶等。 5试剂 5.1(1+1)硫酸。 5.2(1+1)磷酸。 5.3铬标准贮备液:称取于120℃干燥2h的重铬酸钾(优级纯)0.2829g,用水溶解,移入1000mL容量瓶中,用水稀释至标线,摇匀。每毫升贮备液含0.1000mg六价铬。

5.4铬标准使用液:吸取10.00mL铬标准贮备液于100mL容量瓶中,用水稀释至标线,摇匀。然后再从配置好的溶液中取出10毫升于100毫升容量瓶中,每毫升标准使用液含1.00μg六价铬。使用当天配制。 5.5 二苯碳酰二肼溶液:称取二苯碳酰二肼(简称DPC,C13H14N4O)0.2g,溶于50mL丙酮中,加水稀释至100mL,摇匀,贮于棕色瓶内,置于冰箱中保存。颜色变深后不能再用。 6测定步骤 6.1标准曲线的绘制:取9个50mL容量瓶,依次加入0、1.00、2.00、4.00、6.00、8.00和10.00mL铬标准使用液,用水稀释至40ml,加入1+1硫酸0.5mL 和1+1磷酸0.5mL,摇匀。加入2mL显色剂溶液,摇匀,定容。显色10min后,于540nm波长处,用1cm比色皿,以水为参比,测定吸光度并作空白校正。以吸光度为纵坐标,相应六价铬含量为横坐标绘出标准曲线。 6.2水样的测定:取适量无色透明或经预处理的水样于50mL容量瓶中,用水稀释40ml,加入1+1硫酸0.5mL和1+1磷酸0.5mL,摇匀。加入2mL显色剂溶液,摇匀,定容。显色10min后,于540nm波长处,用1cm比色皿,以水为参比,测定吸光度。进行空白校正后根据所测吸光度从标准曲线上查得Cr6+ 含量。 7 计算 式中:m——从标准曲线上查得的Cr6+量(μg); V——水样的体积(mL)。

实验五硝酸银的标定氯化物的测定

环境保护职业技术学院 课时授课计划 授课章节目录: 项目五氯化物的测定 授课时数:4 目的要求: 1. 掌握硝酸银滴定法测定氯化物的原理。2.掌握硝酸银滴定法测定氯化物的方法。 教材分析(难点、重点): 滴定终点的判断 教具、挂图与参考书: 中国环境保护部 布置作业:实验报告

实验氯化物的测定 一、实验目的 1. 掌握硝酸银滴定法测定氯化物的原理。 2.掌握硝酸银滴定法测定氯化物的方法。 二、概述 氯化物(C1-)是水和废水中一种常见的无机阴离子。几乎所有的天然水中都有氯离子存在,它的含量围变化很大。在河流、湖泊、沼泽地区,氯离子含量一般较低,而在海水、盐湖及某些地下水中,含量可高达数十克/升。在人类的生存活动中,氯化物有很重要的生理作用及工业用途。正因为如此,在生活污水和工业废水中,均含相当数量的氯离子。 若饮水中氯离子含量达到250mg/L,相应的阳离子为钠时,会感觉到咸味:水中氯化物含量高时,会损害金属管道等,并妨碍植物的生长。 三、样品采集与保存 采集代表性水样,置于玻璃瓶或聚乙烯瓶。存放时不必加入特别的保存剂。 四、方法选择 测定氯化物的方法较多,其中,离子色谱法是目前国外最为通用的方法,简便快速。硝酸银滴定法、硝酸汞滴定法所需仪器设备简单,适合于清洁水测定,但硝酸汞滴定法使用的汞盐剧毒,因此不作推荐。电位滴定法和电极流动法适合于测定带色或污染的水样,在污染源监测中使用较多。同时把电极法改为流通池测量,可保证电极的持久使用,并能提高测量精度。 五、测定方法(硝酸银滴定法) 1. 方法原理

在中性或弱碱性溶液中,以铬酸钾为指示剂,用硝酸银滴定氯化物时,由于氯化银的溶解度小于铬酸银,氯离子首先被完全沉淀后,铬酸根才以铬酸银形式沉淀出来,产生砖红色物质,指示氯离子滴定的终点。沉淀滴定反应如下:Ag++Cl—→AgCl↓ 2Ag++→Ag2CrO4↓ 铬酸根离子的浓度与沉淀形成的快慢有关,必须加入足量的指示剂。且由于有稍过量的硝酸银与铬酸钾形成铬酸银沉淀的终点较难判断,所以需要以蒸馏水作空白滴定,以作对照判断(使终点色调一致)。 2. 干扰及消除 饮用水中含有的各种物质在通常的数量下不产生干扰。溴化物、碘化物和氰化物均能起与氯化物相同的反应。 硫化物、硫代硫酸盐和亚硫酸盐干扰测定,可用过氧化氢处理予以消除。正磷酸盐含量超过25mg/L时发生干扰;铁含量超过10mg/L时使终点模糊,可用对苯二酚还原成亚铁消除干扰;少量有机物的干扰可用高锰酸钾处理消除。 废水中有机物含量高或色度大,难以辨别滴定终点时,采用加入氢氧化铝进行沉降过滤法去除干扰。

水中铬的测定实验报告

水中六价铬的测定 摘要:本实验通过二苯碳酰二肼分光光度法对东湖水中六价铬进行测定。在酸性溶液中,六价铬离子与二苯碳酰二肼(DPC)反应,生成紫红色化合物,其最大吸收波长为540nm,吸光度与浓度符合比尔定律。 关键字:铬;分光光度法;二苯碳酰二肼 Analysis of chromium(VI)in East Lake water Abstract: In this study, spectrophotometry by Diphenylcarbazide hydrazine hexavalent chromium in water on Lake measured. In acidic solution, hexavalent chromium ions and Diphenylcarbazide hydrazine (DPC) reacts purple compound.The maximum absorption wavelength of 540nm. Absorbance and the concentration conforms to the law of bill. Key words:Chrome; spectrophotometry; Diphenylcarbazide hydrazine 1 前言 铬是生物体所必需的微量元素之一。六价铬为吞入性毒物/吸入性极毒物,皮肤接触可能导致过敏;更可能造成遗传性基因缺陷,吸入可能致癌,对环境有持久危险性。六价铬很容易被人体吸收,它可通过消化、呼吸道、皮肤及粘膜侵入人体。危害最大的是长期或短期接触或吸入时有致癌危险。通常认为六价铬的毒性比三价铬大100倍,当水中六价铬质量浓度达1mg/L时,水呈黄色并有涩味。目前六价铬的测定方法有二苯碳酰二肼(DPC)分光光度法、乙酰偶氮胂法、3,3’,5,5’-四甲基联苯胺法等,其中DPC分光光度法测定六价铬具有灵敏度高、特异性好的优点,是目前最常用的方法。

水中余氯的测定

水中余氯的测定 一、实验目的 1、了解水中余氯测定的意义。 2、掌握碘量法测定余氯的原理和操作。 二、实验原理 氯的单质或次氯酸盐加入水中后,经水解生成游离性有效氯,包括含水分子氯、次氯酸和次氯酸盐等形式,其相对比例决定于水的pH和温度,在多数水体的pH条件下,主要是次氯酸和次氯酸盐。 游离性氯与铵和某些含氮化合物反应,生成化合性有效氯(如氯与铵反应生成一氯胺、二氯胺和三氯化氮)。游离性氯与化合性氯二者都同时存在于水中。氯化过的污水和某些工业废水,通常只含有化合性氯。 碘量法适用于所测定总余氯含量>1mg/L的水样。测定的原理如下:余氯在酸性溶液内与碘化钾作用,释放出定量的碘,再以硫代硫酸钠标准溶液滴定。 2KI+2CH3COOH →2CH3COOK+2HI 2HI+HOCl →I2+HCl+H2O I2+2Na2S2O3→2NaI+Na2S4O6 本法测定值为总余氯,包括HOCl、OCl-、NH2Cl和NHCl2等。 本法适用于生活用水余氯的测定。 三、仪器 碘量瓶250mL 四、试剂 1、碘化钾:要求不含游离碘及碘酸钾。 2、(1+5)硫酸溶液。 3、重铬酸钾标准溶液,C(1/6K2Cr2O7)=0.0250mol/L:称取1.2259g优级纯重铬酸钾,溶于水中,移入1000mL容量瓶中,用水稀释至标线。 4、硫代硫酸钠标准滴定溶液,C(Na2S2O3)=0.05mol/L:称取12.5g硫代硫酸钠,(Na2S2O3·5H2O),溶于已煮沸放冷的水中,稀释至1000mL。加入0.2g碳酸钠及数粒碘化汞,贮于棕色瓶内,溶液可保存数月。

标定:吸取20.00mL重铬酸钾标准溶液于碘量瓶中,加入50mL水和1g碘化钾,再加5mL(1+5)硫酸溶液,静置5min后,用待标定的硫代硫酸钠标准滴定液滴定至淡黄色时,加入1mL1%淀粉溶液,继续滴定至蓝色消失为止(注意:此时应带淡绿色,因为含有Cr3+),记录用量。 硫代硫酸钠标准溶液浓度按下式计算: C=C1*20.00/V 式中C1----重铬酸钾标准溶液浓度(mol/L); 20.00----吸取重铬酸钾溶液的体积(mL); V----待标定硫代硫酸钠标准溶液用量(mL)。 5、硫代硫酸钠标准滴定溶液,C(Na2S2O3)=0.0100mol/L:把上述已标定的0.05mol/L硫代硫酸钠标准滴定溶液,用煮沸放冷的水稀释至所需的浓度(0.0010mol/L)。 6、1%淀粉溶液 7、乙酸盐缓冲溶液(pH=4):称取146g无水乙酸钠溶于水中,加入457mL乙酸,用水稀释至1000mL。 五、实验步骤 1、吸取100mL水样(如含量小于1mg/L时,可取200mL水样)于300mL碘量瓶内,加入0.5g碘化钾和5mL乙酸盐缓冲溶液。 2、自滴定管加入0.0100mol/L硫代硫酸钠标准溶液至变成淡黄色,加入1mL淀粉溶液,继续滴定至蓝色消失,记录用量。 六、数据处理 总余氯(Cl2,mg/L)=C*V1*35.46*1000/V 式中C----硫代硫酸钠标准滴定溶液浓度(mol/L); V1----硫代硫酸钠标准滴定溶液用量(mL); V----水样体积(mL); 35.46----总余氯(Cl2)摩尔质量(g/mol)。

水中溶解氧的测定实验报告.

溶解氧的测定实验报告 易倩 一、实验目的 1.理解碘量法测定水中溶解氧的原理: 2.学会溶解氧采样瓶的使用方法: 3.掌握碘量法测定水中溶解氧的操作技术要点。 二、实验原理 溶于水中的氧称为溶解氧,当水受到还原性物质污染时,溶解氧即下降,而有藻类繁殖时,溶解氧呈过饱和,因此,水中溶解氧的变化情况在一定程度上反映了水体受污染的程度。 碘量法测定溶解氧的原理:在水中加入硫酸锰及碱性碘化钾溶液,生成氢氧化锰沉淀。此时氢氧化锰性质极不稳定,迅速与水中溶解氧化合生成锰酸锰: MnSO4+2aOH=Mn(OH)2↓(白色)++Na2SO4 2Mn(OH)2+O2=2MnO(OH)2(棕色) H2MnO3十Mn(OH)2=MnMnO3↓(棕色沉淀)+2H2O 加入浓硫酸使棕色沉淀(MnMn02)与溶液中所加入的碘化钾发生反应,而析出碘,溶解氧越多,析出的碘也越多,溶液的颜色也就越深2KI+H2SO4=2HI+K2SO4 MnMnO3+2H2SO4+2HI=2MnSO4+I2+3H2O I2+2Na2S2O3=2NaI+Na2S4O6 用移液管取一定量的反应完毕的水样,以淀粉做指示剂,用标准溶液滴定,计算出水样中溶解氧的含量。 三、仪器 1.250ml—300ml溶解氧瓶 2.50ml酸式滴定管。 3.250ml锥形瓶 4.移液管 5.250ml碘量瓶 6.洗耳球 四、试剂 l、硫酸锰溶液。溶解480g分析纯硫酸锰(MnS04· H20)溶于蒸馏水中,过滤后稀释成1000ml.此溶液加至酸化过的碘化钾溶液中,遇淀粉不得产生蓝色。 2、碱性碘化钾溶液。取500g氢氧化钠溶解于300—400ml蒸馏水中(如氢

含铬废液的处理化学实验报告

北方民族大学首届化学实验技能大赛 团体赛 综合设计实验报告 题目化学实验室含铬废液的处理及处理后废液中铬含量的测定 学院生科学院姓名邓洁学号:20082770 专业:生物工程学院化工学院姓名:赵长军学号:20091336专业:化工工艺学院化工学院姓名: 黎洪双学号:20103682 专业:化工工艺大赛时间教师签字 北方民族大学

化学实验室含铬废液的处理及处理后废液中铬含量的测定 摘要:采用D301R型阴离子交换树脂对化学实验室含铬废液进行处理使其达到国家排放标准。该方法吸附率可达99.972%,经处理后含铬废液中铬的浓度为小于0.5mg/L,达标。 关键词:离子交换树脂,铬废液,二苯碳酰二肼光度法 1、前言 重铬酸钾具有较强的氧化性,可用其除去还原性物质,又可与浓硫酸配成铬酸洗液,故实验室重铬酸钾的使用频率很高。但是高浓度的含铬废液具有很强的毒性,含铬废液如不进行处理直接排放会对生态和环境造成严重的污染。六价铬对人体皮肤有刺激性,能使皮肤溃伤,引起鼻腔穿孔;其化合物具有致急性肾衰竭、致癌和突变性,可在体内积蓄,是五毒金属之一。 2、实验原理 离子交换树脂是一类具有离子交换作用的活性吸附官能团,具有网状结构,不溶性的高分子化合物。通常为球状颗粒物。D301R型离子交换树脂为大孔径弱碱性苯乙烯系阴离子交换树脂,在水中可游离出-OH,而成弱碱性。树脂所带的正电荷对溶液中带负电荷的阴离子(重铬酸根离子)进行选择性吸附,从而达到分离重铬酸根离子的目的。 二苯碳酰二肼与六价铬反应可形成复合物,呈现出紫红色,可于540nm处进行分光光度检测,从而检测出溶液中铬的含量。试剂与CrO42-的反应机理至今还不完全清楚,有人认为是二苯碳酰二肼由CrO42-氧化为二苯缩氨基脲,后者再与Cr3+形成络合物。 工艺流程:含铬废液吸附解吸蒸发结晶干燥重铬酸钾 3、仪器和试剂 3.1实验室含铬废液 3.2 722型分光光度计,分析天平,容量瓶(50ml,100ml等),吸附装置(带铁圈的铁架台,输液管,塑料瓶,烧杯,碱式滴定管),D301R型阴离子交换

六价铬实验报告

用二苯碳酰二肼分光光度法GB7466-87分析考核样 中的六价铬 实验名称:水样中六价铬的测定 实验方法及来源:二苯碳酰二肼分光光度法(A)—GB7466-87 实验目的:上岗考核 实验人员:XX 实验日期:XX年X月X日 一、实验原理: 在酸性溶液中,六价铬与二苯碳酰二肼反应紫红色化合物,其最大吸收波长为540nm,摩尔吸光系数为4X 104 L ? mol-1? cm-1 二、实验仪器: 1. 30mm比色皿; 2. 分光光度计; 三、实验试剂: 1. 丙酮。 2. (1+1)硫酸:将硫酸(p =1.84g/ml )缓缓加入到同体积水中,混匀。 3. (1+1)磷酸:将磷酸(p =1.69g/ml )与等体积水混合。 4. 0.2%氢氧化钠溶液:称取氢氧化钠1g,溶于500ml新煮沸放冷的水 中。

5. 氢氧化锌共沉淀剂

①硫酸锌溶液:称取硫酸锌8g,溶于水并稀释至100ml。 ②2%氢氧化钠溶液:称取氢氧化钠2.4g溶于新煮沸放冷的水至120ml, 同时将①、②两溶液混合。 6. 4%高锰酸钾溶液:称取高锰酸钾4g,在加热和搅拌下溶于水,稀释至 100ml。 7. 铬标准贮备液:称取于120。C干燥2h的重铬酸钾(K262O7,优级纯) 0.2829g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线。摇匀。每毫 升溶液含0.100mg六价铬。 8. 铬标准溶液(I):吸取5.00ml铬标准贮备液,置于500ml容量瓶 中,用水稀释至标线,摇匀。每毫升溶液含 1.00ug六价铬,使用 时当天配置。 9. 铬标准溶液(H):吸取25.00ml铬标准贮备液,置于500ml容量 瓶中,用水稀释至标线,摇匀。每毫升溶液含 5.00ug六价铬,使 用时当天配置。 10.20%尿素溶液:降尿素((NH2)2CO)20g溶于水并稀释至100ml。 11.2%亚硝酸钠溶液:将亚硝酸钠2g溶于水并稀释至100ml。 12. 显色剂(I):称取二苯碳酰二肼(C13H14N4O)0.2g,溶于50ml 丙酮中,加 水稀释至100ml,摇匀。贮于棕色瓶置冰箱中保存。色变身后不能使用。 13. 显色剂(H):称取二苯碳酰二肼1g,溶于50ml丙酮中,加水稀释至100ml,摇 匀。贮于棕色瓶置冰箱中保存。色变身后不能使用。 14:六价铬质控样:准确量取10.00ml质控样于250ml容量瓶中,用 水稀释至标线,摇匀。

水中氯离子的测定(莫尔法)

实验12 水中氯离子的测定(莫尔法) 一.实验目的 1. 掌握用莫尔法进行沉淀滴定的原理和方法; 2. 学习滴定管等实验仪器的使用。 二.背景知识及实验原理 1. 背景知识 氯离子几乎存在于所有的水中,其含量各处不同。海水、苦咸水、生活污水和工业废水中,往往都有大量氯离子,甚至天然淡水源中也含有一定的数量。天然水中氯离子的来源有如下几方面: (1)水源流经含有氯化物的地层; (2)水源受生活污水或工业废水的污染; (3)近海地区的水源受海水的影响。地面水会因潮汐影响或枯水季节使海水倒灌;海风也会挟带氯离子;地下水有时会由海水渗入补给,这些都会使氯离子的含量增高。 山水、溪水的氯离子含量较低,只有几至几十毫克每升。海水和地下水中常会有几十至几百毫克每升。苦咸水中氯离子含量高达2000~5000mg/L。海水的氯离子含量很高,有15000~20000mg/L。一般来说,氯离子的含量随水中矿物质的增加而增多。 人体摄入氯离子过多所引起的机体危害作用并不多见。仅见于严重失水、持续摄入高氯化钠或过多氯化铵的情况。 一般来说,锅炉的省煤器、水冷壁、对流管束以及锅铜等零部件都会由于氯离子含量高而出现被腐蚀的现象,这样往往会造成这些金属部件变得越来越薄,甚至还会出现穿孔等问题。更为严重的就是腐蚀也可能会造成金属内部结构上的破坏。被长期腐蚀的金属,它的强度会有显著下降。这样,不但会严重影响到锅炉的安全运行,还会缩短锅炉可以使用的期限,造成经济上的损失。 2. 实验原理 沉淀反应很多,但是能用于沉淀滴定法中的沉淀反应却很少,相当多的沉淀反应都不能完全符合滴定对化学反应的基本要求,而无法滴定。最有实际意义的是生成微溶银盐的反应,以生成银盐沉淀的反应为基础的滴定方法,即所谓银量法。根据滴定时所用指示剂不同,银量法分为莫尔法、佛尔哈德法和法扬司法。主要用于水中Cl-、Br-、SCN-和Ag+离子等的测定。莫尔法是以铬酸钾(K2CrO4)为指示剂的银量法。只适用于AgNO3直接滴定Cl-、Br-、

水样中铬的测定实验报告

浙江海洋学院 环境监测实验报告 实验名称:水样中铬的测定 指导教师: 专业: 班级: 学生姓名: 同组者姓名: 实验日期: 气压: 温度: 1 实验目的 (1)了解测定铬的意义。 (2)掌握分光光度法测定铬的基本原理和方法。 铬存在于电镀、冶炼、制革、纺织、制药等工业废水污染的水体中。富铬地区地表水径流中也含铬,自然中的铬常以元素或三价状态存在,水中的铬有三价、六价两种价态。 三价铬和六价铬对人体健康都有害。一般认为,六价铬的毒性强,更易为人体吸收而且可在体内蓄积,饮用含六价铬的水可引起内部组织的损坏;铬累积于鱼体内,也可使水生生物致死,抑制水体的自净作用;用含铬的水灌溉农作物,铬可富积于果实中。 铬的测定可采用比色法、原子吸收分光光度法和容量法。当使用二苯碳酰二肼比色法测定铬时,可直接比色测定六价铬,如果先将三价铬氧化成六价铬后再测定就可以测得水中的总铬。水样中铬含量较高时,可使用硫酸亚铁铵容量法测

定其含量。受轻度污染的地面水中的六价铬,可直接用比色法测定,污水和含有机物的水样可使用氧化—比色法测定总铬含量。 2、水样六价铬的测定和标线制作 原理:在酸性溶液中六价铬与二苯碳酰二肼反应生成紫红色产物,可用目视比色或分光光度法测定。本方法的最低检出质量浓度为0.004mg/L铬。测定上限为0.2mg/L铬。 仪器、耗材:(1)分光光度计;(2)25mL比色管等。 试剂:(1)二苯碳酰二肼溶液溶解0.20g二苯碳酰二肼于100mL的95%的乙醇中,一面搅拌,一面加入400mL(1+9)硫酸,存放于冰箱中,可用1个月。(2)(1+9)硫酸。(3)铬标准贮备液溶解141.4mg预先在105~110℃烘干的重铬酸钾于水中,转入1000mL容量瓶中,加水稀释至标线,此液每毫升含50.0μg 六价铬。(4)铬标准溶液吸取1.00mL贮备液至50mL比色管中,加水稀释到标线。此液每毫升含1.00μg六价铬,临用配制。 步骤: (1)吸取5.00mL水样,用蒸馏水稀释至25.00mL,如果水样浑浊可过滤后测定。 (2)依次取铬标准溶液0mL、0.25mL、0.50mL、1.00mL、2.00mL、 3.50mL、5.00mL,至25mL比色管中,加水至标线。 (3)向水样管及标准管中各加1.25mL二苯碳酰二肼溶液,混匀,放置10min,540nm波长、3cm比色皿以试剂空白为参比,测定吸光度。 计算 ρ(Cr6+)=测得铬量(μg)/水样体积(mL) 3、总铬的测定 原理:水样中的三价铬用高锰酸钾氧化成为六价,过量的高锰酸钾用亚硝酸钠分解;过剩的亚硝酸钠为尿素所分解,得到的清液用二苯碳酰二肼显色,测定总铬含量。

废水中铬含量的测定

废水中铬的测定 实验目的 (1)进一步熟悉分光光度计和原子吸收分光光度计的基本结构及使用。 (2)掌握分光光度法和原子吸收分光光度法测定工业废水水中铬含量的原理及方法。 (3)对两种方法的特点、优劣和适用性进行比较。 分光光度法 实验原理 1.六价铬的测定:在酸性溶液中六价铬与二苯碳酰二肼反应生成紫红色产物,可用目视比色或分光光度法测定。 2.总铬的测定:水样中的三价铬用高锰酸钾氧化为六价铬,过量的高锰酸钾用亚硝酸钠分解,过剩的亚硝酸钠为尿素所分解,得到的清液用二苯碳酰二肼显色,测定含量。 主要仪器及试材 1.主要仪器 (1) 紫外可见分光光度计。 (2) 50 ml比色管。 (3) 150 ml锥形瓶 2.试剂 (1)二苯碳酰二肼溶液溶解1.20 g二苯碳酰二肼于100 ml的95%乙醇中,一边搅拌,一边加入400 ml(1+9)硫酸,存于冰箱中,可用1个月。 (2)(1+9)硫酸。 (3)铬标准储备液溶解141.4 mg预先在105-110℃烘干的重铬酸钾于水中,转入1000 ml 容量瓶中,加水稀释至标线,此液每毫升含50.0μg六价铬。 (4)铬标准溶液吸取20.00 ml储备液至1000 ml容量瓶中,加水稀释至标线。此液每毫升含1.00μg六价铬,临用配制。 (5)(1+1)硫酸。 (6)(1+1)磷酸。 (7)4% 高锰酸钾溶液。 (8)20% 尿素溶液。 (9)2% 亚硝酸钠溶液。 实验方法与步骤 1.六价铬的测定

(1)吸取50.00 ml水样,(若浓度太高,移入少许水样,用水稀释至50.00 ml),置于50 ml比色管中,如果水样混浊可过滤后测定。 (2)依次吸铬标准溶液(1.00μg /ml) 0 ml、0.20 ml、0.50 ml、1.00 ml、2.00 ml、4.00 ml、6.00 ml、8.00 ml及10.00 ml,至50 ml比色管中,加水至标线。 (3)水样管及标准管中各加2.5 ml二苯碳酰二肼溶液,混匀,放置10 min,目视比色,如用分光光度计,则于540 nm波长、3 cm比色皿,以试剂空白作参比,测定吸光度。2.总铬的测定 (1)取50.00 ml摇匀的水样置于150 ml锥形瓶中,加几粒玻璃珠,调节pH值为7。(2)取铬标准溶液(1.00μg /ml) 0 ml、0.20 ml、0.50 ml、1.00 ml、2.00 ml、4.00 ml、6.00 ml、8.00 ml及10.00 ml,置于锥形瓶中,加水至体积为50 ml,各加入几粒玻璃珠。(3)向水样和标准系列中加0.5 ml(1+1)硫酸,0.5 ml (1+1)磷酸,加2滴4%高锰酸钾溶液。如紫红色褪去,则应添加高锰酸钾溶液至保持红色,加热煮沸,直到溶液体积约剩20 ml为止。 (4)冷却后,向各瓶中加1 ml 20%尿素溶液,然后用滴管加2%亚硝酸钠溶液,每加1滴充分摇动,直至紫色刚好褪去为止。 (5)稍停片刻,待瓶中不再冒气泡后,将溶液转移到50 ml比色管中,用水稀释至标线。(6)加入2.5 ml二苯碳酰二肼溶液,充分摇匀,放置10 min。 (7)用3 cm比色皿,在540 nm波长处,以试剂空白作参比,测定吸光度,绘制标准曲线,并从铬标准曲线上查得水样含铬的微克数。 原子吸收分光光度法 实验原理 原子吸收分光光度法是基于物质所产生的原子蒸气对待测元素的特征谱线的吸收作用进行定量分析的一种方法。溶液中的铬离子在火焰温度下转变为基态铬原子蒸气,对357.9 nm产生吸收。在一定条件下,吸光度与试液中铬的浓度成正比。 实验条件 原子吸收分光光度法:波长:357.9 nm;灯电流:15 mA;狭缝宽度、燃烧器高度、乙炔流量和空气流量自调。 实验步骤 1.原子吸收分光光度法: (1)采样:

氯化物测定实验报告

碳酸锂、单水氢氧化锂中 氯化物量测定氯化银浊度法 实验报告 新疆有色金属研究所关玉珍康泽彦张向红 1 方法提要 在硝酸介质中,氯离子与银离子生成乳白色胶状沉淀或胶状悬浮物,在分光光度计波长420nm处,利用形成的浑浊度,求得氯化物的含量。 2 试剂 硝酸(1+1),优级纯。 硝酸(360 + 640),优级纯。 硝酸银溶液(L):称取硝酸银(优级纯)于烧杯中,加水溶解,移入1000mL棕色容量瓶中,加入3滴硝酸(ρmL)使溶液透明,以水稀释至刻度,摇匀。避光贮存。 氢氧化钠溶液(100g/L):称取10g氢氧化钠于250mL塑料烧杯中,用100mL去二氧化碳水溶解,保存于塑料瓶中。 对硝基酚指示剂(1g/L):乙醇溶液。 氯化物标准贮存溶液:称取 1.6484g预先在500℃灼烧至恒重的氯化钠(优级纯),置于100mL烧杯中,以水溶解,移入1000mL容量瓶中,以水稀释至刻度,摇匀。此溶液1mL相当于1mg氯化物。 2.6.1氯化物标准溶液A:移取氯化物标准贮存溶液(),置于250mL容量瓶中,以水稀释至刻度,摇匀。此溶液1mL相当于100μg氯化物。 2.6.2 氯化物标准溶液B:移取氯化物标准溶液()于250mL容量瓶中,以水稀释至刻度,混匀,此溶液1mL相当于10μg氯化物。 3 仪器 分光光度计,3cm比色皿。 4 分析步骤 试料 按表1称取试样,精确至 空白试验

随同试料做空白试验。 测定 4.3.1将试料()置于200mL 烧杯中,加少量水和1滴对硝基酚指示剂(),滴加硝酸()至完全分解,黄色退去,加热煮沸,驱除二氧化碳,冷却,移入50mL 容量瓶中,以水稀释至刻度,摇匀。按表1分取试液置于25mL 比色管中。 表1 4.3.2 用氢氧化钠溶液()调至溶液呈黄色,再用硝酸()滴至无色并过量,加入硝酸银溶液(),用水稀释至刻度,摇匀,放置15min 。 4.3.3将部分溶液移入3cm 比色皿中,以试剂空白为参比,于分光光度计波长420nm 处测量其吸光度。 4.3.4减去空白溶液吸光度,从工作曲线上查出相应的氯化物的含量。 工作曲线的绘制 4.4.1移取0mL 、、、、、氯化物标准溶液B (2.6.2),分别置于一组25mL 比色管中,用水稀释至10mL ,加1滴对硝基酚指示剂(),用氢氧化钠溶液调至黄色,以下按()进行。 4.4.2 将部分溶液移入3cm 比色皿中,以试剂空白为参比,于分光光度计波长420nm 处测量其吸光度,减去试剂空白的吸光度后,以氯化物的量为横坐标,吸光度为纵坐标,绘制工作曲线。 5 分析结果的计算 氯化物的含量以氯化物的质量分数w Cl 计,数值以%表示,按式(1)计算: 10010)(1 6 01????-=-V m V m m w Cl (1) 式中: m 1——测量试液中测得的氯化物的量,单位为微克(μg );

水硬度的测定实验报告

EDTA溶液的配制与标定和水中硬度的测定 实验日期:年月日 处理对象: 实验内容:EDTA溶液的配制与标定和水中硬度的测定 实验原理: 标准溶液的配制(L)——间接法 m=cVM 标准溶液的标定 以与被测物性质相似的物质(CaCO)作为基准物质标定EDTA溶液。3滴定条件:pH=10(NH-NHCl作为缓冲溶液,其中加入镁溶液,以便用铬黑T43作为指示剂)。 标定中的反应 2+2-2-2+ +MgY+Mg?CaY滴定前:Ca2+2--+ +HIn+HMg?MgIn2+2-2-+ Y?CaY滴定反应:Ca+2H+H2-2-2-2- ?MgY化学计量点时:MgIn+HIn+HY2标定结果的计算 3.水中总硬度的测定测定中的反应2+2-2-2+ ?CaY滴定前:Ca+Mg+MgY+-2+2-Mg?MgIn+HIn+H+ 2-2+2-+2H+H?CaYY滴定反应:Ca2+2-2+2- +2HMg+HY?MgY22-2--2- Y 化学计量点时:MgIn+H?MgY+HIn2测定结果的计算. 实验用品: 1仪器:滴定管(50mL)、锥形瓶(250mL)、试剂瓶(500mL)、容量瓶(500mL)、小烧杯(100mL),移液管、表面皿等。 ②药品:乙二胺四乙酸二钠盐(EDTA固体)、CaCO(固体)、三乙醇胺溶液、31:1NH·HO、1:1盐酸、镁溶液(1g MgSO·7HO溶解于水中,稀释至200mL)、243210%NaOH溶液,钙指示剂、NaS溶液、NH-NHCl缓冲溶液(pH=10)、铬黑423T指示剂 实验步骤 1L EDTA标液的配制 称取EDTA于小烧杯中,溶于200~300mL去离子水中并加热,稀释至约500mL 后转移至500mL试剂瓶中,摇匀 ②L钙标液的配制 准确称取~ CaCO(称准至小数点后四位)于小烧杯中,盖以表面皿且加水润湿,3从杯嘴逐滴加入1:1HCl至全溶解,用水淋洗表面皿入杯中,加热近沸,冷却后移入250mL容量瓶中,定容、摇匀 ③EDTA的标定 移取钙标液于锥形瓶中,量取约25mL去离子水,依次加入2mL镁溶液、 5mL10%NaOH溶液、10mg(米粒大小)钙指示剂,摇匀,用EDTA溶液滴定由紫红色变至纯蓝色终点。 ④水样总硬度的测定 移取水样于锥形瓶中依次加入5mL三乙醇胺溶液、5mL NH-NHCl、1mL NaS、

含铬废水的处理实验报告

含铬废水的处理实验报告 实验含铬废水的处理及其相关参数的测定 一、实验目的 (1)了解工业废水处理流程,掌握各单元操作的实验原理。掌握由这些单元操作组 成的处理流程。 (2)了解除铬过程中各因素之间的关系。 (3)掌握相关的水质参数的测定方法。 二、实验原理 1. 化学还原法——铁氧体法 铁氧体法处理含铬废水的基本原理就是使废水中的Cr2O72-或CrO42-在酸性条件下与过量还原剂FeSO4作用,生成Cr3+和Fe3+,其反应式为:

Cr2O72-+6Fe2++14H+=2Cr3++6Fe3++7H2O HCrO4-+3Fe2++7H+=Cr3++3Fe3++4H2O 再通过加入适量碱液,调节溶液pH值,并适当控制温度,加入少量H2O2后,可将溶液中过量的Fe3+部分氧化为Fe2+,得到比例适度的Cr3+,Fe2+和Fe3+沉淀物: Fe3++3OH-=Fe(OH)3↓ Fe2++2OH-=Fe(OH)2↓ Cr3++3OH-=Cr(OH)3↓ 由于当Fe(OH)2和Fe(OH)3沉淀量比例1:2左右时,可生成Fe3O4·xH2O磁性氧化物(铁氧体),其组成可写成FeFe2O4·xH2O,其中部分Fe3+可被Cr3+取代,使Cr3+成为铁氧体的组成部分而沉淀下来,沉淀物经脱水等处理后,既得组成符合铁氧体组成的复合物。因此,铁氧体法处理含铬废水效果好,投资少,简单易行,沉渣量少且稳定。而且含铬铁氧体是一种磁性材料,可用于电子工业,这样既可以保护环境又进行了废物利用。实验室检验废水处理的结果,常采用比色法分析水中的铬含量。其原理为:Cr(Ⅵ)在酸性介质中与二

漂白粉中有效氯含量、水中余氯量及需氯量的测定

漂白粉中有效氯含量的测定 一、实验目的 1. 掌握间接碘量法的基本原理及滴定条件 2. 掌握测定漂白粉中有效氯含量的操作方法 二、实验原理 碘量法是以电极反应I 2 + 2e = 2I - 为基础的滴定分析方法。,故I 2 是中等强度的氧化剂,I - 是中等强度的还原剂。利用I 2 的氧化性和I - 的还原性进行滴定分析的方法称为碘量法。其中用I - 与氧化剂作用生成I 2 ,再用Na 2 S 2 O 3 标准溶液滴定所生成的I 2 ,从而间接测定氧化性物质的方法称为间接碘量法。间接碘量法有较广泛的应用。 漂白粉的主要成分是次氯酸钙和氯化钙。它与酸作用放出的氯气具有杀菌、消毒作用,称为有效氯。利用以下反应,可间接测定漂白粉中有效氯的含量: Ca(C1O)Cl + H 2 SO 4 = CaSO 4 + Cl 2 ↑+H 2 O C1 2 + 2 KI = 2 KCl + I 2 I 2 + 2Na 2 S 2 O 3 = Na 2 S 4 O 6 + 2NaI 三、实验用品 分析天平,称量瓶,烧杯,250mL 容量瓶,100ml容量瓶,50mL 带塞锥形瓶,10mL 量简,棕色试剂瓶,5mL 吸量管,滴定管,多用滴管,洗耳球。20 %KI , 1 %淀粉溶液,3mol ·L -1 H 2 SO 4 ,Na 2 CO 3 ( 分析纯) ,K 2 Cr 2 O 7 ( 分析纯) ,Na 2 S 2 O 3 ·5H 2 O( 分析纯) ,漂白粉。 四、实验内容 常量法 1. 配制Na 2 S 2 O 3 溶液 用分析天平称取Na 2 S 2 O 3 ·5H 2 O 13g 左右和0.1g左右的Na 2 CO 3 溶于500mL 新煮沸过冷却的蒸馏水中。转入棕色瓶中,放置于避光处7 ~10 天后标定。

水中重金属实验报告

《环境化学实验》报告 实验考核标准及得分

题目:水中重金属的污染评价 一、实验目的与要求 1、了解水中重金属的消解与测定方法。 2、掌握原子吸收分光光度计分析技术。 3、了解水体的重金属污染状况,制定相应的污染控制对策 二、实验方案 1、实验原理: 环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。常用火焰原子吸收光度法测定试样中元素的浓度来测重金属浓度。原子吸收光度法是根据物质产生的原子蒸气对特定波长的光的吸收作用来进行定量分析的。元素的气态基态原子外层的电子可以吸收与其发射波长相同的特征谱线。当光源发射的某一特征波长的光通过原子蒸气时,原子中的外层电子将选择性地吸收该元素所能发射的特征波长的谱线,这时,透过原子蒸气的入射光将减弱,其减弱的程度与蒸气中该元素的浓度成正比,吸光度符合吸收定律: A=lg(I0 / I)=KcL 根据这一关系可以用工作曲线法或标准加入法来测定未知溶液中某元素的含量。 原子吸收光度法具有较高的灵敏度。每种元素都有自己为数不多的特征吸收谱线,不同元素的测定采用相应的元素灯,因此,谱线干扰在原子吸收光度法中是少见的。影响原子吸收光度法准确度的主要是基体的化学干扰。由于试样和标准溶液整体的不一致,试样中存在的某些基体常常影响被测元素的原子化效率,如在火焰中形成难于离解的化合物或使离解生成的原子很快重新形成在该火焰温度下不再离解的化合物,这时就发生干扰作用。一般来说,铜、铅、锌、镉的基体干扰不太严重。 2、实验仪器: 3个250mL烧杯、AAS、电热板、100mL比色管 3、试剂 (1)浓硝酸:优级纯 (2)3mol/L盐酸:优级纯 (3)双氧水 (4)10%氯化铵溶液 4、实验步骤 (1)各取3组废水水样50mL放入烧杯中,加入浓硝酸5mL,在电热板上加热消解 (2)蒸至剩余40mL左右,加入5mL浓硝酸和2mL双氧水,继续于电热板上加热消解 (3)蒸至剩余30mL左右,加入2mL10%的氯化铵和10mL 3mol/L的HCl,取下来冷却,待冷却后,装入比色管中,定容到100mL,若溶液比较混浊,则先过滤再测。 (4)用AAS测定并记录数据结果 三、实验结果与数据处理

实验9 漂白粉中有效氯含量的测定

实验9 漂白粉中有效氯含量的测定 一、实验目的 1. 掌握间接碘量法的基本原理及滴定条件 2. 掌握测定漂白粉中有效氯含量的操作方法 二、实验原理 碘量法是以电极反应I 2 + 2e = 2I - 为基础的滴定分析方法。,故I 2 是中等强度的氧化剂,I - 是中等强度的还原剂。利用I 2 的氧化性和I - 的还原性进行滴定分析的方法称为碘量法。其中用I - 与氧化剂作用生成I 2 ,再用Na 2 S 2 O 3 标准溶液滴定所生成的I 2 ,从而间接测定氧化性物质的方法称为间接碘量法。间接碘量法有较广泛的应用。 漂白粉的主要成分是次氯酸钙和氯化钙。它与酸作用放出的氯气具有杀菌、消毒作用,称为有效氯。利用以下反应,可间接测定漂白粉中有效氯的含量: Ca(C1O)Cl + H 2 SO 4 = CaSO 4 + Cl 2 ↑+H 2 O C1 2 + 2 KI = 2 KCl + I 2 I 2 + 2Na 2 S 2 O 3 = Na 2 S 4 O 6 + 2NaI 三、实验用品 分析天平,称量瓶,烧杯,250mL 容量瓶,100ml容量瓶,50mL 带塞锥形瓶,10mL 量简,棕色试剂瓶,5mL 吸量管,滴定管,多用滴管,洗耳球。20 %KI , 1 %淀粉溶液,3mol ·L -1 H 2 SO 4 ,Na 2 CO 3 ( 分析纯) ,K 2 Cr 2 O 7 ( 分析纯) ,Na 2 S 2 O 3 ·5H 2 O( 分析纯) ,漂白粉。 四、实验内容 常量法 1. 配制Na 2 S 2 O 3 溶液 用分析天平称取Na 2 S 2 O 3 ·5H 2 O 13g 左右和0.1g左右的Na 2 CO 3 溶于500mL 新煮沸过冷却的蒸馏水中。转入棕色瓶中,放置于避光处7 ~10 天后标定。 2. Na 2 S 2 O 3 溶液的标定

含铬废水处理实验报告

实验含铬废水的处理及其相关参数的测定 一、实验目的 (1)了解工业废水处理流程,掌握各单元操作的实验原理。掌握由这些单元操作组成的处理流程。 (2)了解除铬过程中各因素之间的关系。 (3)掌握相关的水质参数的测定方法。 二、实验原理 1.化学还原法——铁氧体法 铁氧体法处理含铬废水的基本原理就是使废水中的Cr2O72-或CrO42-在酸性条件下与过量还原剂FeSO4作用,生成Cr3+和Fe3+,其反应式为: Cr2O72-+6Fe2++14H+=2Cr3++6Fe3++7H2O HCrO4-+3Fe2++7H+=Cr3++3Fe3++4H2O 再通过加入适量碱液,调节溶液pH值,并适当控制温度,加入少量H2O2后,可将溶液中过量的Fe3+部分氧化为Fe2+,得到比例适度的Cr3+,Fe2+和Fe3+沉淀物: Fe3++3OH-=Fe(OH)3↓ Fe2++2OH-=Fe(OH)2↓ Cr3++3OH-=Cr(OH)3↓ 由于当Fe(OH)2和Fe(OH)3沉淀量比例1:2左右时,可生成Fe3O4·xH2O磁性氧化物(铁氧体),其组成可写成FeFe2O4·xH2O,其中部分Fe3+可被Cr3+取代,使Cr3+成为铁氧体的组成部分而沉淀下来,沉淀物经脱水等处理后,既得组成符合铁氧体组成的复合物。因此,铁氧体法处理含铬废水效果好,投资少,简单易行,沉渣量少且稳定。而且含铬铁氧体是一种磁性材料,可用于电子工业,这样既可以保护环境又进行了废物利用。 实验室检验废水处理的结果,常采用比色法分析水中的铬含量。其原理为:Cr(Ⅵ)在酸性介质中与二苯基碳酰二肼反应生成紫红色配合物,其水溶液颜色对光的吸收程度与Cr(Ⅵ)的含量成正比。只要把样品溶液颜色与标准系列的颜色采用目视比较或用分光光度计测出此溶液的吸光度就能确定样品中Cr(Ⅵ)的含量。 为防止溶液中Fe2+、Fe3+及Hg22+、Hg2+等打扰,可适当加入适量的H3PO4消除。 2.活性炭吸附法 废水处理中,吸附法主要用于废水中的微量污染物,达到深度净化的目的;本实验选活性炭吸附法,活性炭有吸附铬的性能,但因其吸附能力有限只适合处理含铬量低的废水,

水中溶解氧的测定实验报告

溶解氧的测定实验报告 xx 一、实验目的 1.理解碘量法测定水中溶解氧的原理: 2.学会溶解氧采样瓶的使用方法: 3.掌握碘量法测定水中溶解氧的操作技术要点。 二、实验原理 溶于水中的氧称为溶解氧,当水受到还原性物质污染时,溶解氧即下降,而有藻类繁殖时,溶解氧呈过饱和,因此,水中溶解氧的变化情况在一定程度上反映了水体受污染的程度。 碘量法测定溶解氧的原理: 在水中加入硫酸锰及碱性碘化钾溶液,生成氢氧化锰沉淀。此时氢氧化锰性质极不稳定,迅速与水中溶解氧化合生成锰酸锰: MnSO 4+2aOH=Mn(OH) 2↓(白色)++Na 2SO42Mn(OH) 2+O 2=2MnO(OH) 2(棕色) H 2MnO

3十Mn(OH) 2=MnO 3↓(棕色沉淀)+2H 2O 加入浓硫酸使棕色沉淀(Mn0 2)与溶液中所加入的碘化钾发生反应,而析出碘,溶解氧越多,析出的碘也越多,溶液的颜色也就越深 2KI+H 2SO 4=2HI+K 2SO4 MnO 3+2H 2SO 4+2HI=2MnSO 4+I 2+3H 2O I2+2Na 2S 2O 3=2NaI+Na 2S

4O6用移液管取一定量的反应完毕的水样,以淀粉做指示剂,用标准溶液滴定,计算出水样中溶解氧的含量。 三、仪器 1.250ml—300ml溶解氧瓶 2.50ml酸式滴定管。 3.250ml锥形瓶 4.移液管 5.250ml碘量瓶 6.洗耳球 四、试剂 l、硫酸锰溶液。溶解480g分析纯硫酸锰(MnS0 4· H 20)溶于蒸馏水中,过滤后稀释成1000ml.此溶液加至酸化过的碘化钾溶液中,遇淀粉不得产生蓝色。 2、碱性碘化钾溶液。取500g氢氧化钠溶解于300—400ml蒸馏水中(如氢氧化钠溶液表面吸收二氧化碳生成了碳酸钠,此时如有沉淀生成,可过滤除去)。 另取得气150g碘化钾溶解于200ml蒸馏水中,待氢氧化钠冷却后,将两溶液合并,混匀,用水稀释至1000ml。如有沉淀,则放置过夜后,倾出上层清液,贮于棕色瓶中,用橡皮塞塞紧,闭光保存。此溶液酸化后,与淀粉应不呈蓝色。 3.1%淀粉溶液:

相关文档
相关文档 最新文档